
Noname manuscript No.
(will be inserted by the editor)

Simulated Evolution and Simulated Annealing Algorithms

for Solving Multi-objective Open Shortest Path First

Weight Setting Problem

Mohammad A. Mohiuddin · Salman A. Khan · Andries P. Engelbrecht

Received: date / Accepted: date

Abstract Optimal utilization of resources in present-

day communication networks is a challenging task. Rout-

ing plays an important role in achieving optimal re-

source utilization. The open shortest path first (OSPF)

routing protocol is widely used for routing packets from

a source node to a destination node. This protocol as-

signs weights (or costs) to the links of a network. These

weights are used to determine the shortest path be-

Mohammad A. Mohiuddin

Department of Computer Science, University of Pretoria, Preto-

ria 0002, South Africa E-mail: waseem aijaz@yahoo.com

Salman A. Khan

Department of Computer Engineering, College of Information

Technology, University of Bahrain, Sakhir, Bahrain

Department of Computer Science, University of Pretoria, Preto-

ria 0002, South Africa E-mail: sakhan@uob.edu.bh

Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, Preto-

ria 0002, South Africa

E-mail: engel@cs.up.ac.za

tween all sources to all destination nodes. Assignment

of these weights to the links is classified as an NP-hard

problem. This paper formulates the OSPF weight set-

ting problem as a multi-objective optimization prob-

lem, with maximum utilization, number of congested

links, and number of unused links as the optimization

objectives. Since the objectives are conflicting in na-

ture, an efficient approach is needed to balance the

trade-off between these objectives. Fuzzy logic has been

shown to efficiently solve multi-objective optimization

problems. A fuzzy cost function for the OSPF weight

setting problem is developed in this paper based on the

Unified And-OR (UAO) operator. Two iterative heuris-

tics, namely, simulated annealing (SA) and simulated

evolution (SimE) have been implemented to solve the

multi-objective OSPF weight setting problem using a

fuzzy cost function. Results are compared with that

found using other cost functions proposed in the liter-

2

ature [1]. Results suggest that, overall, the fuzzy cost

function performs better than existing cost functions,

with respect to both SA and SimE. Furthermore, SimE

shows superior performance compared to SA. In addi-

tion, a comparison of SimE with NSGA-II shows that,

overall, SimE demonstrates slightly better performance

in terms of quality of solutions.

Keywords Open Shortest Path First Algorithm;

Optimization; Fuzzy logic; Simulated evolution; Simu-

lated Annealing; Routing.

1 Introduction

Internet traffic is increasing rapidly due to the increase

in web based applications [2]. To deal with this high vol-

ume of traffic, efficient utilization of network resources,

such as network bandwidth, is essential. The primary

objective of network traffic engineering is to map traffic

efficiently on the available network resources, prevent-

ing traffic imbalance if it exists [3].

Routers are the main interconnection points of the

internet. They forward data packets between source and

destination nodes through multiple paths which exist

between a given source and destination pair. The com-

plexity of the internet is due to its huge size. The inter-

net is divided into autonomous systems (AS) to man-

age its complexity. An AS is a collection of networks

under the control of one single entity or organization

with a specific routing policy. These policies are de-

fined by a class of routing protocols, namely, interior

gateway protocols (IGP) [4]. Routing across ASs is per-

formed by another class of protocols, namely, exterior

gateway protocols (EGP) [4]. Open shortest path first

(OSPF) [4] is an IGP. The foundation of OSPF is based

on Dijkstra’s algorithm [5], which determines a shortest

path between a source and destination pair. The metric

for shortest path determination is the link weight. The

cost of path between a given source and destination pair

is the sum of OSPF weights on the links in that path.

The path with least cost is considered as the shortest

path.

This paper focuses on the open shortest path first

weight setting (OSPFWS) problem, which is an NP-

hard problem [6]. The OSPFWS problem requires that

a set of weights be determined such that network re-

sources are utilized efficiently. The objectives of this

problem is to minimize maximum utilization, minimize

number of congested links, and minimize number of un-

used links. These objectives are conflicting in nature,

i.e. if improvement in one objective is obtained, at least

one of the other objectives may result in deterioration.

To address this NP-hard problem with conflicting ob-

jectives, this paper proposes to apply two algorithms,

namely, a fuzzy logic based simulated annealing [7] and

3

a fuzzy logic based simulated evolution [8] algorithm.

The performance of these two algorithms is compared.

Results are also compared with other formulations of

the objective function.

The rest of the paper is organized as follows: Sec-

tion 2 provides the necessary background and related

work on the OSPFWS problem, as well as an introduc-

tion to the simulated annealing and simulated evolu-

tion algorithms. Section 3 gives the formal definition of

the OSPFWS problem. Section 4 provides a primer on

fuzzy logic and the Unified And-OR operator. The for-

mulation of a fuzzy logic based objective function for

the OSPFWS problem is covered in Section 5. Section 6

describes the proposed algorithms. Results are provided

and discussed in Section 7. The paper is concluded in

Section 8. Finally, symbols and terminology used in this

paper are given in the appendix.

2 Background and Related Work

Literature has reported considerable research on op-

timizing OSPF weights [1,3,9,10]. The term “Maxi-

mum utilization” is defined as the maximum value of

all the utilization values over all the links in the net-

work. Fortz and Thorup [3] were the first to formulate

a cost function based on utilization ranges, and applied

tabu search [11] to optimize (i.e. minimize) “maximum

utilization”.

The formal definition of the Fortz and Thorup cost

function is as follows:

minimize Φ =
∑

a∈A

Φa(la) (1)

subject to the constraints:

la =
∑

(s,t)∈N×N

f (s,t)
a a ∈ A, (2)

f (s,t)
a ≥ 0 (3)

The constraint in Equation (2) implies that total

traffic load on arc a is equal to the sum of the traffic

load on arc a and the traffic load on all the incoming

arcs to arc a. Equation (3) signifies that the traffic flow

from node s to t over arc a can be greater than or equal

to zero.

In Equation (1), Φa are piecewise linear functions,

with Φa(0) = 0 and a derivative, Φ
′

a(la) given by (see

Figure 1):

Φ
′

a(l) =



















































































1 for 0 ≤ l/ca < 1/3,

3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10,

70 for 9/10 ≤ l/ca < 1,

500 for 1 ≤ l/ca < 11/10,

5000 for 11/10 ≤ l/ca < infinity

4

(4)

This function signifies that the utilization (i.e. load to

capacity ratio) of a link is acceptable within 100% of

the link’s capacity. The cost assigned to the links hav-

ing a utilization level within 100% of the link capacity

is 1, 3, 10, or 70, depending on the level of utilization.

For example, if utilization is equal to or more than 0%

but less than 33.33%, then a cost of 1 is assigned; for

utilization of over 33.33% but up to 66.66%, a cost of 3

is assigned, and so on). On the other hand, if the utiliza-

tion of a link is beyond 100% (which means that more

packets are coming to the link beyond its maximum ca-

pacity) then such an over-utilization is not acceptable,

since it will result in packets being dropped. Therefore,

the cost assigned to the links beyond 100% utilization

is much higher (i.e. 500 for utilization of equal to or

more than 100% but less than 110%, and 5000 for more

than 110%). Note that as per Equation (4), a link with

utilization greater than 100% and less than 110% is still

preferable compared to a link with utilization greater

than 110%.

The approach followed by Fortz and Thorup was

based on the observation that equal traffic load dis-

tribution across the links can be achieved by multiple

equidistance shortest paths between the source and the

destination node. Fortz and Thorup obtained multi-

ple shortest paths using a dynamic shortest path al-

�

��

��

��

��

��

��

��

� �	� �	� �	� �	
 � �	�

��
�
���
��

�
�
�
�

��������	�
�������

�

Fig. 1 Cost function curve [3].

gorithm [12–14]. Ramakrishnan and Rodrigues [9] pro-

posed a local search procedure similar to that of Fortz

and Thorup. Although Ramakrishnan and Rodrigues

used the same cost function as Fortz and Thorup, the

main difference between the two approaches was that

Rodrigues and Ramakrishnan’s technique increases the

link metric (the cost or OSPF weight assigned to a link)

of a heavily used link. This was done as an attempt to

reach neighbor solutions in the search space. In addi-

tion, Rodrigues and Ramakrishnan used a different test

case to that used by Fortz and Thorup. Ericsson et al.

[10] applied a genetic algorithm [15] to the OSPFWS

problem using the cost function proposed by Fortz and

Thorup.

Sqalli et al. [1] proposed minimization of the number

of congested links using SA [16] in order to solve the

OSPFWS. In this work, this cost function is denoted as

SqalliCF and defined as

5

Φ = MU +

∑

a∈SetCA (la − ca)

E
(5)

where MU is the maximum utilization of any link in the

network, which is the maximum value obtained from

the load to capacity ratio of all the links. SetCA refers

to the set of congested links, la is the total traffic on

link a, ca is the capacity of link a, and E represents the

total number of links in the network. The second term

of Equation (5) after the plus sign represents the ex-

tra load on the network. This extra load is taken from

all the congested links, divided by the total number

of links present in the network to normalize the entire

function. If there is no congestion in the network, the

whole term after the plus sign will be zero. Thus, Equa-

tion (5) results in minimization of maximum utilization

if there is no congestion in the network. If congestion

exists, then the function results in minimization of max-

imum utilization as well as minimization of the number

of congested links. Sqalli et al. concluded that the cost

function in Equation (5) results in more efficient mini-

mization of the number of congested links compared to

the cost function of Fortz and Thorup [3]. Sqalli et al.

also found the maximum utilization to be comparable

to that obtained by the approach of Fortz and Thorup.

Using the cost function of Equation (5), Sqalli et al. ap-

plied the SimE algorithm [17] to the OSPFWS problem

and compared the results with the results of SA [18].

Tabu search using SqalliCF [1] has also been applied to

the OSPFWS problem [19].

Abo Ghazala et al. [20] have surveyed various algo-

rithm applications to the OSPFWS problem. They have

also applied a different technique to the OSPFWS prob-

lem [21]. This technique increases the weight values for

links with higher utilization, decreases weight values for

links with low utilization, and increases weight values

for links with less empty bandwidth (difference between

link capacity and traffic on the link). Abo Ghazala et

al. used the same cost function as that of Fortz and

Thorup (refer to Equation (1)), but employed iterative

local search. The test cases were small and also differ-

ent from the test cases used in this paper. Results were

compared with the Cisco weight setting criteria [21],

unity weight setting, and random weight setting.

The cost function proposed by Fortz and Thorup

(Equation (1)), which was subsequently used by many

researchers [1,9,10,18,21] as discussed above, is based

on utilization ranges. The aim of the cost function of

Fortz and Thorup was to minimize “maximum utiliza-

tion” only. Minimizing “maximum utilization” only might

lead to the existence of congested and unused links.

The cost function proposed by Sqalli (Equation (5)) was

aimed at optimizing maximum utilization and the num-

ber of congested links. However, optimizing these two

factors does not necessarily guarantee that the number

of unused links will definitely be optimized implicitly,

because SqalliCF does not say anything about optimiz-

ing NUL. Therefore, it would be more logical to also

use unused links in the optimization process. This can

be achieved by shifting the traffic of congested links

to unused links. Therefore, the cost function proposed

in this paper is motivated by the above observations,

and therefore addresses the simultaneous optimization

of maximum utilization, number of congested links, and

number of unused links through the use of fuzzy logic,

as mentioned earlier.

2.1 Simulated Annealing Algorithm

Simulated annealing (SA) is a popular heuristic algo-

rithm proposed by Kirkpatrick et al. [7]. It is derived

from the analogy of the physical annealing process of

metals. SA is applied to a single solution, where each

perturbation of the current solution results in a single

move. The core of the algorithm is the metropolis proce-

dure, which perturbs the existing solution by making a

move, thus resulting in a new solution. Solutions which

result in a reduced cost are readily accepted, while so-

lutions with higher cost than the previous solution is

accepted probabilistically based on the metropolis cri-

terion. Several parameters such as initial temperature

T0, cooling rate α, and markov chain length M play

a key role in the performance and convergence of the

algorithm, and therefore need a very careful tuning in

order to produce solutions of highest quality. The SA

algorithm and the metropolis procedure are illustrated

in Figures 2 and 3 respectively. Interested reader may

refer to [22] for further details.

2.2 Simulated Evolution Algorithm

Simulated evolution (SimE) is a general search strat-

egy (since it can be applied to any complex optimiza-

tion problem irrespective of the domain) proposed by

Kling and Banerjee [8,23,24]. SimE is derived from the

analogy of the biological evolution process which re-

sults in heritable changes in a population spread over

many generations. The pseudo-code of SimE is given in

Figure 4. Like SA, SimE also operates on a single so-

lution, where a solution is comprised of elements (also

referred to as individuals). The algorithm iterates be-

tween the evaluation, selection, and allocation phases.

In the evaluation phase, goodness (i.e. fitness) of each

element of a solution is evaluated based on a goodness

function. Based on the outcome of the evaluation phase,

elements are selected in the selection phase so that they

can be replaced with newer elements. The selection is

done probabilistically based on a selection function and

through a parameter called the Bias, denoted by B. The

replacement of older elements with newer ones is done

7

ALGORITHM Simulated Annealing(S0, T0, α, β, M, Maxtime);

(*S0 is the initial solution *)

(*Sbest is the best solution *)

(*T0 is the initial temperature *)

(*α is the cooling rate *)

(*β is a constant *)

(*Maxtime is the total allowed time for the annealing process *)

(*M represents the time until the next parameter update *)

Begin

T = T0;

CurS = S0;

Sbest = CurS; /* Sbest is the best solution seen so far */

Ccur = Cost(CurS);

Cbest = Cost(Sbest);

T ime = 0;

Repeat

Call Metropolis(CurS, Ccur, Sbest, Cbest, T , M);

T ime = T ime + M ;

T = αT ;

M = βM

Until (T ime ≥ MaxTime);

Return(Sbest)

End (*of Simulated Annealing*)

Fig. 2 Procedure for the simulated annealing algorithm (adopted from [22]).

in the allocation phase, in which a compound move is

performed, thus replacing all selected elements in a sin-

gle iteration. A detailed discussion on the simulated

evolution algorithm can be found in [22].

The motivation behind using SA and SimE to solve

the OSPFWS problem is threefold. Firstly, SA and SimE

have shown relatively better performance than the lo-

cal search approach of Fortz and Thorup in terms of

optimizing two objectives, i.e. minimizing “maximum

utilization” and “number of congested links” [1]. Sec-

ondly, SA and SimE have already been applied to a

simpler version of the OSPFWS problem than the one

proposed in this paper, and it would be of interest to

build upon and improve already existing approaches.

8

ALGORITHM Metropolis(CurS, Ccur, Sbest, Cbest, T , M);

Begin

Repeat

NewS = Neighbor(CurS);

Cnew = Cost(NewS);

∆ Cost = Cnew - Ccur;

If (∆ Cost < 0) Then

CurS = NewS;

If Cnew < Cbest Then

Sbest = NewS

Endif

Else if (RANDOM < e−∆Cost/T) Then

CurS = New;

Endif

M = M − 1

Until (M = 0)

End (*of Metropolis*)

Fig. 3 The Metropolis procedure (adopted from [22]).

Note that, for the approaches proposed in this paper,

a third objective (i.e. number of unused links) is also

included in the optimization process, in addition to the

two objectives mentioned above. Moreover, the conflict-

ing nature of these three objectives have been addressed

by employing fuzzy logic. Thirdly, both SimE and SA

have been applied to solve various multi-objective opti-

mization problems. Some examples for SA are [25–28],

and for SimE are [29–31]. Thus, the overall aim of this

paper is to compare and study the performance of fuzzy

SA and fuzzy SimE algorithms (with three optimization

objectives) with respect to the existing SA and SimE

approaches (with two objectives).

3 OSPFWS Problem Definition

This section provides the details of the OSPFWS prob-

lem. More specifically, the section provides a formal def-

inition of the OSPFWS problem, followed by a discus-

sion on calculation of traffic load on links.

9

ALGORITHM Simulated Evolution(M, L);

/* M : Set of movable elements; */

/* L: Set of locations; */

/* B: Selection bias; */

/* Stopping criteria and selection bias can be automatically adjusted; */

INITIALIZATION ;

Repeat

EV ALUATION :

Foreach m ∈ M Do

gm = Om

Cm

End Foreach;

SELECTION :

Foreach m ∈ M Do

If Selection(m,B) Then Ps = Ps ∪ {m}

Else Pr = Pr ∪ {m}

Endif;

End Foreach;

Sort the elements of Ps;

ALLOCATION :

Foreach m ∈ Ps Do

Allocation(m)

End Foreach;

Until Stopping-criteria are met;

Return(BestSolution);

End Simulated Evolution.

Fig. 4 The simulated evolution algorithm (adopted from [22]).

Function Selection(m,B);

/* m: is a particular movable element; */

/* B: Selection Bias; */

If Random ≤ 1 − gm + B Then Return True

Else Return False

Endif

End Selection;

Fig. 5 Selection function employed in the SimE algorithm of

Figure 4 (adopted from ([22]).

3.1 OSPF Weight Setting Problem

The OSPF weight setting (OSPFWS) problem is for-

mulated as follows: Given a network topology and pre-

dicted traffic demands, find a set of OSPF weights that

optimizes network performance. More precisely, given

a directed network G = (N,A), a demand matrix D,

and capacity Ca for each arc a ∈ A, determine a pos-

itive integer weight wa ∈ [1, wmax] for each arc a ∈ A

such that the objective function or cost function Φ is

minimized. wmax is a user-defined upper limit. Fortz

and Thorup [32] found that a small set of weight val-

ues significantly reduces the overhead of the algorithm.

By experimentation, wmax was set to 20. The chosen

arc weights determine the shortest paths, which in turn

completely determine the routing of traffic flow, the

loads on the arcs, and the value of the cost function. The

quality of OSPF routing depends highly on the choice

10

of weights. Figure 6 depicts a topology with weights as-

signed within the range [1, 20]. A solution for this topol-

ogy can be (18, 1, 7, 15, 3, 17, 14, 19, 13, 18, 4, 16, 16). These

elements (i.e. weights) are arranged in a specific order

for simplicity: The outgoing links from node A are listed

first (i.e. AB, AF), followed by the outgoing links from

node B (i.e. BC, BD), and so on (in other words, a

breadth-first expansion).

For the purposes of this paper, three objectives have

to be simultaneously optimized. These objectives are

maximum utilization, number of congested links, and

number of unused links, all of which need to be min-

imized. Minimizing maximum utilization may lead to

better distribution of network traffic across all the links

such that congestion can be avoided and network re-

sources can be utilized well [6]. Network administrators

prefer to keep links less congested. However, if there is

congestion in the network, then it is preferred to reduce

the congestion by at least minimizing the total number

of congested links. Suppose there is a network having

40 congested links, and also having 15 unused links. It

would be preferred to accommodate the traffic of the 40

congested links on the existing 15 unused links. Thus,

minimizing the number of unused links also affects the

performance of the network. This is because traffic dis-

tribution across the links of the networks depends on

the routing paths established. A new solution might

therefore create new routing paths such that traffic on

congested links may be distributed on unused links.

A

F

B

C
 E

G

D

5

3

19
14

17

16

16

4

15

13

1

18

18

7

Fig. 6 Representation of a topology with assigned weights.

3.2 Traffic Load Calculation

This section provides details of the steps of calculating

arc (or link) loads. Given a weight setting {wa}a∈A, the

arc loads la are calculated in five steps. For all demand

pairs dst ∈ D, consider one destination t at a time and

compute partial arc loads lta ∀ t ∈ N̄ ⊆ N , where N̄ is

the set of destination nodes. The steps are as follows:

1. Compute the shortest distances dt
u from each node

u ∈ N to t, using Dijkstra’s shortest path algorithm

[5]. Dijkstra’s algorithm usually computes the dis-

tances away from source s, but since it is required

to compute the distance to the sink node t, the algo-

11

rithm is applied on the graph obtained by reversing

all arcs in G.

2. Compute the set At of arcs on shortest paths to t

as,

At = {(u, v) ∈ A : dt
u − dt

v = w(u,v)}

3. For each node u, let δt
u denote its outdegree in Gt =

(N,At), i.e.,

δt
u =| {v ∈ N : (u, v) ∈ At} |

If δt
u > 1, then traffic flow is split at node u to

balance the load.

4. The partial loads lta are computed as follows:

(a) Nodes v ∈ N are visited in order of decreasing

distance dt
v to t.

(b) When visiting a node v, for all (v, w) ∈ At, set

lt(v,w) = 1/δt
v(dvt +

∑

(u,v)∈At lt(u,v))

5. The arc load la is now summed from the partial

loads as:

la =
∑

t∈N̄ lta

4 Fuzzy Logic and Aggregation Operators

Fuzzy logic [33,34] has been extensively applied to a

huge number of multi-objective optimization and decision-

making problems in a variety of domains. The original

‘And’ function proposed by Zadeh used the “min” func-

tion. This implementation of ‘And’ was a very rigid ap-

proach since it only considered the worst membership

value in the optimization process, while completely ne-

glecting the positive effects of better membership values

of other objectives. This observation subsequently led

to the development of several ‘soft-And’ operators that

would consider the effects of all design objectives in the

decision-making process by aggregating all membership

values into a single optimization function. Some well-

known aggregation operators are the ordered weighted

average operator [35], Einstein’s operator [36], Hamacher’s

operator [37], Frank’s operator [38], Weber’s operator

[39], Dubois and Prade’s operator [40], and the unified

AND-OR operator [29], among others. These operators

allow easy adjustment of the degree of “anding” em-

bedded in the aggregation.

The Unified And-Or (UAO) operator, proposed by

Khan and Engelbrecht [29], has an important charac-

teristic which is that a single equation is used to adjust

the degree of “anding” and “oring” embedded in the

aggregation, yet the operator is capable of behaving ei-

ther as the soft-AND or the soft-OR operator. This is

in contrast to other aggregation operators listed above,

which use separate equations for AND and OR func-

tions. The behavior of ANDing and ORing using the

UAO operator is controlled by a variable ν ≥ 0, whose

value determines whether the function behaves as AND

or OR. The operator is defined as:

12

f(a, b) =
ab + ν max{a, b}

ν + max{a, b}
=















I? = µA∪B(x) if ν > 1

I∗ = µA∩B(x) if ν < 1

(6)

where a represents the membership value of µA (i.e. a

= µA), b represents the membership value of µB (i.e. b

= µB), and f(a, b) represents the value of the overall

objective function (i.e. f(a, b) = µAB). I∗ represents

the AND operation using the UAO operator, and I?

denotes the OR operation using the UAO operator. For

more detail on the UAO operator, the interested reader

is referred to Khan and Engelbrecht [29].

5 Fuzzy Logic approach to the OSPFWS

Problem

The OSPFWS problem can be solved by assigning a set

of weights to the network links. The best solution to

the problem is one which optimizes network resources

efficiently. The objectives of OSPFWS problem include

maximum utilization (MU), the number of congested

links (NOC) and the number of unused links (NUL).

These objectives, if considered individually and sepa-

rately, do not provide adequate information for decid-

ing the quality of a solution, since they are interdepen-

dent. Therefore, it is more appropriate to consider their

combined effect to assess the quality of a solution. The

conflicting nature of these objectives further amplifies

the complexity of the problem. Under such a situation,

a mechanism is required to find a set of solutions (re-

ferred to as Pareto solutions) that balance the trade-off

among the objectives. Fuzzy logic provides a mechanism

to conveniently deal with the trade-off among multiple,

conflicting objectives.

The rest of this section details the use of fuzzy logic

to combine the three conflicting objectives into a sin-

gle overall objective. This single objective assesses the

quality of a solution in terms of membership of a given

set of weights. A set of weights providing efficient uti-

lization of network resources consists of low MU, low

NOC, and low NUL.

To formulate the overall objective function, the val-

ues of individual objectives need to be determined first,

by using membership functions. This needs the formu-

lation of membership functions for each individual ob-

jective. This process is detailed below.

To define the membership function of maximum uti-

lization, two extreme values, the upper and lower bounds,

are determined first. Figure 7 shows the membership

function of the objective to be optimized. If the objec-

tive is maximum utilization, then point ‘A’ refers to

the minimum MU (MinMU) and point ‘B’ refers to the

maximum MU (MaxMU). The membership value for

MU, µMU , is determined as follows:

13

µMU (x) =































1 if MU ≤ MinMU

MaxMU−MU
MaxMU−MinMU

if MinMU < MU ≤ MaxMU

0 if MU > MaxMU

(7)

The membership function for NOC, µNOC , is de-

fined in a similar way. In Figure 7, point ‘A’ then refers

to the minimum NOC (MinNOC) and ‘B’ refers to the

maximum NOC (MaxNOC). The membership function

of NOC is defined as follows:

µNOC(x) =































1 if NOC ≤ MinNOC

MaxNOC−NOC
MaxNOC−MinNOC

if MinNOC < NOC ≤ MaxNOC

0 if NOC > MaxNOC

(8)

Finally, the membership function for NUL, µNUL, is

also represented by Figure 7, where the minimum (Min-

NUL) and maximum (MaxNUL) values correspond to

‘A’ and ‘B’, respectively. The membership value for

NUL is determined as follows:

µNUL(x) =































1 if NUL ≤ MinNUL

MaxNUL−NUL
MaxNUL−MinNUL

if MinNUL < NUL ≤ MaxNUL

0 if NUL > MaxNUL

(9)

Since the aim is to obtain a solution having mini-

mum values of MU, NOC, and NUL, a fuzzy rule can

be formulated as follows:

Rule 1: IF a solution X has low MU AND low NOC

AND low NUL THEN it is a good solution.

1.0

0.8

0.6

0.4

0.2

0

µ

A B

Fig. 7 Membership function of the objective to be optimized

The words ‘low MU’, ‘low NOC’, ‘low NUL’, and

‘good solution’ are linguistic values, each defining a

fuzzy subset of solutions. Using the UAO operator [29],

the above fuzzy rule reduces to the following equation.

µ(x) =
µ1(x)µ2(x)µ3(x) + ν × max{µ1(x), µ2(x), µ3(x)}

ν + max{µ1(x), µ2(x), µ3(x)}

(10)

where µ(x) is the membership value for solution x in the

fuzzy set “good OSPF Weight set” and ν is a constant

in the range [0,1]. Moreover, µi for i = {1, 2, 3} repre-

sent the membership values of solution x in the fuzzy

sets low MU, low NOC, and low NUL respectively. The

solution which results in the maximum value for Equa-

tion (10) is reported as the best solution.

As an example, consider an arbitrary solution S1,

having µMU = 0.13, µNOC = 0.4, and µNUL = 0.1.

Also assume that ν = 0.5. Then, Equation (10) will

14

result in a value of 0.228. Similarly, consider µMU =

0.13, µNOC = 0.5, and µNUL = 0.4 associated with

another arbitrary solution S2. Again assume that ν =

0.5. Then, the value of Equation (10) will be 0.276.

Thus, solution S2 is a better solution than solution S1

in terms of quality. Equation (10) is employed as a fuzzy

cost function for solving the OSPFWS problem using

the SA and the SimE algorithms. This paper denotes

the proposed fuzzy cost function as FuzzyCF.

6 Proposed Algorithms and Implementation

Details

This section describes the details of the proposed fuzzy

SA and fuzzy SimE algorithms to solve the OSPFWS

problem.

6.1 Proposed Fuzzy Simulated Annealing Algorithm

As mentioned earlier, the OSPFWS problem requires

assignment of a set of weights to the links in the net-

work. Thus, the weights are the movable elements. A

change in the weight of a link leads to different shortest

paths between source and destination pairs, resulting

in a new solution, and thus providing a different cost.

Below, each step of the proposed fuzzy SA algorithm

for the OSPFWS is described.

Initialization

The initialization phase generates a random solution

(i.e. a set of weights). The SA control parameters, i.e.

the initial temperature T0, the cooling rate α, the con-

stant β, maximum time for the annealing process MaxTime

(in terms of number of iterations), and the length of

markov chain M are also initialized.

The SA control parameters have an impact on the

convergence of the algorithm. For example, the initial

temperature T0 is set to an appropriate value, so that

all moves are accepted initially. A very high initial tem-

perature causes the algorithm to search blindly. On the

other hand, a very low initial temperature results in bad

solutions to be rejected in the early stage of the search.

A number of methods have been proposed in the liter-

ature to determine an appropriate initial temperature

[7,41–44]. This paper adopts the method proposed by

Kirkpatrick [7], where the value of T0 is chosen such

that the initial acceptance ratio X(T0) is close to unity.

The acceptance ratio is calculated using

X(T0) =
Number of moves accepted at T0

Total number of moves attempted at T0
(11)

15

The cooling rate, α, controls the rate of decrease in

temperature. The higher the value of α, the lower the

decrease in temperature, and vice versa. A typical value

of α ranges from 0.8 to 0.99 [16].

Parameter M has also an impact on the convergence

of SA, and it is very important to determine an appro-

priate value of M . A very high value of M increases the

execution time. As an example, consider M = 35. This

means that, at a given temperature, the algorithm will

attempt 35 moves. It is quite probable that the same

quality of solution is achieved with M = 15. Therefore,

20 moves are wasted. Similarly, when M is very low (for

example, 5) then the algorithm may also result in bad

quality solutions, simply because of the fact that the

algorithm did not have sufficient time to explore the

search space.

Metropolis Procedure

The core procedure of the annealing algorithm is the

metropolis procedure. This procedure is repeated for

a given number of iterations. During the metropolis

procedure, a solution is perturbed. For the OSPFWS

problem, a move involves selecting a weight from the

set of given weights, and replacing the selected weight

with a different weight value. For example, with refer-

ence to Figure 6, replacement of weight value 17 of the

link between node A and node E by a new weight value

of 10 is a single move. This replacement results in a

new solution. The cost of this solution is evaluated and

compared with the previous solution. If the new cost is

better than the old cost, then the new solution is ac-

cepted. If the cost of the new solution is less than the

cost of the previous solution, then the new solution is

probabilistically accepted as explained in Section 2.

Evaluation of a solution

Once a new solution is generated, its cost should be

computed. This is done using FuzzyCF (Equation (10)).

For each individual objective, minimum and maximum

values are a prerequisite for obtaining the membership

values. These extreme values are found as follows: For

the MU objective, the minimum value, ‘MinMU’, is

taken as the minimum utilization of the initial solution

given to the algorithm during the initialization phase.

The maximum value for MU, ‘MaxMU’, is taken as the

maximum utilization of the initial solution. The min-

imum value for the NOC objective, ‘MinNOC’, is set

to zero. The maximum value for the NOC objective,

‘MaxNOC’, is taken as the number of congested links

obtained from the initial solution. In the same way,

‘MinNUL’ is set to zero, while ‘MaxNUL’ is taken as

the number of unused links obtained from the initial

solution. In the subsequent steps, membership values

for each objective are calculated by using Equations

(7), (8), and (9).

Stopping criterion

16

The algorithm is stopped when a maximum number

of iterations has been reached.

6.2 Proposed Fuzzy Simulated Evolution Algorithm

This section details the fuzzy simulated evolution, FSimE,

algorithm proposed for the OSPFWS problem. The SimE

algorithm operates on a single solution, but unlike SA,

navigates the search space by employing compound moves.

The algorithm repetitively iterates between the evalu-

ation, selection, and allocation functions before a pre-

defined stopping criterion is reached.

Evaluation

For the OSPFWS problem, each element is a weight on

a link, whose goodness needs to evaluated. The good-

ness function is one of the key factors that affects the

performance of the FSimE algorithm, and therefore should

be carefully designed. This paper uses the goodness

function defined by Sqalli et al. [18] for both cost func-

tions (SqalliCF and FuzzyCF). The goodness function

is

gi =















1 − ui for MU ≤ 1

1 − ui/MU + ui/MU2 for MU > 1

(12)

where ui represents the utilization on link i and MU

refers to the maximum utilization. To illustrate how

the above goodness function works, consider the fol-

lowing example: consider two links e1 and e2 of a par-

ticular solution. Let the maximum utilization be 0.9.

Assume that the utilizations on links e1 and e2 are 0.6

and 0.1, respectively. By substituting the above values

in the goodness function in Equation (12), ge1
= 0.4

and ge2
= 0.9 are obtained. In the next iteration, e1 is

more probable to be selected for replacement than e2.

This is because the goodness of e1 is worse than that of

e2. Now, consider the maximum utilization to be 1.8,

and let the utilization on links e1 and e2 be 0.7 and

1.4, respectively. From Equation (12), ge1
= 0.827 and

ge2
= 0.655. In the next iteration, e2 is more probable

to be selected for replacement than e1.

Selection

In the selection phase, for each link, i, a random number

is sampled from a uniform distribution in the range

[0,1]. If this random number is larger than gi + B, the

corresponding weight is selected for allocation.

The bias B is used to control the size of the set of

selected weights. A low value of B increases the num-

ber of elements selected in each iteration, thus allowing

the algorithm to explore more. This may lead to high

quality solutions, but at the expense of higher compu-

tational effort. A high value of B inflates the goodness

of each element. This may result in a reduced number

of elements selected for reallocation. Consequently, the

17

execution time of the algorithm is reduced, but at the

risk of premature convergence to a sub-optimal (or local

optimal) solution.

Since it is computationally expensive to find the

best bias value by a process of trial-and-error, different

approaches have been proposed in the literature [30][45]

to use a dynamic bias, instead of a user-defined static

bias. The approach by Sait et al. [30] calculates the

bias based on the quality of the current solution and

changes every iteration. The corresponding dynamic

bias is given by

B(t) = 1 − G(t) (13)

where B(t) is the bias in iteration t and G(t) is the av-

erage goodness of all the elements at the start of that

iteration. The average goodness of elements is a mea-

sure of how many “good” elements are present in the

solution. For a detailed analysis of dynamic bias, the

interested reader is referred to Sait et al. [30].

Allocation

During the allocation stage of the algorithm, the se-

lected weights are removed from the solution one at a

time. For each removed weight, new weights are tried in

such a way that they result in an overall better solution.

For the OSPFWS problem, weights are in the range

[1,20]. The following allocation scheme was adopted.

For all the iterations, a weight window of value 4 is

kept. Therefore, if weight 6 was selected for replace-

ment, then weight values 4, 5, 7, and 8 are tried. This

results in a beam search and is done to have less dis-

turbance in the solutions in each iteration.

7 Results and Discussion

This paper uses the test cases proposed by Fortz and

Thorup [3]. Table 1 shows the characteristics of the

test cases. For each test case, the table lists its net-

work type, the number of nodes, and the number of

links. The 2-level hierarchical networks are generated

using the GT-ITM generator [46], based on the model of

Calvert [47] and Zegura [48]. In hierarchical networks,

local access arcs have capacities equal to 200, while long

distance arcs have capacities equal to 1000. In Random

networks and Waxman networks1, capacities are set at

1000 for all arcs. Fortz and Thorup generated the de-

mands to force some nodes to be more active senders or

receivers than others, thus modelling hot spots 2 on the

network. The demands generated by Fortz and Thorup

assign higher demands to closely located node pairs. For

further details on the assignment process of generated

1 Waxman graphs are frequently chosen in simulations as

topologies resembling communications networks. Waxman graphs

are named after Bernard M. Waxman.

2 A hot spot is a network point or router having heavy incoming

and outgoing traffic.

18

demands, the interested reader is referred to Fortz and

Thorup [6].

7.1 Purpose and Outline

The following discussion will focus on the experimental

procedure adopted in this paper and the type of ex-

periments performed. The purpose of the discussion is

mainly to asses the performance of the two cost func-

tions, namely, SqalliCF and FuzzyCF, as well as the mu-

tual comparison of the fuzzy simulated annealing and

fuzzy simulated evolution algorithms.

7.2 Experimental Procedure

For each test case, 30 independent runs were executed,

and the average of the best solutions found in each

run was reported, together with the standard devia-

tion. The average runtime over the 30 runs for each

test case was also recorded. Furthermore, the Wilcoxon

rank-sum test [49] was used to validate the significance

of the results. The associated ranks and corresponding

p-values were also provided. A confidence level of 95%

was used.

Four sets of experiments were conducted. The first

set of experiment compared the two cost functions (i.e.

SqalliCF and FuzzyCF) with regard to the final values

(average of 30 runs) of each of the three objectives, us-

ing SA. The second set of experiments did the same

comparison, but using SimE. The third set of experi-

ments compared the performance of SA and SimE with

regard to FuzzyCF only (since FuzzyCF is proposed

in this paper and therefore, the focus of the paper is

on FuzzyCF). Finally, the fourth set of experiments fo-

cussed on the comparison of fuzzy SimE with NSGA-II.

Detailed results and analysis of each set of experiments

are given below.

7.3 Comparison of SqalliCF and FuzzyCF using SA

A value of α = 0.965 was used by Sqalli et al [1]. The

same value was used in this paper for both SqalliCF and

FuzzyCF. However, experimentation was done with val-

ues of M = 20 and M = 30 using test cases h50N212a

and h100N360a. As observed from Table 2, M = 20 re-

sulted in better cost values for both SqalliCF (a lower

value is desired) and FuzzyCF (a higher value is de-

sired). Statistical testing suggested that for FuzzyCF,

results produced by M = 20 were better than those

by M = 30. For SqalliCF, statistical testing showed

that there was no significant difference between the re-

sults produced by M = 20 and M = 30. However,

since M = 20 requires less perturbations, and thus re-

sults in lesser execution time, M = 20 is preferred over

M = 30. Therefore, all experiments were conducted

19

using M = 20 for both FuzzyCF and SqalliCF. Fur-

thermore, 5000 iterations were used for each run.

Tables 3 and 4 respectively summarize the results

obtained for SA using SqalliCF and FuzzyCF, and the

percentage improvement achieved by FuzzyCF when

compared to SqalliCF. The results in both tables are

displayed with respect to the three design objectives,

i.e. maximum utilization (MU), number of congested

links (NOC), and number of unutilized links (NUL).

Furthermore, average runtime for each test case with

respect to the two cost functions is also provided.

From Table 3, it is observed that SqalliCF was able

to generate lower levels of MU as compared to FuzzyCF

for all test cases. More specifically, MU for SqalliCF was

mainly in the range 1.23 to 1.93, with the exception of

r50N245a (having an MU level of 2.24). For FuzzyCF,

MU was mainly in the range 1.41 to 3.58. The difference

between MU levels of the two approaches were statis-

tically evaluated for significance in terms of percentage

improvements as shown in Table 4. The results in col-

umn two of the table suggest that, for the objective MU,

the results obtained by UAO were of inferior quality

than those of SqalliCF, as confirmed by the Wilcoxon

test.

With respect to the second objective (NOC), the re-

sults were somewhat mixed as shown in Table 3. For all

Waxman graphs as well as test case h100N360a, Sqal-

liCF resulted in lower number of congested links, while

for the remaining test cases, the FuzzyCF cost func-

tion showed better performance. This was confirmed

by values in Table 4 which showed statistically better

results for FuzzyCF than SqalliCF for four test cases

(h100N280a, h50N148a, r50N228a, and r50N245a), while

SqalliCF had statistically better performance for four

other cases (h100N360a, w100N391a, w100N476a, and

w50N230a). For the remaining four cases, both FuzzyCF

and SqalliCF had the same quality of results.

Table 3 reflects that, for the third objective (i.e.

NUL), the dominant trend was that FuzzyCF performed

better than SqalliCF for over 80% (i.e. 10 out of 12) test

cases. As seen in Table 4, results obtained by FuzzyCF

were significantly better than SqalliCF except for test

case w100N391a, while for r100N503a, results were of

the same quality.

With regard to the execution time, it is observed

from Table 3 that the average execution time per run

for FuzzyCF was lesser than that of SqalliCF.

Based on the above observations and analysis, it can

be suggested that overall, FuzzyCF performed better

than SqalliCF.

7.4 Comparison of SqalliCF and FuzzyCF for SimE

As mentioned above, the bias B can have a signifi-

cant impact on the performance of the SimE algorithm.

20

Therefore, it is important to find the most appropriate

value of the bias. For the SqalliCF cost function, a bias

value of -0.02 was used as reported by Sait et al. [18].

To find a suitable bias value for FuzzyCF, experiments

were done with static bias values of -0.1, 0, 0.1, 0.2, 0.3,

as well as with a dynamic bias (see Equation (13)) us-

ing two test cases of different complexities, one with 50

nodes and the other with 100 nodes. These test cases

were h100N360a and h50N212a. The average cost over

30 runs for each bias value is shown in Table 5. It is

observed from this table, that a bias value of -0.1 pro-

duced the best results (i.e. highest value of FuzzyCF)

for both test cases. Furthermore, a dynamic bias was

not able to produce high quality results. Therefore, for

all experiments involving SimE with FuzzyCF, a bias

value of -0.1 was used.

The results for SimE were more or less the same

as those obtained with SA as far as the MU and NUL

objectives are concerned (refer to Tables 6 and 7). The

average value of maximum utilization (MU) for all test

cases was lower for SqalliCF than that of FuzzyCF.

From column three of Table 6, note that MU using Sqal-

liCF was in the range 1.23 to 1.44, with the exception

of r50N245a (with MU level of 2.14). For FuzzyCF, the

MU was mainly in the range 1.41 to 1.72, with two

exceptions of r100n503a and r50N245a having MU val-

ues of 2.19 and 2.60 respectively. Results of statistical

testing on percentage improvement (column two of Ta-

ble 7) suggest that FuzzyCF produced inferior results

compared to SqalliCF for all test cases.

As far as the second objective (NOC) is concerned,

the results in Table 6 show superior performance by

FuzzyCF for seven cases. This is confirmed by statistical

testing and results in Table 7, where the FuzzyCF func-

tion showed statistically better results than SqalliCF

for six test cases, while for two test cases (h100N360a

and h50N148a), the results were of the same quality.

Furthermore, SqalliCF showed statistically better per-

formance for the remaining cases (r100N503a, w100N391a,

w100N476a, and w50N230a).

For the NUL objective, FuzzyCF had a lower num-

ber of unutilized links (which is desired) than SqalliCF

for all test cases, as depicted in Table 6. As suggested

by values in Table 7, all results obtained by FuzzyCF

were significantly better than SqalliCF.

As far as the execution time is concerned, the re-

sults depict more or less the same trend as observed for

SA. It can be seen from Table 6 that the average exe-

cution time per run for FuzzyCF was lesser than that

of SqalliCF.

In view of the above results and analysis, the over-

all assessment is that FuzzyCF performed better than

SqalliCF.

21

7.5 Comparison of Simulated Evolution and Simulated

Annealing Algorithms

A comparative study of SimE and SA with respect

to the three design objectives using the SqalliCF and

FuzzyCF functions was also performed. Figure 8 shows

different plots with respect to maximum utilization,

number of congested links, and number of unused links.

Figure 8(a) shows that the utilization level for SA is,

in general, higher than that of SimE using SqalliCF.

This trend is more prominent when SimE and SA are

compared using the FuzzyCF operator, as illustrated in

Figure 8(b).

With regards to NOC, Figure 8(c) shows that, al-

though SimE and SA have similar performance for most

test cases using SqalliCF, there are instances where

SimE has less congested links than SA. Therefore, it can

be suggested that SimE did relatively better than SA.

The better performance of SimE is more prominently

visible in Figure 8(d), where SimE has less congested

links than SA using FuzzyCF.

Finally, for the third objective, NUL, both SimE

and SA have similar performance using SqalliCF, with

some instances showing better performance by SimE,

as observed in Figure 8(e). A similar trend is observed

in Figure 8(f) with respect to the FuzzyCF function.

With regard to the algorithm execution time, it can

be observed from Tables 3 and 6 that with respect to

the SqalliCF, the average execution time per run was

slightly higher for SimE than that of SA. A similar ob-

servation is made with regard to FuzzyCF, where SimE

again took slightly more execution time than SA.

The overall moderately better performance of SimE

compared to SA is attributed to the fact that the search

in SA is carried out blindly, and moves are done ran-

domly. This may result in replacing an optimally placed

weight on a link with a weight resulting in a low quality

solution. However, in SimE, perturbations to a solution

are done on the on basis of goodness, i.e. moves are

done intelligently, rather than blindly. Thus, elements

with a higher quality have a lower probability of get-

ting removed, while elements with low quality are more

prone to being replaced. Hence, SimE performs more

intelligently than SA, resulting in higher quality solu-

tions.

7.6 Comparison of Fuzzy SimE and NSGA-II

As observed from the above discussion, fuzzy SimE per-

formed relatively better than fuzzy SA. In order to fur-

ther establish its effectiveness for the problem in hand,

the fuzzy SA algorithm was compared to a well-known

MOGA, namely, the non-dominated sorting genetic al-

gorithm II (NSGA-II) [50]. Literature has reported that

22

�����������	�
������
������		����
�������������������

�

�

�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
��
	�

�
��
�
�
��
��
��
�

��������

������

�

�����������	�
������
�������
�������������������

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
��
	�

�
��
�
�
��
��
��
�

��������

������

�

� � �������� � � � � ��� ���������

�

�

��������
���� ����!�	��"��
������		����
�������������������

�

��

��

	�

��

���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
�
�
�
�
��
�

�
�
�
�

�
�
��
!
�	
��
"
�
��
��
��
��
�

���������

�������

�

��������
���� ����!�	��"��
�������
�������������������

�

��

��

	�

��

���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
�
�
�
�
��
�

�
�
�
�

�
�
��
!
�	
��
"
�
��
��
��
��
�

���������

�������

�

� � ������� � � � � � ��������

�

�

��������
������!�	��"��
������		����
�������������������

�

��

��

��

��

�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
�
�
�
�
��
�

�
�
�
�
�
�
!
�	
��
"
�
��
��
��
��

���������

�������

�

��������
������!�	��"��
�������
�������������������

�

��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�
�

�

�
�
�
�
�
�

�

�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
	
�

�
�
�
	
�
�

�
�
�
�
�
�

���������

�
�
�
�
�
��
�

�
�
�
�
�
�
!
�	
��
"
�
��
��
��
��

���������

�������

�

� � �������� � � � � � �����	��

�

Fig. 8 Comparison of SimE and SA using SqalliCF and FuzzyCF functions. (a) Maximum utilization using SA (b)Number of congested

links using SA (c) Number of unused links using SA (d) Maximum utilization using SimE (e) Number of congested links using SimE

(f) Number of unused links using SimE.

23

NSGA-II has the capability to converge to the global

Pareto-optimal front as well as to maintain the diversity

of population on the Pareto-optimal front [50,51]. Fur-

thermore, NSGA-II has lesser computational complex-

ity than other multi-objective evolutionary algorithms.

Further details on NSGA-II can be found in [50,51].

The NSGA-II was adapted to address the OSPF

weight setting problem and comparison of fuzzy SimE

and NSGA-II was done with respect to the three de-

sign objectives. Figure 9 depicts performance plots for

the two algorithms with respect to maximum utiliza-

tion, number of congested links, and number of un-

used links. In Figure 9(a), it is observed that, in gen-

eral, the maximum utilization level for NSGA is some-

what comparable to that of fuzzy SimE. In eight of

the twelve test cases, both NSGA-II and fuzzy SimE

were able to achieve the same or nearly same utiliza-

tion level. However, there are four instances (h50n148a,

r100N403a, r100n503a, and w100n476a) where NSGA-

II ended up with higher utilization levels than fuzzy

SimE. With these observations, it can be claimed that

fuzzy SimE was able to demonstrate better performance

than NSGA-II as far as the MU objective is concerned.

With regards to NOC, Figure 9(b) shows that fuzzy

SimE and NSGA achieved exactly the same level of per-

formance for seven test cases. However, there are five in-

stances (h50n148a, r100N403a, r100n503a, w100N391a,

and w100n476a) where fuzzy SimE was able to reach

lesser number of congested links than NSGA. There-

fore, it can be suggested that fuzzy SimE did slightly

better than NSGA-II.

Finally, for the NUL objective, NSGA-II performed

better than fuzzy SimE for six cases, and achieved al-

most the same level of results for four test cases as

observed from Figure 9 (c). The figure also shows the

two exceptions (r100N403a and r100503a) where fuzzy

SimE showed better performance than NSGA-II. In gen-

eral, it can be comfortably claimed that NSGA-II demon-

strated superior performance than fuzzy SimE for the

NUL objective.

From the above discussion, it turns out that NSGA-

II achieved slightly inferior results than fuzzy SimE for

the objectives of maximum utilization and number of

congested links. However, this inferior performance of

NSGA-II was somewhat compensated by its superior

performance with regard to the objective of unused

links. Therefore, an overall trend is that fuzzy SimE

showed a slightly better performance than NSGA-II.

The results thus indicate that fuzzy SimE was more

efficient in performing search in the areas that had bet-

ter solutions with the regard to the MU and NOC ob-

jectives, whereas NSGA-II was stronger in performing

search focussed on obtaining solutions with lower num-

ber of unused links.

24

� �

� � �������� � � � � ��� ���������

�

�

�

� � ��� � � ������������ � � � � �����

Fig. 9 Comparison of fuzzy SimE (with UAO) and NSGA-II (a) Maximum utilization (b) Number of congested links, and (c) Number

of unused links.

8 Conclusion

The open shortest path first (OSPF) weight setting

problem is a complex optimization problem involving

multiple conflicting objectives, namely, maximum uti-

lization, number of congested links, and number of un-

used links. This paper presented two optimization ap-

proaches, namely, fuzzy simulated evolution and fuzzy

simulated annealing, to efficiently solve the multi-objective

OSPF weight setting problem. Fuzzy logic was used to

aggregate the three design objectives into a single op-

timization function using the Unified And-OR (UAO)

operator. Results from the UAO based function were

compared with results of the Sqalli cost function. Re-

sults suggested that overall, the UAO function pro-

duced moderately better results than Sqalli’s function

when used with the fuzzy simulated annealing and fuzzy

simulated evolution algorithms. Analysis also suggested

that the fuzzy simulated evolution algorithm demon-

strated better performance than fuzzy simulated an-

25

nealing algorithm. Furthermore, a comparison of fuzzy

SimE with NSGA-II suggested that fuzzy SimE per-

formed slightly better than NSGA-II. The plan for fu-

ture work is to focus on applying swarm intelligence

algorithms, such as particle swarm optimization and

ant colony optimization, to the problem studied in this

paper.

9 Appendix

9.1 Nomenclature

G Graph

N Set of nodes

n A single element in set N

A Set of arcs

At Set of arcs representing shortest paths from all

sources to destination node t

a A single element in set A. It can also be represented

as (i, j)

s Source node

v Intermediate node

t Destination node

D Demand matrix

D[s, t] An element in the demand matrix that specifies the

demand from source node s to destination node t;

It can also be specified as dst

wij Weight on arc (i, j); if a = (i, j), then it can also be

represented as wa

cij Capacity on arc (i, j); if a = (i, j), then it can also

be represented as ca

Φ Cost function

Φi,j Cost associated with arc (i, j); if a = (i, j), then it can

also be represented as Φa

δt
u Outdegree of node u when destination node is t

δ+(u) Outdegree of node u

δ−(u) Indegree of node u

lta Load on arc a when destination node is t

la Total traffic load on arc a

f
(s,t)
a Traffic flow from node s to t over arc a

SetCA Set of congested arcs

9.2 Terminology

1. A single element in the set N is called a “Node”. It

is represented as n.

2. A single element in the set A is called an “Arc” or

“Link”. It is represented as a.

3. A set G = (N,A) is a graph defined as a finite

nonempty set N of nodes and a collection A of pairs

of distinct nodes from N .

4. A “directed graph” or “digraph” G = (N,A) is a

finite nonempty set N of nodes and a collection A of

ordered pairs of distinct nodes from N ; each ordered

pair of nodes in A is called a “directed arc”.

26

5. A digraph is “strongly connected” if for each pair of

nodes i and j there is a directed path (i = n1, n2, ..., nl =

j) from i to j. A given graph G must be strongly

connected for this problem.

6. A “demand matrix” is a matrix that specifies the

traffic flow between s and t, for each pair (s, t) ∈

N × N .

7. (n1, n2, ..., nl) is a “directed walk” in a digraph G if

(ni, ni+1) is a directed arc in G for 1 ≤ i ≤ l − 1.

8. A “directed path” is a directed walk with no re-

peated nodes.

9. Given any directed path p = (i, j, k, ..., l,m), the

“length” of p is defined as wij + wjk + ... + wlm.

10. The “outdegree” of a node u is a set of arcs leaving

node u i.e., {(u, v) : (u, v) ∈ A}.

11. The “indegree” of a node u is a set of arcs entering

node u i.e., {(v, u) : (v, u) ∈ A}.

12. The input to the problem will be a graph G, a de-

mand matrix D, and capacities of each arc.

13. The term MU refers to the maximum utilization. It

is the highest load/capacity ratio of the network.

14. The term NOC refers to the number of congested

links.

15. The term NUL refers to the number of unused links.

16. The term E refers to the total number of links in

the network.

References

1. M. H. Sqalli, S. M. Sait, and M. A. Mohiuddin. An Enhanced

Estimator to Multi Objective OSPF Weight Setting Problem.

Network Operations and Management Symposium, NOMS,

2006.

2. K. G. Coffman and A. M. Odlyzko. Internet Growth: Is there

a Moore’s Law for Data Traffic? Handbook of Massive Data

Sets, pages 47–93, 2001.

3. B. Fortz and M. Thorup. Internet Traffic Engineering by

Optimizing OSPF Weights. IEEE Conference on Computer

Communications(INFOCOM), pages 519–528, 2000.

4. J. F. Kurose and K.W. Ross. Computer Networking: A Top-

Down Approach Featuring the Internet. Prentice Hall Series,

2002.

5. E. W. Dijkstra. A Node on Two Problems in Connection of

Graphs. Numerical Mathematics, 1959.

6. B. Fortz and M. Thorup. Increasing Internet Capacity using

Local Search. Technical Report IS-MG, 2000.

7. Kirkpatrick S, Gelatt C, and Vecchi M. Optimization by

Simulated Annealing. Science, pages 498–516, 1983.

8. R. Kling and P. Banerjee. Optimization by Simulated Evo-

lution with Applications to Standard Cell Placement. In

Proceedings of 27th Design Automation Conference, pages

20–25, 1990.

9. M. Rodrigues and K. G. Ramakrishnan. Optimal Routing in

Data Networks. Presentation at International Telecommu-

nication Symposium (ITS), 1994.

10. M. Ericsson, M. G. C. Resende, and P. M. Pardalos. A Ge-

netic Algorithm for the Weight Setting Problem in OSPF

Routing. J. Combinatorial Optimisation conference, 2002.

11. F. Glover and M. Laguna. Tabu Search. Kluwer Academic

Publishers, 1997.

27

12. D. Frigioni, M. loffreda, U. Nanni, and G. Pasqualone. Ex-

perimental Analysis of Dynamic Algorithms for the Single

Source Shortest Paths Problem. ACM Journal of Experi-

mental Algorithms, 1998.

13. G. Ramalingam and T. Reps. An Incremental Algorithm for

a Generalization of the Shortest Path Problem. Journal of

Algorithms, pages 267–305, 1996.

14. B. Fortz. Combinatorial Optimization and Telecommu-

nications. http://www.poms.ucl.ac.be/staff/bf/en/COCom-

5.pdf.

15. J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, 1975.

16. P. Laarhoven and E. Aarts. Simulated Annealing: Theory

and Applications. Kluwer Academic, Norwell, Massachusetts,

1987.

17. R. Kling and P. Banerjee. Empirical and Theoretical Studies

of the Simulated Evolution Method Applied to Standard Cell

Placement. IEEE Transactions on Computer-Aided Design,

10(10):1303–1315, October 1991.

18. S. M. Sait, M. H. Sqalli, and M. A. Mohiuddin. Engineer-

ing Evolutionary Algorithm to Solve Multi Objective OSPF

Weight Setting Problem. Australian Conference on Artificial

Intelligence, pages 950–955, 2006.

19. M. Houssaini Sqalli, S. Mohammed Sait, and S. Asadullah.

Minimizing the Number of Congested Links in OSPF Rout-

ing. ATNAC, December 2008.

20. A. Abo Ghazala, A. El Sayed, and M. Mousa. A Survey for

Open Shortest Path First Weight Setting (OSPFWS) Prob-

lem. The 2nd International Conference on Information Se-

curity and Assurance (ISA2008), pages 24–26, April 2008.

21. A. Abo Ghazala, A. El Sayed, and M. Mousa. A New Ap-

proach for Open Shortest Path Weight Setting (OSPFWS)

Problem. Convergence and Hybrid Information Technology,

pages 188 – 193, November 2008.

22. S. Mohammed Sait and H. Youssef. Iterative Computer Al-

gorithms and their Application to Engineering. IEEE Com-

puter Society Press, December 1999.

23. R. Kling and P. Banerjee. Empirical and Theoretical Studies

of the Simulated Evolution Method Applied to Standard Cell

Placement. IEEE Transactions on Computer-Aided Design,

pages 1303–1305, October 1991.

24. R. Kling and P. Banerjee. ESP: Placement by Simulated

Evolution. IEEE Transactions on Computer-Aided Design,

pages 245–255, March 1989.

25. S. A. Khan and A. P. Engelbrecht. Fuzzy Hybrid Simulated

Annealing Algorithms for Topology Design of Switched Local

Area Networks. Soft Computing, 3(1):45–61, 2009.

26. S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb. A simu-

lated annealing-based multiobjective optimization algorithm:

Amosa. IEEE Trans. Evolutionary Computation, 12(3):269–

283, 2008.

27. B. Suman, N. Hoda, and S. Jha. Orthogonal simulated an-

nealing for multiobjective optimization. Computers & Chem-

ical Engineering, 34(10):1618–1631, 2010.

28. B. Suman. Study of simulated annealing based algorithms for

multiobjective optimization of a constrained problem. Com-

puters & Chemical Engineering, 28(9):1849–1871, 2004.

29. S. A. Khan and A. P. Engelbrecht. A New Fuzzy Operator

and its Application to Topology Design of Distributed Local

Area Networks. Information Sciences, 177(12):2692–2711,

2007.

30. S. Sait, H. Youssef, and A. Hussain. Fuzzy simulated evolu-

tion algorithm for multiobjective optimization of VLSI place-

ment. In IEEE Congress on Evolutionary Computation,

Washington, pages 91–97, 1999.

31. S. Sait, A. Zaidi, and M. Ali. Multiobjective vlsi cell place-

ment using distributed simulated evolution algorithm. In

ISCAS 2005, pages 6226–6229, 2005.

28

32. B. Fortz, J. Rexford, and M. Thorup. Traffic Engineering

with Traditional IP Routing Protocols. IEEE Communica-

tions Magazine, pages 118–124, 2002.

33. L. A. Zadeh. Fuzzy Sets. Information Control, 8:338–353,

1965.

34. L. A. Zadeh. The Concept of a Linguistic Variable and its Ap-

plication to Approximate Reasoning. Information Sciences,

8:199–249, 1975.

35. R. Yager. On Ordered Weighted Averaging Aggregation Op-

erators in Multicriteria Decision-making. IEEE Transactions

on Systems, Man, and Cybernetics, 18(1):183–190, Jan 1988.

36. H. Li and V. Yen. Fuzzy Sets and Fuzzy Decision-Making.

CRC Press, USA, 1995.

37. H. Hamacher. Ueber Logische Verknupfungen Unschalfer

Aussagen und deren Zugehoerige Bewertungs-funktione.

Progress in Cybernetics and Systems Research, 3:276–288,

1978.

38. M. Frank. On the Simultaneous Associativity of F (x, y) and

x+y−F (x, y). Aequationes Mathematicae, 19:194–226, 1979.

39. S. Weber. A General Concept of Fuzzy Connectives, Nega-

tions and Implications Based on t-Norms and t-Conorms.

Fuzzy Sets & Systems, 11:115–134, 1983.

40. D. Dubois and H. Prade. Operations in Fuzzy-valued Logic.

Information and Control, 43:224–240, 1979.

41. Cho H, Oh S, and Choi D. A new Evolutionary Program-

ming Approach Based on Simulated Annealing with Local

Cooling Schedule. Proceedings of the IEEE World Congress

on Computational Intelligence, pages 598–602, 1998.

42. Jeon Y, Kim JC, Kim JO, Shin J, and Lee K. An Effi-

cient Simulated Annealing Algorithm for Network Reconfig-

uration in Large-Scale Distribution Systems. IEEE Transac-

tions Power Delivery, pages 1070–1078, 2002.

43. MatSuba I. Optimal Simulated Annealing Method and its

Application to Combinatorial Problems. Proceedings of the

International Joint Conference on Neural Networks, pages

541–546, 1989.

44. Perttunen C. Nonparametric Cooling Schedules in Simulated

Annealing Using the Normal Score Transformations. Pro-

ceedings of the IEEE International Conference on Systems,

Man, and Cybernetics, pages 609–612, 1991.

45. S. A. Khan. Design and Analysis of Evolutionary and Swarm

Intelligence Techniques for Topology Design of Distributed

Local Area Networks. PhD Thesis, University of Pretoria,

2009.

46. E. W. Zegura. GT-ITM: Georgia Tech Internetwork Topol-

ogy Models

(software). http://www.cc.gatech.edu/faq/Ellen.Zegura/gt-

itm/gt-itm.tar.gz, 1996.

47. K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet

Toplogy. IEEE Communications Magazine, (35):160–163,

1997.

48. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How To

Model An Internetwork. 15th IEE Conference on Computer

Communications (INFOCOM), pages 594–602, 1996.

49. W. Hines and D. Montgomery. Probability and Statistics in

Engineering and Management Science, 3rd Ed. John Wiley

& Sons, 1990.

50. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A

Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation, 6(2):182–

197, 2002.

51. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast

elitist non-dominated sorting genetic algorithm for multi-

objective optimization: Nsga-ii. pages 849–858. Springer,

2000.

29

Table 1 Test cases for the OSPFWS problem (N = number of nodes, A = number of arcs.)

Test Code Network type N A

h100N280a 2-level hierarchical graph 100 280

h100N360a 2-level hierarchical graph 100 360

h50N148a 2-level hierarchical graph 50 148

h50N212a 2-level hierarchical graph 50 212

r100N403a Random graph 100 403

r100N503a Random graph 100 503

r50N228a Random graph 50 228

r50N245a Random graph 50 245

w100N391a Waxman graph 100 391

w100N476a Waxman graph 100 476

w50N169a Waxman graph 50 169

w50N230a Waxman graph 50 230

Table 2 Results of average cost for different values of M for SqalliCF and FuzzyCF

Test Case SqalliCF FuzzyCF

M = 20 M = 30 M = 20 M = 30

h50N212a 2.498 3.395 0.461 0.261

h100N360a 3.003 4.994 0.308 0.217

30

Table 3 MU, NOC, NUL, and average execution time corresponding to the two cost functions using SA

Test case Traffic SqalliCF FuzzyCF (UAO)

Demand MU NOC NUL Time MU NOC NUL Time

(in bytes) (sec) (sec)

h100N280a 4605 1.36± 10.17± 13.13± 1177 1.50± 8.93± 0.70± 859.1

0.017 2.422 3.181 0.352 1.388 3.313

h100N360a 12407 1.66± 16.20± 16.93± 1091.1 2.01± 21.03± 0.20± 796.5

0.157 3.067 4.401 0.531 6.300 0.484

h50N148a 4928 1.40± 9.63± 3.07± 135.2 1.51± 8.40± 0.00± 98.2

0.058 2.251 1.460 0.100 1.670 0.000

h50N212a 3363 1.47± 5.63± 43.70± 145.7 1.68± 5.17± 0.07± 102.1

0.277 1.670 5.977 0.080 0.791 0.254

r100N403a 70000 1.93± 63.50± 3.00± 1335.5 2.72± 62.60± 0.03± 1017.2

0.184 5.124 1.681 0.576 6.579 0.183

r100N503a 100594 1.86± 83.60± 5.87± 1390.4 3.58± 82.33± 6.57± 1069.8

0.143 6.184 2.713 0.416 26.212 16.079

r50N228a 42281 1.58± 26.97± 5.80± 160.3 2.02± 22.03± 0.03± 116.1

0.154 3.347 2.441 0.134 2.251 0.183

r50N245a 53562 2.24± 41.83± 5.10± 159.1 2.83± 28.77± 0.23± 117.2

0.276 4.913 2.056 0.239 2.622 0.504

w100N391a 48474 1.44± 2.33± 4.80± 1355.5 1.75± 42.10± 7.23± 1029.2

0.046 1.647 1.954 0.708 19.921 6.185

w100N476a 63493 1.42± 23.83± 14.73± 1383.3 2.24± 41.70± 4.73± 1048.2

0.043 6.923 3.433 0.219 15.647 11.694

w50N169a 25411 1.27± 8.60± 2.93± 153.7 1.41± 8.80± 0.00± 110.7

0.021 1.792 1.552 0.086 1.808 0.000

w50N230a 39447 1.23± 4.90± 6.13± 158.6 1.55± 14.40± 1.37± 113.8

0.017 1.493 2.674 0.151 19.08 4.537

31

Table 4 Percentage improvement achieved by FuzzyCF compared to SqalliCF using SA. Statistically significant improvements are in

boldface

Test Case MU NOC NUL

% diff p-value rank rank % diff p-value rank rank % diff p-value rank rank

Fuzzy Sqalli Fuzzy Sqalli Fuzzy Sqalli

h100N280a -10.29 0.022 473 443 12.19 0.019 119 156 94.67 0.013 44 275

h100N360a -21.08 0.001 1233 555 -29.81 0.027 335 216 98.82 0.011 36 329

h50N148a -7.86 0.031 1191 639 12.77 0.019 102 135 100.00 0.010 30 122

h50N212a -14.29 0.022 1107 723 8.17 0.172 125 139 99.84 0.010 32 363

r100N403a -40.93 0.003 1355 475 1.42 0.557 335 367 99.00 0.027 31 118

r100N503a -92.47 0.001 1365 465 1.52 0.798 293 506 -11.93 0.815 96 206

r50N228a -27.85 0.021 1345 485 18.32 0.041 151 296 99.48 0.009 31 204

r50N245a -26.34 0.034 1309 521 31.22 0.035 143 494 95.49 0.020 37 183

w100N391a -21.53 0.021 691 334 -1706.87 0.000 538 69 -50.63 0.044 247 174

w100N476a -57.75 0.009 1365 465 -74.99 0.008 611 277 67.89 0.032 104 330

w50N169a -11.02 0.033 991 240 -2.33 0.669 144 138 100.00 0.010 30 116

w50N230a -26.02 0.017 972 181 -193.88 0.001 289 87 77.65 0.000 61 211

32

Table 5 Results of average cost for different bias values using FuzzyCF

Test Case Bias Average Cost

-0.1 0.466

0.0 0.395

0.1 0.287

h50N212a 0.2 0.266

0.3 0.220

- 0.02 0.415

Dynamic 0.293

-0.1 0.513

0.0 0.429

0.1 0.348

h100N360a 0.2 0.293

0.3 0.166

- 0.02 0.370

Dynamic 0.357

33

Table 6 MU, NOC, NUL, and average execution time corresponding to two cost functions using SimE

Test case Traffic SqalliCF FuzzyCF (UAO)

Demand MU NOC NUL Time MU NOC NUL Time

(in bytes) (sec) (sec)

h100N280a 4605 1.34± 10.73± 21.33± 1220.4 1.41± 8.50± 1.23± 875.9

0.000 2.449 3.078 0.058 1.432 0.898

h100N360a 12407 1.42± 15.63± 17.67± 1189.6 1.72± 16.13± 0.93± 826.6

0.088 2.189 3.708 0.092 2.240 1.015

h50N148a 4928 1.42± 10.93± 3.67± 148.1 1.62± 10.37± 0.07± 128.6

0.051 2.518 1.668 0.119 2.025 0.254

h50N212a 3363 1.32± 7.60± 46.07± 151 1.67± 4.93± 2.77± 137.5

0.096 1.714 5.705 0.102 0.740 1.924

r100N403a 70000 1.44± 53.13± 0.83± 1597.9 1.86± 44.73± 0.13± 1588.5

0.064 4.562 0.648 0.074 2.490 0.346

r100N503a 100594 1.41± 37.77± 1.63± 1479.2 2.19± 52.80± 0.17± 1334.1

0.059 5.283 0.890 0.166 2.809 0.379

r50N228a 42281 1.36± 24.83± 2.20± 160 1.80± 19.77± 0.10± 152.2

0.054 3.130 1.808 0.121 1.305 0.305

r50N245a 53562 2.14± 39.20± 2.03± 167.2 2.60± 26.20± 0.80± 114.4

0.182 3.872 0.999 0.193 1.972 0.887

w100N391a 48474 1.41± 1.10± 5.03± 1371 1.42± 7.17± 0.03± 1132.3

0.006 0.305 1.829 0.033 2.692 0.183

w100N476a 63493 1.32± 7.07± 12.63± 1374.6 1.46± 17.07± 0.60± 1174.9

0.003 1.143 1.712 0.070 2.363 0.814

w50N169a 25411 1.26± 9.37± 2.80± 178.4 1.44± 8.37± 0.03± 134.8

0.016 2.205 1.375 0.078 1.189 0.183

w50N230a 39447 1.23± 3.67± 5.27± 189.1 1.44± 9.13± 0.27± 112.8

0.007 0.959 1.741 0.088 1.570 0.583

34

Table 7 Percentage improvement achieved by FuzzyCF compared to SqalliCF for SimE. Statistically significant improvements are in

boldface.

Test Case MU NOC NUL

% diff p-value rank rank % diff p-value rank rank % diff p-value rank rank

Fuzzy Sqalli Fuzzy Sqalli Fuzzy Sqalli

h100N280a -5.22 0.032 381 30 20.78 0.040 135 202 94.23 0.019 67 281

h100N360a -21.13 0.027 1170 381 -3.20 0.385 183 172 94.74 0.018 58 350

h50N148a -14.08 0.020 1308 522 5.12 0.341 131 148 98.09 0.020 32 141

h50N212a -26.52 0.022 1355 475 35.13 0.033 88 168 93.99 0.011 113 530

r100N403a -29.17 0.020 1365 465 15.81 0.031 143 358 84.34 0.010 34 55

r100N503a -55.32 0.016 1365 465 -39.79 0.027 680 292 89.57 0.012 35 79

r50N228a -32.35 0.019 1365 465 20.38 0.019 113 246 95.45 0.034 33 93

r50N245a -21.50 0.011 1328 502 33.16 0.020 156 420 60.59 0.023 54 91

w100N391a -0.71 0.045 157 133 -551.82 0.000 176 33 99.40 0.011 31 180

w100N476a -10.61 0.022 615 40 -141.44 0.001 332 62 95.25 0.025 48 229

w50N169a -14.29 0.020 726 134 10.67 0.033 101 131 98.93 0.019 31 114

w50N230a -17.07 0.015 735 104 -148.77 0.001 214 50 94.88 0.021 38 188

