17-Beta-estradiol analogue inhibits cell proliferation by induction of apoptosis in breast cell lines
Running title: Apoptosis induction an estradiol analogue

Michelle Helen Visagie¹, Lynn-Marie Birkholtz², Anna Margarethta Joubert¹
¹Department of Physiology, University of Pretoria, Private Bag X 323, Arcadia, 0007, South Africa
²Department of Biochemistry, University of Pretoria, Private Bag X 20 Hatfield, Pretoria, 0028, South Africa

Corresponding author: Professor Anna Joubert, Department of Physiology, University of Pretoria, Bag X 323, Arcadia, 0007, South Africa, South Africa
Tel: +27 12 3192246, Fax: +27 12 3211679

E-mail addresses:
MH Visagie: michellevisagie@yahoo.com
LM Birkholtz: lynmarie.birkholtz@up.ac.za
AM Joubert: annie.joubert@up.ac.za
Abstract

Microtubules are important targets when studying potential anticancer agents since disturbance of these microtubule dynamics results in cell cycle arrest and cell death. 2-Methoxyestradiol is a naturally occurring metabolite that exerts antiproliferative activity and induces apoptosis. Due to limited biological accessibility and rapid metabolic degradation, several analogues were synthesized. This study investigated the antiproliferative influence of an 2-methoxyestradiol analogue, (8R, 13S, 14S, 17S)-2-Ethyl-13-methyl-7, 8, 9, 11, 12,13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthrene-3, 17-diyl bis(sulphamate) (EMBS) on cell proliferation, morphology and apoptosis induction in an estrogen receptor-positive breast adenocarcinoma cells line (MCF-7), estrogen receptor-negative highly metastatic breast cell line (MDA-MB-231) and a non-tumorigenic breast epithelial cell line (MCF-12A). Spectrophotometry results indicated that EMBS exerted differential antiproliferative activity in the three cell lines. Cell growth of the breast adenocarcinoma and highly metastatic breast cell line reached a plateau effect at 0.4 μM after 24 h of exposure. Light microscopy and polarization-optical transmitted light differential interference contrast demonstrated compromised cell density, cells blocked in metaphase and the presence of apoptotic characteristics after EMBS exposure for 24 h in all three cell lines. Transmission electron microscopy and scanning electron microscopy revealed hallmarks of apoptosis namely the presence of apoptotic bodies, shrunken cells and cell debris in EMBS-exposed cells. This investigation demonstrated that EMBS does exert antimitotic activity and induces apoptosis contributing to elucidating the signal transduction of EMBS in tumorigenic and non-tumorigenic breast cell lines. Findings warrant in-depth analysis of specific targets in vitro and subsequent in vivo investigation for anticancer therapy.

Keywords: Antimitotic, Tumorigenic, Non-Tumorigenic
INTRODUCTION

Tumorigenic cells demonstrate transformation in morphological and growth-related properties including cell motility, shape and hyperproliferation. The latter is due to abnormal assembly of microtubules and microfilaments as these cytoskeletal components regulate cell motility, anchorage-dependent growth and cell surface proteins (Brinkley et al, 1980). It has been hypothesized that this is a result of the centromeres amplification and subsequent abnormal segregation that increases the frequency of abnormal mitoses which leads to chromosomal missegregation (Lingle et al, 2001). The exact symmetrical microtubule organisation during cell division is essential and some chemotherapeutic agents are therefore targeted at disrupting the microtubule dynamics for induction of cell cycle arrest and ultimately cell death (Ecsedy et al, 2012; Leslie et al, 2010). A naturally occurring estradiol metabolite namely 2-methoxyestradiol exerts antimitotic activity due to its ability to bind to the colchicine binding site of β-tubulin (Stander et al, 2011b). 2-Methoxyestradiol failed to advance to United States Food and Drug Administration approval because of its low bioavailability and rapid metabolic breakdown (Visagie et al, 2012). Several newly developed 2-methoxyestradiol analogues have been designed and developed in recent years with improved bioavailability in our laboratory (Stander et al, 2011a, b).

The structure-activity relationship (SAR) pertaining to (8R, 13S, 14S, 17S)-2-Ethyl-13-methyl-7, 8, 9, 11, 12,13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthrene-3, 17-diyl bis(sulphamate) (EMBS) predicts potent anticancer activity with dual activity targeting proliferation and angiogenesis with increased bioavailability (Figure 1) (Leese et al, 2008). Improved bioavailability is a result of the sulphamate groups that block inactivation of metabolism and deactivating conjugation and interaction with carbonic anhydrase. This characteristic causes reduction of first pass liver metabolism by sequestering the sulphates in red blood cells (Stander et al, 2011a, b). Moreover, these sulphamate groups are reversible inhibitors of steroid sulphatase (Jourdan et al, 2010). In addition, the C-17 sulphamate substitution was documented to enhance antitumor activity in vitro and in vivo, where 2-ethyl estradiol analogues were reported to induce cell cycle arrest and apoptosis (Bupert et al, 2007; Foster et al, 2008; Jourdan et al, 2010; Wang et al,
Even though these compounds are derivatives of estradiol they are independent of estrogen receptors and are not substrates for the P-glycoprotein pump and are thus active against taxanes-resistant tumours (Jourdan et al, 2010).

It has been reported that EMBS exerts antiproliferative and antimitotic activity in an array of breast, prostate and ovarian tumorigenic cell lines (Bupert et al, 2007). In addition EMBS inhibited tumor growths in xenografts derived from estrogen receptor negative breast tumorigenic cells (MDA-MB-231) in female athymic nude mice and xenografts derived from prostate cancer cells (DU145) in male athymic nude mice using various doses including 60 mg/kg (once a day for 28 days), 90 mg/kg (three times a week) and 200 mg/kg (once a day) (Foster et al, 2008; Wang et al, 2009).

This study reported the influence of a 17-beta-estradiol analogue as a potential anticancer agent in an estrogen-receptor positive breast adenocarcinoma cell line (MCF-7), a triple negative metastatic breast cell line (MDA-MB-231) and a non-tumorigenic breast epithelial cell line (MCF12A).
MATERIALS AND METHODS

Materials

Cell lines

The MCF-7 cell line is an estrogen receptor-positive tumorigenic adherent breast epithelial cell line derived from metastatic sites in adenocarcinoma (Visagie et al., 2012). MCF-7 cells were supplied by Highveld Biological (Pty) Ltd. (Sandringham, South Africa).

MDA-MB-231 is an estrogen receptor-negative tumorigenic metastatic breast cell line and is commercially available from Microsep (Pty) Ltd. (Johannesburg, South Africa) (Visagie et al., 2012). Cells were grown and maintained in sterile 25 cm² tissue culture flasks at a humidified atmosphere at 37°C and 5% CO₂. Growth medium consisted of Dulbecco’s Minimum Essential Medium Eagle (DMEM) supplemented with 10% heat-inactivated fetal calf serum (56°C, 30min), 100 U/ml penicillin G, 100 µg/ml streptomycin and fungizone (250 µg/l). MCF-12A cells are non-tumorigenic transformed adherent human breast epithelial cells. These cells are produced by long-term cultures and form domes in confluent cultures (Visagie et al., 2012). The MCF-12A cells were a gift from Professor Parker (Department of Medical Biochemistry, University of Cape Town, South Africa). MCF-12A cells were cultured in growth medium consisting of a 1:1 mixture of Dulbecco’s minimum essential medium eagle (DMEM) and Ham’s-F12 medium, 20 ng/ml epidermal growth factor, 100 ng/ml cholera toxin, 10 µg/ml insulin and 500 ng/ml hydrocortisone, supplemented with 10% heat-inactivated fetal calf serum (56°C, 30 min), 100 U/ml penicillin G, 100 µg/ml streptomycin and fungizone (250 µg/l).

Reagents

All required reagents of cell culture analytical grade were purchased from Sigma (St. Louis, United States of America) unless otherwise specified. Heat-inactivated fetal calf serum (FCS), sterile cell culture flasks and plates were purchased from Sterilab Services (Kempton Park, Johannesburg, South Africa). Penicillin, streptomycin and fungizone were obtained from Highveld Biological (Pty) Ltd. (Sandringham, South Africa).
EMBS was synthesized by iThemba Pharmaceuticals (Pty) Ltd. (Modderfontein, Gauteng, South Africa), since this compound is commercially unavailable (Stander et al, 2011a). A stock solution of EMBS dissolved in dimethyl sulphoxide (DMSO) was prepared with a concentration of 10 mM and was stored at 4°C. The vehicle control sample composed of DMSO and growth medium where the DMSO content of the final dilutions never exceeded 0.05% (v/v).

Methods
Cell number determination
Crystal violet staining was used to demonstrate proliferative- and antiproliferative activity by staining deoxyribonucleic acid (DNA) (Visagie et al, 2012). Gillies et al. (1986) performed crystal violet staining to quantify cell number in monolayer cultures as a function of the absorbance of the dye taken up by the cells (Gillies et al, 1986). A dose-dependent study was chosen with a concentration range of 0.2 – 1 μM, since it was previously established in our laboratory that this concentration series exerts antiproliferative activity. Exponentially growing MCF-7, MDA-MB-231 and MCF-12A cells were seeded in 96 well tissue culture plates at a cell density of 5 000 cells per well with an overnight attachment policy at 37°C in a humidified atmosphere containing 5% CO₂. To determine the starting number of cells, a baseline was established prior to exposure. Subsequently, the medium was discarded and cells were exposed to the EMBS at a concentration series of 0.1 – 1 μM for the 24 h since previous studies has demonstrated estradiol derivatives exerting antiproliferative activity in this concentration range (Visagie et al, 2012). Vehicle-treated controls were also included. Cells were fixed with 100 μl of 1% gluteraldehyde (incubation for 15 min at room temperature). Gluteraldehyde was discarded and cells were stained using 100 μl 0.1% crystal violet (incubated at room temperature for 30 min). Crystal violet was discarded and the 96 well plate was submersed under running water. Cells were solubilized using 200 μl 0.2% triton X-100 and incubated at room temperature for 30 min. Solution (100 μl) was transferred to a new microtitre plate. Afterwards, the absorbance was determined at 570nm using an ELx800 Universal Microplate Reader available from Bio-Tek Instruments Inc. (Vermont, United States of America).
Morphology
Polarization-optical transmitted light differential interference contrast
Polarization-optical transmitted light differential interference contrast (PlasDIC) is a contrast method used to view morphology in a three-dimensional capacity (Visagie et al, 2012). PlasDIC displays the required phase profile which is relative to the product of the section thickness and the refractive index difference between the environment and the average refractive index of quartz. PlasDIC has high-quality DIC imaging of individual cells, cell clusters and thick individual cells in plastic cell-culture vessels possible for the first time. Cells was photographed before and after 24 h of exposure to 0.4 μM EMBS (optimal concentration demonstrated using crystal violet staining since the plateau effect is reached) using the Axiover 40 CFL microscope (Carl Zeiss, Goettingen, Germany).

Light microscopy
The effects on morphology after exposure to 0.4 μM EMBS for 24 h was demonstrated using light microscopy (haematoxylin and eosin staining). Since crystal violet staining indicated that 0.4 μM EMBS exposure for 24 h resulted in significant inhibition of proliferation, this dosage and exposure period was used in all subsequent experiments. Haematoxylin and eosin staining also permits the identification of different mitotic phases, interphase, as well as apoptotic and abnormal cells (Visagie, 2010b). Cells (300 000 per well) were seeded on sterile coverslips in 6 well plates and incubated overnight. Afterwards cells were exposed to 0.4 μM EMBS for 24 h. Coverslips were transferred to staining dishes and cells were fixed with Bouin’s fixative for 30 min. Subsequently Bouin’s fixative was discarded and 70% ethanol was added to the coverslips for 20 min at room temperature before they were rinsed with tap water for 2 min. Mayer’s haematoxylin was added to the coverslips for 20 min. Coverslips were rinsed with tap water for 2 min. Afterwards, 70% ethanol was added to the coverslip; followed by 1% eosin for 5 min. Eosin was discarded and coverslips were consecutively rinsed twice for 5 min with 70%, 96%, 100% and xylol. Coverslips were mounted on microscope slides with resin and left to dry. Images were obtained by means of a Zeiss Axiover MRc microscope (Zeiss, Oberkochen, Germany). In addition, haematoxylin- and eosin-stained cells were used to determine mitotic indices. In addition, haematoxylin- and eosin-stained
samples were used to determine mitotic indices. Quantitative data for the mitotic indices were acquired by counting 1 000 cells for each sample (n=3). Data expressed the average percentage of cells in interphase, prophase, anaphase and telophase. Percentages of cells blocked in metaphase culminating in hallmarks of apoptosis were combined (Van Zijl et al, 2008). This haematoxylin and eosin staining yielded both qualitative and quantitative information.

Transmission electron microscopy
The in vitro influence of EMBS on interior cell morphology was visualised by means of transmission electron microscopy (TEM). Cells were fixed in 2.5% glutaraldehyde-formaldehyde mix and then with 0.5% osmium tetroxide. After each fixation step the samples were rinsed 3 times in 0.0075M sodium phosphate buffer (pH 7.4). Samples were dehydrated using increasing concentrations of ethanol (30%, 50%, 70%, 90%, and 3 x 100%) and embedded in quetol resin, sectioned with a microtome and placed on copper discs. Sections were contrasted with 4% aqueous uranyl acetate and Reynolds’ lead citrate and viewed with a JOEL JEM 2100F transmission electron microscope (Electron Microscopy Unit, University of Pretoria, South Africa).

Scanning electron microscopy
Scanning electron microscopy (SEM) was used demonstrate the effects after exposure to 0.4 μM EMBS for 24 h on external cell morphology. MCF-7, MDA-231 and MCF-12A cells was seeded at 200 000 cells per well on heat-sterilized coverslips in 24 well plates. After 24h attachment the cells was exposed to 0.4 μM EMBS and incubated for 24 h. Cells were fixed by placing samples in 2.5 gluteraldehyde in 1.15 M Na⁺/K⁺ buffer for 1 hr. Samples were rinsed thrice in 0.15 M Na⁺/K⁺ buffer and immersed in osmium tetroxide for 30 min. Subsequently samples were rinsed thrice in 0.15 M Na⁺/K⁺ buffer, followed by a graded dehydration in ethanol from 30% to 100%. Samples were covered in hexamethyldisilazane, left to dry in a dessicator overnight, sputter-coated in gold and viewed under a JSM 840 Scanning Electron Microscope (JEOUL, Tokyo, Japan).

Statistical analysis
Qualitative data were collected from PLASDIC, light microscopy (haematoxylin and eosin staining), TEM and SEM. Quantitative data were provided by means of crystal violet staining and mitotic indices provided by the haematoxylin and eosin staining. Quantitative data for the mitotic indices were acquired by counting 1 000 cells on each slide of the biological replicates and expressing the data as the percentage of cells in each phase of mitosis (prophase, metaphase, anaphase and telophase), cells in interphase and cell demonstrating hallmarks of apoptosis. Data were statistically analysed for significance using the analysis of variance (ANOVA)-single factor model followed by a two-tailed Student’s t-test. Means are presented in bar charts, with T-bars referring to standard deviations. P-values < 0.05 were regarded as statistically significant.
RESULTS

Cell number determination

Spectrophotometry results of crystal violet staining indicated a concentration-dependent reduction in cell proliferation in all three cell lines (Figure 2). Exposure to 0.4 μM for 24 h resulted in 40-35% growth inhibition in all three cell lines. However, this inhibition of cell proliferation reached a plateau effect in the tumorigenic cell lines. Thus, for all subsequent experiments, cell lines were exposed to 0.4 μM EMBS for 24 h to determine the effect on morphology and induction of autophagy, as well as apoptosis.

Polarization-optical transmitted light differential interference contrast

Polarization-optical transmitted light differential interference contrast (PlasDIC) was employed to investigate the influence of 0.4 μM EMBS after 24 h of exposure on cell morphology (Figure 3). All three cell lines revealed hallmarks of apoptosis. Decreased cell density, apoptotic bodies and cells blocked in metaphase were observed. All PlasDIC micrographs were taken at 10 X magnification.

Light microscopy
In order to support PLASDIC (qualitative) data, light microscopy utilizing haematoxylin and eosin staining was conducted to demonstrate the effects of 0.4 μM EMBS exposure for 24 h on cell density and morphology (Figure 4). EMBS exposure resulted in decreased cell density, cells were blocked in metaphase and cell debris were observed when compared to vehicle-treated cells. Light microscopy micrographs were obtained at 40 X magnification. Mitotic indices (quantitative data) revealed an increase in the number of apoptotic cells and an increase in the number of cells in metaphase in all three cell lines after exposure to 0.4 μM EMBS for 24 h (Table 1).

Transmission electron microscopy
TEM was conducted to visualize the interior of the cell after exposure to 0.4 μM EMBS for 24 h (Figure 5). Apoptotic bodies, vacuoles and cell debris were present in the MCF-7 EMBS-treated cells, MCF-12A and MDA-MB-231 EMBS-treated cells.

Scanning electron microscopy
SEM was performed to demonstrate the effects of exposure to 0.4 μM EMBS for 24 h in all three cell lines (Figure 6). SEM allows for investigation of the influence on morphology on the surface of cells. Cell debris, vacuole formation and apoptotic bodies were seen in the MCF-7 EMBS-treated cells, vacuole formation and cell debris in the MDA-MB-231 EMBS-treated cells and apoptotic bodies and cell debris in the MCF-12A EMBS-treated cells. In addition, all three treated cell lines possessed shrunken cells.
DISCUSSION

Several estrogen metabolites including 2-methoxyestradiol has been reported to exert antiproliferative- and antimitotic activity in recent years (Stander et al, 2011b; Visagie et al, 2011). However, 2-methoxyestradiol possesses poor bioavailability resulting in failure to advance to United States Food and Drug Administration approval (Visagie et al, 2012). The latter resulted in the in silico design and subsequent synthesis of several estradiol compounds (Stander et al, 2011a). This in vitro study demonstrated the influence of a 17-beta estradiol analogue, EMBS, on cell growth, morphology and the induction of two types of cell death, namely apoptosis and autophagy on the estrogen receptor-positive breast adenocarcinoma MCF-7 cell line, the estrogen receptor-negative metastatic MDA-MB-231 cell line and the non-tumorigenic breast MCF-12A cell line.

Panchapakesan, at al (2011) reported that 2-substituted 17β-hydroxy/17-methylene estratrienes reduced cell growth in colon colorectal carcinoma cell line (HCT-116), large lung cancer cell line (NCIH-460), glioblastoma astrocytoma (U-251) and breast tumorigenic cell line (MDA-MB-435). In this investigation, proliferation studies indicated that EMBS exerts estrogen-independent antiproliferative activity in the tumorigenic MCF-7 cell line, metastatic MDA-MB-231 cell line and the non-tumorigenic MCF-12A cell line. Furthermore, antiproliferative activity exerted by EMBS reached a plateau when exposed to 0.4 μM for 24 h. Studies conducted in our laboratory also demonstrated that other sulphamoylated estradiol analogues, 2-ethyl-3-O-sulphamoyl-stra-1,3,5(10),15-tetraen-17-ol, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene, (8, 9, 13, 14, 17)-2-ethyl-17-hydroxy-13-methyl-7, 8, 9, 11, 12,13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthren-3-yl sulphamate exert antiproliferation activity in a similar concentration range (Stander et al, 2011a; Stander et al, 2012; Stander et al 2013).

Morphology findings include hallmarks of apoptosis namely apoptotic bodies, cell debris, shrunken cells and several cells blocked in metaphase after exposure to EMBS in all three cell lines. Bis-sulphamoylated 2-methoxyestradiol derivative, 2-methoxyestradiol-bis-sulphamate, induces apoptosis in several cell lines including MCF-7, breast adenocarcinoma cells (CAL51), prostate cancer cells (PC-3) and
human umbilical vein endothelial cells (HUVEC) (Newman et al, 2004; Newman et al 2007; Visagie et al, 2010a,b; Visagie et al; 2011; Wood et al, 2004). Sulphamoylated 2-methoxyestradiol analogues 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-3-ol-17-one estronem and 2-ethyl-3-Osulphamoyl-estra-1,3,5(10)16-tetraene also induced apoptosis in MDA-MB-231 cells (Stander et al, 2011). In addition, another 2-methoxyestradiol analogue, 8R, 9S, 13S, 14S, 17S)-2-ethyl-17-hydroxy-13-methyl-7, 8, 9, 11, 12,13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthren-3-yl sulphamate induced apoptosis in MCF-7 cells, MDA-MB-231 and MCF-12A cells (Visagie et al, 2012). Furthermore, the promising antimitotic activity exerted by EMBS is alluring as microtubule-targeted agents have been favored for decades. A microtubule-associated protein tau prominently found abnormally cleaved Alzheimer’s induces apoptosis in human tetracarcinoma derived cell line (NT2). Subsequent research indicated that tau possesses the only cleaving site utilized by caspase 3 (Fasulo et al, 2002).

This study demonstrated that EMBS possess estrogen-independent antiproliferative and antimitotic activity and induces apoptosis in breast cell lines. However, this study also indicated that EMBS does not exert differential effects on tumorigenic and non-tumorigenic breast cell lines. Future studies will involve further investigation of the molecular mechanism utilized by EMBS and elucidating what structural alteration resulted in the loss of differential signalling between tumorigenic and non-tumorigenic cell lines.
ACKNOWLEDGEMENTS
This study was supported by grants from the Cancer Association of South Africa, the Struwig Germeshuysen Trust, Research Committee, School of Medicine, University of Pretoria), National Research Foundation and The Medical Research Council.

DECLARATION OF COMPETING INTERESTS
The authors declare there are not any competing interests.

REFERENCES

Table 1: Percentage of cells in interphase, mitosis and cells blocked in metaphase culminating in apoptosis. Quantitative data for the mitotic indices were acquired by counting 1 000 cells for each sample (n=3). An asterisk (*) indicates a statistically significant P-value of < 0.05 when compared to vehicle-treated cells.

Figure legends

2-Methoxyestradiol

(8R, 13S, 14S, 17S)-2-Ethyl-13-methyl-7, 8, 9, 11, 12,13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthrene-3, 17-diyl bis(sulphamate) (EMBS)

Figure 1: Structural differences between 2-methoxyestradiol and EMBS.
Figure 2: Cell number determination by means of crystal violet staining of the estrogen receptor-positive adenocarcinoma MCF-7 cell line, estrogen receptor-negative metastatic MDA-MB-231 cell line and the non-tumorigenic MCF-12A cell line. EMBS exposure resulted in significant growth inhibition where a plateau was reached from 0.4 μM to 1 μM (40-35% growth inhibition) in the tumorigenic MCF-7 cell line and metastatic MDA-MB-231 cell line. In all subsequent experiments cell lines were exposed to 0.4 μM for 24 h.

Figure 3: PlasDIC micrographs of vehicle-treated MCF-7 cells (A), MDA-MB-231 cells (B), MCF-12A cells (C) EMBS-treated MCF-7 cells (D), EMBS-treated MDA-MB-231 cells (E) and EMBS-treated MCF-12A cells (F). Cells were exposed to 0.4μM of EMBS for 24 h. Vehicle-treated cells showed no abnormal morphology. EMBS-treated cells revealed decreased cell density, rounded cells (metaphase block), apoptotic bodies and cell debris when compared to vehicle-treated cells (10 X magnification).
Figure 4: Light microscopy of haematoxylin and eosin staining of MCF-7 vehicle-treated cells (A), MDA-MB-231 vehicle-treated cells (B), MCF-12A vehicle-treated cells (C), EMBS-treated MCF-7 cells (D), EMBS-treated MDA-MB-231 cells (E) and EMBS-treated MCF-12A cells (F). Cell lines treated with EMBS revealed decreased cell density and an increase number of cells present in metaphase when compared to vehicle-treated cells. In addition, apoptotic bodies, shrunken cells and cell debris were observed (40 X magnification).

Figure 5: Transmission electron microscopy of MCF-7 vehicle-treated cells (A), MDA-MB-231 vehicle-treated cells (B), MCF-12A vehicle-treated cells (C), EMBS-treated MCF-7...
cells (D), EMBS-treated MDA-MB-231 cells (E) and EMBS-treated MCF-12A cells (F). Treated cell lines demonstrated the presence of apoptotic bodies and vacuoles when compared to vehicle-treated cells.

Figure 6: Scanning electron microscopy of MCF-7 vehicle-treated cells (A), MDA-MB-231 vehicle-treated cells (B), MCF-12A vehicle-treated cells (C), EMBS-treated MCF-7 cells (D), EMBS-treated MDA-MB-231 cells (E) and EMBS-treated MCF-12A cells (F). Treated cells represented with shrunken cells and cell debris. Vacuole formation was observed in the MCF-7 and MDA-MB-231 cells when compared to vehicle-treated cells.