Relaxed error control in shape optimization that utilizes remeshing
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SUMMARY

Shape optimization strategies based on error indicators usually require strict error control for every computed
design during the optimization run. The strict error control serves two purposes. Firstly, it allows for the
accurate computation of the structural response used to define the shape optimization problem itself. Secondly, it
reduces the discretization error, which in turn reduces the size of the step discontinuities in the objective
function that result from remeshing in the first place. These discontinuities may trap conventional optimization
algorithms, which rely on both function and gradient evaluations, in local minima. This has the drawback that
multiple analyses and error computations are often required per design to control the error.

In this study we propose a methodology that relaxes the requirements for strict error control for each design.
Instead, we rather control the error as the iterations progress. Our approach only requires a single analysis and
error computation per design. Consequently, large discontinuities may initially be accommodated; their
intensities reduce as the iterations progress. To circumvent the difficulties associated with local minima due to
remeshing, we rely on gradient-only optimization algorithms, which have previously been shown to be able to
robustly overcome these discontinuities.

KEY WORDS: error indicator; remeshing; r-refinement; shape optimization; radial basis function;
analytical sensitivities; gradient-only optimization; discontinuities

1. INTRODUCTION

Shape optimization may be considered a natural companion to a posteriori adaptive finite ele-
ment (FE) mesh refinement, because both techniques share the computational burden of multiple
analyses [1-4]. A large portion of the computational burden associated with a posteriori adaptive
FE mesh refinement in once-off analyses is already accommodated for during shape optimization.
A posteriori error indicators (or estimators) can be incorporated into FE based shape optimization
environments using two distinctly different approaches [1]—the difference being whether changes
in mesh fopologies are allowed as the iterations progress, or not.

Approaches that require the mesh topology to remain fixed between optimization iterations only
update the mesh topology after the optimization update, as depicted in Figure 1(a). Hence, a single
finite element analysis (FEA) is required for each candidate shape design if the error remains
sufficiently small after a shape design update. Otherwise, multiple analyses are required per can-
didate shape design to reduce the discretization error. Because the function values computed with
different mesh topologies differ for the same candidate shape design, the optimization update may
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Figure 1. Finite element-error indicator integration into optimization.

have to be repeated with the updated mesh topology [1]. This strategy may be efficient when design
changes are small and no error control is required between design updates.

Alternatively, the mesh topology may be updated to control the discretization error during each
optimization update, as depicted in Figure 1(b). Multiple FEAs may be required for each candidate
shape design to control the discretization error, that is, to limit the size of the jump discontinuities
resulting from different mesh topologies, allowing for the efficient use of classical gradient based
algorithms [1].

In this study, we implement a new approach that allows for relaxation of the requirement that
strict error control is done when using classical optimization algorithms that rely on both function
and gradient information. This new approach is depicted in Figure 1(c). We are able to relax the
requirement for strict discretization error control for each candidate shape design, because gradient-
only optimization allows us to robustly and efficiently optimize the resulting discontinuous cost
functions, as we have previously demonstrated [5] (but at that time without any error indicators
whatsoever).

Instead of obtaining a converged error for each candidate shape design, we allow the error to
converge as the iterations progress. A loosely related strategy was implemented by Van Keulen
et al. [6]. The benefit of our proposed approach is enhanced computational efficiency. Note, however,
that the use of gradient-only optimization is an essential ingredient to enable relaxed error control.
Conventional gradient based algorithms are not able to solve these optimization problems robustly
[5,7], unless the magnitudes of the discontinuities are controlled to be sufficiently small by enforcing
strict error control. This is so because classical methods rely on function value information, which
contain numerical local minima in the presence of remeshing.

We demonstrate our approach by extending the previously proposed uniform remeshing shape
optimization strategy [7] on the basis of the efforts of Persson and Strang [8]. We extend the strat-
egy by including the Zienkiewicz—Zhu (ZZ) error indicator [9], with the objective of improving the
accuracy of the global energy norm of the structure for a fixed number of DOFs. This ensures that
the computational cost for each design iteration remains more or less the same. In addition, (semi)
analytical sensitivities are made available for use in gradient-only optimization approaches. We can
indeed incorporate error indicators freely, because we are able to robustly and efficiently optimize
the discontinuous objective functions resulting from changes in the mesh topology. Although we
choose to keep the number of DOFs constant, the technique proposed herein is generic and can be
combined with any error estimator to control errors within user specified tolerances when allowing
for a varying number of DOFs.

In summary, the contribution of our proposed strategy is that it requires only a single FEA
for each candidate shape design. This is achieved by mapping the computed error indicator of a



given shape geometry to the geometry obtained after an iteration of our gradient-only optimization
algorithm. The mapping of the error indicator field between two shape geometries is merely a relo-
cation of the nodal positions of the error indicator mesh from one shape geometry to the next using
radial basis functions (RBFs), as opposed to a linearization of the error indicator field between two
shape geometries [10]. This allows for a generic mapping of data between two geometries and may
be used to map additional or alternative information as opposed to the error indicator mapped in
this study. An additional advantage of this mapping is that the required number of computations are
fewer than that required to compute a linearized error indicator field, or the actual error indicator
field, which would require a full FEA.

We do not address convergence herein in a rigorous fashion. In engineering optimization, this is
not uncommon. Many efficient algorithms for engineering optimization simply rely on the accuracy
of the approximations used to drive the iteration sequence to termination; this is so because there
often is a computational penalty to be paid when convergence is enforced using, for example, con-
servatism, or trust region methods [11]. In turn, the motivation for this is that the simulations used
in engineering optimization, for example, FE or CFD simulations are expensive enough as they are.
Popular algorithms in this class include the convex linearization method (CONLIN) of Fleury and
Braibant [12] and its generalization, the method of moving asymptotes of Svanberg [13]. Having
said this, the use of unconstrained gradient-only optimization methods in certain classes of piece-
wise discontinuous functions have been proven to be convergent [14]. What is more, currently, we
at least have empirical evidence from our previous studies [5, 14] with a uniform remeshing strategy
that our approach seems promising. Nevertheless, an investigation into the convergence properties
of the methodologies we use herein is deserving of much attention.

Before proceeding, some clarification regarding the computation of gradients is provided. Given
a candidate shape design, this shape is discretized using some meshing algorithm. A structural
analysis is then performed, as well as a (semi) analytical sensitivity analysis. The sensitivity analy-
sis is performed while disallowing any mesh topology changes. This computation can be performed
for every imaginable shape design. We denote the result of the sensitivity analysis as the gradient
of the objective function. It is this gradient that has to be provided to gradient-only optimization
algorithms [5, 14]. This usage of the term gradient is only inconsistent with the strict mathemat-
ical definition if the computation occurred exactly at the threshold of a change in mesh topology.
Because it is not necessary to identify such a case when using gradient-only optimization algorithms,
our definition of the gradient suffices for the purposes considered herein.

Our paper is arranged as follows. Firstly, we present the gradient-only shape optimization problem
in Section 2. Thereafter, we briefly outline the gradient-only optimization algorithm used in this
study in Section 3. We then discuss the structural analysis, including the a posteriori error indicator
and mesh refinement strategy, in Section 4. Our adaptive mesh generation strategy is presented in
Section 5, followed in Section 6 by a sensitivity analysis. Section 7 contains the numerical results,
which includes a convergence study and two example problems. Additional examples may be found
in Wilke [15]. Some conclusions are offered in Section 8.

2. SHAPE OPTIMIZATION PROBLEM

The problem under consideration is the equality constrained shape optimization problem, for which
the Lagrangian is given by

L(x,A)=F(Qx)+ ) _Ajgj(x), x € X CR"and A eR™, (1)
j=1

where the objective function F (£2(x)) is a scalar function that depends on the geometry €2 of the
structure, which in turn depends on the control variables x that describe the geometrical boundary
0Q2. The equality constraints gj(x) =0, j = 1,2,---,m are scalar functions of the control vari-
ables x. For the sake of brevity, the cost function and the constraints will respectively be denoted by
F(x) and g(x); this notation will however imply dependency on Q(x). We choose to represent the



geometrical boundary 92 by a simple piecewise linear interpolation between the control variables.
However, Bezier curves or B-splines, and others, may of course also be used.
Normally, the saddle point of (1) is solved for using the dual formulation

max {min L(x, )L)} . 2)
A X
We however solve (1) using the gradient-only dual formulation [5]
g &
max mmL(x,A)}, (3)
A X
with miax defined as follows: find A, such that
ViL(x,A +y,0)v <0, VveR™ 4)
g
Similarly, min is defined as follows: find x, such that
X

V;L(x + 8yu, A)u =0,V u € R” such that x + S,u € X, (5)

with X as the convex set of all possible solutions, Vy the partial derivatives w.r.t. x, V, the partial
derivatives w.r.t. A, and where §,, and y, are real positive scalars. Note that we have only exploited
gradient information of L(x, ).

Following a similar approach, we may pose the problem as an inequality constrained problem by
imposing positive bounds on the Lagrangian multipliers. However, because our proposed approach
is currently limited to smooth constraint functions, we currently cannot consider displacements,
strains and stresses as constraints, but we hope to do so in the near future.

3. OPTIMIZATION ALGORITHM

We will use the gradient-only sequential spherical approximation algorithm presented by Wilke
et al. [5] to optimize the discontinuous shape optimization problem. For the sake of completeness
and brevity, we merely outline the algorithm here (for details on the algorithm, and a motivation for
using gradient-only optimization methods in the first place, the reader is referred to [5]):

1. Initialization: Select real constants € > 0, @ > 1, initial curvature c% > 0 and initial point
[x{O} A{O}]. Setk:=1,s:=0.

2. Gradient evaluation: Compute VIL ([x{k} AR,
3. Approximate optimization: Construct the local gradient-only approximate subproblem

vk (x) =VIL ([x{k} A{k}]) +H® (v - x{k}) ©6)

at x{k}, using H k) — ik , where I is the identity matrix and

(xtk=1) gt T (VEL ([x{k—l} )L{k}]) VL ([x{k} A{k}D)

kY —
(xlk=1} — x Uk T (x{k=1} — x{kY)

(7

(In an inner loop, use c{¥} as calculated in step 6(b)). Solve this subproblem analytically, to
arrive at x %*} by setting (6) equal to 0.

4. Evaluation: Compute VIL ([x{k*} A{k}])_



5. Test if x**} is acceptable: if
vIL ([x{k*} M"}]) (x{k*} _ x{k}) <V'f (x{k*}) (x‘k*} _ x{k}) -0 (8)

go to step 7.
6. Initiate an inner loop to effect conservatism:
(a) Sets:=s+ 1.
(b) Set clkt .= gelkt,
(c) Go to step 3.
7. Move to the new iterate: Set xk+1} .= ik},
8. Update multiplier: Set A% 1 .= A%} 4 3 G+ with A%+ the multiplier update step.
9. Convergence test: if H[Ax{k} A)L{k}]” < ¢, OR || Ax{i}|| <e, Vi={k—-4k-3,...,k},
OR k = kyay, stop?.
10. Initiate an additional outer loop: Set k := k + 1 and go to step 2.

We elaborate as follows: in step 5, a step is deemed acceptable when the projection of the step onto
the directional derivative is negative, but this need not be optimal; superior strategies may well exist.
Again, we hope to investigate this in the near future.

4. STRUCTURAL ANALYSIS

In shape optimization, the cost function F(x) = F (u(X(x))) is an explicit function of the
nodal displacements u, which in turn is a function of the discretized geometrical domain X.
The discretized geometrical domain X is described by the control variables x, which represent
the geometrical boundary 0€2.

The nodal displacements u are obtained by solving the approximate FE equilibrium equations for
linear elasticity

Ku=f, ©)

where K represents the assembled structural stiffness matrix and f the consistent structural nodal
loads, from which the unknown displacements # can be computed. From u, we can then locally
compute elemental stress fields

6.=CB.u,, (10

with constitutive relationship C, element kinematic relation B, and element displacement u,. By
combining the local stress fields 6, of adjacent elements, we obtain a global discontinuous stress
field o over the entire structure, because inter-elemental stress continuity is not enforced. As the true
stress field is continuous, error indicators may be recovered from the discontinuous stress field [16].

As said, shape optimization and a posteriori adaptive FE mesh refinement may naturally
compliment each other, because both imply multiple FEAs. Instead of only conducting a FEA for
each candidate shape design, we also recover error indicators from these FEAs. The recovered error
from a given shape design is then used to discretize an updated shape design, causing the refinement
strategy to converge as the shape design converges.

4.1. Recovery-based global error indicator and refinement procedure

Although many recovery-based error indicators exist, which range from so-called global to local
indicators [17], we will herein opt for only the well-known ZZ global error indicator [9]. We do
so merely for the sake of brevity and simplicity—other indicators, be it global or local, may also
be used.

Using the computed error, we seek a refinement strategy to indicate spatial refinement (respec-
tively de-refinement) of the mesh. For this, we modify the refinement procedure of Zienkiewicz and

¥The notation used is Agp*} = @k+1i — gtk



Zhu [9] to suit our r-refinement strategy: for the ith element at the kth iteration, we compute the
refinement ratio Elf{k} as

{k} !

where represents the approximated energy norm and &¥ the average element error. In turn,

{k}
a
we use the refinement ratio Si{k} to compute the ideal element length®

h;{k—l}

(6"

with /%% chosen as the ideal element length of a uniform mesh for the first iteration. This also
defines the initial number of nodes for our r-refinement strategy. Here, p is usually selected as the
polynomial order of the shape functions away from singularities, and adjusted near singularities [9].
Our mesh generator naturally generates linear strain triangle elements, for which we found experi-
mentally that p < 4 may result in oscillatory behavior. Hence, we have somewhat arbitrarily selected
p = 5 herein [6]. We then smooth the discrete elemental scalar field AL using nodal averaging to
obtain a piecewise continuous ideal element field 1t} described by a FE interpolation. Finally, we
normalize the continuous ideal element field 2%} to obtain

W = (12)

. Pk
ik — %KW}, (13)

with 7%} the average continuous ideal element length and « a scaling factor. We select k as constant,
but allowing « to vary (as some function of the initial area, current area, number of initial boundary
nodes and current boundary) may well be beneficial. Finally, we limit the minimum ideal element
length 7%} as follows:

71} = max (hmm, ﬁ{k}) , (14)
with hipy, prescribed.
5. ADAPTIVE MESH GENERATOR

Our mesh generator solves for the equilibrium position of a truss structure [8], which doubles as the
FE mesh, using the ideal element length field h{k}, k =1,2,3,... as the unloaded truss lengths, as
opposed to directly optimizing the mesh according to some optimality criterion [18, 19]. It has been
demonstrated [5,7, 8] that this approach generates ‘good’ meshes.

We start with an initial uniform mesh X% at k = 0, using a uniform ideal element length field
hi0} [7). After each analysis, we compute the ideal element length field AL using the refinement
strategy described in Section 4.1. Recall that we then merely relocate the nodal positions of the com-
puted ideal element length field to the new candidate shape design obtained from the optimization
step, to avoid multiple analyses per candidate shape design, as illustrated in Figure 1(c). (We will
describe the details of the mapping of the error field in Section 5.2.)

As with our previous mesh generator [7], we partition the mesh X ¥} along the interior nodes
% and boundary nodes X K39 " \which allows for the independent treatment of the boundary
nodes dQ{%} and interior nodes Q}. Superscript k denotes the iteration counter, which we will
omit for the sake of brevity, unless we explicitly want to highlight the dependency on k.

“1deal element length refers to the ‘unloaded’ truss lengths of the truss members in our truss structure analogous mesh
generator [7]—also see Section 5.



The boundary nodes X 92 are seeded according to the ideal element length field hik} along the
geometrical boundary 02, with nodes explicitly placed on the control variable locations x. This
ensures accurate representation of the defined geometrical domain 2. Therefore, x C X 92 with
02 described by a piecewise linear interpolation of x. The boundary nodes X’ 92 remain fixed dur-
ing the current iteration of the mesh generation process. We therefore only solve for X 2 in finding
the equilibrium of the truss structure

FQme%)zu (15)
The equilibrium of the truss structure is related to the interior nodes X £ via the force function
F®) = F (1), 10 (%, 22)) = Kty - 1), (16)

which depends on the constant spring stiffness /C, the length of the truss members /(X Q) and the
undeformed truss lengths /¢ (l;{k}, X Q) The undeformed truss lengths / (ﬁ{k}, X Q) depend on

the ideal element length field l;{k), as well as the interior nodes X Q, because the ideal element
length field 1k s evaluated at the midpoint of each truss member.

However, the ideal element length field };{k}(e) is taken as a constant background field
[6, 10, 20,21] during the mesh generation process, that is, we do not recompute the error field or
linearize the error field when the interior nodes X of the mesh vary. Consequently, the depen-
dence of the ideal element length field /;{k}(e) on the spatially varying a posteriori error field e
is constant and the sensitivity zero. Lastly, the displacement field u (X Q) depends on the interior
nodes X,

The reduced truss system in (15) is solved directly via the quadratically convergent Newton’s
method, which is given by

ppv AXY¥ =—Fq. 17)
The update of the nodal coordinates is given by
AL =X0 4+ AxS, (18)

and for a constant ideal element length background field, the consistent tangent g;—g is given by

aFq 0dFq 0l aF o dl,
— , 19
dx % 8lax9+'woax9 (19)

We obtain quadratic convergence using Newton’s method.

5.1. Boundary nodes

A first approach to accommodate a spatially varying ideal element length field may be to merely
change the ideal element length and boundary spacing, whereas the number of boundary nodes
and interior nodes follow from our previous uniform remeshing strategy [7]. However, limited
improvements are achieved using this naive strategy.

In this study, we let the number of boundary nodes follow from the spatially varying ideal element
length field by first placing nodes along the boundary X%, We first compute the required number
of boundary nodes per piecewise linear boundary section by dividing the physical length of each
section by the ideal length of each section. To obtain an integer value for the required number of
nodes per section, we round the result down. For each section, the boundary nodes are then explic-
itly placed such that the integral of the error between the boundary nodes are the same. Because we
aim to keep the number of nodes constant, the remaining nodes are seeded in the interior domain
X< Although this strategy may seem simplistic, we found other strategies to determine the number



of boundary nodes, for example, using ratios of the circumference to interior area together with the
error along the circumference to the interior, susceptible to oscillations.

As stated previously, the boundary nodes remain fixed once they have been placed along the
boundary, which reduces the size of the Newton system when solving for the truss equilibrium.
Consequently, an increase in the number of boundary nodes X’ 92 results in a decrease in the num-
ber of interior nodes X' and vice versa, because we want to keep the total number of nodes fixed.
To reduce the computational effort, we use the nodes that describe the ideal element length field
1k} as an initial guess for our interior nodes. To keep the total number of nodes constant, we need
to either remove or add nodes to those nodes used in representing 7%} We do so by ranking the
nodes and elements according to their error densities. We remove nodes by starting with nodes with
smaller error densities, and add nodes by introducing nodes at the centroids of elements with higher
element error densities.

5.2. Mapping the error field between candidate shape designs

The ideal element length field hk} for the kth iteration is obtained by mapping the computed ideal
element length field after the analysis of the (k — 1)th iteration to the candidate shape design for the
kth iteration. We achieve this by merely mapping the nodal positions, without requiring connectivity
information, using RBFs. We therefore have total flexibility on whether we want to use or discard
the nodal connectivity of the previous geometry. In this study, we pay the computational penalty
of retriangulation at every iteration to keep our strategy unsophisticated, while allowing for large
shape changes.
The details of the mapping strategy using RBFs are outlined in the Appendix.

6. SENSITIVITY ANALYSIS

Recall that the cost function F (u (X (x))) is an explicit function of the nodal displacements. Specif-
ically, in all the examples herein, the cost function F is the nodal displacement at the point where a
point load F is applied, expressed as

F(u(x)) = up(x). (20)

The displacement field #(x) depends on the discretized geometrical domain X', which is obtained
by solving for the nodal positions of a truss structure at equilibrium. The ideal element lengths
hik} of the truss structure are obtained from the error indicator discussed in Section 4. Then, the

sensitivity of the displacement ug w.r.t. the control variables x is obtained by computing
dup dup dx
LTt 21
dx dX dx @

The computation of "F is obtained by direct differentiation of the FE equilibrium equations
Ku = f, given by

dK de d f
— K— 22
'ttt T (22
For the constant external loads f we restrict ourselves to in this study, = 0 and (22) reduces to
du dK 23)
— =——u
dx dx
We compute by direct differentiation of the analytical stiffness matrices for the linear strain
triangle elements [7,22], which allows to solve for (ff/’{., to then obtain g’ﬁ
The sensitivities of the nodal coordinates X w.r.t. the control variables x, ‘é - are obtained by dif-

ferentiating the truss structure equilibrium equations from the mesh generation in Section 5. Recall
that we partitioned X along the interior nodes X and boundary nodes X 9% Also, recollect that



the boundary nodes X 92 are seeded according to the ideal element length field hk along the geo-
metrical boundary d€2, and that they remain fixed during the mesh generation process. Hence, the
equilibrium of the truss structure F o only depends implicitly on the interior nodes X’ S

Consider the dependency of the equilibrium equations F g on x:

Fa (1), X" (%) (). 101" (x), 22 (). 272 (x)) ) = 0. 4

The equilibrium equations Fg depend on the deformed lengths I(X, A7) and unde-
formed lengths 1 (};{k} (x), X Q(x), X% (x)) of the truss members. The truss member lengths

(X% x aQ) in turn depend on the interior nodes X’ £ and boundary nodes X 92 The undeformed
lengths /g (l;{k} , X aQ) are evaluated at the midpoints of the truss members, which depend on the
interior nodes X and the boundary nodes X 92 In addition, the ideal element length field /;{k}(x)

changes as a function of x because of the RBF mapping. By taking the derivative of (24) w.r.t. to
the control variables x we obtain

dFq Fq 0l ax9+aFQ a dx? gptkd
de 0l x® ox al x99 ptky 0Ox
aFq dly ' 9Fq dly 0XT  9Fq dly aX%%

= =0, 25
aly gniky ox al g IX? ox aly axaﬁ ox 25)

to give

ol gx< + My oxe) ox ol 9x 9 piky + o gniky ] ox

aFq 0l 0X%
dl o aX{)Q 0x

(aFQ ol 3Fg 8!0)8XQ_ (aFQ o dx’™  9Fg alo)aﬁ{k}

(26)

oo dx<
are known. We compute the right-hand side with a finite difference perturbation, and recall that

aFqo al AFqo o \ - . . .
(—a IR rci relviol RN available from the Newton update, as noted in Section 5. Once we have
ax ax? axs? 3

solved for a—xQ, we obtain %—f as the union between axQ and S where ’gjg is obtained
numerically. We have verified that the (semi) analytical sensitivities are computed correctly by
comparing them with numerical forward finite difference sensitivities obtained with a range of per-
turbations. Calculation of the finite difference sensitivities is done without Delaunay triangulation
steps, to avoid the introduction of discontinuities (due to the addition or removal of nodes) in the
finite difference calculations.

From (26), we may solve for % when (ag—lgai—lg + g 0l ) and the right-hand side of (26)

7. NUMERICAL STUDY

We will consider two remeshing strategies. Firstly, we use a remeshing strategy, which we will refer
to as uniform, which uses an ideal element length field that is spatially uniform, and kept constant as
the optimization iterations progress [7]. Secondly, we will use the newly developed remeshing strat-
egy presented herein, which is characterized by a spatially varying ideal element field that changes
as the optimization iterations progress, to which we will refer as adaptive.

The parameters used in the remeshing strategies, the FEAs and the optimization algorithm are
as follows. For the adaptive remeshing strategy, we set the mesh refinement parameter p in (12) to
5, whereas the minimum element length /., is selected as O.Ih{O}, unless otherwise stated. The
material considered is an orthotropic Boron-Epoxy in a tape lay-out, that is, the fibers are all aligned
in a single direction, aligned with the global x-axis. In other words, we do not determine an optimal
fiber orientation. We assume plane stress conditions and use classical laminate theory. The material



properties used are a longitudinal Young’s modulus of E; = 228 GPa, a transverse Young’s mod-
ulus of E, = 145 GPa, and a shear modulus of G, = 48 GPa. The last independent parameter
in classical laminate theory is Poisson ratio vy, = 0.23, because v follows from the symmetry
relation Eqva1 = Eovps.

The selected parameters for the gradient-only conservative sequential spherical approximation
algorithm [5] are the curvature factor « = 2, initial curvature A 1, convergence tolerance
€ = 107, and a maximum number of outer iterations k., = 300. The Lagrange multiplier update

step is selected as A, KT = VI L ([x{kH} )L{k}] . We also limit the maximum step size to 1,

which was experimentally found to result in good convergence behavior, but this value will, in gen-
eral, of course, strongly depend on the scaling of the problem. Before we proceed, we study the
convergence behavior of the meshing strategies.

7.1. Convergence behavior

The convergence characteristics of the ZZ error indicator with established refinement strategies are
well known, but we are herein interested in an indication of the effects of our own remeshing strat-
egy in a shape optimization setting on convergence, if only qualitatively. We start the demonstration
by considering a fixed boundary, being indicative of a converged shape design.
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Figure 2. Bow-tie structure used to study the convergence behavior of the remeshing strategies.
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Figure 3. (a) System degrees of freedom (SDOF) and (b) global error 7'k’ for the mesh convergence study
on the bow-tie structure for initial uniform element lengths hg = {1.5, 1, 0.8}.



Consider the bow-tie structure depicted in Figure 2. The structure is meshed using three initial
undeformed truss lengths sy = {1.5,1,0.8}. The convergence criterion for the error indicator is
given by

U{k} — ,’{k—l}

<107, (27)
&

Results are presented in Figure 3, with the system DOF (SDOF) depicted in Figure 3(a) and the
global error indicator depicted in Figure 3(b). From Figure 3(a), it is clear that the SDOFs remain
practically constant as the iterations progress. Figure 3(b) reveals that the final global error n{max(k)}
is lower than the global error of the initial uniform mesh 5%}, for each of the three initial undeformed
truss length choices. We also observe that the required number of refinement iterations reduces as
the SDOFs increase. Note that the global errors 7%} for the various undeformed truss lengths cannot
be compared with each other, because each uses a different ¢ field. For each of the initial uniform
element lengths g = {1.5, 1, 0.8}, we depict the initial meshes in Figures 4(a)—(c), the final meshes
in Figures 4(d)—(f) and the ideal element length fields in Figures 4(g)—(i).

We depict the convergence of the displacements of the bow-tie structure in Figure 5. To do so,
we approximate the analytical solution uj: using Richardson’s extrapolation method [23], because
an analytical solution is not available for this problem. For Richardson’s extrapolation method, we
have used the initial uniform element lengths s = {1.6, 0.8, 0.4} to compute uniform meshes, with
ho representative of the average element length. To approximate the asymptotic convergence rate,
we fit a straight line in a least squares sense through the four data points with the highest SDOFs.

Figure 4. Convergence study showing (a)—(c) the initial mesh, (d)—(f) the final mesh and (g)—(i) the
final ideal element length field of the bow-tie structure for various initial uniform element lengths
ho ={1.5,1,0.8}.
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Figure 5. Approximated displacement convergence rate for the bow-tie structure problem using the uniform
and adaptive mesh generators.
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Figure 6. Initial geometry of the cantilever beam using 13 control points x.

As shown, the error of the adaptive mesh is less than that of the uniform mesh for a given number
of DOFs, whereas the convergence rate is superior.

Having offered some numerical evidence that our remeshing strategy seemingly converges for a
fixed boundary, we now proceed to illustrate the same when both the boundary and error field are
allowed to change simultaneously. We consider equality constrained example problems using both
uniform and adaptive strategies. Note that the initial design is not required to satisfy the equality
constraint (and indeed does not).

7.2. Simple cantilever beam

Next, we progress to the equality constrained design of the orthotropic cantilever beam depicted in
Figure 6. The structure has a predefined length of 30 mm and a thickness of 1 mm. A point load
F of 10 N acts at the bottom right corner of the structure. The boundary of the structure is con-
trolled by the 13 control points or design variables x that can only move vertically. The boundary
is interpolated linearly between the control points. We minimize the displacement up at the point
of load application, subject to an equality constraint on volume, expressed as V(x) = Vj, with
Vo = 150 mm?3, the prescribed volume of the structure.

Convergence histories for the value of the Lagrangian L (x{k},)t{k}), the constraint function
|g(x{k ], the Lagrange multiplier A%} and the SDOFs are depicted in Figure 7(a)—(d) for the uni-
form and adaptive mesh generators. (We have used an initial ideal element length of 1.05 for the
uniform mesh generator and one for the adaptive mesh generator to get a comparable number of
SDOFs for the converged shapes.)
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Figure 7. The cantilever beam convergence histories of (a) the Lagrangian L (x{k bk }), (b) absolute

value of the constraint function g (x{k’), (c) Lagrange multiplier A3 and (d) system degrees of freedom
(SDOF) for a uniform and adapted mesh using initial ideal element lengths /1o of respectively 1.05 and 1.

The required number of iterations and final designs are comparable. The SDOFs of the uniform
remeshing strategy changes as the geometry varies, because the defined geometrical domain
changes. The number of SDOFs of our adaptive remeshing strategy is roughly constant; the small
variations present being the result of nodes being eliminated during convergence of the mesh
generator. The interesting aspects of this example are depicted in Figure 8. The initial and final
designs are depicted in Figure 8(a) and (b), and Figure 8(c) and (d), respectively, with the final ideal
element length fields depicted in Figure 8(e) and (f), for the uniform and adaptive mesh generators,
respectively—note the superiority of the latter mesh. The converged designs depicted in Figure 8(c)
and (d) reflect the parabolic shape known as the analytical solution of the equivalent beam problem.

(b) (d)

Figure 8. Initial (a) and (b) and final (c) and (d) designs of the cantilever beam with the associated final
ideal element length field (e) and (f), for a uniform and adapted mesh using initial ideal element lengths /¢
of respectively 1.05 and 1.



7.3. Spanner design

Finally, we consider the shape design of the full spanner problem presented in Figure 9, which is
subjected to multiple load cases. The objective is to minimize %(uFA — upg), with ugy and ugg
the vertical displacements at the point of load application, for the two independent load cases F4
and Fp, respectively. The spanner is subjected to an equality constraint on volume, expressed as
V(x) = Vp, with V5 = 70 mm3, the prescribed volume of the structure.

The upper and lower boundaries of the geometry are described using 11 control points each. The
structure has a predefined length of 24 mm and thickness of 1 mm. The magnitude of the point loads
F4 and Fp is 1 N each. Symmetry is not enforced; deviations from symmetry may be used to qual-
itatively evaluate the obtained designs because this problem should result in a symmetric geometry.
The ideal element length field 7%} for the mesh is obtained by nodal averaging of the ideal element
length fields obtained from the different load cases.

Figure 9. Initial geometry and loads of the full spanner problem using 22 control points x.
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Figure 10. The full spanner convergence histories of (a) the Lagrangian L (x thy ptk }), (b) absolute value
of the constraint function g (x{k }), (c) Lagrange multiplier A
uniform and adaptive mesh using initial ideal element lengths /¢ of respectively 0.7 and 1.
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Figure 11. Initial (a) and (b) and final (c) and (d) designs of the full spanner with the associated final ideal
element length field (e) and (f), for a uniform and adapted mesh using initial ideal element lengths &g of
respectively 0.7 and 1.

Convergence histories for the value of the Lagrangian L (x{k},)t{k}), the constraint function
|g (x{k})|, the Lagrange multiplier Ak} and the SDOFs are depicted in Figure 10(a)—(d) for the
uniform and adaptive mesh generators. This time, the required number of iterations for the uni-
form mesh generator is slightly more than that required for the adaptive mesh generator. Again, the
SDOFs of the uniform remeshing strategy changes as the geometry varies, whereas the SDOFs of
our adaptive remeshing strategy remains roughly constant after an initial unstable 80 iterations. The
results depicted in Figure 11 compare well with results obtained in previous studies [24,25]. Due
to changes in the SDOF, as depicted in Figure 10(d), some oscillatory behavior is observed in the
Lagrangian L (x (e}, )t{k}) within the first 70 iterations, as seen in Figure 10(a).

8. CONCLUSIONS

We have proposed a remeshing shape optimization methodology based on error estimates that
only requires a single analysis and error calculation per iteration or shape design. This is in con-
trast to conventional approaches that often require multiple analyses per shape design. We have
exploited gradient-only optimization to efficiently incorporate error indicators and refinement strate-
gies, because we only require a single FEA followed by a posteriori error computation for each
candidate shape design, without sacrificing optimization robustness.

We have demonstrated the proposed methodology by extending an existing uniform remesh-
ing strategy [7] by incorporation of the very well known ZZ global error indicator. We improve
significantly on the accuracy of the results obtained with uniform meshes. In addition, we have
demonstrated convergence and efficiency of our strategy on two equality constrained example prob-
lems, albeit that we have not developed a theoretical framework that guarantees convergence at
this stage.

In a follow-up study, we plan to linearize the error indicator field and investigate whether this
improves the convergence of the gradient-only optimization strategies, and the implications for the
development of theoretical frameworks for convergence.

APPENDIX A

The radial basis function s(z) with z € R? for the two dimensional case, is given by

5(z) = anOlj¢ (Hz —x® H) + p(2), (A1)
=1

j=



with p a polynomial, n; the number of boundary nodes and ¢ a given basis function with respect
to the norm ||z||. The coefficients «; and the polynomial p are determined by the interpolation
conditions

s (X?Q) —d"® i =1,2,....m (A2)

with d ?Q the displacement of the i th boundary node. In addition, it is required that

% ojq (25%) =0, (A3)

j=1
for all polynomials ¢ with a degree less or equal than that of polynomial p. We rewrite (A.2) into a
matrix form as

d’? =M« + PB, (A.4)

where M is an np X np matrix with the ith row and jth column containing the evaluation of the
basis function ¢ (”X ?Q - X Z]’-Q H) For two dimensional interpolations P is an nj X 3 matrix with

the i th row given by [1 X ?f X ?sz], where X ?)? and X ?;2 are respectively the x and y coordinates
of the ith boundary node. Similarly, (A.3) can be written in a matrix form

PTa = 0. (A.5)

We therefore need to solve the two systems of linear equations (A.4) and (A.5). We start by rewriting
(A.4) to obtain

a=M1d" _MPB, (A.6)
which we substitute into (A.5) to obtain
pT (M_ldm - M“Pﬂ) —0.
We then solve for B from
P"™™M'PB =P "M 'd%?, (A7)

and « from (A.6). After solving for & and 8, the RBF s(z) is defined and can be used to update the
interior nodes X' as the geometry changes. The boundary displacements d 92 are obtained from
the control variables x and piecewise linear boundary interpolation.
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