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Abstract 
 
Model graphite composites, similar to those used in nuclear applications as encasement 
material in fuel pebbles, were prepared by uniaxial cold compression moulding. They 
contained natural flake graphite, synthetic graphite and 20 wt.% phenolic novolac resin 
binder. The materials were carbonised at 900 °C in a nitrogen atmosphere and then annealed 
at 1800 °C in helium atmosphere. The X-ray diffraction studies showed that the graphite in 
these composites had hexagonal crystal structure after annealing. Raman spectroscopy 
revealed the presence of the structurally disordered phase derived from the carbonised resin. 
Optical microscopy revealed a flake-like microstructure for composites containing mainly 
natural graphite and needle-coke like particles for composites containing mainly synthetic 
graphite. The composites featured anisotropic property behaviour as the particles were 
partially aligned in a direction perpendicular to the compression direction. 
Thermogravimetric analysis studies showed that the annealed graphite composites were 
stable in air to 650 °C. The linear thermal expansion coefficients measured by 
thermomechanical analysis (20-600 °C) in the direction of pressing were in the range 5 to 
9×10-6 K-1 and in the range 1.2-2×10-6 K-1 in the direction normal to pressing. The thermal 
conductivity of the composites were measured using Xenon flash method from 100 to 1000 
°C and the values ranged from 19 to 30 W.m-1.K-1.  
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1. Introduction 

The Pebble Bed Modular Reactor (PBMR) is a high temperature graphite-moderated nuclear 

reactor that uses helium as a coolant. The triple coated (TRISO) particles contain the enriched 
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uranium oxide fuel. The coatings comprise layers of various forms of pyrolytic carbon and 

silicon carbide [1, 2]. They are designed to retain any fission products released at the elevated 

reactor operating temperatures [3, 4]. Large numbers of the TRISO particles are embedded in 

the matrix of each of the spherical graphite pebbles. These graphite composites are moulded 

from a compound containing natural flake graphite (64 wt.%), synthetic graphite (16 wt.%) 

and a phenolic resin binder (20 wt.%). The moulded spheres are heat-treated to 1800 °C to 

convert the binder into a glassy carbon that provides structural integrity. It also acts as a 

moderator material, slowing down the speed of neutrons to thermal levels so that the fission 

reactions can occur. The graphite composite must possess suitable properties e.g.,  very low 

impurity levels, density exceeding 1.7 g cm-3, high thermal conductivity, high mechanical 

strength, high stability under irradiation, high oxidation resistance and low thermal expansion 

coefficient [5].  

Similar compositions have been used in other high temperature reactors [4] and were judged 

to be provide the required properties. However, little was reported about the relationship 

between the fabrication/processing method, the resulting microstructure and the final 

properties that can be achieved. For example, what is the microstructure of the composites? 

What is the spatial arrangement of the graphite fillers? What is the effect of changing the 

relative proportions of graphite fillers in the matrix? How are properties affected when lower 

density materials are fabricated? In this study, fuel-free low-density graphite composites were 

prepared. The relative proportion of the two graphite fillers was varied keeping the phenolic  

Table 1: Green state composition and physical properties of carbon-graphite composites annealed (in a He 
atmosphere) at 1800 °C for 2 h.  
 
 
Property Units Composition NG:SG:novolak resin 

Composition wt.% 0:80:20 40:60:20 64:16:20 80:0:20 

d-spacing Å 3.371 3.370 3.371 3.364 

Open porosity % 41.9 33.6 31.5 27.6 

Helium density kg m-3 21300.5 20680.5 20910.9 20950.9 

Bulk density kg m-3 12383 13722 14324 15164 

CTE×10-6 K-1 6.250.89 5.820.75 9.581.61 7.580.71 

CTE║×10-6 K-1 2.060.50 2.080.44 1.940.53 1.910.45 

CTE/CTE║ - 3.0 2.8 4.9 4.0 

Bending strength MPa 8.610.59 4.961.26 10.22.1 - 

Bending modulus GPa 2.060.39 1.210.35 1.690.27 - 
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Figure 1: Fabrication scheme for the graphite-phenolic resin composites. 

 

resin binder content fixed. The microstructure was studied and the thermal and mechanical 

properties were determined in an attempt to answer, at least in part, some of these questions. 

2. Material and methods 

Graphite composites containing a fixed amount of phenolic resin binder (20 wt.%) were 

fabricated according to the procedure outlined in Figure 1. The compositions of the graphite 

composites tested are shown in Table 1. They were labelled according to the proportions of 
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natural flake graphite, synthetic graphite and novolac binder in wt.%. For example, the 

composite containing 64 wt.% natural graphite, 16 wt.% synthetic graphite and 20 wt.% 

phenolic resin was labelled 64:16:20, etc. 

The natural flake graphite and the synthetic graphite powder were mixed in a Z-blade mixer 

(Jones Mixers, South Africa) for one hour. A methanol solution of the phenolic novolac resin  

was then added. Just sufficient methanol was used to ensure a flowable paste. This resinated 

paste was dried at 70 °C for 6 h in a convection oven. The resulting rigid residue was then 

ground into a powder using a carbon steel ring mill and sieved through 212 μm mesh using 

electromagnetic shakers (Labotec, South Africa). About 120 g sieved powder was placed in a 

100 mm  cylindrical stainless steel die. Disc-shaped test specimens were compression 

moulded for 1 h at 13 MPa in a hydraulic press (Vertex Automation Pty (Ltd)). The green 

moulded specimens were then carbonised at 900 °C in N2 atmosphere to remove all volatiles. 

This was followed by an annealing step at 1800 °C in a helium atmosphere using a 

graphitising furnace (Thermal Technology Inc., USA). The samples were maintained at this 

temperature for 2 h and then allowed to cool to ambient conditions. Depending on the 

measurement to be made, the samples were cut to the required dimensions with an Isomet 

4000 linear precision diamond saw (Buehler, Germany).  

3. Experimental 

3.1 X-ray diffraction (XRD) 

The diffraction patterns of the annealed graphite composite powders were recorded using a 

BRUKER’s D8 ADVANCE powder diffractometer. Measurements were done using CuK 

radiation (0.15418 nm) with the generator operated at 40 kV and 40 mA. Detection of the 

diffracted beam was done using 1 D Position Sensitive Detector (Lynx eye detector). 

Measurements were performed in the range 15 to 90° in 2 with a of 0.04° step size and a 

counting time 0.2 s. Phase identification was done using EVA’s Diffracplus Basic evaluation 

Package SEARCH & MATCH in conjunction with ICCD 2007 PDF-2 database. The 

interlayer spacing, d002 was calculated using the Bragg equation. 
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3.2 Raman analysis 

The Raman spectra were recorded with the T64000 series II triple spectrometer system from 

HORIBA Scientific, Jobin Yvon Technology using the 514.3 nm laser line of a coherent 

Innova70 Ar+ laser with a resolution of 2 cm-1 in the wavenumber range 1200 to 1750 cm-1. 

The samples were recorded in a backscattering configuration with an Olympus microscope 

attached to the instrument (using a LD 50× objective). A liquid nitrogen-cooled CCD detector 

was used with a laser power of 6 mW at the sample. The accumulation time was 120 s and 

the spectra were baseline corrected with the LabSpec software program. All the spectra were 

collected at a spot scale of 2 µm. 

3.3 Optical microscopy (OM) 

The microstructure of the raw graphite samples and heat-treated moulded graphite 

composites was studied by optical microscopy (OM) under reflected and polarised light. A 

Leica DM 2500 M microscope was used. The samples were mounted in an epoxy resin. They 

were polished with a Buehler Alpha 2 speed grinder-polisher with a continuous flow of water 

for 1 min for each of the silicon carbide grinding papers (400, 600, 1200 grits). The samples 

were then successively polished with Buehler Metadi polishing suspensions of size 1.0 μm 

and 0.05 µm.  This was done for 3 and 5 min, respectively. This polishing methodology 

yielded a very smooth sample surfaces. 

3.4  Scanning Electron Microscopy (SEM) 

The SEM images were obtained using an ultrahigh resolution field emission SEM (HR 

FEGSEM Zeiss Ultra Plus 55) with an InLens detector at an acceleration voltage of 2 kV. 

3.5 Pycnometry 

The bulk density of the pre-weighed moulded annealed graphite composites was measured 

using a Geopyc 1360 pycnometer. The Helium density was measured with Accupyc II 1340 

V1.03 Helium pycnometer. The volume of the sample cup was calibrated prior to analysis by 

filling it with helium gas until it reached a pressure of 134.45 kPa. This was done in 5 cycles. 

After calibration with standard steel balls, the pre-weighed sample was placed in the sample 

chamber and filled with helium gas until a pressure of 134.45 kPa was reached. The sample 

volume, excluding closed pores in the sample, was measured. Triplicate measurements were 

performed per sample and three samples were measured per type. Their average was used for 
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calculating helium density. Both pycnometers were purchased from Micromeritics 

Instruments Corporation, USA. The open accessible porosity percentage in the annealed 

graphite composites were calculated using equation (1) below: 

Open porosity   100/1  HeB  %      (1) 

where B is the bulk density and He is the helium density both in kg m-3. 

3.6  Thermogravimetric analysis (TGA) 

The air oxidation behaviour of the powdered raw graphite samples, the phenolic resin and the 

annealed graphite composites was determined by TGA analysis using a Mettler Toledo A851 

TGA/SDTA machine.  About 20 mg samples were placed in a 70 μL alumina pan and heated 

from 18 to 1000 °C at a scan rate of 5 °C/min in instrument grade air flowing at 50 mL/min. 

3.7 Thermomechanical (TMA) analysis 

The linear coefficients of thermal expansion (CTE) of the annealed solid graphite composites 

were determined in expansion mode with a TA Instruments TMA Q400 V22.1 analyser. The 

runs were made on a quartz stage from 20 to 1000 °C at a heating rate 5 °C/min in N2 flowing 

at a rate 50 mL/min and applying a force of 0.02 N. The expansion measurements were 

recorded along the uniaxial pressing direction of the compacts and in the direction normal to 

pressing direction. The dimensions of the samples used were 10 mm × 5 mm × 5 mm. The 

instantaneous thermal expansion coefficient, CTE, was calculated as follows: 

T

L

L 



0

1
CTE           (2) 

where L is the length of the sample in m, T is the temperature in K, and L0 is the initial length 

of the sample in m at some initial temperature T0 [6]. The instrument was calibrated using a 

copper sample with known linear CTE (17×10-6 K-1). Measurements were done both parallel 

(║) and perpendicular () to the direction of the pressing force. 

3.8 Thermal conductivity from Xenon flash photolysis 

The thermal conductivity of the annealed graphite composites samples were measured using 

the Xenon flash method. The thermal diffusivity were measured at each temperature using the 
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Clark and Taylor analysis of a back face thermogram generated from a Xenon flash on the 

front face [7]. Samples of 20 mm in diameter and 2 mm in thickness were used in an Anter 

Flashline 3000 with a Xenon flash under nitrogen flow. A thermographite sample was used as 

a reference. The thermal conductivity of the samples was calculated from measured thermal 

diffusivity, density and specific heat of the samples at each temperature using the following 

equation: 

k = α ρ Cp          (3) 

where k is the thermal conductivity in W m-2 K-1, α is the thermal diffusivity in m2 s-1, ρ is the 

density in kg m-3 and Cp is the specific heat in J kg-1 K-1.   

3.9 Mechanical properties via four-point bending tests 

 
Rectangular annealed graphite composite samples were cut to the specifications of ASTM 

Standard C651-91 (Reapproved 2000). The length of the samples were 40.00±0.02 mm, their 

widths were 10.00±0.02 mm and had thickness of 5.00±0.02 mm. The samples were polished 

on their faces with 1200 silicon carbide paper grit to make them smooth and free of visible 

defects. The samples were loaded onto a tensile tester (LRX plus tensile tester, LLOYD 

Instruments); the support and loading spans used were 30 and 10 mm, respectively. A loading 

rate of 1 mm/min was utilised. All samples tested were unnotched. The flexural strength was 

calculated using the following equation: 

2

F L

b d
 

          (4)
 

where  is the flexural strength in Pa, F is the load (force) in N at fracture, L is the length of 

the support span in m, b and d are the width (m) and thickness (m) of the sample, 

respectively. At least triplicate measurements were performed for each composition.  

 

4 Results and discussion 

4.1 Fabrication 

The moulded graphite composites discs of diameter 100 mm were successfully fabricated. 

Pressing the graphite powders individually or as mixtures without the binder did not yield 

monolithic structures. Thus the incorporation of the phenolic resin binder is essential. 

Cunningham et al. [8] previously noted similar behaviour for such graphite composites 
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is the more stable phase and that the rhombohedral phase is thermodynamically unstable. The 

presence of the latter phase in the natural graphite could have been caused by the milling 

operation used during its comminution. The rhombohedral phase results from stacking faults 

of the hexagonal phase [11, 12]. Owing to an annealing effect, this phase did not appear in 

the profiles of the heat-treated composites (especially those containing mainly natural 

graphite and binder  [11]. All the composites showed a hexagonal crystal graphite structure 

after annealing. The reflection at 2θ  30° could not be assigned but may be an instrumental 

artefact. This reflection did not appear in the patterns of the raw graphite samples or in the 

annealed graphite composite powders (not shown here).  

Table 1 lists the interlayer spacing values, d002, obtained from the X-ray diffraction 

measurements. The average interlayer spacing of the raw natural flake and synthetic graphite 

samples were 0.3357 nm and 0.3354 nm, respectively. Thus the raw graphite powders 

featured interlayer spacing values close to that of the ideal single crystal graphite [13]. The 

annealed graphite composites showed larger average interlayer spacing (i.e. 0.3364 nm to 

0.3371 nm) than the raw graphite powders. This is attributed to defects introduced during the 

milling of the green compound and the high pressure moulding process used to make the 

samples.  

4.3 Raman spectroscopy 

The Raman spectra, shown in Figure 3, exhibit two distinct peaks. The disorder induced 

Defect ‘D’ band is located at approximately 1350 cm-1 and the structural order induced 

Graphite ‘G’ band at approximately 1580 cm-1. The intensity ratio of the ‘D’ peak (ID) to the 

‘G’ peak (IG) provides an indication of the degree of structural ordering in the carbon 

material. Pure crystalline graphite features a very low intensity D-peak and the intensity ratio 

is close to zero [14-16]. The Raman spectrum of neat phenolic resin did not show any Raman 

peaks. The Raman spectrum (not shown) for the carbonised resin confirms it is non-graphitic 

and highly disordered. The estimated intensity ratios of the synthetic graphite, natural 

graphite, and carbonised resin were 0.12, 0.18, and 0.9 respectively. Therefore the degree of 

structural ordering followed the order: Carbonised resin < Natural graphite < Synthetic 

graphite. 
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A composite containing only synthetic graphite and binder, see Figure 6(a), showed a 

microstructure having compacted needle-coke particles (NC) and fine grained (FG) mosaics 

inherent from the synthetic graphite. The resin-derived carbon (R) appears blurry under 

polarised light because it is optically non-textured. Pores (P) were also observed, this porosity 

result from volatilization of the phenolic resin during heat-treatment. The graphite particles 

themselves appear to be partially aligned at an angle perpendicular to the pressing direction.  

However, the microstructure of the composite containing equal amounts of the graphite 

powders, see Figure 6(b), appears more flake-like and it is challenging to distinguish 

individual particles from the respective graphite particles in this micrograph. The composite 

containing mostly natural graphite and binder, Figure 6(c), showed more compacted flake-

like particles and appeared to be less porous than the other compositions although they were 

pressed at the same pressure for equal duration. These micrographs support preferential 

orienting of the flakes in the direction normal to pressing. However, the crystallites within the 

particles could be oriented differently.  

4.5 Pycnometry 

The open porosity of the annealed graphite composites was quantified by pycnometry. This 

crucial parameter affects properties such as thermal expansion and oxidative stability. The 

bulk and helium densities of the annealed graphite composites are presented in Table 1. The 

bulk density increased as the natural graphite content increased. The helium density of the 

annealed carbon-graphite composites agreed with each other to within 1.6 %. It is worth 

noting that the measured helium densities of the composites were also very close to the 

expected theoretical densities. The latter were calculated from the weight fractions and 

densities of the raw graphite powders and carbonised resin. The open porosity, calculated 

using equation (1), decreased with the increase in the amount of natural graphite content in 

the composite. This is consistent with the microstructural observation that the composite 

containing no natural graphite appeared more porous (see Figure 6(a)). The decrease in open 

porosity as the natural graphite increases could be attributed to the malleability of the natural 

graphite flakes particles. During the pressing operation they deformed more readily to form 

denser compact structures. The average open porosity of the composites was approximately 

28 %. 
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Figure 7: TGA profiles of the phenolic resin, natural graphite and synthetic graphite heated at 5 °C/min in air. 

4.6 Thermogravimetric (TG) analysis 

The oxidative stability of the raw materials (graphite powders and resin) in air, as well as that 

of the annealed graphite composites, was studied by thermogravimetric analysis. The TGA 

profiles of the phenolic resin, natural graphite and synthetic graphite are shown in Figure 7. 

The onset (Ti) and endset (Te) air oxidation temperature were determined using intersection 

of the segments before and after inflection points [18]. The temperature at which the sample 

loses maximum weight is denoted Tm. The neat phenolic resin had a lower stability than the 

other raw materials. It started to lose mass at a Ti value of approximately 120 °C due to the 

loss of moisture, followed by loss of volatiles in the temperature range 340-510 °C. The loss 

of carbonaceous matter was observed above 510 °C and the endset air oxidation was reached 

at a Te of about 700 °C. The weight losses associated with moisture, volatiles and resin 

carbon oxidation were 0.89%, 31.4% and 67.2%, respectively. The phenolic resin had an ash 

content of 0.5%. The derivative weight loss curves of the phenolic resin (not shown) revealed 

that mass loss occurred in five steps with the maximum mass loss rate observed at about 631 

°C. The natural graphite was less reactive than the phenolic resin as it started to oxidise at 

higher temperatures, i.e. about 600 °C. The endset oxidation temperature (Te) of the natural 

graphite was about 860 °C. The TG profile of the synthetic graphite showed that it was most 
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approximately 650 °C. The endset oxidation temperature (Te) of these composites was ca. 

940 °C. However the composite containing only synthetic graphite and binder showed 

slightly higher onset and endset air oxidation temperatures, i.e. about 670 and 980 °C, 

respectively. The lower reactivity of the annealed composites in air is attributed to the heat-

treatment which annealed some structural defects and deactivated catalytic impurities 

especially in the composites containing mainly natural graphite as a major component (i.e. 

64% and 80% NG). These composites were observed to be oxidatively less stable than the 

other composites (i.e., 0% and 40% NG) but the difference was about 50 °C. The mass loss 

rate curves for the annealed samples appeared bimodal. The first step around 700 °C was due 

to the loss of resin-derived carbon which oxidises first, followed by loss of graphitic carbon 

around 850 °C. The loss of resin-derived carbon appeared to wane with increasing natural 

graphite content. The reason for this is not understood at this point. These graphitic 

composites were oxidatively stable below 650 °C and therefore in the absence of air, thermal 

gradients and high neutron fluxes, they should be able to withstand high temperature reactor 

conditions.  

4.7 Thermomechanical (TMA) analysis 

The linear expansion behaviour of the annealed graphite composites was studied using 

thermomechanical analysis. The annealed composites expanded linearly and uniformly in the 

temperature range 100 to 600 °C. All the annealed graphite composites showed 

approximately constant αP and αN values in this temperature range. The experimental values 

are listed in Table 1.  The composite containing 64 wt.% natural graphite showed slightly 

larger average αP value than the other composites. The composites  values were similar to 

reported literature values of nuclear graphite powders recorded in the temperature range 20-

120 °C, i.e. 5.3×10-6 K-1 for isotropic graphites and for anisotropic graphites 2.2×10-6 K-1 

with grain and 3.8×10-6 K-1 against grain [5]. Hacker et al. [6] also reported thermal expansion 

coefficients of extruded PGA graphite in this temperature range using dilatometry and 

obtained similar CTE values.  For example, they reported that the average CTE in the 

direction parallel to extrusion direction was 2.5×10-6 K-1 while in the direction perpendicular 

to extrusion direction the average CTE value was 5.5×10-6 K-1. The anisotropic ratio in 

expansion (αP:αN) in the temperature range 100-600 °C was greater than two for all the 

annealed composites. During pressing the flake-shaped graphite particles aligned normal to 

the pressing direction as shown by optical microscopy (see Figure 6). Therefore the enhanced 
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1.K-1 at 1000 °C (27.8 % decrease). The composite containing only natural graphite and 

binder showed values intermediate between the extremes; 18.4 to 13.7 W.m-1.K-1 at 100 and 

1000 °C, respectively (decrease of 25.5 %).  The contribution of the binder resin carbon to 

thermal conductivity values was very small since it had a very low thermal conductivity of 

ca. 0.3 W.m-1.K-1 at room temperature. In addition all the composites studied here contained 

the same amount of the binder resin and thus its influence should be the same. The composite 

containing only synthetic graphite and binder showed lower thermal conductivity values 

possibly for the following reasons: 

 It had a higher open porosity than other composites (i.e. 41 %); this also evident from the 

polarised micrograph in Figure 6(a). It is well known that thermal conductivity decreases 

with increase in open porosity because heat transfer across pores is slow and inefficient 

[25].  

 Since these composites are polycrystalline and it has been shown that a composite 

containing 0 wt.% NG had more structural disorder or defects than other composites (see 

XRD and Raman data), therefore the low thermal conductivity values could be due to 

phonon scattering effects at crystallite boundaries consistent with literature [23, 24]. 

 

The composites containing mainly natural graphite flakes were easily compactable compared 

to those containing synthetic graphite needle-like particles as evidenced by their high bulk 

densities. They also had larger aspect ratios, i.e. length: thickness ratio and therefore this is 

the reason why they conducted heat so well. This study found that the flakes orient 

themselves in the direction normal to pressing consistent with literature [26]. However the 

thermal conductivity values reported here were only obtained in the pressing direction due to 

sample geometry restrictions. It is expected that the thermal conductivity values in the 

direction transverse to pressing could be significantly higher than those attained in the 

pressing direction because of the fact that it will be in the direction of the flakes.  

 

4.9 Flexural Strength 

 

The four point bending flexural strength and modulus values for the annealed graphite 

composites measured in the pressing direction are listed in Table 1. The sample containing 40 

wt.% NG featured a lower flexural strength and modulus than other composites.  It is peculiar 

that the composite containing only synthetic graphite and binder with a higher porosity (i.e. 
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41 %) was much stronger. At this point an explanation cannot be offered but it might be 

related to differences in anisotropy caused by the uniaxial pressure applied during fabrication.  

 

5 Conclusions 

Model graphite-carbon composites were prepared by uniaxial cold compression moulding. 

They were prepared from mixtures of natural and synthetic graphite powders with a fixed 

amount (20 wt.%) of a phenolic novolac resin as binder.  Optical microscopy showed that the 

natural graphite comprised flake-like particles while the synthetic one consisted of needle-

like coke particles. The needle-coke particles were indistinguishable from the flakes on the 

micrographs of the annealed composites. The particles or flakes tended to align themselves 

normal to the pressing direction. The bulk density of the composites increased with 

increasing natural graphite content. Thermogravimetric analysis studies showed that the 

annealed graphite composites were stable in air up to 650 °C. The graphites used to make the 

composites were shown to have complimentary properties. The needle-like synthetic graphite 

was purer and more thermally stable. A composite of this graphite showed lower thermal 

expansion than composites containing mainly natural graphite. However, this composite also 

had a lower thermal conductivity in the temperature range 100 °C -1000 °C. On the other 

hand, the flake-like natural graphite was less pure and thermally less stable than the synthetic 

one. A composite made from this graphite had a larger thermal expansion coefficient than the 

one containing synthetic graphite. This composite showed slightly higher thermal 

conductivity values at than the composite containing only synthetic graphite. Anisotropy in 

properties was observed in these materials mainly due to the uniaxial compression employed 

during their preparation moulding which influenced particle alignment.  It is interesting that 

composite containing 64 wt.% NG, with the highest anisotropy, featured the best mechanical 

properties.  
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