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Abstract

Determining the correct sample size is of utmost importance in study design. Large

samples yield classifiers or parameters with more precision and conversely, samples that

are too small yield unreliable results. Fixed sample size methods, as determined by

the specified level of error between the obtained parameter and population value, or

a confidence level associated with the estimate, have been developed and are available.

These methods are extremely useful when there is little or no cost (consequences of action),

financial and time, involved in gathering the data. Alternatively, sequential sampling

procedures have been developed specifically to obtain a classifier or parameter estimate

that is as accurate as deemed necessary by the researcher, while sampling the least number

of observations required to obtain the specified level of accuracy.

This dissertation discusses a sequential procedure, derived using Martingale Limit

Theory, which had been developed to train a classifier with the minimum number of

observations to ensure, with a high enough probability, that the next observation sampled

has a low enough probability of being misclassified. Various classification methods are

discussed and tested, with multiple combinations of parameters tested. Additionally, the

sequential procedure is tested on microarray data. Various advantages and shortcomings

of the sequential procedure are pointed out and discussed.

This dissertation also proposes a new sequential procedure that trains the classifier

to such an extent as to accurately estimate the Bayes error with a high probability. The

sequential procedure retains all of the advantages of the previous method, while addressing

the most serious shortcoming. Ultimately, the sequential procedure developed enables the

researcher to dictate how accurate the classifier should be and provides more control over

the trained classifier.
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Summary

Determining the correct sample size is of utmost importance in study design. Samples

that are large can more accurately estimate unknown parameters, whilst underestimating

the required sample size will yield unreliable results. Therefore the sample needs to be

large enough for the results obtained to be representative. Quite often there are multiple

costs involved, including the financial cost of acquiring the data, and the time needed to

obtain or physically sample the observations.

Multiple fixed-sample size methods have been developed to calculate the minimum

required number of observations in a sample. One such method is Stein’s two stage sam-

pling method. In Stein’s method, the first stage samples observations to obtain estimates

of parameters needed to calculate the final sample size. The second stage then entails

sampling the remainder of the required observations. The sample size required in study

design, is often limited by cost, time or the availability of data. Consequently, sequen-

tial sampling procedures have been developed to sample the least number of observations

necessary to accurately train a classifier or derive an estimate. These procedures sample

only the minimum number of observations to ensure the classifier or parameter obtained

is as accurate as need be.

In this dissertation, a sequential procedure previously proposed, using Martingale

Limit Theory, is discussed. This sequential procedure had been developed to sample the

minimum number of observations required to train a classifier to such an extent as to en-

sure, with a probability of at least 1−a, that the probability of the next observation being
misclassified is acceptably low. For the purpose of this dissertation, various simulation

studies were conducted to assess the predictive ability of the classifiers derived from the

sequential procedure. Some of the classification methods used include linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), K-nearest neighbours (KNN)

and linear regression of an indicator matrix (LRIM). Additionally, multiple combinations

of input parameters are tested. The sequential procedure is then also tested on a microar-

ray dataset containing data on the breast cancer prognosis of 295 patients. The dataset

has been used extensively in the medical field, primarily to derive a 70-gene signature

that could more accurately predict a patient’s prognosis. The primary disadvantage of

this sequential procedure is its inability to account for Bayes errors larger than the de-

sired maximum rate of error as specified by the researcher, which ultimately results in

the sequential procedure continuing ad infinitum. Other shortcomings of the sequential

procedure are also briefly discussed.
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In conclusion, a new sequential procedure that samples the minimum number of obser-

vations required to derive a classifier that estimates the Bayes error at a predetermined

level is also proposed. Therefore the classifier is trained until the error rate obtained

estimates the Bayes error within a predetermined level. The classifier will never try and

obtain an unfeasibly low misclassification rate. The sequential procedure retains all of the

advantages (being independent of the classification method used, assessing stopping cri-

teria after each iteration, etc.) of the previous method, while addressing the most serious

shortcoming. Various simulation studies are conducted, and the two sequential meth-

ods are compared. The proposed sequential procedure is also tested on the microarray

dataset. Ultimately, the sequential procedure developed enables the researcher to dictate

how accurate the classifier should be and provides more control over the trained classifier.

Future work could comprise of testing the proposed sequential procedure on other

classification methods not specifically tested in this dissertation, such as Classification

and regression trees (CART) or Neural networks. Additionally, the sequential procedure

can be enhanced in such a manner that it automatically estimates the values for the

input parameters α (the level of significance required to obtain a coverage probability of

100(1−α)%) and a (a parameter used to change the bounds of the rate of misclassification

from [0; 1] to (0; 1)).
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Chapter 1

Introduction

In study design, it is of utmost importance to determine the correct sample size. Large

samples yield greater precision when unknown parameters are estimated, and therefore,

the obtained results tend to be reliable. There could, however, be multiple costs involved

in sampling the required data. These costs often include, and are not necessarily limited

to, the actual time needed to obtain the required number of observations and the financial

impact associated. When the sample size is too small, the results obtained are often

unreliable and inaccurate. This makes a sound or optimal decision, based on these results,

impossible. Therefore, it is imperative that the size of the sample be large enough to attain

a prespecified level of accuracy.

In this Chapter, fixed-sample size methods of calculating the sample size required to

train a classifier or obtain an estimate of an unknown parameter at a particular level of

accuracy are briefly discussed. Stein (1945) proposed a two stage sampling procedure

to calculate the required sample size. If the cost of sampling data is a limiting factor,

a sequential sampling procedure can be used to sample only the minimum number of

observations required. Sequential sampling procedures will also be briefly discussed in

this chapter, with an emphasis on a sequential procedure derived to train a classifier that

would yield a predetermined rate of misclassification. The sequential procedure discussed

was originally tested only with one method of classification, however, different methods

of classification are presented and discussed in this chapter.

1.1 Fixed-sample size methods and Stein’s two-stage

sampling method

In most scenarios the sample size needed to train a classifier or derive a sample estimate

for some unknown parameter, can be calculated theoretically by specifying an allowed

level of error between the obtained parameter estimate and the actual population’s value

and a level of confidence associated with the estimate. Prescribing the power of the test

may also be used to determine the sample size needed.

1
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1.1. FIXED-SAMPLE SIZE METHODS AND STEIN’S TWO-STAGE SAMPLING
METHOD

Assuming that there is a random sample of size n generated from a N (µ, σ2) distribu-

tion, X ∼ N (µ, σ2) with σ2 known, a 100 (1− α) % confidence interval for the unknown

population mean µ is given by(
x− z1−α

2

σ√
n

; x+ z1−α
2

σ√
n

)

where x is the sample estimate for µ, z1−α
2
is the 100

(
1− α

2

)th
percentile of the standard

normal distribution and n is the sample size required. Solving for n in the equation would

yield the sample size needed, for a given value of α, to obtain a confidence interval of

half-width z1−α
2

σ√
n
.

If the value of σ is not known, there is no fixed-sample size procedure that can be used

to derive a 100 (1− α) % confidence interval for the population mean µ. Stein (1945)

proposed a two stage sampling method that addresses this by drawing two samples se-

quentially. The first sample is used to estimate σ, which in turn is used to calculate

the required sample size needed for a particular level of accuracy, and the second sample

comprises the remaining observations of the total sample required.

Stein (1945) states that it was proven by Dantzig (1940) that there was no fixed

sample-size test for Student’s Hypothesis where the power of the test was independent

of the variance. Stein (1945) proposed a two-sample test to test the null-hypothesis

H0 : µ = µ0, where the power of the test is only dependent on µ− µ0 and not on σ
2. In

this context, Stein (1945) defines xi, i = 1, 2, ... to be a series of independent observations

from a N (µ, σ2) distribution.

For n ≥ 2 the sample variance is defined as s2
n =

∑n
1 (xi−xn)2

n−1
. In the first stage of

Stein’s sampling method, an initial sample of size n0 is randomly selected and the sample

variance s2
n0
is calculated. This serves as an estimate for the population variance. Once

the population variance has been estimated with s2
n0
, the second stage of Stein’s sampling

method estimates the required sample size as

N = max

{
n0,

[(
t1−α

2
,n0−1

)2
s2
n0

d2

]
+ 1

}

where d is the half-width of the confidence interval and [z] denotes the greatest integer

less than z.

In the derivation, Stein (1945) defined the required sample size as

n = max

{
n0 + 1,

[
s2
n0

$

]
+ 1

}

2
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1.1. FIXED-SAMPLE SIZE METHODS AND STEIN’S TWO-STAGE SAMPLING
METHOD

and the statistic

t
′

=

∑n
1 aixi − µ0√

$
=

∑n
1 ai (xi − µ)√

$
+
µ− µ0√

$

= u+
µ− µ0√

$

where $ is a predefined positive constant and a1, ..., an is a series of real numbers

chosen in such a manner that

n∑
1

ai = 1

and

s2

n∑
1

a2
i = $

u then has a t-distribution with n0− 1 degrees of freedom. The optimal selection of a

and $ will not be discussed as it falls outside the scope of this dissertation.

Stein (1945) defines the random variable tn0−1 = y/s as a normally distributed random

variable with mean 0 and variance σ2, and states that the random variable (n0 − 1) s2/σ2

has a χ2
n0−1 distribution. Furthermore, the conditional distribution of u, provided s, is

N
(

0, σ2

s2

)
and both tn0−1 and u have the same distribution. This theorem is then used

by Stein (1945) to derive an unbiased test for H0 : µ = µ0 where the power of the test

is independent of σ2. Stein (1945) notes that using the proposed tests and confidence

intervals result in too many required observations to ensure that the power of the test or

the confidence intervals are truly independent of σ2.

This fact then induced Stein (1945) to redefine the required sample size as

n = max

{
n0,

[
s2
n0

$

]
+ 1

}
and the statistic t

′′
as

t
′′

=

(
1
n

∑n
1 xi − µ0

)√
n

s

=
1
n

∑n
1 (xi − µ)

s

√
n+

µ− µ0

s

√
n

= u
′
+
µ− µ0

s

√
n

It is proven that u
′
has a t-distribution with n0 − 1 degrees of freedom.

3
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1.2. SEQUENTIAL SAMPLING METHODS

Assuming that

n = max

{
n0 + 1,

[
s2
n0

$

]
+ 1

}
Stein (1945) concluded that n ≥ s2/$, leading to∣∣∣∣µ− µ0

s

√
n

∣∣∣∣ ≥ ∣∣∣∣µ− µ0√
$

∣∣∣∣
Therefore, if

∣∣t′′∣∣ > t1−α
2
,n0−1 or t

′′
> t1−α,n0−1 the power of the test will always be

increased.

A confidence interval for the population mean µ is then provided by(
x− l

2
, x+

l

2

)
where the probability that the true mean µ is covered is a function of σ, however, it

is always larger than 1− α with only a minor difference from 1− α if σ2 > n d2(
t1−α2 ,n0−1

)2 .

In this context l is defined as

l =
2σt1−α

2
,n0−1√

E (n)

Since s2
n0
is an estimate of the population variance, the value of N derived is also an

estimate. Therefore, there is a level of dependency between the two samples taken in

the two stages. Mukhopadhyay (1980) notes that "Stein’s procedure is not ’asymptoti-

cally effi cient’". As cited by Mukhopadhyay (1980), Chow and Robbins (1965) and Ray

(1957) proposed a rule that would address the asymptotic ineffi ciency, resulting in the

new estimate for N as:

N = inf

{
n : n ≥ n0 and n ≥

a2s2
n

d2

}
where a is such that Φ (a) = 1− α

2
.

1.2 Sequential sampling methods

Sequential sampling is a sampling technique where no predetermined sample size is spec-

ified. Observations are either sampled individually or in groups, and after each single or

group of observations has been randomly sampled, the researcher’s study is conducted

and the pre-defined stopping rule or hypothesis is evaluated. Depending on the outcome,

another observation or group of observations might need to be sampled and the relevant

rules and tests are again evaluated and conducted.

4
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1.3. METHODS OF CLASSIFICATION

In certain scenarios, the cost associated with sampling observations can be severe,

and a researcher might wish to sample the minimum number of observations possible

while still being able to make the best informed decision at a prescribed level of accuracy.

The greatest benefit, perhaps, of sequentially sampling observations is the impact it has

on the study’s cost - both financial and time. Sampling fewer observations will have a

direct impact on the financial cost of a study. If the process of sampling observations is

laborious, a sequential procedure can significantly reduce the amount of time required to

obtain enough information for a sound decision to be made.

Fu et al. (2005) proposed a sequential approach to determine the sample size needed to

build a classifier. The object of the article was to derive stopping criteria for a sequential

procedure so that, with a probability of at least 100 (1− α) %, the classifier obtained would

yield a probability of a misclassification less than or equal to ε. Therefore, the approach

seeks to find the minimum number of observations needed for training a classifier in such

a way that there is a high probability, 100 (1− α) %, that the probability of the next

sampled observation being misclassified is acceptably low, ε.

In this dissertation, the sequential procedure proposed by Fu et al. (2005) will be dis-

cussed and the shortcomings of the procedure will be examined. An alternative sequential

procedure, addressing the largest shortcoming of the sequential procedure proposed by

Fu et al. (2005), is proposed and will be discussed.

1.3 Methods of classification

Classification entails the identification of which group a new observation should be as-

signed to, based on a number of observed attributes. A separate training dataset, whose

observations and corresponding classes are known, is used to derive criteria for the alloca-

tion of random observations to any particular class. The attributes, used for assigning an

observation to a particular class, can be categorical (blood type or hair colour), ordinal

("High", "Average" or "Low"), integer-valued (the number of people who own dogs) or

real valued (a person’s height). To group any observation into a specific group, a rule or

function is required that will take the inherent information contained in the attributes

into account and assign the observation into the correct predefined group. The function

is known as the classifier.

Fu et al. (2005) chose to use linear discriminant analysis (LDA) as the classifier in the

simulation studies, stating that the sequential procedure is independent of the classifier.

For the purposes of this dissertation, LDA, quadratic discriminant analysis (QDA), K-

nearest neighbours (KNN) and linear regression of an indicator matrix (LRIM) were

5
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1.3. METHODS OF CLASSIFICATION

tested. It stands to reason that a classifier that is performing well, or alternatively more

effi ciently, will on average stop retraining the classifier quicker as the stopping criteria will

be met earlier. In the particular case where the predictor takes on values in a discrete

set (i.e. the predictor can be any of a list of discrete values), the input space can be

divided into regions depending on the classification. A decision boundary is a partition

or hypersurface in p-dimensional vector space that divides the vector space into two or

more response regions. Depending on which classification method is used, the decision

boundaries between the regions can either be smooth (as is the case with a linear decision

boundary for example) or rough (as is the case with a decision boundary like K-nearest

neighbours). A brief summary of the underlying theory for each of the above mentioned

classification procedures follows to familiarise the reader with the methods proposed.

1.3.1 Linear discriminant analysis (LDA)

Linear discriminant analysis is a popular method used for classification. From statistical

decision theory, it is known that the optimal classification can be obtained if the class

posteriors are known, i.e. if P (class G|X = x) is known. If fk (x) is the class-conditional

density of X for class G = k, the prior probability of class k is denoted by πk and

ΣK
k=1πk = 1, where K is the total number of classes, using the Bayes Theorem the class

posterior for class k can be written as:

P (G = k|X = x) =
fk(x)πk

ΣK
l=1fl(x)πl

If each class density is then modelled as a multivariate Gaussian, the density function

of class k is given by:

fk(x) =
1

(2π)p/2 |Σk|1/2
e−

1
2(x−µk)

T
Σ−1
k (x−µk)

where µ
k
is a p × 1 matrix that denotes the population mean for class k, Σk is a p × p

matrix denoting the population covariance matrix for class k, vT denotes the transpose

of v and x is a p-dimensional row vector.

LDA considers the specific case where all the classes have a common covariance matrix

Σk = Σ∀k.

6
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1.3. METHODS OF CLASSIFICATION

Hastie, Tibshirani and Friedman (2001) note that looking at the log ratio of the class

posteriors is suffi cient for comparing any two classes, k and l. Therefore the following

holds:

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)πk
ΣKj=1fj(x)πj

fl(x)πl
ΣKj=1fj(x)πj

= log

(
πk
πl

)
− 1

2

(
µ
k

+ µ
l

)T
Σ−1

(
µ
k
− µ

l

)
+ xTΣ−1

(
µ
k
− µ

l

)
which is a linear equation in x. The linear discriminant functions can be defined as:

δk (x) = xTΣ−1µ
k
− 1

2
µT
k
Σ−1µ

k
+ log πk

If the parameters are not known, sample estimates for πk, µk and Σ can be used.

Therefore, if Nk is the total number of observations sampled from class k, the parameters

can be estimated as:

1. π̂k = Nk
ΣKl=1Nl

2. µ̂
k

= Σx∈kx
Nk

3. Σ̂ = ΣK
k=1Σx∈k(x− µ̂k)(x− µ̂k)

T
/(N −K)

as defined in Hastie, Tibshirani and Friedman (2001).

When comparing two classes, say k and l, an observation would be classified as a

member of l if δl (x) > δk (x). A complete derivation of the linear discriminant function

and the decision boundary between any two classes is provided in Appendix A.

1.3.2 Quadratic discriminant analysis (QDA)

One of the assumptions of LDA is Σk = Σ∀k. However, if this is not the case, the
discriminant functions are no longer linear as many of the factors no longer cancel in

the derivations, and the resulting discriminant functions are quadratic. This leads to

quadratic discriminant analysis. Again looking at the log ratio of the class posteriors, the

following results:

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)πk
fl(x)πl

=

(
log πk −

1

2
log |Σk| −

1

2

(
x− µ

k

)T
Σ−1
k

(
x− µ

k

))
−
(

log πl −
1

2
log |Σl| −

1

2

(
x− µ

l

)T
Σ−1
l

(
x− µ

l

))
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1.3. METHODS OF CLASSIFICATION

leading to the quadratic discriminant functions:

δk (x) = log πk −
1

2
log |Σk| −

1

2

(
x− µ

k

)T
Σ−1
k

(
x− µ

k

)
In general the estimates derived from QDA should be similar and slightly better than

those obtained using LDA, with the only real difference being that separate covariance

matrices need to be estimated for each class. If the number of dimensions p in Rp is large

the number of parameters can increase substantially. If the necessary parameters are not

known, sample estimates for πk, µk and Σk can again be used.

Therefore:

1. π̂k = Nk
ΣKl=1Nl

2. µ̂
k

= Σx∈kx
Nk

3. Σ̂k = Σx∈k(x− µ̂k)(x− µ̂k)
T/(N − 1)

When comparing two classes, say k and l, an observation would be classified as a

member of l if δl (x) > δk (x). A complete derivation of the quadratic discriminant

function and the decision boundary between any two classes is provided in Appendix B.

1.3.3 K-nearest neighbours (KNN)

K-nearest neighbours is an intuitively simple classification method that uses the K ob-

servations in the training set nearest to the input observation to derive the classifier Ŷ .

Nearest in this case implies some form of a distance metric and it is usually assumed to

be Euclidean distance. The Euclidean distance between two vectors a and b is defined as:

d (a, b) =

√
(b1 − a1)2 + ...+ (bp − ap)2 =

√
(b− a) • (b− a) = ‖a− b‖

If the set N is defined to be the K observations nearest to the input vector, based on

the chosen distance metric, the K-nearest neighbour classifier is defined as:

Ŷ =
1

K
Σyi∈Nyi

In the case where the yi’s are binary observations (i.e. yi ∈ {0, 1}), 0 ≤ Ŷ ≤ 1. If

Ŷ < 0.5 the observation would be classified as a 0, otherwise if Ŷ ≥ 0.5 the observation

would be classified as a 1. This is equivalent to taking a "majority vote" of the response

variable for the K observations in N .

Smaller values of K yield a localised classifier, usually leading to smaller misclassifi-

cation error. However, this can lead to very irregular or rough decision boundaries.

8

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1.3. METHODS OF CLASSIFICATION

1.3.4 Linear regression of an indicator matrix (LRIM)

In Simple linear regression, the aim is to derive a linear function that models the relation-

ship between the dependent variable and the independent variable(s), whilst minimising

the total sum of squared errors. Assuming that the relationship between the dependent

variable and the independent variables is linear, and the elements of Y are independent

N(β0 + β1xi1 + ... + βpxip, σ
2) distributed, the following holds: E[y] = XTβ, where XT

denotes a N × (p+ 1) matrix consisting of N rows denoting the p-dimensional input

observations. The first column of XT is entirely populated with 1’s, corresponding to a

dummy variable for the intercept. β =
(
β0, β1, ...., βp

)
is a (p+ 1)×1 matrix, β0 denoting

the intercept and β1, ..., βp denoting the coeffi cients of the p input variables. If the error

term e is defined as e = y − Xβ, the minimum sum of squared errors is obtained for

β̂ =
(
XTX

)−1
XTy. A complete derivation of this is provided in Appendix C.

In the case where the response variable can be an element of any one of a multiple of

G classes, Y is defined as a n×G matrix with each column populated either with a 1 (if

the response variable is an element of that respective class) or a zero. Each observation

of the response variable can be an element of only one class. In this case, the (p+ 1)×G
parameter matrix is defined as β̂ =

(
XTX

)−1
XTY. Any new observation is classified

to the class corresponding to the largest value of y
new

= xβ̂, which is equivalent to the

column of y
new

with the largest value.

9
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Chapter 2

A sequential procedure to attain a pre-
determined probability of a future mis-
classification

2.1 Introduction

In this chapter a sequential procedure, that ultimately samples the minimum number of

observations required to train a classifier that attains a predetermined probability of mis-

classifying the next sampled observation, will be discussed. Fu et al. (2005) proposed a

procedure that sequentially samples an observation, classifies the observation accordingly,

and then evaluates the stopping criteria proposed. The stopping criteria depends on a the-

orem derived using Martingale Limit Theory and, when satisfied, yields a classifier that,

with a probability of at least 100 (1− α) %, has a maximum probability ε of misclassifying

the next observation sampled. A series of simulations were run to observe the sequential

procedure’s performance. Various classification methods were tested (LDA, QDA, KNN

and LRIM) as well as the effect of changing one of the underlying distributions’variance

for all classification methods. The effect of a change in other input parameters was also

tested using LDA, as well as the sequential procedure’s predictive ability on a microar-

ray dataset. Furthermore, shortcomings of the sequential procedure are discussed and a

general conclusion is provided.

2.2 Sequential procedure

In formulating the stopping rule, Fu et al. (2005) defined Yi = {Y1, ..., Yi}, i = 1, 2, 3, ......

to be a set of independent and uncorrelated binary observations; Qi to be an indicator

function that Yi is misclassified based on the i− 1 previous observations, i.e. Qi = 1 if Yi
is misclassified and 0 otherwise; and πi = P (Qi = 1|Yi−1), or the conditional probability

of misclassifying observation Yi provided the prior i− 1 results are known.

10
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2.2. SEQUENTIAL PROCEDURE

In the derivation of their stopping rule, two assumptions are made:

• πn is weakly monotonically decreasing. Therefore, πn+j ≤ πn ∀ j ≥ n, j ≥ 1; i.e. as

the number of observations available for classifier training increases, the conditional

probability of a misclassification will either decrease, or remain constant. πn will

therefore converge weakly towards π∞ ≥ 0 as n→∞.

• π∞ > 0. Therefore, a positive probability of misclassification exists. For a given

classification problem with a non-zero Bayes error, the probability π∞ > 0 regardless

of the type of classifier.

In a scenario where there is a non-zero Bayes error, no trained classifier should be able

to perform better and achieve a rate of error lower than the Bayes error. In this context,

if the Bayes error is denoted by πBayes then π∞ ≥ πBayes.

The stopping rule proposed by Fu et al. (2005) depends on a theorem derived in Fu

et al. (2005). Theorem 1, as provided below, depends on the Martingale Central Limit

Theorem. Theorem 1 will not be derived or expatiated in this dissertation, but is provided

for reference purposes to the reader.

Theorem 1 For 0 < α < 1

P (πN ≤ N−1ΣN
i=1Qi + z1−ακ̂N/N

1/2)→ 1− α as N →∞
where z1−α is the (1− α) quantile of the standard normal distribution N(0, 1).

κ̂N = N−1ΣN
i=1π̂i(1− π̂i)
and

π̂i = i−1Σi
j=1Qj

π̂i is an estimator for the conditional probability of a misclassification, πi, as it is the

proportion of observations that have been misclassified from the i observations sampled.

11
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2.2. SEQUENTIAL PROCEDURE

Theorem 1 seeks to minimise the sample size needed to obtain P (πN ≤ ε) ≥ 1− α.
Setting

ε = N−1ΣN
i=1Qi + z1−ακ̂N/N

1/2

⇒ ε−N−1ΣN
i=1Qi = z1−ακ̂N/N

1/2

⇒ z1−ακ̂N
ε−N−1ΣN

i=1Qi

= N1/2

⇒ N =

(
z1−ακ̂N

ε−N−1ΣN
i=1Qi

)2

with ε > N−1ΣN
i=1Qi and κ̂N > 0.

An additional rule is provided by Fu et al. (2005) to stop the sequential procedure

should a large number (N0) of consecutive correct classifications occur. This would typi-

cally be the case if the classifier is performing admirably, or if there are very large Bayes

errors. Bayes errors larger than the specified acceptable level of error, ε, result in the

sequential procedure continuing ad infinitum. In both cases it is better to induce an early

stop to the procedure, as this will save processing time and more importantly, resources.

Fu et al. (2005) suggested N0 = log(α)/{log(1 − ε)} be used as a limit to stop the
sequential procedure should N0 consecutive perfect classifications occur.

The number of required sequential observations in the stopping rule therefore is:

N ≥ min

{(
z1−ακ̂N

ε−N−1ΣN
i=1Qi

)2

, N0

}
where 0 < N−1ΣN

i=1Qi < ε and κ̂N > 0

.

Assume now that the requirement for κ̂N > 0 was not present. If any number of

consecutive perfect classifications occur from the first observation sampled in the sequen-

tial procedure, π̂i would be equal to 0, resulting in κ̂N equalling 0. If κ̂N = 0 then(
z1−ακ̂N

ε−N−1ΣNi=1Qi

)2

= 0 and the stopping rule would simplify to N ≥ min{0, N0}. Therefore,
the sequential procedure would stop at the very first observation sampled if that obser-

vation were correctly classified. The same would occur if no observations were correctly

classified - π̂i would equal 1, resulting in κ̂N equalling 0. If no observations were correctly

classified the stopping criteria would also not evaluate against N0.

12
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2.2. SEQUENTIAL PROCEDURE

Consequently, the stopping criteria is dependent on two factors:

• Firstly, there must be at least one correct classification. This holds for both parts
of the rule (i.e. N0 and

(
z1−ακ̂N

ε−N−1ΣNi=1Qi

)2

)

• Secondly, the first parameter in the rule (
(

z1−ακ̂N
ε−N−1ΣNi=1Qi

)2

) depends on at least one

incorrect classification.

If ε = 0, the N0 = log(α)/{log(1 − ε)} equality would not be defined. It is also
required that ε > N−1ΣN

i=1Qi. This would be the case only if there is at least one correct

classification.

Taking the above into consideration, suggests that the stopping criteria should be

slightly amended to reflect these rules. The following is therefore proposed for ease of

reference:

• If max(Q) = 1 and min(Q) = 0 (i.e. there are both correct and incorrect classifica-

tions) the number of sequential observations in the stopping rule is

N ≥ min

{(
z1−ακ̂N

ε−N−1ΣNi=1Qi

)2

, N0

}
• If max(Q) = 0 (i.e. there are no incorrect classifications) the number of sequential

observations in the stopping rule is N ≥ N0

If min(Q) = 1 (i.e. there are no correct classifications) the sequential procedure will

continue ad infinitum as the classifier has not been successfully trained. If, however,

a maximum sample size is specified, the sequential procedure can at least be stopped.

Therefore,

• If min(Q) = 1 (i.e. there are no correct classifications) the number of sequential

observations in the stopping rule is N = M , whereM is a selected maximum sample

size.

Fu et al. (2005) defined M to be the maximum allowed number of sequential observa-

tions sampled. It is important to note that this is an artificial upper bound on the number

of observations available for sampling. The following sequential procedure, as defined by

Fu et al. (2005), can be used to determine the minimum number of observations needed

to train the classifier and to obtain the final trained classifier:

An initial sample of size S0 is chosen and the variable N0, denoting the number of

consecutive correct classifications, is set to 0. At the ith step of the sequential procedure,

13
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2.2. SEQUENTIAL PROCEDURE

the particular chosen classifier is trained. An additional observation is randomly and inde-

pendently sampled and classified using the trained classifier. If a successful classification

was observed, Qi is set to 0 and N0 is set equal to N0 + 1. Alternatively, if the classifica-

tion was incorrect Qi is set to 1 and N0 is set equal to 0. κ̂i is now calculated using the

observed values of Q. Depending on which of the stopping rules are applicable, the re-

spective rule is evaluated, and if the rule is satisfied then the procedure is stopped. If the

selected maximum sample size (M) has not yet been reached, another observation should

be randomly sampled and the process of training the classifier, classifying the sampled

observation and evaluating the applicable stopping rule, should be repeated. If, however,

a stopping rule has not yet been satisfied and the number of observations chosen (N) is

equal to the maximum number of predefined observations (M), the procedure should also

be stopped. The sequential procedure can be summarised as follows:

1. Start with the initial sample S0 and set N0 = 0.

2. At the ith step, train the classifier using all observations available.

3. Randomly sample a new observation and classify the observation using the classifier

trained in step 2.

4. If a correct classification is observed, set Qi = 0 and N0 = N0 + 1. Otherwise, set

Qi = 1 and N0 = 0.

5. Calculate π̂i and κ̂N .

6. Evaluate the stopping criteria and if any of the stopping criteria is met, or if N = M ,

stop the recursive procedure. If this is not the case, return to step 2 and repeat

steps 2 to 6.

It is important to note that the number of sequential steps in training the classifier is

reported, as was done by Fu et al. (2005). This is different to the number of observations

needed to train the classifier, as the number of sequential steps do not include the initial

sample S0.
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2.3. SIMULATION STUDY

2.3 Simulation study

A series of simulations were run to observe the sequential procedure’s performance by

comparing the observed misclassification rate of the trained classifier with the theoretical

error, i.e. the Bayes error. The minimum possible error, or the Bayes error, depends on

the underlying distributions of the data, the associated parameters of these distributions,

and the respective probabilities of drawing a random observation from each respective

distribution.

For the simulations however, the underlying distributions and their respective para-

meters can be specified, and the probability to select a random observation from each

distribution is a function of the initial random sample size of each distribution. The

trained classifier can then be used to classify observations in a hold-out sample, and the

observed error rate can be compared to the Bayes error. A classifier that is performing

well will tend to the Bayes error. Therefore, testing the different classification methods,

as well as the effect that a change in the underlying distributions’parameters have, should

highlight some of the benefits of using a specific classification method (such as the stop-

ping criteria being satisfied quicker, smaller observed misclassification rates or more/less

sensitivity to a shift in the underlying distributions) or possible flaws of the sequential

procedure. A classifier that is performing well is expected to satisfy the stopping criteria

quicker, or alternatively should yield lower rates of misclassification.

2.3.1 Bayes error

The Bayes error rate is the lowest achievable error rate for any given classifier. Consider

a scenario where data is generated from two different overlapping independent normal

distributions. The Bayes error is the probability of a misclassification, i.e. the sum of

the probabilities to misclassify an observation as being an element from one distribution

when, in fact, it is from the other. To calculate the Bayes error, assume a random sample

is generated from a N(µ1, σ
2
1) distribution with probability p, and another random sample

is generated from a N(µ2, σ
2
2) distribution with probability (1− p). Assume the classifier

is denoted by λ. The probability of a misclassification is then calculated as:

Bayes error = (1− p)P [X ≤ λ|X ∼ N(µ2, σ
2
2)] + pP [X > λ|X ∼ N(µ1, σ

2
1)]

= (1− p)P
[
Z ≤ λ− µ2√

σ2
2

]
+ pP

[
Z >

λ− µ1√
σ2

1

]

= (1− p)Φ
(
λ− µ2√

σ2
2

)
+ p

(
1− Φ

(
λ− µ1√

σ2
1

))
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2.3. SIMULATION STUDY

Consider the case of equal probability of selection, then ...

Bayes error = (1− p)Φ
(
λ− µ2√

σ2
2

)
+ p

(
1− Φ

(
λ− µ1√

σ2
1

))

=
1

2

[
Φ

(
λ− µ2√

σ2
2

)
+

(
1− Φ

(
λ− µ1√

σ2
1

))]

Consider the case where µ1 = 0, µ2 = ∆, σ2
1 = 1, σ2

2 = 1.

Bayes error =
1

2

[
Φ

(
λ− µ2√

σ2
2

)
+

(
1− Φ

(
λ− µ1√

σ2
1

))]

=
1

2

[
Φ

(
λ−∆√

1

)
+

(
1− Φ

(
λ√
1

))]
=

1

2
[Φ(λ−∆) + (1− Φ(λ))]

Consider the case where λ = ∆
2
.

Bayes error =
1

2
[Φ(λ−∆) + (1− Φ(λ))]

=
1

2

[
Φ

(
−∆

2

)
+

(
1− Φ

(
∆

2

))]
=

1

2

[(
1− Φ

(
∆

2

))
+

(
1− Φ

(
∆

2

))]
= 1− Φ

(
∆

2

)
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2.3. SIMULATION STUDY

Figure 2.1: Visual Representation of Bayes error

Figure 2.1 provides a visual representation of two normal distributions with unit vari-

ance, one centered at 0 and the other centered at 3. If λ is considered to be the classifier,

an observation from the N(3, 1) distribution would be misclassified if it were smaller or

equal to λ, and an observation from the N(0, 1) distribution would be misclassified if it

were larger than λ.

In this particular case the Bayes error is calculated as follows:

Bayes error = P [X ≤ λ|X ∼ N(3, 1)] (1− p) +

P [X > λ|X ∼ N(0, 1)]p

= 0.5Φ(λ− 3) + 0.5(1− Φ(λ))

= 1− Φ (1.5)

= 0.06681

2.3.2 Simulation design

For this particular series of simulations, 5 observations were generated from a N(µ1, σ
2
1)

distribution and 5 observations were generated from a N(∆, σ2
2) distribution, with prob-

abilities p̂1 = n1

n1+n2
= 0.5 and p̂2 = 0.5 respectively. For each simulation the effect

of a shift in the underlying distributions is tested, and therefore ∆ ∈ {1, 1.3, 1.5, 2,

2.3, 2.5, 3, 4}. A change in the allowed level of error, ε, is also tested and therefore

ε ∈ {0.05, 0.10, 0.15, 0.20}. The maximum allowed number of sequential steps is set to

M = 90 and M = 40 respectively. To keep track of the number of consecutive correct or

perfect classifications, a count variable, denoted N0, is set equal to 0. In the case of LDA,

QDA and LRIM, the initial 10 observations are then used to train the initial classifier λ̂.
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2.3. SIMULATION STUDY

Note that the same simulation design as that employed in Fu et al. (2005) is used in order

for the results to be comparable. The initial sample sizes of 5 and 5 records respectively

are the same as employed in Fu et al. (2005).

A single random observation, denoted o1 in this case, is generated either from a

N (µ1, σ
2
1) distribution with a probability p̂1, or from a N(∆, σ2

2) distribution with a

probability p̂2 and is then evaluated against λ̂. In the specific scenarios where either the

LDA or QDA classifier is used, o1 was generated from the N (µ1, σ
2
1) distribution and

o1 > λ̂, the observation is considered to be misclassified. If, however, o1 ≤ λ̂ the observa-

tion is considered correctly classified. A similar rule applies if it is assumed that o1 was

generated from a N (∆, σ2
2) distribution: if o1 ≤ λ̂ then the observation is considered to

be misclassified, otherwise it is considered to be correctly classified. If the KNN classifier

is used, the K observations considered "nearest" to o1 are used to train the classifier. If

o1 was generated from the N (µ1, σ
2
1) distribution and λ̂ = 0, or o1 was generated from the

N (µ2, σ
2
2) distribution and λ̂ = 1 the observation is considered correctly classified. In all

other scenarios o1 would be considered incorrectly classified. When using linear regression

of an indicator matrix, o1 is considered to be correctly classified if the largest value in

o1β̂ is in the first column - provided o1 was generated from the N (µ1, σ
2
1) distribution. If

o1 was generated from the N (µ2, σ
2
2) distribution and the largest value in o1β̂ is in the

second column, o1 is also considered to be correctly classified. In any other scenario the

observation is deemed to be incorrectly classified.

Correctly classifying the first observation would result in the perfect-classification vari-

able N0 being incremented with 1, i.e. setting N0 = N0 + 1. This would also result in the

value of Q1 being set equal to 0. However, a misclassification would result in setting N0

equal to 0 and Q1 = 1. Using these variables, κ̂1 can be calculated and the stopping rules

evaluated. This procedure is continued until N = M or the stopping rules are satisfied.

After each repetition of the simulation was finalised, the final value of λ̂ was kept in

memory and used to classify a random holdout sample to gauge classifier performance and

the actual observed error rate. For the holdout sample, 5000 observations were generated

from a N (0, σ2
1) distribution and 5000 observations were generated from a N (∆, σ2

2)

distribution. Depending on the specific classification method used, it was possible to

classify the 10000 observations randomly generated accordingly, and the misclassification

rate was calculated. The simulations were iterated 1000 times. Afterwards, the average

and standard deviation of the observed misclassification rates were calculated, and the

minimum, maximum, average and standard deviation of the number of sequential steps

required were also calculated.

18

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.3. SIMULATION STUDY

It is important to note that the method used for classifier testing in this dissertation

is different to the method used by Fu et al. (2005). The method used by Fu et al. (2005)

is provided below.

"To examine classifier performance, we drew random samples of 10,000 data points,

5000 from N (0, 1) and 5000 from N (∆, 1), and tested the LDA classifier to estimate

its cutoff value λ. Thus a data point is categorized as class 0 if less than λ, or class

1 otherwise. We repeated the drawing of random samples 50 times to obtain accurate

estimation of λ. The error of the LDA classifier was then calculated with e (CN) =

{1− Φ (λ) + Φ (λ−∆)} /2 for each fixed value ∆. The sequential training and testing

procedure was repeated 1000 times for each fixed pair (∆, ε) to compare the LDA error

with the Bayes error, which was calculated with {1− Φ (∆/2)}."

The reason for using a different testing method is that the method used by Fu et al.

(2005) does not use the classifier derived using the sequential procedure for testing clas-

sifier performance (calculating the misclassification rate). Therefore the misclassification

results provided by Fu et al. (2005) do not completely correspond to what would have

been achieved by the proposed sequential procedure. Attempts to contact the author of

the article for clarification proved unsuccessful.

The purpose of the initial LDA simulation study was, to an extent, to imitate the

results obtained by Fu et al. (2005). The original article proved quite vague in certain

respects, and comparing the results obtained and provided in this dissertation to those

presented by Fu et al. (2005), to an extent, validates the correctness of the coding. Minor

differences, however, are expected as the methods for testing the derived classifier are

different. The results, however, compare favourably.

Large sections of pages have deliberately been left empty to facilitate reading within

a section and to keep the relevant tables and discussions grouped together.

2.3.3 LDA simulation

The purpose of the initial LDA simulation study was to imitate the results obtained by Fu

et al. (2005). For the initial simulation study the results can be found in Table 2.3.1 and

Table 2.3.2. The results for M = 90 are provided in Table 2.3.1 and Table 2.3.2 provides

the results for M = 40.
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2.3. SIMULATION STUDY

TABLE 2.3.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.31285 (0.008577) 0.31353 (0.010736) 0.31391 (0.012429) 0.3158 (0.015819)
Min; Max 30; 90 11; 90 8; 90 6; 90
n̄; Sd 89.94; 1.8974 86.211; 16.706 77.613; 28.7596 64.031; 36.7603

1.3 0.25785 Error (Std) 0.26124 (0.006895) 0.26207 (0.008684) 0.26336 (0.011322) 0.26426 (0.013017)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 81.487; 23.9947 67.721; 35.1793 50.69; 38.028

1.5 0.22663 Error (Std) 0.22982 (0.006442) 0.23049 (0.00771) 0.23177 (0.00996) 0.23356 (0.011494)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.831; 8.6495 77.771; 27.8412 63.872; 35.8741 42.472; 36.4448

2 0.15866 Error (Std) 0.16116 (0.00541) 0.16267 (0.007501) 0.16441 (0.00912) 0.16733 (0.013879)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 84.815; 17.6119 64.702; 34.6758 40.695; 34.5987 22.144; 23.7994

2.3 0.12507 Error (Std) 0.12746 (0.005157) 0.12984 (0.009084) 0.13126 (0.010644) 0.13253 (0.011599)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 80.384; 22.864 51.86; 35.6802 27.003; 26.2447 15.99; 15.2084

2.5 0.10565 Error (Std) 0.10817 (0.005146) 0.11035 (0.007881) 0.11243 (0.010427) 0.11262 (0.00991)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 76.252; 25.9617 44.843; 33.1998 24.203; 22.5269 14.495; 12.9519

3 0.06681 Error (Std) 0.06921 (0.004828) 0.07131 (0.007756) 0.07233 (0.008137) 0.07321 (0.009446)
Min; Max 21; 90 11; 90 8; 90 6; 67
n̄; Sd 61.15; 30.2236 29.956; 23.5537 16.907; 11.2557 11.783; 5.0827

4 0.02275 Error (Std) 0.02424 (0.002595) 0.02493 (0.003738) 0.02554 (0.004493) 0.02581 (0.00516)
Min; Max 21; 90 11; 90 8; 28 6; 27
n̄; Sd 44.574; 18.6972 23.972; 8.3582 16.261; 4.073 12.694; 2.5121

For each value of ∆ in Table 2.3.1, specifying a smaller value of ε does not lead

to a significant reduction in the average misclassification rate. The maximum absolute

reduction of 0.00617 is observed where ∆ = 2 and ε decreases from 0.2 to 0.05. This,

however, leads to an increase in the average number of steps necessary to train the classifier

from 22.144 to 84.815. If it is very costly or takes a very long time to sample additional

observations, it would not be practical to specify a small ε.

Note that the maximum number of steps, M , was reached at least once in 29 of the

32 scenarios. This indicates cases where either the procedure did not train the classifier

successfully (i.e. the procedure was stopped because N = M and not because the prob-

ability of the next observation being misclassified was suffi ciently small) or it took 90
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2.3. SIMULATION STUDY

sequential steps to ensure that the probability of the next observation being misclassified

is suffi ciently small.

Large values for the average number of sequential steps indicate that the maximum

was reached many times. For ε = 0.05, the average number of sequential steps is larger

than 80 for all values of ∆ up to 2.3. Even for ∆ = 2.5 the average number of steps is

still larger than 75. This indicates thatM was reached more often than not. For all these

cases (ε = 0.05 and ∆ ≤ 3) the Bayes error is larger than ε. Therefore the sequential

procedure is trying to train the classifier to adhere to a maximum error rate ε that is

impossible to achieve as it is smaller than the Bayes error, the smallest possible error.

To successfully train the classifier with an error rate ε = 0.05, the Bayes error must be

smaller than 0.05. This is the case only for a tested ∆ = 4. Note that for ∆ ∈ {1, 1.3,

1.5} the values of ε tested were too small as the Bayes error was larger than ε in all cases.

The sequential procedure frequently trains the classifier to obtain a rate of misclassi-

fication lower than the specified acceptable error ε. For ∆ = 4, the Bayes error is lower

than ε and the classifier should have been trained to yield a rate of misclassification of

at most ε. For all the values of ε tested where ∆ = 4, the observed rate of misclassifica-

tion is lower than ε and is closer to the Bayes error. Therefore the sequential procedure

has overtrained the classifier and the classifier does not yield a rate of misclassification

near ε, but rather near the Bayes error. Overtraining the classifier results in too many

observations sampled to derive a classifier that yields the specific rate of misclassification.
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2.3. SIMULATION STUDY

TABLE 2.3.2 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.31836 (0.01892) 0.31798 (0.017691) 0.31777 (0.018296) 0.3199 (0.021928)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.883; 1.4083 39.07; 4.9693 36.24; 9.9424 31.856; 13.7534

1.3 0.25785 Error (Std) 0.26455 (0.010733) 0.26433 (0.010924) 0.26512 (0.012389) 0.26661 (0.016065)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.879; 1.4479 37.412; 7.9402 33.072; 12.5064 26.845; 15.1226

1.5 0.22663 Error (Std) 0.23182 (0.008526) 0.23284 (0.010207) 0.23367 (0.011749) 0.23519 (0.015349)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.82; 1.7206 36.06; 9.4627 31.002; 13.4306 23.204; 14.9484

2 0.15866 Error (Std) 0.1633 (0.007031) 0.16423 (0.009126) 0.16565 (0.010787) 0.16598 (0.011324)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.184; 3.4983 32.098; 11.7571 23.712; 13.749 17.322; 12.474

2.3 0.12507 Error (Std) 0.12908 (0.006612) 0.13059 (0.008686) 0.13182 (0.010737) 0.1332 (0.013106)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.962; 5.2923 29.214; 12.4479 21.282; 12.6159 14.408; 9.8875

2.5 0.10565 Error (Std) 0.10958 (0.006624) 0.11071 (0.008069) 0.11222 (0.009899) 0.11296 (0.010682)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.433; 5.7521 26.502; 12.1397 19.034; 11.6084 13.396; 8.5505

3 0.06681 Error (Std) 0.06985 (0.005286) 0.07113 (0.00717) 0.07234 (0.008239) 0.07235 (0.008693)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34.435; 7.2197 23.894; 10.6262 15.787; 7.5031 11.952; 4.6989

4 0.02275 Error (Std) 0.02438 (0.002865) 0.02511 (0.003857) 0.02558 (0.004484) 0.02622 (0.005359)
Min; Max 21; 40 11; 40 8; 40 6; 27
n̄; Sd 34.013; 7.0158 23.38; 7.1047 16.523; 4.1098 12.611; 2.6767

Similar to the results seen for M = 90 in Table 2.3.1, for small values of ε in Table

2.3.2, the mean misclassification rate does not decrease substantially as ε is decreased

and the average number of sequential steps also does not increase substantially as ε is

decreased. For larger values of ∆ the average misclassification rate decreases more and

the average number of sequential steps increases substantially as ε is decreased.

It is interesting to note that the maximum number of sequential steps allowed,M = 40,

was reached for nearly all combinations of ∆ and ε tested. Considering that the maximum

M was reached for most combinations of ε and ∆ where M = 40 and for most of the

combinations where M = 90 in Table 2.3.1, it seems as if M should be increased to see

how well the sequential procedure performs - this could be a case where the chosen M is
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2.3. SIMULATION STUDY

just too small. It is also interesting to note that the observed rate of misclassification was

again lower than ε for large values of ∆, resulting in an overtrained classifier.

Comparing the results from Table 2.3.1 to Table 2.3.2, the average rate of misclassifi-

cation is mostly larger when M = 40 compared to when M = 90. This is mainly because

there are less observations available for training the classifier. The differences are very

small though, and in some cases the LDA classifier trained for M = 40 performs better

(has a lower misclassification rate) than the LDA classifier trained for M = 90. One

example of this is where ∆ = 3 and ε = 0.2.

Various simulations were also conducted where the variance σ2
2 was allowed to vary

(σ2
2 ∈ {2, 3, 4}) for both M = 90 and M = 40. The results are provided in Appendix D.

Increasing σ2
2 resulted in an increase in the Bayes error as there is a greater overlap in

the underlying distributions. Increasing σ2
2 resulted in the average misclassification rate

increasing. For each value of σ2
2 tested, however, no significant change in the average

rate of misclassification was observed when ε was decreased, and the average number of

sequential steps again increases significantly as ε is decreased for large values of ∆. The

average number of sequential steps has also increased in nearly all of the scenarios tested,

but the standard deviation in the number of sequential steps has decreased mostly for

those scenarios where the Bayes error is larger than ε. This indicates that the observations

are more clustered around the high average.

Considering that M seems arbitrarily chosen, and no evidence supporting the choice

of M was provided by Fu et al. (2005), it should be tested how often the sequential

procedure reaches the maximum without actually successfully training the classifier to

such an extent that there is a high probability that the probability of the next observation

being misclassified is acceptably low. In nearly all of the scenarios tested, the maximum

number of allowed sequential steps M was reached at least once. The high averages and

low standard deviations in the observed number of sequential steps for some scenarios

indicate that the sequential procedure reaches the maximum M often.

2.3.4 QDA simulation

For the initial simulation study done by Fu et al. (2005) the only classification method

used was LDA. QDA is a natural extension of LDA and should be investigated. A better,

or more effi cient, classification method should result in the sequential procedure stopping

earlier, due to more correct classifications. This was investigated with the use of the QDA

classifier. The results for M = 90 are presented in Table 2.3.3 and the results for M = 40

are presented in Table 2.3.4.
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2.3. SIMULATION STUDY

TABLE 2.3.3 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.31397 (0.00923) 0.31414 (0.01024) 0.31603 (0.015517) 0.31901 (0.021923)
Min; Max 24; 90 11; 90 8; 90 6; 90
n̄; Sd 89.871; 2.8839 86.851; 15.2427 80.946; 25.178 66.654; 35.5186

1.3 0.25785 Error (Std) 0.26132 (0.006525) 0.26226 (0.008705) 0.26409 (0.012111) 0.26769 (0.020528)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.726; 4.3262 84.16; 20.2321 72.089; 32.566 57.337; 37.0855

1.5 0.22663 Error (Std) 0.22973 (0.00644) 0.23128 (0.010826) 0.23321 (0.012781) 0.2353 (0.017312)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.535; 5.545 80.467; 25.1086 65.884; 35.0633 45.707; 36.6818

2 0.15866 Error (Std) 0.16133 (0.00577) 0.16338 (0.011158) 0.16679 (0.015677) 0.16981 (0.019561)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.455; 16.5387 67.449; 33.5311 43.151; 34.8855 24.382; 25.0485

2.3 0.12507 Error (Std) 0.12763 (0.005282) 0.13097 (0.011992) 0.13333 (0.01531) 0.13655 (0.018565)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 82.003; 21.1957 56.117; 35.418 31.179; 28.9003 17.212; 16.7096

2.5 0.10565 Error (Std) 0.10846 (0.005396) 0.11168 (0.011747) 0.11475 (0.016952) 0.11815 (0.022259)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 78.76; 24 47.48; 34.2825 24.633; 22.7084 14.782; 12.6707

3 0.06681 Error (Std) 0.07025 (0.006341) 0.07445 (0.014003) 0.07626 (0.015157) 0.07906 (0.021901)
Min; Max 21; 90 11; 90 8; 90 6; 57
n̄; Sd 65.312; 29.5199 30.507; 23.3342 17.629; 11.6041 11.787; 5.657

4 0.02275 Error (Std) 0.02649 (0.006099) 0.02836 (0.00919) 0.03023 (0.012759) 0.03255 (0.018398)
Min; Max 21; 90 11; 84 8; 59 6; 28
n̄; Sd 45.591; 20.4195 23.893; 8.8553 16.119; 4.6282 12.253; 2.9766

Similar to the LDA results, for a given ∆ in Table 2.3.3, the mean misclassification

rate does not decrease substantially as ε is decreased. The maximum absolute reduction

of 0.00969 is observed where ∆ = 2.5 and ε decreases from 0.2 to 0.05. This leads to

an increase in the average number of steps necessary to train the classifier from 14.782 to

78.76, which is slightly higher than the LDA results. In general the average number of

steps needed to train the classifier is slightly higher for the QDA method when compared

to the LDA method.

The maximum number of steps,M , was reached at least once in 28 of the 32 scenarios,

compared to the 29 times of the LDA classifier. Consider those results where ε is consid-

erably smaller than the Bayes error. The standard deviation of the number of sequential
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2.3. SIMULATION STUDY

steps required is smaller for the QDA classifier than it is for the LDA classifier. This

indicates a bit less variation in the number of steps observed, and taking into account

that the averages are slightly lower for the LDA classifier compared to the QDA classifier,

it shows that the QDA classifier tends to reach the maximum number of steps, M , more

often than the LDA classifier. This in turn indicates that the LDA classifier satisfies the

stopping criteria at an earlier stage when compared to the QDA classifier. This is to

be expected, however, as the underlying data was generated from two distributions with

equal variances, and optimal separation would occur with a linear decision boundary.
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TABLE 2.3.4 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.32127 (0.021685) 0.32144 (0.021382) 0.32221 (0.022308) 0.32377 (0.025475)
Min; Max 26; 40 11; 40 8; 40 6; 40
n̄; Sd 39.986; 0.4427 39.002; 5.1098 36.253; 9.8887 32.695; 13.196

1.3 0.25785 Error (Std) 0.26611 (0.012922) 0.26729 (0.016484) 0.26811 (0.016903) 0.27057 (0.024011)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.931; 1.0906 37.868; 7.2336 33.341; 12.3194 29.067; 14.5582

1.5 0.22663 Error (Std) 0.2336 (0.013372) 0.234 (0.013442) 0.23525 (0.014998) 0.23869 (0.022481)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.856; 1.5018 37.13; 8.212 31.792; 13.0979 25.104; 15.0572

2 0.15866 Error (Std) 0.16384 (0.008868) 0.1656 (0.012193) 0.16716 (0.014617) 0.1716 (0.022827)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.164; 3.5414 32.904; 11.4121 25.525; 13.9239 17.772; 12.8796

2.3 0.12507 Error (Std) 0.12938 (0.007179) 0.13147 (0.011205) 0.13435 (0.015214) 0.13624 (0.018431)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.609; 4.4036 30.538; 12.0179 21.587; 12.9199 15.577; 10.761

2.5 0.10565 Error (Std) 0.10983 (0.006733) 0.11228 (0.011063) 0.11522 (0.014401) 0.11842 (0.020734)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.777; 5.343 28.195; 12.0778 19.503; 11.7862 13.941; 9.0266

3 0.06681 Error (Std) 0.07129 (0.00818) 0.07374 (0.012444) 0.07666 (0.017198) 0.07865 (0.021983)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.241; 6.9009 23.423; 10.6314 15.949; 7.8427 12.116; 5.2397

4 0.02275 Error (Std) 0.02667 (0.006709) 0.02913 (0.012181) 0.03024 (0.011991) 0.0306 (0.014022)
Min; Max 21; 40 11; 40 8; 40 6; 28
n̄; Sd 34.089; 6.9336 23.301; 7.5656 16.146; 4.5236 12.38; 2.7938

Similar to those results seen where M = 90 in Table 2.3.3, the average rate of mis-

classification does not decrease substantially as ε is decreased in Table 2.3.4. The results

are very similar to those seen where the LDA classifier’s maximum number of steps was

decreased from 90 to 40. The average misclassification rate for QDA where M = 40 is

generally also slightly larger than it is for QDA with M = 90, and the maximumM = 40

was reached at least once for 31 of the 32 scenarios.

Various simulations were also conducted where the variance σ2
2 was allowed to vary

(σ2
2 ∈ {2, 3, 4}) for both M = 90 and M = 40. The results are provided in Appendix D.

Increasing σ2
2 resulted in the average misclassification rate increasing by a similar value

when compared to the increase in variance for the LDA classifier. As ε is decreased there
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is no significant change in the misclassification rate, and for large values of ∆ the average

number of sequential steps increases significantly as the allowed error ε decreases. Similar

to the LDA results, the average number of steps increased while the standard deviation

in the number of sequential steps decreased for those scenarios where the Bayes error

is larger than ε. In the scenarios where the Bayes error is smaller than ε the standard

deviation increased as was seen for the LDA classifier.

TABLE 2.3.5 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 3) distribution and α = 0.05. The minimum, maximum, mean

and standard deviation of the number of sequential steps required to train the classifier is

also provided (denoted Min, Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.32764 (0.009462) 0.32816 (0.010577) 0.32921 (0.01703) 0.33253 (0.019323)
Min; Max 24; 90 11; 90 8; 90 6; 90
n̄; Sd 89.934; 2.0871 87.219; 14.4033 82.343; 23.4365 69.098; 34.5981

Increasing σ2
2 from 1 to 3 for M = 90 resulted in the average misclassification rate

increasing while the corresponding standard deviations remained relatively stable. The

maximum number of steps was also reached at least once in 31 of the 32 scenarios tested.

It is, however, very interesting to note that the observed average misclassification rate

for ∆ = 1 and ε ∈ {0.05, 0.1} is actually lower than the Bayes error, which theoretically
should not be the case as the Bayes error is the theoretical minimum error. This result is

provided in Table 2.3.5. Increasing σ2
2 from 1 to 4 for both M = 90 and M = 40 resulted

in multiple cases where the Bayes error was larger than the average misclassification rate.

These seem to be consigned to the scenarios where there is a significant overlap in the

generating distributions and the specified error rate, ε, is much smaller than the Bayes

error. This is explained in more detail in Section 2.6.2.

As the variance σ2
2 is increased, the average rate of misclassification for the QDA clas-

sifier is generally lower than it is for the corresponding LDA classifier. LDA classification

assumes that the underlying distributions have equal variances and therefore the pooled

variance is used as an estimate for the population variance. QDA assumes that the un-

derlying distributions have unequal variances, therefore QDA is more applicable in this

specific scenario where σ2
2 6= σ2

1. Consequently, the observed misclassification rates are

lower for QDA than observed for LDA as optimal separation of the distributions occur

with a quadratic decision boundary.

27

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.3. SIMULATION STUDY

2.3.5 5-nn simulation

TABLE 2.3.6 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

sampled from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.35454 (0.024912) 0.35241 (0.024755) 0.35162 (0.026369) 0.35063 (0.028713)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.798; 3.6847 87.545; 13.5176 80.497; 25.8278 71.401; 33.3352

1.3 0.25785 Error (Std) 0.29387 (0.021254) 0.29535 (0.022765) 0.2919 (0.023932) 0.2901 (0.027223)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.864; 3.0399 85.077; 18.4837 72.929; 32.1678 57.788; 37.8642

1.5 0.22663 Error (Std) 0.2602 (0.021338) 0.25781 (0.022441) 0.25712 (0.023622) 0.25608 (0.029484)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.468; 5.9309 80.934; 24.7025 66.538; 35.4507 49.108; 37.9617

2 0.15866 Error (Std) 0.18069 (0.018189) 0.17957 (0.019988) 0.1786 (0.022296) 0.17806 (0.023966)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.55; 14.6248 67.479; 33.9346 43.989; 35.7108 27.319; 28.6949

2.3 0.12507 Error (Std) 0.14245 (0.016034) 0.14055 (0.018397) 0.14223 (0.020074) 0.1418 (0.022865)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 83.716; 19.1087 55.223; 36.0437 32.254; 30.5644 19.336; 20.7586

2.5 0.10565 Error (Std) 0.11899 (0.013705) 0.11936 (0.016974) 0.12 (0.019556) 0.12045 (0.020212)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 77.677; 25.037 47.99; 34.5804 26.738; 25.7567 16.22; 16.3111

3 0.06681 Error (Std) 0.0758 (0.011213) 0.07652 (0.01345) 0.07657 (0.014421) 0.0776 (0.014715)
Min; Max 21; 90 11; 90 8; 90 6; 89
n̄; Sd 64.719; 29.8551 32.401; 25.5257 16.809; 11.2941 12.534; 7.3361

4 0.02275 Error (Std) 0.02648 (0.005645) 0.02711 (0.006628) 0.02746 (0.006985) 0.028 (0.00778)
Min; Max 21; 90 11; 66 8; 52 6; 22
n̄; Sd 44.369; 19.7192 23.855; 7.6815 16.522; 4.62 12.586; 2.6225

To test whether a localised classifier used in the sequential procedure would yield

smaller misclassification rates and stop the sequential procedure quicker, K-nearest neigh-

bours was used as a classification method. A small value of K should yield a localised

classifier and slightly lower misclassification errors. A better, or more effi cient, classifi-

cation method should result in the sequential procedure stopping earlier, due to more

correct classifications. This was investigated with the use of the K-nearest neighbours

classifier, testing the 3-nearest neighbours and 5-nearest neighbours respectively. The

results for M = 90 and M = 40, where K = 5, are provided in Table 2.3.6 and Table

2.3.7 respectively. The results for M = 90 and M = 40, where K = 3, are provided in

28

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.3. SIMULATION STUDY

Table 2.3.9 and Table 2.3.10 respectively.

The mean misclassification rate in Table 2.3.6 does not exhibit much variation and

only shows minor increases or decreases, contrary to the results seen for the LDA and

QDA classifiers where the average rate of misclassification decreases as ε is decreased. For

cases where the Bayes error is much larger than ε the misclassification rate is larger than

it is for both the LDA and QDA classifiers, and as ∆ is further increased and the Bayes

error decreases, the misclassification rate tends towards the Bayes error. As ε increases

and∆ increases, the 5-nearest neighbour classifier performs better than the QDA classifier

as it obtains a lower average rate of misclassification. This, however, only occurs for large

values of ∆. In the specific scenarios where the Bayes error is larger than the prespecified

minimum acceptable error, ε, the 5-nearest neighbour classifier required, on average, more

sequential observations to satisfy the stopping criteria as the average number of sequential

steps is slightly higher. The maximum M is still reached at least once for 28 of the 32

different scenarios tested.
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2.3. SIMULATION STUDY

TABLE 2.3.7 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.35489 (0.037584) 0.35553 (0.037201) 0.35453 (0.038088) 0.35468 (0.038407)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.967; 0.7379 39.244; 4.4885 36.487; 9.649 32.508; 13.4186

1.3 0.25785 Error (Std) 0.2951 (0.031845) 0.29555 (0.031743) 0.29327 (0.032009) 0.29242 (0.035234)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.951; 0.8986 37.998; 7.0863 33.927; 11.9413 29.322; 14.6241

1.5 0.22663 Error (Std) 0.25929 (0.027827) 0.25879 (0.029235) 0.25804 (0.030713) 0.25797 (0.034809)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.903; 1.2622 36.767; 8.7228 31.714; 13.1978 26.453; 15.0632

2 0.15866 Error (Std) 0.18018 (0.023782) 0.17997 (0.023326) 0.17966 (0.024959) 0.18198 (0.03001)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.208; 3.4671 32.718; 11.5026 24.706; 14.1394 18.685; 13.467

2.3 0.12507 Error (Std) 0.14183 (0.020223) 0.14232 (0.020739) 0.14148 (0.022718) 0.14264 (0.023288)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.316; 4.9068 30.204; 12.0718 21.506; 12.973 15.413; 11.026

2.5 0.10565 Error (Std) 0.12032 (0.017918) 0.12117 (0.019682) 0.11978 (0.019052) 0.12212 (0.022606)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.669; 5.5325 27.84; 12.3494 19.676; 11.8988 13.318; 8.6156

3 0.06681 Error (Std) 0.07597 (0.012831) 0.07677 (0.014552) 0.07756 (0.015463) 0.07747 (0.015617)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.388; 6.8662 24.215; 10.8472 16.458; 8.3848 12.008; 4.9879

4 0.02275 Error (Std) 0.02682 (0.006048) 0.0277 (0.007403) 0.02777 (0.00798) 0.02819 (0.00863)
Min; Max 21; 40 11; 40 8; 40 6; 21
n̄; Sd 34.152; 7.0013 23.275; 7.281 16.28; 4.2696 12.466; 2.684

The results presented in Table 2.3.7 are similar to the results seen for the 5-nearest

neighbour classifier withM = 90. As the value of ε is decreased, the mean misclassification

rate does not decrease substantially. The misclassification rate is nearly equal to those

results when M = 90. The average number of sequential steps is roughly equal to the

average number observed with the LDA classifier, and the maximum M was reached at

least once for 31 of the 32 different scenarios tested.

It is also interesting to note that the standard deviation in the number of sequential

steps is lower than it is when M = 90. This indicates that there is less variation in

the number of steps observed, and the observations are closer to the observed averages.

Considering that the average number of sequential steps is relatively high in many of the
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2.3. SIMULATION STUDY

scenarios tested, it suggests that the maximum M might have been reached more often

than liked.

Various simulations were also conducted where the variance σ2
2 was allowed to vary

(σ2
2 ∈ {2, 3, 4}) for both M = 90 and M = 40. The results are provided in Appendix D.

Increasing σ2
2, for both M = 90 and M = 40, results in the average misclassification

rate increasing for all combinations of ∆ and ε. The average number of sequential steps

required to train the classifier has also increased for nearly all combinations of ∆ and

ε tested, and the maximum M was reached at least once for the majority of the differ-

ent combinations tested. The standard deviation in the number of sequential steps has

increased for nearly all of the different scenarios tested, indicating more spread in the

observed values. In those cases where the standard deviation has decreased, the average

number of sequential steps has increased towards the maximum M . Taking into account

that the maximum was reached for all of these scenarios indicates that the observations

are clustered more closely to the maximum, with more of the observations being equal to

the maximum.

Increasing σ2
2 to 3 results in an increase in the average rate of misclassification, however

the average rate of misclassification does no longer decrease as substantially when ∆ is

increased. As was seen in Table D.3.1 the standard deviation in the number of sequential

steps has increased for nearly all of the scenarios tested. In those cases where the standard

deviation has decreased, the average number of steps has increased towards the maximum

M .
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TABLE 2.3.8 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.46677 (0.01336) 0.46384 (0.01958) 0.45815 (0.03408) 0.4502 (0.04189)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.295; 11.3756 83.282; 22.2223 75.013; 30.679

It is very interesting to note the specific results for (∆, ε) = (1, 0.05) where M = 90

and σ2
2 = 4, as provided in provided in Table 2.3.8. The maximum M was reached in

all 1000 repetitions of the simulation. This indicates that the stopping procedure reaches

the maximum M too often and it is very possible that the classifiers obtained have not

been trained to such an extent to ensure, with a probability of at least 100 (1− α) %, that

the probability of a misclassification on the next observation is acceptably low - ε. It is

necessary to test what the impact will be if the maximum M is increased.
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2.3. SIMULATION STUDY

2.3.6 3-nn simulation

TABLE 2.3.9 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

sampled from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.50001 (0.003822) 0.49982 (0.006826) 0.50001 (0.010108) 0.50007 (0.01617)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 87.698; 13.1105 81.371; 24.7328 71.088; 33.7997

1.3 0.25785 Error (Std) 0.4999 (0.004537) 0.49984 (0.008761) 0.49963 (0.015131) 0.50042 (0.020688)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.736; 4.1737 83.947; 20.6926 73.757; 31.8854 59.877; 37.9165

1.5 0.22663 Error (Std) 0.5003 (0.004934) 0.50047 (0.010315) 0.49981 (0.018173) 0.49952 (0.026773)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.406; 6.2434 81.595; 23.8542 68.79; 34.5188 51.754; 38.3739

2 0.15866 Error (Std) 0.50029 (0.006131) 0.50031 (0.017051) 0.50043 (0.026352) 0.50263 (0.040599)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.685; 14.3701 69.961; 32.6527 48.792; 37.2594 29.298; 30.4767

2.3 0.12507 Error (Std) 0.49994 (0.007648) 0.49914 (0.023401) 0.50127 (0.034256) 0.5005 (0.046521)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 83.615; 19.2003 57.039; 35.5977 35.672; 32.7518 20.655; 22.4392

2.5 0.10565 Error (Std) 0.49966 (0.008003) 0.49813 (0.026024) 0.50074 (0.035897) 0.50215 (0.047212)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 81.143; 21.9089 47.279; 34.9445 29.026; 28.5033 17.143; 17.7356

3 0.06681 Error (Std) 0.50054 (0.01438) 0.49946 (0.030915) 0.4977 (0.043238) 0.49756 (0.055892)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 63.474; 30.5024 32.262; 26.4758 18.31; 13.9272 12.388; 7.5503

4 0.02275 Error (Std) 0.49992 (0.017517) 0.49817 (0.034344) 0.49897 (0.048283) 0.49817 (0.059611)
Min; Max 21; 90 11; 90 8; 44 6; 42
n̄; Sd 44.958; 19.9403 24.163; 9.0895 16.323; 4.2662 12.476; 2.9967

For a given value of ∆ the mean misclassification rate does not vary much and does

not decrease as the value of ε is decreased. The average rate of misclassification is much

higher than it is for the 5-nearest neighbour classifier or any of the other classifiers tested.

It is also interesting to note that the average rate of misclassification does not decrease

or increase significantly as the value of ∆ is increased, nor does the average misclassifica-

tion rate tend towards the Bayes error as is the case for the 5-nearest neighbour classifier.

The maximum number of steps is still reached at least once for 30 of the 32 different

scenarios tested. Due to the much localised nature of the classifier, the average rate of

misclassification is nearly equal to the probability of sampling a random observation from
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TABLE 2.3.10 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.37042 (0.033812) 0.36978 (0.036017) 0.36723 (0.036705) 0.36647 (0.038177)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.981; 0.6008 39.065; 4.93 37.397; 8.4857 33.334; 12.8725

1.3 0.25785 Error (Std) 0.31134 (0.032428) 0.31072 (0.034552) 0.30777 (0.035396) 0.30807 (0.039892)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.954; 0.8465 38.107; 6.7995 34.72; 11.4129 29.825; 14.4063

1.5 0.22663 Error (Std) 0.27375 (0.031387) 0.27307 (0.0339) 0.27031 (0.03459) 0.26957 (0.03649)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.782; 1.9147 36.778; 8.6834 32.47; 12.8421 26.707; 15.2458

2 0.15866 Error (Std) 0.1922 (0.027093) 0.18868 (0.027018) 0.18777 (0.028954) 0.19084 (0.033597)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.206; 3.4365 32.988; 11.4715 25.991; 14.1064 20.695; 14.2897

2.3 0.12507 Error (Std) 0.15228 (0.025653) 0.14855 (0.023536) 0.14975 (0.027648) 0.14898 (0.030125)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.29; 4.9153 30.767; 12.1085 22.638; 13.4216 16.392; 11.966

2.5 0.10565 Error (Std) 0.12736 (0.022359) 0.12663 (0.023176) 0.12737 (0.026785) 0.12646 (0.026262)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.866; 5.3508 28.394; 12.2265 20.398; 12.0902 14.215; 9.943

3 0.06681 Error (Std) 0.08096 (0.017869) 0.08027 (0.017573) 0.08119 (0.01864) 0.08198 (0.02091)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.246; 6.961 23.748; 10.6441 16.96; 9.1041 12.388; 5.9794

4 0.02275 Error (Std) 0.02776 (0.007788) 0.02864 (0.008598) 0.0293 (0.010103) 0.03001 (0.012156)
Min; Max 21; 40 11; 40 8; 40 6; 27
n̄; Sd 34.261; 7.1004 23.498; 7.2707 16.539; 4.4215 12.478; 2.7527

either of the underlying distributions. Due to the unexpected results obtained, the

simulations were repeated multiple times and all results verified.

The results obtained in Table 2.3.10 are very similar to those obtained in Table 2.3.7.

For a given ∆ the average misclassification rate does not decrease or increase substantially

as the value of ε is decreased. Contrary to the results obtained in Table 2.3.9 the average

rate of misclassification decreases as ∆ is increased, a result comparable to the other

classification methods tested. The maximum M is reached at least once for 31 of the 32

different combinations tested.

It is important to note here, that the classifier obtained from the sequential procedure

is used for testing purposes against the holdout sample, irrespective of whether the classi-

fier has been correctly trained or not. The unexpected results for theK-nearest neighbour
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classifier, particularly the fact that the misclassification rate in Table 2.3.9 does not de-

crease as ∆ is increased, but the misclassification rate in Table 2.3.10 does decrease as ∆

is increased, could be related to the classifiers being unsuccessfully trained.

Various simulations were also conducted where the variance σ2
2 was allowed to vary

(σ2
2 ∈ {2, 3, 4}) for both M = 90 and M = 40. The results are provided in Appendix D.

Increasing σ2
2 from 1 to 2 and from 1 to 4 for M = 90 results in the average rate of

misclassification decreasing. The additional spread in the observations and the very local

nature of the trained classifier has resulted in the trained classifiers being able to predict

better on the testing set. The average number of sequential steps has increased and the

maximum M was reached at least once for all the scenarios tested. In those scenarios

where the Bayes error is substantially larger than ε the standard deviation of the number

of sequential steps has decreased, indicating that the observations are located nearer to

the average, and consequently nearer to the maximum M .

Increasing σ2
2 from 1 to 3 for M = 90 results in the average rate of misclassification

increasing, albeit to a level lower than observed where σ2
2 = 1. Contrary to the results

observed for σ2
2 ∈ {1, 2}, for a given ∆ an increase in ε results in the average rate

of misclassification decreasing. These results are similar to those seen for the 5-nearest

neighbour classifier where σ2
2 = 3 and M = 90. The average number of sequential steps

has increased, and for those particular scenarios where the Bayes error is larger than ε

the standard deviation of the number of sequential steps has decreased.

Increasing σ2
2 forM = 40, results in an increase in the average rate of misclassification.

The increase is more severe as σ2
2 increases. The average number of sequential steps has

also increased and for most cases where the Bayes error is much larger than ε the standard

deviation in the average number of sequential steps has decreased. The maximum number

of steps M was reached at least once for all the different scenarios tested.

Due to the much localised nature of the classifier, and the artificial upper bounds

placed on the number of observations available to train the classifier, the results obtained

using 3-nearest neighbours as a classifier are very mixed. In some scenarios the average

rate of misclassification would increase as σ2
2 is increased, and in other scenarios the

average rate of misclassification would decrease. This behaviour was also apparent for

the maximum level of acceptable error ε - in some scenarios a decrease in ε would result

in the average rate of misclassification increasing substantially, whilst in other scenarios

negligible changes were observed. The only consistent observation was that the average

number of sequential steps required to "train" the classifier increased as σ2
2 increased.

This particular classifier is very sensitive to the observations already sampled, and to a

far lesser extent the underlying distribution of the sampled data.

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.3. SIMULATION STUDY

2.3.7 LRIM simulation

TABLE 2.3.11 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LRIM classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.31304 (0.008768) 0.31302 (0.00858) 0.31508 (0.013732) 0.31585 (0.01381)
Min; Max 25; 90 11; 90 8; 90 6; 90
n̄; Sd 89.873; 2.8392 87.389; 13.9298 77.631; 28.8084 64.965; 36.4448

1.3 0.25785 Error (Std) 0.26137 (0.006592) 0.26172 (0.008215) 0.2634 (0.010747) 0.26481 (0.015812)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.599; 5.1677 82.812; 22.3402 69.775; 33.7926 52.109; 38.1097

1.5 0.22663 Error (Std) 0.22964 (0.006087) 0.23036 (0.006932) 0.2325 (0.010924) 0.23337 (0.011981)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.401; 6.2903 79.57; 25.9278 61.626; 36.7391 42.967; 36.5363

2 0.15866 Error (Std) 0.16108 (0.005268) 0.16277 (0.008838) 0.16472 (0.010922) 0.1669 (0.012821)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.059; 15.5265 64.283; 34.9277 42.141; 35.6687 23.443; 24.7779

2.3 0.12507 Error (Std) 0.12745 (0.005018) 0.12931 (0.008816) 0.13151 (0.009714) 0.1335 (0.013364)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 81.993; 20.9127 54.653; 35.67 29.204; 28.4085 15.837; 14.7272

2.5 0.10565 Error (Std) 0.10792 (0.004539) 0.11075 (0.009306) 0.11204 (0.010535) 0.11272 (0.011007)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 77.935; 24.7681 44.781; 33.9002 22.55; 21.5898 14.206; 11.6808

3 0.06681 Error (Std) 0.06935 (0.004978) 0.07124 (0.008202) 0.07229 (0.008603) 0.0728 (0.009045)
Min; Max 21; 90 11; 90 8; 88 6; 56
n̄; Sd 62.715; 29.8291 28.742; 22.1182 16.388; 9.7278 11.994; 5.1344

4 0.02275 Error (Std) 0.02419 (0.002681) 0.02491 (0.003775) 0.0255 (0.004829) 0.02541 (0.004168)
Min; Max 21; 90 11; 90 8; 36 6; 33
n̄; Sd 45.162; 19.3027 23.779; 7.8708 16.423; 4.1332 12.658; 2.6714

To test whether the sequential procedure takes longer to stop with a less effi cient

classification method, linear regression of an indicator matrix is used. The results for

M = 90 and M = 40 are provided in Table 2.3.11 and Table 2.3.12 respectively.

Similar to the results for the LDA classifier, for a given ∆ in Table 2.3.11 the mean

misclassification rate does not decrease substantially as ε is decreased from 0.2 to 0.05.

It is however very interesting to note how stable the misclassification rate remains as

the values of ε are varied. The results are comparable to those obtained using the LDA

classifier. When the variances of the underlying distributions are equal, the QDA classifier
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is much more sensitive to a change in ε than either LDA or LRIM.

The average misclassification rate is lower for this particular classifier than it is using

QDA as the classifier. The average rate of misclassification is considerably lower for those

cases where the specified error rate, ε, is higher than the Bayes error, and the observed

misclassification rate is much closer to the Bayes error than it is for QDA.

The average number of steps required to train the classifier is also lower in nearly all

of the scenarios than the average number of sequential steps required when QDA is used

as a classifier. The maximum number of sequential steps, M , was still reached at least

once in 28 of the 32 scenarios. Using LRIM as a classifier results in lower misclassification

rates, and the classifier needs less sequential steps on average than the QDA classifier to

be trained to a satisfactory level.
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TABLE 2.3.12 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5

initial observations were generated from a N(0, 1) distribution and 5 additional observa-

tions were generated from a N(∆, 1) distribution, α = 0.05 and the maximum number

of sequential steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard

deviation of the number of sequential steps required to train the classifier is also provided

(denoted Min, Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.31774 (0.016796) 0.31748 (0.01834) 0.31889 (0.017421) 0.31995 (0.021251)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 38.975; 5.1762 35.557; 10.7193 31.384; 13.9984

1.3 0.25785 Error (Std) 0.2643 (0.01233) 0.26585 (0.013546) 0.26602 (0.015285) 0.26685 (0.016189)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.876; 1.4795 37.384; 7.9589 33.523; 12.2513 26.7; 15.0979

1.5 0.22663 Error (Std) 0.23273 (0.009912) 0.23308 (0.010232) 0.23377 (0.012186) 0.23488 (0.013774)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.865; 1.5116 36.198; 9.228 30.15; 13.8879 25.021; 15.121

2 0.15866 Error (Std) 0.16346 (0.008319) 0.16451 (0.010249) 0.16525 (0.010291) 0.16673 (0.012453)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.895; 4.0331 31.46; 12.0157 24.437; 13.6192 17.537; 12.6661

2.3 0.12507 Error (Std) 0.12914 (0.006487) 0.13073 (0.009225) 0.13208 (0.011092) 0.13299 (0.011991)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.951; 5.3823 28.519; 12.4319 20.46; 12.375 15.182; 10.5985

2.5 0.10565 Error (Std) 0.10948 (0.006176) 0.11088 (0.008229) 0.11209 (0.00977) 0.11396 (0.013201)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.19; 5.9603 26.637; 12.1424 18.425; 11.0815 13.338; 8.5283

3 0.06681 Error (Std) 0.06993 (0.005081) 0.07145 (0.007643) 0.07248 (0.008286) 0.07306 (0.009119)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.058; 7.0125 23.451; 10.0324 16.207; 7.5478 11.916; 4.7228

4 0.02275 Error (Std) 0.02448 (0.00284) 0.02493 (0.003587) 0.02506 (0.003754) 0.02598 (0.005258)
Min; Max 21; 40 11; 40 8; 40 6; 26
n̄; Sd 33.729; 7.0338 23.67; 6.9984 16.46; 4.2363 12.568; 2.6729

The results obtained by limiting the maximum number of sequential steps to 40 are

very similar to those obtained for this particular classifier when the maximum number

of sequential steps was set at M = 90. The average rate of misclassification is lower

for this classifier than it is for QDA classifier, and in some cases the average rate of

misclassification is lower than it is for the LDA classifier, albeit slightly. The classifier

performs quite well and only estimates marginally worse than whenM = 90 as the average

rate of misclassification is only slightly higher.

Various simulations were also conducted where the variance σ2
2 was allowed to vary

(σ2
2 ∈ {2, 3, 4}) for both M = 90 and M = 40. The results are provided in Appendix D.
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2.4. INFLUENCE OF PARAMETER CHANGES

Increasing σ2
2 results in the average rate of misclassification increasing for all com-

binations of ∆ and ε. The average number of sequential steps required to "train" the

classifier has also increased, with the increases being significant for those cases where the

Bayes error is larger than ε. For those specific cases where the Bayes error is significantly

larger than ε, the standard deviation of the number of sequential steps decreases slightly.

There are multiple scenarios as well where the maximum allowed number of sequential

steps allowed, M , is reached at least once. The decrease in the standard deviation of the

number of sequential steps and the increase observed in the average number of sequential

steps again indicates that the model reaches the maximum specified (M) far more often.

The results obtained from using LRIM are comparable to the results obtained using

LDA. The two sets of results should be comparable though as both classification methods

use linear decision boundaries for optimal separation of the data. However, care must

be taken when using the regression approach as it easily masks other classes if the re-

sponse variable Y has more than two classes (i.e. is not binary). This happens when the

boundaries found by LRIM pass through one of the classes. Consequently that particular

class will never dominate the output from the regression model as there is only 1 linear

decision boundary. LDA, on the other hand, has p − 1 linear decision boundaries when

the response variable has p classes.

2.4 Influence of parameter changes

To test how sensitive the procedure is to a change in parameters, various input parameters

were changed. Additional simulations were run where the assumption of equal proportions

for the sampled data p̂1 = p̂2 was no longer adhered to (p̂2 ∈ {0.1, 0.2, 0.4}) with all other
assumptions kept constant; and where the maximum number of sequential steps allowed

was increased to 300 with all other parameters kept constant. For the purpose of this

section, the only classification method tested was LDA. As seen in the results provided,

the sequential procedure often reaches the maximum allowed number of sequential steps

M . This was not limited to any specific classification method tested (i.e. in all methods of

classification tested, the sequential procedure reached M at least once), and it therefore

seems necessary to test the effects of the parameter changes on only one classification

method. LDA was chosen as the variances from the underlying distributions are equal

(thereby negating the need for QDA), LRIM yields similar results (the response variable

has only two classes and therefore only one linear decision boundary will be obtained)

and the K-nearest neighbour classifiers are too computationally intensive for the current

purpose.
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2.4. INFLUENCE OF PARAMETER CHANGES

2.4.1 Changing sampling probabilities

To test how sensitive the procedure is to a change in the sampling probabilities, the input

parameter p̂2 was varied (p̂2 ∈ {0.1, 0.2, 0.4}). For this section, 3 separate simulations were
conducted. To keep the total initial sample size equal to 10 observations, 9 observations

were randomly generated from a N (0, 1) distribution and an additional 1 observation

was randomly generated from a N (∆, 1) (∆ ∈ {1, 1.3, 1.5, 2, 2.3, 2.5, 3, 4}) distribution.
For the other two simulations the initial sample size combinations were (8; 2) and (6; 4)

respectively. The initial sample sizes were kept small to limit the total number of initial

observations to 10 for comparative purposes. The maximum number of sequential steps

allowed was set at 90 (i.e. M = 90). The results are available in Appendix D in Table

D.6.1, Table D.6.2 and Table D.6.3.

Similar to the results presented for the LDA classifier with equal sampling probabilities,

for each value of∆, specifying a smaller value of ε does not lead to a significant reduction in

the average misclassification rate. The average rate of misclassification is, however, lower

than observed when sampling with equal probabilities. Additionally, the Bayes errors

have been greatly reduced, therefore many of the scenarios can now be correctly tested

as the maximum error threshold for the model, ε, is larger than the Bayes error. The

average number of sequential steps has been greatly reduced in many scenarios where the

separation between the samples is small, i.e. ∆ is small. This is mainly due to the fact that

in the simulation with equal sampling probabilities, the maximum error threshold specified

was too small, forcing the sequential procedure to try and correctly train the classifiers

to an error rate that is impossible to achieve. The standard deviation in the number of

sequential steps has also increased significantly, indicating a much greater spread in the

observed number of sequential steps. When the majority of the data is generated from

the N (0, 1) distribution, the average number of sequential steps is more dependent on ε

than it is on a change in ∆, but as the difference in the sampling probabilities decreases

the sensitivity towards ∆ increases substantially. It is still very important to note that in

all three simulations, the maximum allowed number of sequential stepsM was reached at

least once for the majority of the (∆, ε) combinations tested. The sequential procedure

is unable to account for Bayes errors larger than the prespecified level of acceptable error

ε. Therefore, the sequential procedure tries to train the classifier to obtain an unfeasibly

low rate of misclassification.

2.4.2 Changing maximum number of sequential steps

In all results presented, the maximum allowed number of sequential steps M was reached

at least once for the majority of the (∆, ε) combinations tested. As there was no evi-

dence supporting the particular choice of M , an increase could result in the sequential
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2.5. MICROARRAY SAMPLE DATA APPLICATION

procedure successfully training the classifier more often before N = M . If the average

number of sequential steps required increases dramatically while the standard deviation

in the number of sequential steps remains relatively low, it is indicative of how often the

recursive procedure reached the maximum allowed. To test how sensitive the procedure

is to a change in the maximum number of sequential steps allowed, a simulation was run

where the maximum allowed was set at 300 observations. 5 observations were generated

from a N(0, 1) distribution and 5 additional observations were generated from a N(∆, 1)

distribution (∆ ∈ {1, 1.3, 1.5, 2, 2.3, 2.5, 3, 4}). The effect of a change in ε was also inves-
tigated (ε ∈ {0.05, 0.1, 0.15, 0.2}). The level of significance was kept constant at 0.05

(i.e. α = 0.05). The results are available in Appendix D in Table D.7.1.

Similar to the LDA results observed for M = 90 and σ2
2 = 1, for each value of ∆,

specifying a smaller value of ε does not lead to a significant reduction in the average

misclassification rate. The maximum absolute reduction of 0.03566 is observed where

∆ = 3 and ε decreases from 0.2 to 0.05. This, however, leads to an increase in the

average number of sequential steps necessary to train the classifier from 11.982 to 210.269.

This suggests that the maximum number of steps allowed, M = 300, was again reached

multiple times. For small values of ∆ (∆ ∈ {1, 1.3 , 1.5 , 2}) and ε (ε ∈ {0.05, 0.1}) the
average number of sequential steps remained above 200. In all of these cases the maximum

M = 300 was reached at least once. For all of these cases though the Bayes error is much

larger than the error rate used in training the classifier, i.e. ε. This would suggest that

the sequential procedure is trying to train the classifier to an unrealistic error rate that

can not be achieved. The maximum is still reached at least once for 26 of the 32 scenarios

tested. It therefore seems plausible to investigate how often the procedure reaches the

maximum M , and how often the classifier is successfully trained.

2.5 Microarray sample data application

To test the sequential procedure’s performance on real-world data, the sequential proce-

dure was applied to a dataset containing breast-cancer patient prognosis data. In Van’t

Veer et al. (2002) a gene expression signature that is highly predictive of disease outcome

is derived. The sample data is freely available and is widely used in the Biometric field

and the sample size is relatively large. It is also possible to compare the results obtained

from this analysis to results obtained in other experiments. The dataset consists of 295

observations in total, with measurements on the 70 genes that were found to be highly

predictive of the prognosis. The prognosis variable had to be derived from 2 separate

variables (conservFlag and C1used) as stated in the original article. The total number of

"good prognosis" observations derived equalled the number provided in the article.
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2.5. MICROARRAY SAMPLE DATA APPLICATION

TABLE 2.5.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier on the sample data. The

initial sample sizes are provided. α = 0.05 and the minimum, maximum, mean and stan-

dard deviation of the number of sequential steps required to train the classifier on the 3

genes most highly correlated to the prognosis variable is also provided (denoted Min, Max,

n̄ and Sd respectively).

Initial Maximum ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20
Sample Allowed

(5, 5) 50 Error (Std) 0.25007 (0.030842) 0.25493 (0.034387) 0.26314 (0.037582) 0.26707 (0.038849)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 41.622; 15.9589 33.248; 19.478 23.597; 19.0874 16.363; 15.5845

(5, 5) 80 Error (Std) 0.24659 (0.031182) 0.25301 (0.034455) 0.26198 (0.038551) 0.26865 (0.041054)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 62.399; 29.4154 47.478; 33.0945 32.155; 29.8622 18.147; 20.486

(10, 10) 50 Error (Std) 0.24483 (0.025483) 0.24804 (0.026697) 0.25123 (0.029396) 0.25442 (0.028819)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 39.706; 17.1464 30.746; 19.5965 22.935; 18.4514 14.966; 14.3404

(10, 10) 80 Error (Std) 0.24172 (0.026975) 0.24592 (0.028477) 0.24985 (0.027322) 0.25288 (0.0296)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 61.146; 29.9166 45.144; 33.0221 28.472; 28.2134 17.95; 19.9879

For the application to sample data, LDA, 5-nearest neighbours and 3-nearest neigh-

bours were tested. For all scenarios, the sampling probabilities were kept equal sampling

either 5 initial observations from both the good prognosis and the bad prognosis groups or

10 initial observations from either. The maximum allowed number of sequential steps was

set at 50 and 80 respectively, and the values of ε tested were ε ∈ (0.15, 0.2, 0.25, 0.3).

To test each respective classifier’s predictive ability the remainder of the sample was used

as a testing set, comparing the predicted outcome to the clinical outcome. The sequential

procedure is repeated 1000 times and the level of significance is kept at α = 0.05. The

results for the LDA classifier are available in Table 2.5.1, the results for the 3-nearest

neighbour classifier are available in Table 2.5.2 and the results for the 5-nearest neighbour

classifier are available in Table 2.5.3.

The LDA classifier was trained on the 3 genes most highly correlated to the prognosis

variable. Similar to what was observed by Fu et al. (2005), as the minimum allowed

error ε decreases from 0.3 to 0.15 the average rate of misclassification decreases and

the minimum number and average number of sequential steps increases. This holds for

all tested combinations of the different initial sample sizes and the maximum allowed

number of sequential steps. For all tested scenarios the maximum number of sequential

steps allowed M was reached at least once. Increasing the number of observations in the
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2.5. MICROARRAY SAMPLE DATA APPLICATION

TABLE 2.5.2 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 3-nn classifier on the sample data. The

initial sample sizes are provided. α = 0.05 and the minimum, maximum, mean and stan-

dard deviation of the number of sequential steps required to train the classifier on the 5

genes most highly correlated to the prognosis variable is also provided (denoted Min, Max,

n̄ and Sd respectively).

Initial Maximum ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20
Sample Allowed

(5, 5) 50 Error (Std) 0.27078 (0.028696) 0.27594 (0.033705) 0.2786 (0.037529) 0.27915 (0.037641)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 41.428; 16.216 32.992; 19.774 25.794; 19.843 19.126; 17.6267

(5, 5) 80 Error (Std) 0.26728 (0.29908) 0.27129 (0.033772) 0.27503 (0.03662) 0.27865 (0.041416)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 63.303; 27.9452 48.792; 33.4317 36.047; 31.4503 21.581; 24.4526

(10, 10) 50 Error (Std) 0.26799 (0.028542) 0.27156 (0.030456) 0.27299 (0.03094) 0.27276 (0.032012)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 41.26; 16.305 34.326; 19.3775 25.053; 19.513 18.429; 17.1498

(10, 10) 80 Error (Std) 0.263 (0.027597) 0.26798 (0.029094) 0.27203 (0.030933) 0.27318 (0.030399)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 65.011; 28.1259 48.615; 33.3866 33.572; 30.4035 21.057; 23.1812

initial sample results in slightly lower average number of sequential steps as well as

slightly lower misclassification rates. Increasing the number of observations in the initial

sample does little, however, to change the standard deviation in the number of average

steps. This indicates that the distribution of the observed number of sequential steps

is shifted slightly. The classifier therefore seems to be better trained, which in general

should result in earlier stopping.

The 3-nearest neighbour classifier was trained on the 5 genes most highly correlated to

the prognosis variable. As the value of ε is decreased the average rate of misclassification

decreases for all scenarios tested. The results are not directly comparable to those obtained

from the LDA classifier as that particular classifier was trained on the 3 genes most highly

correlated with the prognosis variable. Increasing the number of observations in the initial

sample again leads to a minor reduction in the average misclassification rate and the

average number of sequential steps needed to train the classifier.
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2.5. MICROARRAY SAMPLE DATA APPLICATION

TABLE 2.5.3 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 5-nn classifier on the sample data. The

initial sample sizes are provided. α = 0.05 and the minimum, maximum, mean and stan-

dard deviation of the number of sequential steps required to train the classifier on the 3

genes most highly correlated to the prognosis variable is also provided (denoted Min, Max,

n̄ and Sd respectively).

Initial Maximum ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20
Sample Allowed

(5, 5) 50 Error (Std) 0.26499 (0.035146) 0.26984 (0.035986) 27.137 (0.038206) 0.27457 (0.040335)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 41.711; 15.9212 34.297; 19.2945 26.395; 19.5876 19.169; 17.5116

(5, 5) 80 Error (Std) 0.26146 (0.030778) 0.26456 (0.036375) 0.27366 (0.041771) 0.2749 (0.044655)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 62.567; 29.5083 50.842; 33.1719 31.633; 29.6903 22.45; 24.2241

(10, 10) 50 Error (Std) 0.26114 (0.027926) 0.26365 (0.028544) 0.26573 (0.031888) 0.27009 (0.033119)
Min; Max 8; 50 6; 50 5; 50 4; 50
n̄; Sd 41.395; 16.2267 33.375; 19.5803 24.379; 19.1291 16.937; 15.8617

(10, 10) 80 Error (Std) 0.25843 (0.027138) 0.26057 (0.029336) 0.26498 (0.031295) 0.26885 (0.033495)
Min; Max 8; 80 6; 80 5; 80 4; 80
n̄; Sd 63.137; 29.109 49.277; 33.1269 32.988; 30.4162 20.722; 23.0017

The 5-nearest neighbour classifier was also trained on the 5 genes most highly corre-

lated to the prognosis variable. Similar to the results reported for the 3-nearest neighbour

classifier, decreasing the value of ε results in a decrease in the average rate of misclassi-

fication, while the average and minimum number of sequential steps needed to train the

classifier increases. The 5-nearest neighbour classifier, although being less localised than

the 3-nearest neighbour classifier, performs slightly better with lower average misclassifi-

cation rates and lower average values for the number of sequential steps required.

In all of the scenarios tested, the maximum allowed number of sequential steps was

reached. The same result was observed in all of the simulation studies. This indicates that

the sequential procedure did not train the classifiers quickly enough. Taking into account

that the procedure was specifically developed to minimise the number of observations

needed for a sample to train a classifier that yields an acceptably low rate of misclas-

sification, it is quite worrying that there are only a few simulated scenarios where the

maximum was not reached. This leads to the question of what would happen if the max-

imum were to be increased. Increasing the maximum number of sequential steps allowed

to 300 proved ineffective as the classifier was still not successfully trained. Increasing the

maximum number of allowed sequential steps surely is one possible solution to ensure

that the maximum is not reached, but it seems inconsistent with the goal of minimising

the amount of data needed.
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

2.6 Sequential procedure shortcomings and sugges-

tions

In the results presented in the simulation study, it was evident that the sequential pro-

cedure reached the maximum allowed number of sequential steps M at least once for the

majority of the parameter combinations tested. This occurrence was not limited to any

particular classifier either. Furthermore, for the QDA simulation study it was noted that

the observed average misclassification rates for some of the combinations of (∆, ε, σ2
2)

were lower than the Bayes error. This should not be case, as the Bayes error is the

theoretical minimum achievable rate of error. Additionally, the classifier obtained from

the sequential procedure often yields a rate of misclassification lower than the specified

maximum rate of error ε. This results in an overtrained classifier. These shortcomings

will be discussed in the following sub-sections.

2.6.1 Artificial upper bound

While testing the sequential procedure’s performance using LDA as the classifier, it was

noted that the procedure reached the maximum selected number of sequential steps al-

lowed, M , at least once for most of the combinations of (∆, ε). This result is repeated

for all the other classifiers tested. Changing the input variance of one of the samples had

no effect on this, and changing the sampling probabilities also did not remedy this. When

the maximum number of sequential steps allowed, M , was increased to 300 the maximum

was still reached at least once for more than 80% of the scenarios tested. In many of the

different scenarios tested, high average and low standard deviation values for the observed

number of sequential steps were observed, indicating that most of the actual contributing

results are very near to the average. Increasing the maximum number of sequential steps

allowed, M , from 90 to 300 for the LDA classifier decreased the average misclassification

rate for all tested combinations of (∆, ε). However this also brought to light that the

sequential procedure reaches M quite often. This leads to the question of whether the

sequential procedure actually successfully trained the classifier by the time N = M or

whether the sequential procedure was stopped because the maximum M was reached.

Suppose the rule to stop the sequential procedure if N = M were not applicable.

If the classifier is not successfully trained, none of the other stopping criteria would be

met and the procedure would continue training the classifier, sampling more and more

observations. This particular scenario was tested as well. After more than a week of

processing the commands on the server, the procedure was manually forced stop. If the

procedure were allowed to continue like this the number of steps required before the

stopping criteria is met would increase drastically, possibly resulting in an infinite loop.
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

Arbitrarily choosing a stopping point M and then using those unsuccessfully trained

classifiers (obtained classifier value when N = M) to estimate classifier performance or

report the average number of steps needed to "train" the classifier seems flawed, as the

classifiers obtained in such a manner to do not conform to the theoretical requirements

derived for the procedure. It is therefore necessary to test how many times the classifier

is successfully trained.

To test how many of the 1000 iterations stopped due to the classifier being successfully

trained, another series of 1000 simulations were conducted where the classifier would only

be recorded if:

• The stopping criteria for κ̂ etc. were met and N 6= M .

• The stopping criteria for κ̂ etc. were met and N = M .

where κ̂ is defined as on page 11.

Those scenarios where the sequential procedure was stopped purely because N = M

were not taken into account.
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

TABLE 2.6.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 300 (i.e. M = 300). The minimum, maximum, mean and standard deviation

of the number of sequential steps required to train the classifier is also provided (denoted

Min, Max, n̄ and Sd respectively). For this particular series of simulations the number of

sequential steps was not recorded in the case where the stopping criteria had not been met

but N = M . Also provided is the number of times the classifier was successfully trained,

denoted by Classifiers Correctly Trained.

∆ Bayes ε = 0.05 ε = 0.10 ε = 0.20
error

1 0.30854 Error (Std) C lassifiers 0.3336 (.) 0.33412 (0.040835) 0.32725 (0.031165)
Min; Max Correctly 23; 23 1 11; 282 30 6; 300 493
n̄; Sd Trained 23; . 21.8333; 49.2244 80.4625; 91.3745

1.3 0.25785 Error (Std) C lassifiers 0.31268 (0.050675) 0.28119 (0.031684) 0.27505 (0.030343)
Min; Max Correctly 21; 25 4 11; 227 95 6; 300 784
n̄; Sd Trained 23; 1.633 25.3263; 43.0337 80.3699; 88.4056

1.5 0.22663 Error (Std) C lassifiers 0.25832 (0.023908) 0.25557 (0.04693) 0.25024 (0.04034)
Min; Max Correctly 21; 28 6 11; 296 124 6; 297 914
n̄; Sd Trained 23.8333; 2.4833 48.9597; 71.3845 67.5142; 78.8897

2 0.15866 Error (Std) C lassifiers 0.18279 (0.03293) 0.18313 (0.044645) 0.1884 (0.04551)
Min; Max Correctly 21; 42 28 11; 297 408 6; 294 995
n̄; Sd Trained 25.0357; 4.9627 68.9559; 84.7527 31.9759; 43.9518

2.3 0.12507 Error (Std) C lassifiers 0.15815 (0.052234) 0.14816 (0.038196) 0.16371 (0.056179)
Min; Max Correctly 21; 274 82 11; 300 666 6; 206 1000
n̄; Sd Trained 34.4024; 39.4032 72.1351; 82.8633 21.831; 26.6442

2.5 0.10565 Error (Std) C lassifiers 0.13359 (0.036073) 0.13181 (0.04461) 0.14407 (0.05527)
Min; Max Correctly 21; 281 149 11; 297 827 6; 164 1000
n̄; Sd Trained 44.6242; 53.8841 67.3628; 77.0527 16.473; 18.8261

3 0.06681 Error (Std) C lassifiers 0.09137 (0.045484) 0.0949 (0.050693) 0.11365 (0.068465)
Min; Max Correctly 21; 297 392 11; 299 986 6; 66 1000
n̄; Sd Trained 79.9362; 83.0275 46.2181; 54.7282 12.607; 7.6007

4 0.02275 Error (Std) C lassifiers 0.042 (0.037184) 0.0566 (0.057581) 0.06785 (0.07258)
Min; Max Correctly 21; 296 971 11; 180 1000 6; 49 1000
n̄; Sd Trained 65.9722; 58.72 24.767; 17.939 11.915; 3.7552

Provided in Table 2.6.1 is the number of times the classifier was successfully trained

(denoted classifiers correctly trained). Note that for ε = 0.05 and ∆ ∈ {1, 1.3, 1.5, 2, 2.3,

2.5} the classifier was successfully trained in less than 15% of the cases, and for ε = 0.05

and ∆ = 1 the classifier was successfully trained only once. This corresponds to a correct

result in only 0.1% of the repetitions.

In calculating the average number of sequential steps, Fu et al. (2005) seem to have

taken those cases into account where the classifier was not successfully trained butN = M .

This seems flawed as the classifier has not been trained to such an extent to ensure that,

with a probability of at least 100 (1− α) %, the probability of the next observation being

misclassified is smaller or equal to ε. For all purposes those trained classifiers should not

be used as enough evidence has not yet been obtained to show that the classifiers should

perform adequately.
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

In those cases where the Bayes error is larger than ε the sequential procedure often

fails to correctly train the classifier. When ∆ = 1 the classifier is correctly trained at most

nearly 50% of the time (ε = 0.2). Only in those cases where ε is substantially larger than

the Bayes error is the classifier correctly trained every time. The sequential procedure

aims to derive a classifier that yields, with a high probability, an acceptably low rate

of misclassification. If the specified rate of misclassification is unfeasible, the sequential

procedure is unable to account for this and continues ad infinitum. What is required,

however, is a sequential procedure that will train the classifier to obtain a feasible error

rate. The researcher need not specify the feasible error rate, merely how accurately he/she

wishes to estimate this error rate. This will cater specifically for those scenarios where

the rate of misclassification that the researcher wishes to achieve is lower than the Bayes

error.

2.6.2 Misclassification rates smaller than the Bayes error

The Bayes error is the theoretical minimum rate of achievable error for a given classi-

fier. To calculate the Bayes error, the underlying distribution of the data, the associated

parameters of these distributions, as well as the respective probabilities of sampling a

random observation from each respective distribution needs to be known, and in practice

this is often not the case. Therefore the Bayes error often needs to estimated rather than

calculated.

In the simulation studies, particularly in Table D.2.2, Table D.2.3 and Table D.2.6 the

observed misclassification rate was lower than the Bayes error. This was observed in the

specific scenarios where one of the two underlying distributions exhibited more variation.

The misclassification rate reported is the average of the observed misclassification rates

over all iterations for each of the variable combinations of (∆, ε) tested.

It is possible, due to sampling variation, that a calculated error rate for any particular

iteration is lower than the Bayes error. A level of confidence or a measure of the error

associated with the estimated error rate is required. This measure of error has been

defined in the literature as Monte Carlo Error (MCE).
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

LDA QDA

Figure 2.6.2: Observed Misclassification Rate for LDA and QDA classifiers. Results cor-
respond to Table D.1.2 and Table D.2.2.

A visual representation of the distribution of the observed classification error is pro-

vided in Figure 2.6.2. The images display the observed misclassification rates for Table

D.1.2 and Table D.2.2 respectively, for ∆ = 1 and ε = 0.05. In both scenarios, data

was generated from a N (0, 1) and a N (1, 3) distribution. Although some of the observed

misclassification rates for the LDA classifier is smaller than the Bayes error, the majority

of the observations contributing to the average rate of observed misclassification are larger

than the Bayes error, resulting in the reported value being larger than the Bayes error.

For the QDA classifier however, the majority of the contributing observations are

smaller than the Bayes error. It is interesting to note how skewed both of the distributions

are. Furthermore, it is also important to take into account that both sets of results were

obtained from simulations where the maximum acceptable rate of error was unfeasibly low

(i.e. smaller than the Bayes error). Consequently the classifiers and all parameters used

in calculating the Bayes error are incomplete and the classifiers have not been successfully

trained to ensure, with a high probability, a suffi ciently low probability of misclassification.

Provided in Figure 2.6.3 are the distributions of the observed misclassification rate if

the maximum number of allowed sequential steps in training both the LDA and the QDA

classifier (for a N(0, 1) distribution and a N(1, 3) distribution, ε = 0.05 and α = 0.05) is

increased from M = 90 to M = 1000.

The distribution of the misclassification rates for M = 1000 is much more symmetric

than it is for M = 90. For the LDA classifier, however, the distribution is still slightly

skewed. Similar to Figure 2.6.2, the majority of the observations contributing to the LDA

distribution are larger than the Bayes error, resulting in the observed average misclas-

sification rate being larger than the Bayes error. For the QDA classifier, however, the
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2.6. SEQUENTIAL PROCEDURE SHORTCOMINGS AND SUGGESTIONS

LDA QDA

Figure 2.6.3: Observed Misclassification Rate while training the LDA and QDA classifier.
5 initial observations were generated from a N(0, 1) distribution and 5 observations were
generated from a N(1, 3) distribution, α = 0.05, ∆ = 0.05.

majority of contributing observations are smaller than the Bayes error. The distribution

is also centered around a value lower than the Bayes error. This is caused mainly by the

over- and under-estimation of the parameters (the mean and covariance matrices) that

are used when calculating λ̂. As these matrices differ from the actual population matrices

for the mean and covariance, their over- and under-estimation result in unexpectedly low

misclassification rates. For a fixed value of λ̂, a sample covariance matrix Σ2 that is larger

than the Σ̂2 used in calculating λ̂ for example results in a lower than expected probability

of misclassification. Since the classifier λ̂ that is used in the Bayes error calculation is the

λ̂ obtained from the sequential procedure, the small misclassification rates indicate that

the sample covariance and mean matrices are either too large or too small.

2.6.3 Overtrained classifier

In the results presented, the observed average rate of misclassification is often lower than

the specified level of acceptable error ε. This is mostly prevalent in the scenarios where

there is more separation between the underlying distributions (i.e. ∆ is large). In the

specific scenarios where a feasible acceptable rate of error is specified, i.e. the Bayes error

is smaller than ε, the classifier is trained to such an extent that the rate of misclassification

it obtains is smaller than ε. Therefore the classifier is performing better than required.

Usually this would not pose a problem, but in a sequential procedure this implies that

more observations were sampled than needed to obtain a particular level of accuracy,

and consequently the classifier is overtrained. The sequential procedure was proposed

to sample only the minimum number of observations required to obtain a classifier that
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2.7. CONCLUSION

would yield a small enough rate of misclassification, but unfortunately samples more

records than required and this would result in additional costs. Therefore the sequential

procedure does not perform according to it’s intended design.

2.7 Conclusion

In this chapter, a sequential procedure, developed to train a classifier that would yield,

with a high probability, an acceptably low rate of misclassification, was discussed. The

sequential procedure proposed by Fu et al. (2005) has been developed to sample the

minimum number of observations necessary to train a classifier to such an extent that

there is a probability of at least 100 (1− α) % that the probability of misclassifying the

next randomly sampled observation is at most ε. Therefore the sequential procedure

tries to adhere to a prespecified probability of misclassifying the next randomly sampled

observation, while still sampling only the minimum required number of observations.

The sequential procedure has multiple advantages: it evaluates the stopping criteria

after each iteration, thereby ensuring the procedure will not sample observations unnec-

essarily once the stopping criteria have been met; it is not dependent on one method of

classification, but rather depends only on a series of binary input variables, i.e. variables

indicating whether a sampled observation was incorrectly (denoted 1) or correctly (de-

noted 0) classified; it recursively obtains a trained classifier that yields a specified rate of

misclassification with a high probability.

Unfortunately, the sequential procedure can not account for Bayes errors larger than

the prespecified maximum rate of allowable error ε. In these scenarios the sequential

procedure tries to train the classifier to obtain an unfeasibly low rate of misclassification.

Considering that the Bayes error is often not known, it is easy to specify a desired maxi-

mum level of acceptable error lower than the Bayes error. This results in the sequential

procedure continuing ad infinitum. Additionally, the sequential procedure occasionally

samples too many observations and trains the classifier to obtain an error level smaller

than the specified error level. Multiple cases were observed where the average observed

rate of misclassification is smaller than the prespecified acceptable level of error, ε. There-

fore the classifier is trained to obtain a level of error which is smaller than required or

specified.

The sequential procedure was proposed to aid in scenarios where data is not freely

available, possibly due to high costs (in gathering data or the cost of a misclassification) or

for some other reason, so that the classifier used could be trained with the least amount

of data to ensure, with a high enough probability of at least 100 (1− α) %, that after
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2.7. CONCLUSION

the classifier had been successfully trained the probability of the very next observation

sampled being incorrectly classified is acceptably low ε. As stated, the procedure can not

account for unfeasibly low levels of specified error and continues indefinitely. Rather than

trying to attain a specified rate of error, which could be impossibly low, the minimum

feasible rate of error should be pursued. Therefore, a sequential procedure that ultimately

yields a classifier that has been trained to accurately estimate the minimum feasible rate

of error is proposed. This sequential procedure will not continue indefinitely, provided an

acceptable level of accuracy is specified, and will always yield a classifier that estimates

the minimum rate of error - the Bayes error.
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Chapter 3

A sequential procedure for estimating
the Bayes error at a predetermined
level of accuracy

3.1 Introduction

In this chapter a sequential procedure, that ultimately samples the minimum number of

observations required to derive a classifier that estimates the Bayes error at a predeter-

mined level, is proposed and will be discussed. Fu et al. (2005) proposed a sequential

method that samples the minimum number of observations required to train a classifier

that yields prespecified rate of misclassification with a high probability. The sequential

procedure, unfortunately, is unable to account for Bayes errors larger than the acceptable

rate of error and continues ad infinitum. A sequential procedure that yields a classifier

that can, as accurately as deemed necessary, estimate the Bayes error is proposed. Using

the same approach of sequentially training a classifier, randomly sampling an observation

and classifying the observation accordingly, a series of binary observations is obtained.

These binary observations are used to obtain the sample rate of misclassification, which is

an estimate of the Bayes error. Therefore, a confidence interval for the proportion of mis-

classified observations can be derived, and a sequential procedure is proposed that utilises

these confidence intervals to accurately estimate the Bayes error within a halfwidth h.

A series of simulations were run to observe the sequential procedure’s performance

using LDA as the classification method. Furthermore, the sequential procedure is also

tested on the microarray dataset. A general conclusion is provided.

3.2 Obtaining input observations

In practice it is nearly never an easy task to estimate or calculate the Bayes error. If

the underlying distribution of the data is not available this task could prove very time

consuming and cost-ineffective. The sequential procedure discussed by Fu et al. (2005),
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3.2. OBTAINING INPUT OBSERVATIONS

unfortunately, can not take into account cases where the specified level of acceptable error,

ε, is smaller than the Bayes error.

As shown in the results obtained, the sequential procedure proposed by Fu et al.

(2005) frequently reaches the prespecified maximum. Also, in simulations where the

allowed maximum number of sequential steps had been removed the procedure continued

ad infinitum. In the specific scenarios where the maximum is reached, the classifier

obtained from the sequential procedure will, in most cases, not have been trained to such

an extent to ensure, with a probability of at least 100 (1− α) %, that the probability of

the next observation being misclassified is less than or equal to ε. No additional evidence

supports the selected maximum and it could be some arbitrarily chosen number. Allowing

the sequential procedure to continue ad infinitum, is not practical and is of no meaningful

value.

An alternative approach to use would be to sample observations and train the classi-

fier until the observed rate of misclassification converges towards a feasible value. This

suggests an alternative approach to train the classifier. Each respective method of clas-

sification yields it’s own Bayes error, provided the underlying distribution(s) and related

parameters are kept constant. Since the Bayes error is the minimum feasible error, an

optimally trained classifier will yield a rate of misclassification p̂ that estimates the Bayes

error. Therefore, the proposed approach is to obtain a classifier that yields a rate of

misclassification comparable to the Bayes error.

As the Bayes error is typically not known, the ideal would be for the sequential proce-

dure to continue until the rate of misclassification stabilises within a certain range of the

Bayes error, or an accurate estimate thereof. Therefore the classifier would be trained un-

til, with a probability of at least 100 (1− α) %, the rate of misclassification obtained from

the classifier is within h of the Bayes error, i.e. P (MR ∈ [BE − h ;BE + h]) ≥ 1 − α,
with BE denoting the Bayes error andMR denoting the misclassification rate. In essence

this involves finding a fixed width confidence interval for a proportion p.

Let a correct classification be denoted byQi = 0 and an incorrect classification denoted

by Qi = 1. Therefore a series of binary observations are obtained from the sequential

procedure, irrespective of which classification method is used. The ratio of incorrect

classifications to all records classified, p̂ = ΣQi
n
, is an estimate of the global rate of

misclassification - the Bayes error (π). The recursive process of sampling observations

and training a classifier that yields, with a high probability, a rate of misclassification

near the Bayes error can be thought of as a "Wrapping" Procedure.
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3.3. A SEQUENTIAL PROCEDURE FOR THE ESTIMATION OF A PROPORTION

The Wrapping Procedure can be summarised as follows:

1. Obtain an initial sample of data.

2. Train the classifier with all available data.

3. Sample one or more additional observations.

4. Classify the observation(s) sampled in step 3 accordingly using the trained classifier.

Denote a correct classification with a 0 and an incorrect classification with a 1.

5. Calculate p̂ and evaluate the respective stopping criteria.

6. If the stopping criteria are not satisfied, return to step 2. Otherwise exit the proce-

dure.

The Wrapping Procedure is independent of the method of classification used and

produces a list of Bernoulli observations which can then be used to obtain an estimate

for π within a particular accuracy level.

3.3 A sequential procedure for the estimation of a

proportion

The sequential procedure proposed derives a confidence interval for the proportion of ob-

servations misclassified, as the proportion of observations misclassified is an estimate of

the Bayes error. Deriving a confidence interval for a proportion p from a series of indepen-

dent and identically distributed Bernoulli observations is one of the best studied problems

in statistics. Many fixed-sample-size and variable-sample-size methods have already been

developed and are available. Training a classifier to estimate the Bayes error at a certain

level of accuracy, however, depends on a fixed-width confidence interval. A fixed width

confidence interval will enable the researcher to specify to what level of accuracy he/she

would like the Bayes error to be estimated, while using the minimum number of required

observations. In Frey (2010) various methods for obtaining a fixed-width confidence inter-

val for a proportion for sequential procedures are discussed. Specifics of all the methods

discussed and specifics of analyses done will not be provided in this dissertation. However,

an outline of the method proposed will be provided in what follows as it is the method

employed in the proposed sequential approach.

In the derivation of the fixed-width confidence interval estimator, Frey (2010) notes

that "fixed-sample-size methods" for obtaining a confidence interval for a proportion p
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3.3. A SEQUENTIAL PROCEDURE FOR THE ESTIMATION OF A PROPORTION

often "tend to be narrower when p is near 0 or 1 than when p is near 1
2
", stating that

these methods require too many observations to estimate p at a predetermined level.

Therefore, he proposed a sequential procedure that would ensure a coverage probability

of at least 100 (1− α) % for p. Deriving the confidence interval, the author defined h to

be the halfwidth of the confidence interval and the confidence interval is centered at p̂

as it is the maximum likelihood estimate of p. If all values outside the interval [0, 1] are

excluded, a confidence interval for π is provided by [max (0, p̂− h) ,min (1, p̂+ h)]. With

the confidence interval defined, a stopping rule needs to be derived.

The first stopping rule considered in Frey (2010) is based on the Wald’s confidence

interval. Assume X is a binomial random variable denoting the number of successes

observed in n independent trails and p̂ then denotes the probability to observe a suc-

cess. Therefore X ∼ Bin (n, p̂) . From the central limit theorem it is known that

X ∼ N (np̂, np̂ (1− p̂)) and p = X
n
∼ N

(
p̂, p̂(1−p̂)

n

)
provided n is large enough (Steyn et

al., 1982). Therefore

Z =
p− p̂√
p̂(1−p̂)
n

and Z ∼· N(0, 1) provided n is large enough.

The 100 (1− α) %Wald’s confidence interval for a proportion p is p̂±zα/2
√
p̂ (1− p̂) /n,

zα/2 being the upper α/2th percentile of a Standard Gaussian distribution, and p̂ = x
n

with x being the number of successes observed. In this particular scenario a success is

defined as a misclassification, i.e. Qi = 1. In the specific cases where x ∈ {0, n} the
confidence interval always has a length of 0 as

√
p̂ (1− p̂) /n = 0. This is addressed

by replacing the estimate of the variance with a non-zero constant p̃a (1− p̃a) /n, where
p̃a ≡ (x+ a) (n+ 2a), effectively pulling p̂ towards 0.5. For a chosen interval half-width

of h and a > 0, the sequential procedure is stopped if the adapted Wald’s confidence

interval p̂± zα/2
√
p̃a (1− p̃a) /n in its entirety is contained in the interval p̂± h. This is

analogous to stopping the sequential procedure when p̃a (1− p̃a) /n ≤
(
h/zα/2

)2
.

If a = 0 the resulting confidence interval is just the nominal Wald’s confidence interval

for a proportion. Khan (1969) (as cited in Frey, 2010) concluded that stopping rules based

on estimates of the Fisher Information worked well when fixed-width confidence intervals

were required in continuous settings with nuisance parameters. In this particular scenario

the Fisher Information is n/ ((1− p) p), for which an estimate is (p̃a (1− p̃a) /n)−1. The

stopping criteria for the sequential procedure proposed in this dissertation is based on this

adjusted version of the fixed-sample size confidence interval. If this interval is entirely

contained in [p̂− h; p̂+ h], where h is the halfwidth of the interval around the Bayes

error, the sequential procedure is stopped.
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3.3. A SEQUENTIAL PROCEDURE FOR THE ESTIMATION OF A PROPORTION

Some of the other stopping rules tested by Frey (2010) were based on :

• The Wilson confidence interval for a proportion p

p̂+ z2
α/2/ (2n)

1 + z2
α/2/n

±
zα/2

√
p̂ (1− p̂) /n+ z2

α/2/ (4n2)

1 + z2
α/2/n

• The Clopper and Pearson confidence interval for a proportion p

For 0 < x < n

[pl, pu]

where
n∑
i=x

(
n
i

)
pil (1− pl)

n−i = α/2

x∑
i=0

(
n
i

)
piu (1− pu)n−i = α/2

For x = 0

[0, pu]

For x = n

[pl, 1]

Frey (2010) notes that the methods used for developing the stopping rules have flaws

as fixed-sample size methods. While the Wald’s confidence interval actually has a con-

fidence coeffi cient of 0, the Clopper-Pearson interval’s true confidence coeffi cient often

exceeds the nominal level. Consequently, many refined methods have been developed

that have a less pronounced difference between the actual confidence coeffi cient and the

nominal confidence coeffi cient. Since a sequential method negates the greater control of

the confidence coeffi cient, the author chose his specified rules.

To determine which of the sequential confidence interval methods yield the best results,

Frey (2010) conducted multiple studies testing different values for h and the coverage

probability 100 (1− α) %, calculating the mean average run length, the mean coverage

probability, as well as the restricted mean coverage probability.

Frey (2010) notes that the width of the confidence intervals are always 2h, except

when p̂ tends towards either 0 or 1, and consequently the expected length of the confi-

dence intervals is nearly equal for all methods. An alternative measure to consider when

gauging performance of a particular method is Average Run Length, and this is defined

57

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.3. A SEQUENTIAL PROCEDURE FOR THE ESTIMATION OF A PROPORTION

as ARL (p) =
∑k

i=1 H (xi, ni) p
xi (1− p)ni−xi ni. Integrating this function with regards

to p from 0 to 1 yields the average of ARL (p) over all values of p, i.e.
∫ 1

0
ARL (p) dp.

The mean coverage probability is defined as
∫ 1

0
T (p;α) dp and is the average T (p; α)

over all values of p. Frey (2010) notes that the mean coverage probability is close to 1

when p ∈ [0, h] and p ∈ [1− h, 1]. Due to this, the restricted mean coverage probability,

defined as (1− 2h)−1 ∫ 1−h
h

T (p;α) dp, is also considered. The integrals are approximated

using numerical integration. Frey (2010) found that, while no approach proved to be

consistently better than any other over every value of h and a tested, the adapted Wald’s

confidence interval provided the most flexibility. Adjusting the value of a accordingly

always led to better results. Consequently this is the sequential confidence interval method

that will be used further, as it is intuitively simple to understand and implement.

Frey (2010) also noted that if an actual coverage probability of 100 (1− α) % is desired,

α should not be chosen equal to the desired value (e.g. α = 0.05) as this would result

in a confidence coeffi cient lower than 1− α. Using the path-counting ideas published by
Girshik, Mosteller and Savage (2006) and Schultz et al. (1973) as cited in Frey (2010),

based on the fact that the confidence coeffi cient of α usually decreases as α is increased,

Frey (2010) was able to search for a value of α that would yield a confidence coeffi cient

tending towards 1− α, however not being less than it. New values for a or α will not be
derived in this dissertation and therefore the values obtained in Frey (2010) were used.

The appropriate values for a and α are also provided for reference purposes in Table D.8.1

of Appendix D.

To derive the critical values, Frey (2010) defined (x1, n1) , ..., (xk, nk) as the stopping

points for a fixed α and a fixed stopping rule, H (x, n) (where n ≥ 1 and 0 ≤ x ≤ n) as the

number of ways that x successes can be obtained in n trials without reaching or equalling

a stopping point prior to the nth trial. Therefore, H (xi, ni) p
xi (1− p)ni−xi is the prob-

ability to end the procedure at the point (xi, ni), and
∑k

i=1H (xi, ni) p
xi (1− p)ni−xi =

1∀p ∈ [0, 1]. If the stopping point is (xi, ni), the confidence interval is provided by[
max

(
0, xi

ni
− h
)
, min

(
1, xi

ni
+ h
)]
, with the coverage probability for p defined as

T (p; α) ≡
k∑
i=1

H (xi, ni) p
xi (1− p)ni−xi I

(
|p− xi

ni
| ≤ h

)

where I (A) is an indicator function for the event A, and the confidence coeffi cient is

derived as CP (α) = infp∈[0,1] T (p;α).

As defined by Frey (2010), T (p;α) is a piecewise polynomial in p, with jumps at points

in the set C =
{
xi
ni
± h, i = 1, ..., k

}
∩ [0, 1] .

Frey (2010) used a two-step procedure to derive exact critical values. The first step

entails, for a fixed α, approximating CP (α) by obtaining the minimum value of T (p; α)
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3.4. PROPOSED SEQUENTIAL PROCEDURE FOR ESTIMATING THE BAYES
ERROR AT A PREDETERMINED LEVEL

over a set of values p = c± ε where c ∈ C and ε = 10−10. Using the bisection root-finding

algorithm, a value for α is obtained that ensures CP (α) tends towards 1−α while never
being less than it. The second step entails ensuring that T (p; α) is never less than 1−α
for the particular choice of α. This is done using a checking algorithm derived in Frey

(2010). The algorithm will not be provided in this dissertation.

3.4 Proposed sequential procedure for estimating the

Bayes error at a predetermined level

Using this adaptedWald’s confidence interval enables the researcher to sequentially sample

and train the classifier until the misclassification rate obtained is within h of the Bayes

error with a certain probability. Rather than training a classifier to attain a certain

misclassification rate, a classifier should be trained to attain the minimum feasible error

rate. This will ensure that the classifier is always predicting as well as possible, and the

sequential procedure will not continue ad infinitum. Using the adapted Wald’s confidence

interval derived by Frey (2010), a sequential procedure is proposed where the observed

rate of misclassification converges to within h of the Bayes error. The researcher therefore

has the ability to specify to what level he/she wishes to estimate the minimum feasible

error, i.e. the Bayes error.

A sequential procedure is proposed where the recursive sampling, training and clas-

sifying steps are continued until the observed rate of misclassification stabilises within

h of the Bayes error. The following algorithm can be used to determine the number of

observations needed:

1. Draw an initial random sample of size N0 and train the relevant classifier.

2. At the ith iteration sample an additional observation and classify the sampled ob-

servation accordingly.

3. If the complete adapted Wald’s confidence interval is contained in p̂±h the sequen-
tial procedure can be stopped, i.e. if p̂ ± zα/2

√
p̃a (1− p̃a) /n ∈ [p̂− h; p̂+ h] the

sequential procedure can be stopped. This is equivalent to stopping the procedure

if zα/2
√
p̃a (1− p̃a) /n ≤ h.

4. Otherwise retrain the classifier with all observations sampled thus far and thereafter

return to step 2 and continue.

Note that this is essentially the Wrapping Procedure previously discussed. Therefore

the proposed sequential approach is independent of the method of classification used and

only depends on a set of binary input observations.
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3.5. SIMULATION STUDY

Figure 3.1: Proposed Sequential Procedure Convergence for ∆ = 1.5, α = 0.05 and h =
0.1.

The convergence process of the adjustedWald’s interval towards the interval [p− h; p+ h]

is provided in Figure 3.1. The solid horisontal black line indicates the theoretical Bayes

error, with the two outermost spiked blue curves representing the upper and lower bounds

of the adapted Wald’s confidence interval, denoted by Interval Upper and Interval Lower

respectively. The sequential procedure continues until the two spiked red curves, denoted

Error Lower and Error Upper, completely contain the adaptedWald’s confidence interval’s

blue curves. The observed classifier error is denoted by the solid spiked green curve.

The primary advantage of this approach is that it enables the researcher to have

more control over the feasible rate of misclassification, at a predetermined level. The

classifier can be trained to within h of the minimum error rate obtainable, thereby lending

more credibility to an obtained classifier. The researcher therefore has control to decide

when the sequential procedure has to terminate, given their experimental specifications

or design.

3.5 Simulation study

A series of simulations were run to observe the proposed sequential procedure’s perfor-

mance by comparing the observed misclassification error of the trained classifier with the

theoretical error, i.e. the Bayes error. The results obtained are not directly comparable

to those in Table 2.3.1 as the criteria for stopping the sequential procedures are different,

and the method proposed by Fu et al. (2005) had an artificial upper bound imposed on
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3.5. SIMULATION STUDY

the number of observations available for sampling. It should still suffi ce, however, to show

how the proposed sequential procedure performs.

The sequential approach proposed by Fu et al. (2005) evaluates whether the proba-

bility of a misclassification is suffi ciently small, whereas the proposed approach evaluates

whether the adjusted confidence interval for the observed error rate is suffi ciently small.

It should still suffi ce however to show the benefits of the proposed sequential procedure.

The results of the simulations can be found in Tables 3.5.2 to Tables 3.5.4.

To ensure that the simulation environments were as similar as possible, the same

simulation design as employed in Chapter 2 was used. 5 observations were randomly

generated from a N (0, 1) distribution and 5 additional observations were randomly gen-

erated a N (∆, 1) distribution. Once a sampled observation had been classified accord-

ingly, the adapted Wald’s confidence interval was obtained and if the complete interval

was contained in [p̂− h; p̂+ h] the sequential procedure was stopped and the number of

sequential steps required was recorded. Simulations were run for h ∈ {0.1, 0.05, 0.01}
and α ∈ {0.01, 0.05, 0.1}, and the only classification method used was LDA. The results
obtained from LDA and LRIM should be comparable, and as the underlying data is gen-

erated from two distributions with equal variances the need to use QDA is negated. If a

very small value for h is chosen, the sequential procedure will most likely sample many

observations. KNN is not tested in this chapter as it would be very computationally

intensive to sort such large matrices for multiple iterations.
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3.5. SIMULATION STUDY

h = 0.10

h = 0.05

h = 0.01

Figure 3.5.1: Observed classifier error for various values of h and α = 0.05

A visual representation of the error rate observed in training the LDA classifier is

provided in Figure 3.5.1. The observed classifier error is displayed against the total number

of observations classified. The graphs are displayed for 3 iterations of the sequential

procedure, for α = 0.05, ∆ = 1.3 and for h ∈ {0.1, 0.05, 0.01}. The solid horisontal line
denotes the theoretical Bayes error. As is evident in the graphs, there is a lot of initial

variation in the observed rate of misclassification, but as the number of sequential steps

increase (and the classifier is better trained) the rate of misclassification converges towards

the Bayes error. For a large value of h = 0.1 the sequential procedure is stopped before

100 observations are sampled, but as the value of h is decreased to h = 0.01 the number

of sequential steps required has increased to more than 6000. in all of these cases, though,

the classifier is successfully trained and estimates the Bayes error at a predetermined level.
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3.5. SIMULATION STUDY

TABLE 3.5.2 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from aN(∆, 1) distribution and α = 0.1. The minimum, maximum, mean and

standard deviation of the number of sequential steps required to train the classifier is also

provided (denoted Min, Max, n̄ and Sd respectively).

∆ Bayes error h = 0.1 h = 0.05 h = 0.01

1 0.3085 Error (Std) 0.3135 (0.009259669) 0.31021 (0.005192205) 0.30863 (0.004592991)
Min; Max 45; 80 195; 282 5677; 6071
n̄; Sd 70.302; 5.4826 254.73; 12.6219 5879.49; 62.822

1.3 0.2578 Error (Std) 0.26209 (0.008078367) 0.2595 (0.004834442) 0.25811 (0.004376857)
Min; Max 34; 78 163; 274 5016; 5495
n̄; Sd 65.184; 6.86887 230.503; 16.1511 5280.47; 79.022

1.5 0.2266 Error (Std) 0.23075 (0.006569723) 0.22817 (0.00454338) 0.22666 (0.004228055)
Min; Max 30; 77 133; 254 4439; 5096
n̄; Sd 61.194; 7.21793 212.825; 17.371 4840.79; 86.876

2 0.1587 Error (Std) 0.16239 (0.006593837) 0.15984 (0.004088071) 0.15871 (0.003642087)
Min; Max 30; 71 100; 216 3319; 4114
n̄; Sd 52.038; 7.28626 169.932; 19.6716 3698.84; 110.875

2.3 0.1251 Error (Std) 0.12846 (0.005875874) 0.12649 (0.003868138) 0.12512 (0.00331319)
Min; Max 30; 68 71; 197 2489; 3512
n̄; Sd 47.273; 7.09809 146.095; 20.5516 3052.72; 123.276

2.5 0.1056 Error (Std) 0.10906 (0.005922502) 0.10689 (0.00364893) 0.10601 (0.003167984)
Min; Max 30; 64 71; 186 2221; 3049
n̄; Sd 44.246; 7.05445 132.634; 19.7482 2652.39; 120.216

3 0.0668 Error (Std) 0.06954 (0.004779777) 0.06792 (0.002998095) 0.06681 (0.002481202)
Min; Max 30; 59 63; 157 1246; 2247
n̄; Sd 39.116; 5.65991 104.686; 16.7073 1805.66; 138.479

4 0.0228 Error (Std) 0.02426 (0.002619354) 0.02346 (0.001840469) 0.022809 (0.00152069)
Min; Max 30; 48 63; 118 512; 1162
n̄; Sd 33.037; 3.3134 76.099; 9.726 846.005; 102.639

For h = 0.1 in Table 3.5.2, the maximum number of sequential steps previously im-

posed (M = 90) is not exceeded once, yet the classifier is successfully trained for all 1000

iterations. The average number of sequential steps required to successfully train the clas-

sifier decreases from 70.302 for ∆ = 1 to less than half of that (33.037) for ∆ = 4. The

average rate of misclassification is fractionally higher than the Bayes error, never being

less than it. The standard deviation of the rate of misclassification decreases from 0.0092

for ∆ = 1 to 0.0026 for ∆ = 4, and are significantly lower than those observed in the

initial simulation study using the method proposed by Fu et al. (2005), indicating that

the observed rates of misclassification display much less variance.

For h = 0.05 the maximum number of sequential steps previously imposed (M = 90) is

exceeded at least once for all ∆, and is exceeded in all iterations for ∆ ≤ 2. For h = 0.01
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3.5. SIMULATION STUDY

the maximum number of sequential steps previously imposed (M = 90) is exceeded in all

iterations for all values of ∆ tested. In all scenarios the average rate of misclassification

is near the Bayes error, and as h decreases the standard deviation in the rate of misclas-

sification decreases. Additionally, as h decreases from 0.1 to 0.01 the average number

of sequential steps required to successfully train the classifier increases, with the most

significant increase evident for ∆ = 1.

In all of the scenarios tested, the proposed sequential procedure successfully trained

the classifier to yield, with a high probability, a rate of misclassification within h of the

Bayes error. The maximum number of sequential steps required to successfully train the

classifier was 6071 and was observed for ∆ = 1 and h = 0.01. Therefore the sequential

procedure required at most 6071 observations to ensure, with a probability of at least

90%, that the trained classifier will yield a misclassification rate within only 0.01 of the

Bayes error, and on average only about 5880 observations were needed.
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3.5. SIMULATION STUDY

TABLE 3.5.3 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from aN(∆, 1) distribution and α = 0.05. The minimum, maximum, mean and

standard deviation of the number of sequential steps required to train the classifier is also

provided (denoted Min, Max, n̄ and Sd respectively).

∆ Bayes error h = 0.1 h = 0.05 h = 0.01

1 0.3085 Error (Std) 0.31251 (0.007410005) 0.30952 (0.004871182) 0.30865 (0.004613307)
Min; Max 68; 111 307; 392 8067; 8514
n̄; Sd 96.818; 6.67663 354.477; 14.0576 8297.83; 76.344

1.3 0.2578 Error (Std) 0.26154 (0.00698033) 0.25867 (0.004668742) 0.25795 (0.004299132)
Min; Max 41; 108 247; 373 7135; 7728
n̄; Sd 88.796; 8.37248 321.256; 17.547 7452.12; 97.559

1.5 0.2266 Error (Std) 0.22966 (0.006291187) 0.22767 (0.004460538) 0.22669 (0.004227758)
Min; Max 45; 106 235; 351 6463; 7157
n̄; Sd 83.048; 9.50316 296.959; 20.2312 6830.21; 107.814

2 0.1587 Error (Std) 0.16159 (0.0056926) 0.15974 (0.00397432) 0.15881 (0.003733498)
Min; Max 41; 95 152; 301 4763; 5592
n̄; Sd 69.544; 9.40045 236.982; 22.5843 5227.51; 132.366

2.3 0.1251 Error (Std) 0.12786 (0.005471891) 0.1261 (0.003517343) 0.12521 (0.00323402)
Min; Max 37; 87 143; 273 3894; 4663
n̄; Sd 62.197; 9.22894 205.718; 22.9336 4306.72; 140.696

2.5 0.1056 Error (Std) 0.10832 (0.004958729) 0.10654 (0.003442556) 0.10563 (0.002998168)
Min; Max 37; 81 117; 256 3161; 4184
n̄; Sd 57.992; 8.88566 186.194; 22.203 3743.74; 154.259

3 0.0668 Error (Std) 0.06908 (0.004303877) 0.06766 (0.002716346) 0.06681 (0.002484673)
Min; Max 37; 76 91; 217 2001; 3064
n̄; Sd 49.609; 7.45182 147.322; 19.4157 2541.23; 154.344

4 0.0228 Error (Std) 0.02416 (0.002407678) 0.02336 (0.001695299) 0.02286 (0.001523874)
Min; Max 37; 58 91; 152 747; 1535
n̄; Sd 41.021; 4.21762 108.245; 11.8624 1155.86; 126.71

Changing the level of significance from α = 0.1 to α = 0.05, as provided in Table

3.5.3, has resulted in an increase in the average number of sequential steps required to

successfully train the classifier. The average observed rate of misclassification is slightly

lower for α = 0.05 than for α = 0.1 as the classifier is trained to estimate the Bayes error

better. The standard deviation of the observed rate of misclassification is also slightly

lower than it is for α = 0.1.

For h = 0.1 the maximum number of sequential steps previously imposed (M = 90) is

not exceeded once for ∆ ≥ 2.3, yet the classifier is trained successfully for all 1000 itera-

tions. The average number of sequential steps required to successfully train the classifier

decreases from 96.818 for ∆ = 1 to 41.021 for ∆ = 4. The average rate of misclassification
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3.5. SIMULATION STUDY

is fractionally higher than the Bayes error, albeit lower than the misclassification rate ob-

served for α = 0.1. The standard deviation of the rate of misclassification decreases from

0.0074 for ∆ = 1 to 0.0023 for ∆ = 4.

For h = 0.05 the maximum number of sequential steps previously imposed (M = 90)

is exceeded in all iterations for all ∆ tested. For h = 0.01 the maximum number of

sequential steps previously imposed (M = 90) is exceeded in all iterations for all values

of ∆ tested. In all scenarios the average rate of misclassification is again near the Bayes

error, and as h decreases the standard deviation in the rate of misclassification decreases.

Additionally, as h decreases from 0.1 to 0.01 the average number of sequential steps

required to successfully train the classifier increases, with the most significant increase

evident for ∆ = 1.

In all of the scenarios tested, the proposed sequential procedure successfully trained

the classifier to yield, with a high probability, a rate of misclassification within h of the

Bayes error. The maximum number of sequential steps required to successfully train the

classifier was 8514 and was observed for ∆ = 1 and h = 0.01. Therefore the sequential

procedure required at most 8514 observations to ensure, with a probability of at least

95%, that the trained classifier will yield a misclassification rate within only 0.01 of the

Bayes error, and on average only about 8298 observations were needed.
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3.5. SIMULATION STUDY

TABLE 3.5.4 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from aN(∆, 1) distribution and α = 0.01. The minimum, maximum, mean and

standard deviation of the number of sequential steps required to train the classifier is also

provided (denoted Min, Max, n̄ and Sd respectively).

∆ Bayes error h = 0.1 h = 0.05 h = 0.01

1 0.3085 Error (Std) 0.31125 (0.005851223) 0.30916 (0.0046575) 0.3087 (0.004685672)
Min; Max 122; 179 492; 646 13954; 14604
n̄; Sd 161.021; 8.6423 602.282; 18.5281 14288.45; 97.1696

1.3 0.2578 Error (Std) 0.26004 (0.00532608) 0.25873 (0.004457055) 0.25805 (0.004212218)
Min; Max 105; 175 456; 609 12329; 13209
n̄; Sd 147.58; 10.8953 544.552; 23.6328 12821.81; 124.198

1.5 0.2266 Error (Std) 0.22867 (0.004922768) 0.22721 (0.004310056) 0.22665 (0.004269492)
Min; Max 82; 169 421; 577 11344; 12118
n̄; Sd 138.121; 11.3515 502.668; 25.0011 11745.68; 135.154

2 0.1587 Error (Std) 0.16046 (0.004505461) 0.15937 (0.003687151) 0.15873 (0.003740153)
Min; Max 71; 147 286; 487 8185; 9451
n̄; Sd 113.804; 12.3818 397.828; 30.5143 8985.55; 174.79

2.3 0.1251 Error (Std) 0.127 (0.004437459) 0.12555 (0.003460164) 0.1252 (0.00330591)
Min; Max 58; 134 224; 435 6804; 7921
n̄; Sd 101.765; 12.6856 341.235; 32.0364 7383.71; 183.92

2.5 0.1056 Error (Std) 0.10725 (0.003938885) 0.10615 (0.003140704) 0.10579 (0.003090732)
Min; Max 63; 129 190; 384 5692; 7053
n̄; Sd 94.909; 11.5608 306.228; 31.0325 6402.76; 206.229

3 0.0668 Error (Std) 0.06822 (0.003246723) 0.0673 (0.002588731) 0.06685 (0.002584759)
Min; Max 58; 116 170; 332 3583; 4887
n̄; Sd 80.664; 10.2337 237.479; 27.5531 4332.95; 206.855

4 0.0228 Error (Std) 0.02358 (0.001939936) 0.02312 (0.001592048) 0.022905 (0.001521382)
Min; Max 58; 89 138; 229 1317; 2433
n̄; Sd 65.255; 5.8563 168.922; 16.243 1917.24; 174.239

Changing the level of significance from α = 0.05 to α = 0.01, as provided in Table

3.5.4, has resulted in an increase in the average number of sequential steps required to

successfully train the classifier, and for the specific scenarios where there is little separation

between the underlying distributions the increases are rather significant. The average

observed rate of misclassification is generally only slightly lower for α = 0.01 than for

α = 0.05 as the classifier is trained to estimate the Bayes error better. The standard

deviation of the observed rate of misclassification is also slightly lower than it is for

α = 0.1.

For h = 0.1 the maximum number of sequential steps previously imposed (M = 90)

is not exceeded once for ∆ = 4, but the maximum is exceeded at least once for all other

values of ∆ tested. The average number of sequential steps required to successfully train
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3.6. MICROARRAY SAMPLE DATA APPLICATION

the classifier decreases from 161.021 for ∆ = 1 to 65.255 for ∆ = 4. The standard

deviation of the rate of misclassification decreases from 0.0058 for ∆ = 1 to 0.0019 for

∆ = 4.

For h = 0.05 the maximum number of sequential steps previously imposed (M = 90)

is exceeded in all iterations for all ∆ tested. For h = 0.01 the maximum number of

sequential steps previously imposed (M = 90) is exceeded in all iterations for all values

of ∆ tested. In all scenarios the average rate of misclassification is again near the Bayes

error, and as h decreases the standard deviation in the rate of misclassification decreases.

Additionally, as h decreases from 0.1 to 0.01 the average number of sequential steps

required to successfully train the classifier increases, with the most significant increase

evident for ∆ = 1.

In all of the scenarios tested, the proposed sequential procedure successfully trained

the classifier to yield, with a high probability, a rate of misclassification within h of the

Bayes error. The average number of sequential steps required to successfully train the

classifier has increased significantly in some scenarios, while the corresponding average rate

of misclassification has decreased only slightly. Therefore, it seems unnecessary to use a

1% level of significance as the improvement in the rate of misclassification is somewhat

out-weighed by the increase in the required number of observations.

3.6 Microarray sample data application

The sequential procedure proposed is also applied to the Microarray dataset used by Van’t

Veer et al. (2002) and Van de Vijver et al. (2002). The proposed sequential approach will

truly train the classifier to be as feasibly accurate as the researcher decides. The classifier

will be trained sequentially until there is a high probability that the obtained classifier

yields an error rate that is within a predetermined level of the minimum possible error.

To test the proposed sequential procedure’s performance on the sample data, the

same study design as noted previously was used. The only classification method tested

was LDA and the results are provided in Table 3.6.1. The results presented in Table

3.6.1 are not directly comparable to those presented in Table 2.5.1 as the latter have an

artificially imposed upper limit on the allowable number of observations to be sampled

(M ∈ {50; 80}). The results presented in Table 3.6.1 should still display the proposed
procedure’s ability to optimally train the classifier using the least number of observations.

As there are no artificial upper limits imposed on the allowable number of sequential

steps, the procedure is allowed to train the classifier to estimate the Bayes error to within

a certain level.
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3.6. MICROARRAY SAMPLE DATA APPLICATION

TABLE 3.6.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier on the sample data. The

initial sample sizes are provided. α = 0.05 and the minimum, maximum, mean and stan-

dard deviation of the number of sequential steps required to train the LDA classifier on

the 3 genes most highly correlated to the prognosis variable is also provided (denoted Min,

Max, n̄ and Sd respectively).

Initial Sample Sizes h α = 0.1 α = 0.05 α = 0.01

(5, 5) 0.1 Error (Std) 0.23994 (0.02424) 0.23694 (0.02541) 0.23409 (0.03176)
Min; Max 30; 77 52; 104 105; 164
n̄; Sd 63.331; 6.0271 86.804; 7.1331 141.414; 8.7104

(5, 5) 0.05 Error (Std) 0.23502 (0.05111) 0.26718 (0.27862) . (.)
Min; Max 175; 244 267; 295 295; 295
n̄; Sd 219.452; 11.0024 294.424; 3.1327 295; 0

(5.5) 0.01 Error (Std) . (.) . (.) . (.)
Min; Max 295; 295 295; 295 295; 295
n̄; Sd 295; 0 295; 0 295; 0

(10.10) 0.1 Error (Std) 0.23842 (0.02422) 0.23688 (0.0272) 0.23427 (0.0332)
Min; Max 40; 78 52; 105 105; 164
n̄; Sd 62.743; 5.9115 85.772; 7.6089 140.482; 9.3986

(10.10) 0.05 Error (Std) 0.23618 (0.0558) 0.22959 (0.23132) . (.)
Min; Max 170; 250 247; 295 295; 295
n̄; Sd 218.457; 10.733 294.814; 2.33728 295; 0

(10.10) 0.01 Error (Std) . (.) . (.) . (.)
Min; Max 295; 295 295; 295 295; 295
n̄; Sd 295; 0 295; 0 295; 0

For the same h and α in Table 3.6.1, the average number of sequential steps required

to successfully train the classifier does not seem to be influenced by the number of obser-

vations initially sampled. A similar result was evident in Table 2.5.1. As h decreases, for

the same α, the average rate of misclassification also decreases - provided an iteration of

the simulation did not use all observations available to try and train the classifier.

In the specific example where the initial number of observations sampled are (5, 5)

and α = 0.05, the sequential procedure reached the maximum number of observations

available for training the classifier more than once during the simulation. Consequently -

the classifiers were not successfully trained in these cases. Additionally - no observations

remained to test against. It is also evident in scenarios where h = 0.01 that the sample was

too small to successfully train any classifiers, irrespective of the initial samples selected

or their respective sizes.
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Comparing the results in Table 3.6.1 to Table 2.5.1, the average rate of misclassification

is similar but the average number of sequential steps required to successfully train the

classifier is significantly larger. This is due to the fact that no artificial upper limits were

imposed on the allowable number of sampled observations.

In this particular scenario the proposed sequential procedure allows the researcher

to optimally train the classifier based on the researcher’s study design. It provides the

researcher with control over how accurately the classifier should estimate the minimum

feasible error. The proposed sequential procedure will also never continue to train the

classifier indefinitely to try and obtain an unfeasibly low level of error.

3.7 Conclusion

In this chapter, a sequential procedure, developed to sample the minimum number of

observations required to train a classifier that would yield an error rate comparable to the

Bayes error, was proposed and discussed. The sequential procedure proposed by Fu et al.

(2005) tries to train a classifier that yields a prespecified probability of misclassifying the

next randomly sampled observation, while sampling only the minimum required number

of observations. If the error rate specified is too low, as can easily be the case considering

that the Bayes error is often not known, the sequential procedure proposed by Fu et al.

(2005) will not stop. The sequential procedure proposed in this dissertation, however,

trains the classifier to such an extent that the error rate obtained is within h of the

minimum feasible error rate, i.e. the Bayes error, with a high probability. A series

of binary observations are returned from each iteration of the sequential procedure and

used to obtain the rate of misclassification - an estimate of the Bayes error. A variance

adjusted confidence interval for the population rate of misclassification is obtained, and

once the variance adjusted confidence interval is completely contained in a fixed width

confidence interval for the rate of misclassification, the sequential procedure is stopped.

Consequently, the researcher now has the ability to specify how accurate the classifier

should be and the sequential procedure proposed can not train the classifier to yield an

unfeasible rate of error.

Considering that the most frequently used level of significance is α = 0.05, it is inter-

esting to note, from the simulation study, that a mere 8300 observations are on average

necessary to train a LDA classifier that will yield a rate of misclassification within just

0.01 of the Bayes error. Usually researchers prefer to use as much data as they have

available (costs and time already taken into account) and implicitly trust that using most

of the data will yield the most accurate classifier - the researcher does not specify how

accurate the classifier should be. This result, however, shows that large amounts of data

70

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.7. CONCLUSION

are not necessarily needed to obtain an accurate classifier, and using less data to derive a

classifier that is as accurate as need be is of great value. Not only will using less data save

processing time, but it could have a significant impact on the cost of the study. Addition-

ally, if the cost of sampling more observations is not as important, the observations not

used in classifier training can be used as testing data. One of the most important features

of the proposed sequential procedure is the ability it provides to the researcher to specify

his/her own acceptable level of accuracy, and it removes the possibility of choosing an

unfeasibly low level of error.

The sequential procedure has multiple advantages: it evaluates the stopping criteria

after each iteration, thereby ensuring the procedure will not sample observations unnec-

essarily once the stopping criteria have been met; it is not dependent on one method

of classification, but rather depends only on a series of binary input variables, i.e. vari-

ables indicating whether a sampled observation was incorrectly (denoted 1) or correctly

(denoted 0) classified; it recursively obtains a trained classifier that yields an optimised

rate of misclassification with a high probability; it enables the researcher to dictate how

accurately the Bayes error should be estimated.

The sequential procedure proposed does, however, have a fewminor shortcomings. Due

to the recursive nature of the process, computationally intensive classification methods

like KNN take substantially longer to complete. This, however, is true of any sequential

procedure and does not only apply to the proposed sequential procedure. Another short-

coming of the procedure currently is that the critical values α and a need to be specified

beforehand. It is, however, possible to include the necessary steps to derive these values

beforehand. This would enable the researcher to only specify the values of h and α.

The sequential procedure was proposed to aid in scenarios where data is not freely

available, possibly due to high costs (in gathering data or the cost of a misclassification)

or for some other reason, so that the classifier could be trained with the least amount

of data to ensure, with a high enough probability of at least 100 (1− α) %, that after

the classifier had been successfully trained the probability of the very next observation

sampled being incorrectly classified is comparable to the minimum possible error, i.e. the

Bayes error. The proposed sequential procedure addresses the most serious shortcoming

of the sequential procedure proposed by Fu et al. (2005), and the proposed sequential

procedure will never attempt to train the classifier to obtain an unfeasible rate of error.

Therefore, the sequential procedure will always yield a result - provided h is large enough.
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Chapter 4

General conclusion

Determining the correct sample size is of utmost importance, as samples that are too

small will yield unreliable results. Samples that are very large will often yield parameters

or estimates that have greater predictive ability. In scenarios where there is no or little

cost involved, the researcher dictates to what level of accuracy he/she would like the

parameter to be estimated. Numerous fixed sample size methods have been developed,

like Stein’s two stage sampling procedure, to aid in estimating the necessary sample size

required to obtain the parameter estimate within a prespecified level of accuracy.

In scientific studies, for example, there are often limits imposed on the number of

observations available to train a classifier or estimate an unknown parameter. These

limits are usually determined by the financial cost involved in obtaining the necessary

observations, as well as the time involved. In these scenarios the researcher may wish

to still obtain an accurate estimate for the unknown parameter while minimising the

number of observations required to obtain the estimate. This could ultimately save both

time and money. There are numerous sequential procedures available that will seek the

minimum number of observations required to meet some predetermined stopping criteria.

One such an approach had previously been developed that would continually train and

test a classifier until there was a large enough probability that the probability of the next

observation sampled being classified incorrectly was acceptably small.

The sequential procedure could train a classifier until there was a high level of certainty

that an additionally sampled observation would most likely not be misclassified. The

procedure is independent of the method of classification used. Therefore any classification

method could be used, provided a series of dichotomous observations could be obtained.

Unfortunately the sequential procedure can not account for scenarios where the maximum

allowable rate of error (as dictated by the researcher) is unfeasibly low (i.e. lower than

the Bayes error), ultimately resulting in the sequential procedure processing ad infinitum.

The procedure occasionally samples too many observations and trains the classifier to

obtain a level of error smaller than the specified value. In specific scenarios where a

large cost is involved in sampling or false-positives, the procedure provides unsatisfactory

results.
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An alternative sequential procedure is developed that trains the classifier to an opti-

mal level. The classifier is trained until the observed rate of error has converged to the

Bayes error - the theoretical minimum error rate. The proposed sequential procedure is

independent of the method of classification used and depends only on a series of Bernoulli

observations. The proposed sequential procedure will never train the classifier to obtain

an unfeasibly low rate of error. This procedure provides the researcher with a feasible

way to train the classifier, knowing that the classifier obtained will perform as well as is

feasibly possible from the underlying data.

The application for large datasets is just as interesting. The proposed sequential

procedure provides the researcher with a measure of how accurate the obtained classifier

actually is. Although more data is usually preferable, it might no longer be necessary

to use as much data. The researcher is able to dictate how accurately he/she wishes the

classifier be trained, and the obtained classifier will always perform at an optimal level -

estimating the Bayes error.

Future work could comprise of including the necessary logic to automatically obtain

the critical values α and a, as these values need to be specified currently. Additionally, the

procedure could be tested on the other classification methods (QDA,KNN and LRIM) not

tested here. A simulation could also be conducted using the sequential procedure proposed

by Fu et al. (2005) to test the specific scenario where ε is marginally larger than the

Bayes error. Currently, the artificial upper bounds imposed, both M and N0, inhibit the

sequential procedure from successfully training the classifier to ensure, with a probability

of at least 100 (1− α) %, that the probability of the next observation sampled being

misclassified is at most ε. The actual unimpeded number of required observations should

be compared to the number obtained from the newly proposed sequential procedure.
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Appendix A

Linear discriminant analysis (LDA)

A.1 Obtaining the linear discriminant function

From statistical decision theory, it is known that the optimal classification can be obtained

if the class posteriors are known, i.e. if P (class G|X = x) is known. If fk (x) is the class-

conditional density of X for class G = k, the prior probability of class k is denoted by πk
and ΣK

k=1πk = 1, where K is the total number of classes, using the Bayes Theorem the

class posterior for class k can be written as:

P (G = k|X = x) =
fk(x)πk

ΣK
l=1fl(x)πl

If each class density is then modelled as a multivariate Gaussian, the density function

of class k is given by:

fk(x) =
1

(2π)p/2 |Σk|1/2
e−

1
2(x−µk)

T
Σ−1
k (x−µk)

where µ
k
is a p × 1 matrix that denotes the population mean for class k, Σk is a p × p

matrix denoting the population covariance matrix for class k, vT denotes the transpose

of v and x is a p-dimensional row vector.

Consider now the specific case where all the classes have a common covariance matrix

Σk = Σ∀k.
Hastie, Tibshirani and Friedman (2001) notes that looking at the log ratio of the class

posteriors is suffi cient for comparing any two classes, k and l.
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A.1. OBTAINING THE LINEAR DISCRIMINANT FUNCTION

Therefore the following holds:

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)πk
ΣKj=1fj(x)πj

fl(x)πl
ΣKj=1fj(x)πj

= log
fk(x)πk
fl(x)πl

= log

(
fk(x)

fl(x)

)
+ log

(
πk
πl

)
= log

(
πk
πl

)
+

log

e− 1
2(x−µk)

T
Σ−1
k (x−µk)

(2π)p/2 |Σk|1/2

 /

e− 1
2(x−µl)

T
Σ−1
l (x−µl)

(2π)p/2 |Σl|1/2


= log

(
πk
πl

)
+ log

( (2π)p/2 |Σl|1/2

(2π)p/2 |Σk|1/2

)e− 1
2(x−µk)

T
Σ−1
k (x−µk)

e−
1
2(x−µl)

T
Σ−1
l (x−µl)


= log

(
πk
πl

)
+ log

((2π)p/2 |Σ|1/2

(2π)p/2 |Σ|1/2

)e− 1
2(x−µk)

T
Σ−1(x−µk)

e−
1
2(x−µl)

T
Σ−1(x−µl)


since Σk = Σ∀k

= log

(
πk
πl

)
+ log

(
e−

1
2(x−µk)

T
Σ−1(x−µk)+ 1

2(x−µl)
T
Σ−1(x−µl)

)
= log

(
πk
πl

)
−

1

2

(
x− µ

k

)T
Σ−1

(
x− µ

k

)
+

1

2

(
x− µ

l

)T
Σ−1

(
x− µ

l

)
= log

(
πk
πl

)
− 1

2

(
xTΣ−1x− xTΣ−1µ

k
− µT

k
Σ−1x+ µT

k
Σ−1µ

k

)
+

1

2

(
xTΣ−1x− xTΣ−1µ

l
− µT

l
Σ−1x+ µT

l
Σ−1µ

l

)
= log

(
πk
πl

)
− 1

2

(
µ
k

+ µ
l

)T
Σ−1

(
µ
k
− µ

l

)
+ xTΣ−1

(
µ
k
− µ

l

)
which is a linear equation in x. The linear discriminant functions can be defined as:

δk (x) = xTΣ−1µ
k
− 1

2
µT
k
Σ−1µ

k
+ log πk

If the parameters are not known, sample estimates for πk, µk and Σ can be used.

Therefore:

1. π̂k = Nk
ΣKl=1Nl

2. µ̂
k

= Σx∈kx
Nk

3. Σ̂ = ΣK
k=1Σx∈k(x− µ̂k)(x− µ̂k)

T/(N −K)
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A.2. DETERMINING THE DECISION BOUNDARY BETWEEN CLASS 1 AND 2
USING LDA

A.2 Determining the decision boundary between class

1 and 2 using LDA

LDA assumes that Σk = Σ ∀k where k are the classes. Assume there are two classes,
denoted 1 and 2.

The linear discriminant function for class 1 is given by:

δ1(x) = xTΣ−1µ
1
− 1

2
µT

1
Σ−1µ

1
+ log(π1)

where X ∼ N(µ
1
,Σ2

1) and π1 is the probability of selecting a random variable from

class 1.

Similar for class 2 the linear discriminant function for class 2 is given by :

δ2(x) = xTΣ−1µ
2
− 1

2
µT

2
Σ−1µ

2
+ log(π2)

where X ∼ N(µ
2
,Σ2

2) and π2 is the probability of selecting a random variable from

class 2.

For both class 1 and 2, assume the multidimensional space - Rp.

Setting δ1(x) = δ2(x) the following holds:

δ1(x) = δ2(x)

xTΣ−1µ
1
− 1

2
µ

1
Σ−1µ

1
+ log(π1) = xTΣ−1µ

2
− 1

2
µT

2
Σ−1µ

2
+ log(π2)

xTΣ−1µ
1
− xTΣ−1µ

2
= log(π2)− log(π1) +

1

2

(
µT

1
Σ−1µ

1
− µT

2
Σ−1µ

2

)
xTΣ−1

(
µ

1
− µ

2

)
= log(

π2

π1

) +
1

2

(
µT

1
Σ−1µ

1
− µT

2
Σ−1µ

2

)
where an observation is classified as coming from class 1 if

xTΣ−1
(
µ

1
− µ

2

)
> log(

π2

π1

) +
1

2

(
µT

1
Σ−1µ

1
− µT

2
Σ−1µ

2

)
and from class 2 otherwise.

Alternatively, an observation is classified as coming from class 2 if

xTΣ−1
(
µ

2
− µ

1

)
≥ log(

π1

π2

) +
1

2

(
µT

2
Σ−1µ

2
− µT

1
Σ−1µ

1

)
and from class 1 otherwise.
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A.2. DETERMINING THE DECISION BOUNDARY BETWEEN CLASS 1 AND 2
USING LDA

π1 can be estimated by p̂1 = n1

n1+n2
. Similarly π2 can be estimated by p̂2 = n2

n1+n2
.

µ
1
and µ

2
can be estimated from the sample means for class 1 and class 2 respectively,

namely µ̂
1
and µ̂

2
respectively. Similarly Σ̂ = Σ2

k=1Σx∈k(x− µ̂k)(x− µ̂k)
T/(N − 2).

This leads to the following:

Classify an observation as coming from class 2 if:

xT Σ̂−1
(
µ̂

2
− µ̂

1

)
≥ log

(
p̂1

p̂2

)
+

1

2

(
µ̂T

2
Σ̂−1µ̂

2
− µ̂T

1
Σ̂−1µ̂

1

)
x ≥

(
log

(
p̂1

p̂2

)
+

1

2

(
µ̂T

2
Σ̂−1µ̂

2
− µ̂T

1
Σ̂−1µ̂

1

))(
Σ̂−1

(
µ̂

2
− µ̂

1

))−1

provided Σ̂−1
(
µ̂

2
− µ̂

1

)
is invertible

and coming from class 1 otherwise.

In the case where the prior probabilities are known:
Let p̂1 = p̂2 = 0.5. Classify an observation as coming from class 2 if:

xT Σ̂−1
(
µ̂

2
− µ̂

1

)
≥ log

(
p̂1

p̂2

)
+

1

2

(
µ̂T

2
Σ̂−1µ̂

2
− µ̂T

1
Σ̂−1µ̂

1

)
= log (1) +

1

2

(
µ̂T

2
Σ̂−1µ̂

2
− µ̂T

1
Σ̂−1µ̂

1

)
=

1

2

(
µ̂T

2
Σ̂−1µ̂

2
− µ̂T

1
Σ̂−1µ̂

1

)
Consider now the case where p = 1. For ease of use Σ̂ can be written as σ̂2. Classify

an observation as coming from class 2 if:

x ≥

(
µ̂2

2

(
σ̂2
)−1

− µ̂2
1

(
σ̂2
)−1
)

2
(
σ̂2
)−1

(µ̂2 − µ̂1)

=

(
µ̂2

2 − µ̂2
1

)
2 (µ̂2 − µ̂1)

= λ̂
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Appendix B

Quadratic discriminant analysis (QDA)

B.1 Obtaining the quadratic discriminant function

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)πk
fl(x)πl

= log

(
πk
πl

)
+ log

( (2π)p/2 |Σl|1/2

(2π)p/2 |Σk|1/2

)e− 1
2(x−µk)

T
Σ−1
k (x−µk)

e−
1
2(x−µl)

T
Σ−1
l (x−µl)


= log

(
πk
πl

)
+ log

(
(2π)p/2 |Σl|1/2

(2π)p/2 |Σk|1/2

)
+ log

e− 1
2(x−µk)

T
Σ−1
k (x−µk)

e−
1
2(x−µl)

T
Σ−1
l (x−µl)


= log πk − log πl + log

(
|Σl|1/2

|Σk|1/2

)
+ log

(
e−

1
2(x−µk)

T
Σ−1
k (x−µk)

)
− log

(
e−

1
2(x−µl)

T
Σ−1
l (x−µl)

)
= log πk − log πl +

1

2
log |Σl| −

1

2
log |Σk| −

1

2

(
x− µ

k

)T
Σ−1
k

(
x− µ

k

)
+

1

2

(
x− µ

l

)T
Σ−1
l

(
x− µ

l

)
=

(
log πk −

1

2
log |Σk| −

1

2

(
x− µ

k

)T
Σ−1
k

(
x− µ

k

))
−
(

log πl −
1

2
log |Σl| −

1

2

(
x− µ

l

)T
Σ−1
l

(
x− µ

l

))
leading to the quadratic discriminant functions:

δk (x) = log πk −
1

2
log |Σk| −

1

2

(
x− µ

k

)T
Σ−1
k

(
x− µ

k

)

If the number of dimensions p in Rp is large the number of parameters can increase

substantially. If the necessary parameters are not known, sample estimates for πk, µk and

Σk can again be used.
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B.2. DETERMINING THE DECISION BOUNDARY BETWEEN CLASS 1 AND 2
USING QDA

B.2 Determining the decision boundary between class

1 and 2 using QDA

QDA does not have the assumption that Σk = Σ ∀k, as LDA does. Assume there are
two classes, denoted 1 and 2.

The linear discriminant function for class 1 is given by:

δ1 (x) = log π1 −
1

2
log |Σ1| −

1

2

(
x− µ

1

)T
Σ−1

1

(
x− µ

1

)
where X ∼ N(µ

1
,Σ2

1) and π1 is the probability of selecting a random variable from

class 1.

Similar for class 2 the linear discriminant function for class 2 is given by :

δ2 (x) = log π2 −
1

2
log |Σ2| −

1

2

(
x− µ

2

)T
Σ−1

2

(
x− µ

2

)
where X ∼ N(µ

2
,Σ2

2) and π2 is the probability of selecting a random variable from

class 2.

For both class 1 and 2, assume the multidimensional space - Rp.

Setting δ1(x) = δ2(x) the following holds:

δ1(x) = δ2(x)

log π1−
1

2
log |Σ1|−

1

2

(
x− µ

1

)T
Σ−1

1

(
x− µ

1

)
= log π2−

1

2
log |Σ2|−

1

2

(
x− µ

2

)T
Σ−1

2

(
x− µ

2

)
1

2

[(
x− µ

2

)T
Σ−1

2

(
x− µ

2

)
−
(
x− µ

1

)T
Σ−1

1

(
x− µ

1

)]
= log π2−

1

2
log |Σ2|−log π1+

1

2
log |Σ1|

where an observation is classified as coming from class 1 if

1

2

[(
x− µ

2

)T
Σ−1

2

(
x− µ

2

)
−
(
x− µ

1

)T
Σ−1

1

(
x− µ

1

)]
> log π2−

1

2
log |Σ2|−log π1+

1

2
log |Σ1|

and from class 2 otherwise.

Alternatively, an observation is classified as coming from class 2 if

1

2

[(
x− µ

1

)T
Σ−1

1

(
x− µ

1

)
−
(
x− µ

2

)T
Σ−1

2

(
x− µ

2

)]
≥ log

π1

π2

−1

2
log |Σ1|+

1

2
log |Σ2|

, and from class 1 otherwise.
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B.2. DETERMINING THE DECISION BOUNDARY BETWEEN CLASS 1 AND 2
USING QDA

π1 can be estimated by p̂1 = n1

n1+n2
. Similarly π2 can be estimated by p̂2 = n2

n1+n2
.

µ
1
and µ

2
can be estimated from the sample means for class 1 and class 2 respectively,

namely µ̂
1
and µ̂

2
respectively. Similarly Σ1 and Σ2 can be estimated from the sample

covariance matrices for class 1 and class 2 respectively, namely Σ̂1 and Σ̂2 respectively.

This leads to the following:

Classify an observation as coming from class 2 if:

1

2

[(
x− µ̂

1

)T
Σ̂−1

1

(
x− µ̂

1

)
−
(
x− µ̂

2

)T
Σ̂−1

2

(
x− µ̂

2

)]
≥ log

p̂1

p̂2

−1

2
log
∣∣∣Σ̂1

∣∣∣+1

2
log
∣∣∣Σ̂2

∣∣∣
and coming from class 1 otherwise.

In the case where the prior probabilities are known:
Let p̂1 = p̂2 = 0.5. Classify an observation as coming from class 2 if:

1

2

[(
x− µ̂

1

)T
Σ̂−1

1

(
x− µ̂

1

)
−
(
x− µ̂

2

)T
Σ̂−1

2

(
x− µ̂

1

)]
≥ log

p̂1

p̂2

− 1

2
log
∣∣∣Σ̂1

∣∣∣+
1

2
log
∣∣∣Σ̂2

∣∣∣
= log (1)− 1

2
log
∣∣∣Σ̂1

∣∣∣+
1

2
log
∣∣∣Σ̂2

∣∣∣
=

1

2

(
log
∣∣∣Σ̂2

∣∣∣− log
∣∣∣Σ̂1

∣∣∣)
Consider now the case where p = 1. For ease of use Σ̂1 can be written as s2

1, and Σ̂2

can be written as s2
2.

Classify an observation as coming from class 2 if:

1

2

[(
x− µ̂

1

)T (
s2

1

)−1
(
x− µ̂

1

)
−
(
x− µ̂

2

)T (
s2

2

)−1
(
x− µ̂

2

)]
≥ 1

2

(
log
∣∣s2

2

∣∣− log
∣∣s2

1

∣∣)
Since the underlying distributions are Gaussian and the parameters are known, the

optimal classifier for use in the Bayes error calculation can be determined using the

equations derived above, and the optimal classifier in the single dimension case with

different sample variances is then given by:

1

2

[
(λ− µ1)T σ−2

1 (λ− µ1)− (λ− µ2)σ−2
2 (λ− µ2)

]
= log

π1

π2

− 1

2
log
(
σ2

1

)
+

1

2
log
(
σ2

2

)
therefore

(
λ2 − 2λµ1 + µ2

1

) (
σ2

1

)−1 −
(
λ2 − 2λµ2 + µ2

2

) (
σ2

2

)−1 − 2 log

(
π1

π2

)
+ log

(
σ2

1

σ2
2

)
= 0(

1

σ2
1

− 1

σ2
2

)
λ2 − 2

(
µ1

σ2
1

− µ2

σ2
2

)
λ+

(
−2 log

(
π1

π2

)
+ log

(
σ2

1

σ2
2

)
+
µ2

1

σ2
1

− µ2
2

σ2
2

)
= 0
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B.2. DETERMINING THE DECISION BOUNDARY BETWEEN CLASS 1 AND 2
USING QDA

which is a quadratic function of λ. Lambda can be solved as follows:

λ =
2
(
µ1

σ2
1
− µ2

σ2
2

)
± 2

√
4
(
µ1

σ2
1
− µ2

σ2
2

)2

− 4
(

1
σ2

1
− 1

σ2
2

)(
−2 log

(
π1

π2

)
+ log

(
σ2

1

σ2
2

)
+

µ2
1

σ2
1
− µ2

2

σ2
2

)
2
(

1
σ2

1
− 1

σ2
2

)
resulting in two different roots for λ.

Define

L (λ) =

(
1

σ2
1

− 1

σ2
2

)
λ2 − 2

(
µ1

σ2
1

− µ2

σ2
2

)
λ+

(
−2 log

(
π1

π2

)
+ log

(
σ2

1

σ2
2

)
+
µ2

1

σ2
1

− µ2
2

σ2
2

)
The first derivative of L(λ) with regards to λ in the respective roots will show whether

a particular root is a local minimum or maximum. By choosing the root that maximises
∂L
∂λ
the optimal classifier is chosen.
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Appendix C

Linear regression of an indicator ma-
trix (LRIM)

Consider the case where β =
{
β0, β1, ..., βp

}
, and let X be a n × (p + 1) matrix with

the first column populated with 1’s, and the remaining columns populated with the p-

dimensions of the x values. For row i, the following holds:

ei = yi − xiβ

or in matrix notation

e = y −Xβ

Define O = Σn
i=1e

2
i = Σn

i=1

(
yi − β0 − xi1β1 − ...− xipβp

)2
=
(
y −Xβ

)T (
y −Xβ

)
,

the objective function that needs to be minimised. Taking the derivative with respect

to β, setting the resulting equation equal to 0 and solving the equation, will yield the

parameter estimate. This is done by using the product-rule, as follows:

∂O

∂β
= −XT

(
y −Xβ

)
−
(
y −Xβ

)T
X

Therefore

0 = −XT
(
y −Xβ̂

)
−
(
y −Xβ̂

)T
X

= −2XT
(
y −Xβ̂

)
= XTy −XTXβ̂

XTXβ̂ = XTy

β̂ =
(
XTX

)−1
XTy

provided XTX is invertible. This is the case as there can be no linear dependence in the

regressors, i.e. rank(X) =n.
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Appendix D

Sequential procedure results and crit-
ical values
D.1 LDA results

TABLE D.1.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.34213 (0.018359) 0.34146 (0.017922) 0.34237 (0.020012) 0.34359 (0.023878)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.065; 12.0943 79.852; 26.6529 69.485; 34.5361

1.3 0.28633 Error (Std) 0.29478 (0.012652) 0.29545 (0.013126) 0.2968 (0.017072) 0.29883 (0.022177)
Min; Max 25; 90 11; 90 8; 90 6; 90
n̄; Sd 89.935; 2.0555 84.691; 19.415 75.823; 30.1001 58.663; 37.9973

1.5 0.25982 Error (Std) 0.26723 (0.011468) 0.26682 (0.011181) 0.2675 (0.013486) 0.27079 (0.01965)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.67; 4.6599 83.559; 21.2761 71.541; 32.6515 52.911; 37.982

2 0.19885 Error (Std) 0.20239 (0.00682) 0.20339 (0.009471) 0.20579 (0.011638) 0.20703 (0.014133)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.825; 8.6931 74.512; 30.34 53.219; 37.756 34.685; 33.5103

2.3 0.16656 Error (Std) 0.16973 (0.005759) 0.17095 (0.008537) 0.17382 (0.012125) 0.17512 (0.013123)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.523; 14.6285 65.512; 34.6576 43.868; 35.9818 25.023; 26.3481

2.5 0.14697 Error (Std) 0.14973 (0.005744) 0.15168 (0.008366) 0.15395 (0.011929) 0.15577 (0.017156)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 84.669; 17.7922 60.158; 35.4467 36.04; 33.052 19.885; 20.9906

3 0.10485 Error (Std) 0.10818 (0.006095) 0.1112 (0.010245) 0.11307 (0.011942) 0.11391 (0.013291)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 77.831; 24.7271 46.582; 34.4316 24; 22.423 13.482; 10.1931

4 0.04789 Error (Std) 0.05335 (0.006692) 0.05432 (0.0084) 0.05543 (0.010144) 0.05622 (0.0104)
Min; Max 21; 90 11; 90 8; 69 6; 33
n̄; Sd 54.778; 28.6004 25.465; 15.8907 15.564; 6.133 11.724; 3.5686
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D.1. LDA RESULTS

TABLE D.1.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.3575 (0.031626) 0.35978 (0.034427) 0.35908 (0.03513) 0.35816 (0.032694)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.376; 11.0963 81.886; 24.1202 73.101; 32.1264

1.3 0.29473 Error (Std) 0.31238 (0.022352) 0.3133 (0.022889) 0.31356 (0.026254) 0.31514 (0.030256)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 86.873; 15.1419 78.263; 28.0213 65.061; 36.33

1.5 0.27214 Error (Std) 0.28638 (0.018654) 0.28628 (0.018269) 0.28731 (0.02077) 0.28934 (0.024393)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.804; 3.5789 84.235; 20.2695 74.882; 31.0399 57.445; 37.9089

2 0.21843 Error (Std) 0.22441 (0.009906) 0.22574 (0.011788) 0.22694 (0.015744) 0.22883 (0.017745)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.532; 5.5771 77.057; 28.5359 59.896; 36.852 40.789; 36.0522

2.3 0.18885 Error (Std) 0.19281 (0.00739) 0.19435 (0.009445) 0.19709 (0.013318) 0.19923 (0.020051)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.89; 8.4582 73.926; 30.5681 49.805; 37.529 30.576; 30.9091

2.5 0.17042 Error (Std) 0.17433 (0.006829) 0.17553 (0.010075) 0.17857 (0.015888) 0.18002 (0.015846)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.659; 14.3207 69.083; 33.1024 44.7; 36.3731 26.969; 28.3265

3 0.12928 Error (Std) 0.13314 (0.006612) 0.13567 (0.010111) 0.13703 (0.011958) 0.13918 (0.013587)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 82.949; 20.0131 57.069; 35.7983 31.257; 29.5961 17.554; 17.9315

4 0.06833 Error (Std) 0.0767 (0.009122) 0.07919 (0.012792) 0.08035 (0.013991) 0.08032 (0.014431)
Min; Max 21; 90 11; 90 8; 90 6; 56
n̄; Sd 64.857; 29.661 30.366; 24.0243 16.694; 11.2796 12.117; 5.8521
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D.1. LDA RESULTS

TABLE D.1.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.36906 (0.044901) 0.36699 (0.040876) 0.36692 (0.043322) 0.36877 (0.047113)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.612; 10.262 82.951; 22.5522 71.266; 33.7254

1.3 0.29754 Error (Std) 0.32529 (0.032975) 0.32646 (0.034348) 0.32706 (0.035409) 0.324 (0.033601)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.932; 2.1503 86.374; 16.3413 78.833; 27.5635 66.075; 35.9166

1.5 0.27772 Error (Std) 0.29935 (0.027887) 0.29891 (0.026571) 0.29959 (0.028251) 0.30143 (0.033257)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.815; 3.3853 84.331; 20.0784 76.066; 29.853 60.788; 37.3334

2 0.22973 Error (Std) 0.24053 (0.017303) 0.24005 (0.015219) 0.2423 (0.01997) 0.24436 (0.02434)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.673; 4.6184 79.781; 25.7797 65.799; 35.3784 46.477; 37.3938

2.3 0.20265 Error (Std) 0.20917 (0.010605) 0.21092 (0.015785) 0.21206 (0.016624) 0.21454 (0.020225)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.721; 9.0039 76.887; 28.4162 56.575; 37.4452 37.992; 34.6864

2.5 0.18551 Error (Std) 0.19031 (0.008284) 0.19219 (0.010959) 0.19466 (0.014394) 0.1976 (0.021479)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.467; 10.0035 71.239; 32.3081 52.018; 37.6832 31.561; 31.6372

3 0.14628 Error (Std) 0.15051 (0.006941) 0.15321 (0.011234) 0.15525 (0.013058) 0.15703 (0.015483)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.513; 16.5186 62.028; 35.2244 35.803; 32.8645 21.802; 22.2585

4 0.08473 Error (Std) 0.09431 (0.011011) 0.09689 (0.013444) 0.09875 (0.016726) 0.09912 (0.015896)
Min; Max 21; 90 11; 90 8; 90 6; 68
n̄; Sd 72.975; 27.7846 38.084; 30.4163 19.609; 16.7255 11.863; 6.2081
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D.1. LDA RESULTS

TABLE D.1.4 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.34668 (0.027005) 0.35077 (0.033684) 0.3492 (0.031919) 0.35045 (0.034353)
Min; Max 40; 40 11; 40 8; 40 6; 40
n̄; Sd 40; 0 39.186; 4.641 36.04; 10.2068 32.841; 13.1466

1.3 0.28633 Error (Std) 0.29933 (0.019455) 0.30037 (0.019765) 0.30102 (0.023275) 0.30178 (0.027489)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 38.563; 6.0639 34.311; 11.7361 29.316; 14.6251

1.5 0.25982 Error (Std) 0.27008 (0.015047) 0.2706 (0.017171) 0.27307 (0.019948) 0.27189 (0.019654)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.919; 1.1721 37.25; 8.1275 33.354; 12.3946 27.261; 15.0468

2 0.19885 Error (Std) 0.20522 (0.011071) 0.20636 (0.012408) 0.20729 (0.016768) 0.20814 (0.014681)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.708; 2.1595 34.726; 10.5284 28.298; 14.1609 21.607; 14.5378

2.3 0.16656 Error (Std) 0.17228 (0.009381) 0.17356 (0.011724) 0.17482 (0.013791) 0.17557 (0.014464)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.231; 3.492 32.783; 11.5275 24.962; 13.9632 18.184; 13.2302

2.5 0.14697 Error (Std) 0.15185 (0.00769) 0.1527 (0.009323) 0.15455 (0.012507) 0.15628 (0.013643)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.891; 3.9561 31.212; 11.983 23.078; 13.5826 16.391; 11.7048

3 0.10485 Error (Std) 0.10945 (0.007478) 0.1113 (0.00974) 0.11323 (0.01263) 0.11367 (0.012913)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.43; 5.7397 27.163; 12.1542 18.011; 10.868 13.961; 8.8593

4 0.04789 Error (Std) 0.05316 (0.006441) 0.05492 (0.008822) 0.05571 (0.009841) 0.05556 (0.009773)
Min; Max 21; 40 11; 40 8; 40 6; 39
n̄; Sd 34.237; 7.1215 22.638; 8.8796 15.803; 5.9511 11.886; 3.9054
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D.1. LDA RESULTS

TABLE D.1.5 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.36347 (0.042796) 0.36595 (0.04442) 0.36462 (0.043172) 0.36615 (0.045298)
Min; Max 40; 40 11; 40 8; 40 6; 40
n̄; Sd 40; 0 39.265; 4.4266 37.095; 8.9149 33.274; 13.026

1.3 0.29473 Error (Std) 0.32022 (0.036081) 0.3199 (0.036628) 0.32355 (0.039007) 0.32116 (0.039056)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 38.449; 6.2792 35.805; 10.3589 31.699; 13.8307

1.5 0.27214 Error (Std) 0.29092 (0.028227) 0.29279 (0.031916) 0.29236 (0.031114) 0.29068 (0.027591)
Min; Max 40; 40 11; 40 8; 40 6; 40
n̄; Sd 40; 0 38.164; 6.791 33.523; 12.298 29.064; 14.7981

2 0.21843 Error (Std) 0.23049 (0.019357) 0.22993 (0.01717) 0.23017 (0.018992) 0.23103 (0.019863)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.632; 2.4377 36.118; 9.4156 29.814; 13.7881 24.411; 15.1074

2.3 0.18885 Error (Std) 0.19685 (0.014729) 0.19655 (0.011935) 0.19861 (0.014529) 0.20049 (0.019473)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.641; 2.3937 34.542; 10.5863 27.333; 14.2596 21.007; 14.3842

2.5 0.17042 Error (Std) 0.17667 (0.011154) 0.17812 (0.012498) 0.17974 (0.015986) 0.18051 (0.015711)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.287; 3.296 33.543; 11.1652 25.882; 14.2651 18.933; 13.4643

3 0.12928 Error (Std) 0.135 (0.008405) 0.13672 (0.01133) 0.13888 (0.013959) 0.13987 (0.015023)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.622; 4.4286 29.693; 12.0907 20.715; 12.7546 14.629; 10.0176

4 0.06833 Error (Std) 0.07707 (0.010142) 0.0787 (0.011643) 0.07958 (0.013122) 0.08039 (0.014611)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34.977; 7.0508 23.532; 10.5689 15.872; 7.9147 11.853; 5.0538
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D.1. LDA RESULTS

TABLE D.1.6 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.37961 (0.055843) 0.37962 (0.055753) 0.37982 (0.055878) 0.37635 (0.05814)
Min; Max 40; 40 11; 40 8; 40 6; 40
n̄; Sd 40; 0 39.331; 4.2189 37.564; 8.2501 33.642; 12.6193

1.3 0.29754 Error (Std) 0.33395 (0.047255) 0.33545 (0.047369) 0.3343 (0.047524) 0.33577 (0.04843)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.966; 0.7651 38.833; 5.4861 35.864; 10.2969 31.716; 13.8854

1.5 0.27772 Error (Std) 0.30925 (0.043605) 0.30712 (0.040461) 0.30917 (0.044479) 0.30666 (0.04258)
Min; Max 40; 40 11; 40 8; 40 6; 40
n̄; Sd 40; 0 38.737; 5.6712 34.278; 11.7532 30.519; 14.235

2 0.22973 Error (Std) 0.24539 (0.025884) 0.2473 (0.031235) 0.24705 (0.027879) 0.24782 (0.029647)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.838; 1.6341 36.621; 8.8369 31.893; 13.0557 25.837; 15.2271

2.3 0.20265 Error (Std) 0.21385 (0.020064) 0.21488 (0.019533) 0.2158 (0.022856) 0.21744 (0.022402)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.787; 1.7666 35.114; 10.1687 28.508; 14.1268 22.066; 14.7935

2.5 0.18551 Error (Std) 0.19453 (0.016391) 0.19464 (0.015508) 0.1974 (0.019603) 0.19828 (0.021302)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.712; 2.21 34.485; 10.7583 28.002; 14.1218 20.542; 14.3107

3 0.14628 Error (Std) 0.15296 (0.009778) 0.15514 (0.013816) 0.15706 (0.016693) 0.15724 (0.016253)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.96; 3.9958 31.415; 11.9876 23.304; 13.7932 16.33; 11.8058

4 0.08473 Error (Std) 0.09429 (0.010871) 0.09719 (0.013907) 0.09805 (0.015412) 0.0991 (0.016281)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 36.634; 6.3081 25.539; 11.7311 16.641; 9.4992 12.537; 6.8928
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D.2. QDA RESULTS

D.2 QDA results

TABLE D.2.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.33453 (0.010855) 0.33455 (0.01186) 0.33681 (0.01559) 0.33862 (0.019479)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 88.304; 11.3182 82.844; 22.6474 71.278; 33.1351

1.3 0.28633 Error (Std) 0.29188 (0.009462) 0.29342 (0.012437) 0.29442 (0.015079) 0.29806 (0.022251)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.801; 3.63 86.067; 16.8015 75.378; 30.4173 62.159; 37.1646

1.5 0.25982 Error (Std) 0.26488 (0.008434) 0.26491 (0.008664) 0.26679 (0.013398) 0.27122 (0.023493)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.598; 5.1781 84.505; 19.7587 73.873; 31.1175 57.044; 37.3739

2 0.19885 Error (Std) 0.20203 (0.005463) 0.20344 (0.010275) 0.20689 (0.01701) 0.21075 (0.021042)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.699; 9.1262 75.652; 29.3991 57.469; 36.8005 35.941; 33.7879

2.3 0.16656 Error (Std) 0.16959 (0.005793) 0.17142 (0.011234) 0.17592 (0.017874) 0.17802 (0.019448)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.683; 14.2895 69.512; 32.9141 45.823; 36.2616 27.626; 28.0359

2.5 0.14697 Error (Std) 0.14999 (0.005355) 0.15227 (0.011003) 0.15657 (0.018465) 0.15899 (0.020766)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.16; 16.9747 63.892; 34.664 37.951; 33.4661 21; 22.041

3 0.10485 Error (Std) 0.10736 (0.00493) 0.11119 (0.011602) 0.11377 (0.015354) 0.11788 (0.019991)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 79.473; 23.4577 47.392; 34.3341 24.845; 22.9883 14.533; 12.6255

4 0.04789 Error (Std) 0.05163 (0.006898) 0.05419 (0.011979) 0.05747 (0.017973) 0.05945 (0.020641)
Min; Max 21; 90 11; 90 8; 90 6; 44
n̄; Sd 55.933; 28.5638 25.996; 16.4854 16.351; 8.2681 11.91; 4.1595
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D.2. QDA RESULTS

TABLE D.2.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.32764 (0.009462) 0.32816 (0.010577) 0.32921 (0.01703) 0.33253 (0.019323)
Min; Max 24; 90 11; 90 8; 90 6; 90
n̄; Sd 89.934; 2.0871 87.219; 14.4033 82.343; 23.4365 69.098; 34.5981

1.3 0.29473 Error (Std) 0.29676 (0.007636) 0.29746 (0.009432) 0.29941 (0.013281) 0.30245 (0.017837)
Min; Max 27; 90 11; 90 8; 90 6; 90
n̄; Sd 89.874; 2.816 86.76; 15.4976 76.916; 29.3799 64.179; 36.5078

1.5 0.27214 Error (Std) 0.27585 (0.008488) 0.27585 (0.009083) 0.27855 (0.016207) 0.28206 (0.019422)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.932; 2.1503 84.977; 18.9702 74.636; 30.9374 59.878; 37.0008

2 0.21843 Error (Std) 0.22193 (0.007074) 0.224 (0.011136) 0.22675 (0.017317) 0.22963 (0.021516)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.669; 9.3272 79.322; 26.3339 64.513; 35.4401 44.142; 36.5686

2.3 0.18885 Error (Std) 0.1923 (0.005892) 0.19418 (0.010661) 0.19699 (0.017032) 0.20051 (0.021067)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.063; 11.0399 74.885; 29.8532 53.278; 37.3805 35.911; 33.016

2.5 0.17042 Error (Std) 0.17332 (0.005243) 0.17554 (0.010344) 0.1795 (0.018371) 0.18286 (0.01963)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 87.535; 12.4624 70.781; 32.1873 46.983; 36.3242 27.771; 27.8828

3 0.12928 Error (Std) 0.13181 (0.005755) 0.13636 (0.015396) 0.13883 (0.016785) 0.14269 (0.023183)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 83.751; 18.8746 57.975; 34.9321 32.89; 30.3712 18.943; 18.9039

4 0.06833 Error (Std) 0.07154 (0.005797) 0.07574 (0.014191) 0.07833 (0.0168) 0.08116 (0.023903)
Min; Max 21; 90 11; 90 8; 90 6; 61
n̄; Sd 67.111; 29.1485 31.531; 24.5383 17.177; 11.2866 12.464; 6.6285
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D.2. QDA RESULTS

TABLE D.2.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.31194 (0.009211) 0.31351 (0.012472) 0.31472 (0.013347) 0.31751 (0.018714)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 87.213; 14.4318 80.795; 25.2825 67.589; 34.9202

1.3 0.29754 Error (Std) 0.29097 (0.008797) 0.29172 (0.010829) 0.29352 (0.013153) 0.29601 (0.019326)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.798; 3.6849 86.525; 16.0217 77.346; 28.7818 66.091; 35.3665

1.5 0.27772 Error (Std) 0.27437 (0.007577) 0.27525 (0.009885) 0.27769 (0.013128) 0.28134 (0.020095)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.865; 3.0179 85.202; 18.5662 75.042; 30.4093 58.975; 37.6196

2 0.22973 Error (Std) 0.23128 (0.006429) 0.23307 (0.013839) 0.23592 (0.016343) 0.24065 (0.021995)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.484; 5.7615 81.416; 23.9031 65.031; 35.8512 46.577; 37.1275

2.3 0.20265 Error (Std) 0.20506 (0.006029) 0.20694 (0.011691) 0.2101 (0.015902) 0.21485 (0.021891)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.28; 6.857 76.736; 28.5393 57.56; 37.2625 37.639; 34.6961

2.5 0.18551 Error (Std) 0.18879 (0.006833) 0.19065 (0.011716) 0.19476 (0.01737) 0.19906 (0.024365)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.304; 10.4046 74.005; 30.7121 51.44; 37.0648 32.878; 31.7466

3 0.14628 Error (Std) 0.14897 (0.00507) 0.15211 (0.012537) 0.15642 (0.018796) 0.15984 (0.021086)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.046; 15.4518 64.316; 34.8455 38.914; 33.5584 21.24; 22.2746

4 0.08473 Error (Std) 0.08819 (0.007174) 0.09268 (0.015164) 0.09662 (0.021407) 0.09879 (0.021733)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 70.009; 29.1724 37.571; 29.7439 19.75; 16.3559 12.986; 9.0941
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D.2. QDA RESULTS

TABLE D.2.4 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.34402 (0.024489) 0.34335 (0.023477) 0.34481 (0.027123) 0.34619 (0.027567)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.965; 0.7826 39.484; 3.6572 37.088; 9.0111 33.896; 12.4706

1.3 0.28633 Error (Std) 0.29798 (0.01879) 0.29788 (0.018208) 0.30063 (0.022539) 0.30206 (0.025902)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.966; 0.7612 38.711; 5.7165 35.446; 10.715 31.266; 13.9251

1.5 0.25982 Error (Std) 0.2691 (0.013152) 0.27011 (0.01624) 0.27246 (0.022644) 0.27541 (0.025552)
Min; Max 25; 40 11; 40 8; 40 6; 40
n̄; Sd 39.985; 0.4743 37.895; 7.1985 33.882; 11.9993 28.955; 14.716

2 0.19885 Error (Std) 0.20551 (0.010035) 0.20696 (0.014277) 0.2084 (0.016667) 0.2111 (0.01978)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.703; 2.1807 35.39; 9.9803 28.892; 14.1344 22.829; 14.7719

2.3 0.16656 Error (Std) 0.17185 (0.008289) 0.17352 (0.012181) 0.17627 (0.015844) 0.17884 (0.019759)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.361; 3.0955 32.856; 11.3877 27.017; 14.0226 19.274; 13.4279

2.5 0.14697 Error (Std) 0.15206 (0.008458) 0.15377 (0.011507) 0.15615 (0.016615) 0.15899 (0.020624)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.115; 3.6638 32.078; 11.6256 23.892; 13.639 17.387; 12.2986

3 0.10485 Error (Std) 0.10908 (0.007011) 0.11152 (0.011836) 0.11432 (0.015096) 0.11756 (0.020324)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.575; 5.6198 28.033; 12.0646 19.585; 11.5574 13.126; 8.0256

4 0.04789 Error (Std) 0.05225 (0.006968) 0.05454 (0.013103) 0.05711 (0.016361) 0.05952 (0.01899)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34.409; 7.1468 22.902; 9.6333 15.759; 6.2103 11.706; 3.9287
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D.2. QDA RESULTS

TABLE D.2.5 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.33538 (0.023581) 0.33543 (0.022999) 0.33566 (0.021343) 0.33842 (0.024084)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.981; 0.6008 39.276; 4.3645 37.091; 8.9518 33.019; 13.1015

1.3 0.29473 Error (Std) 0.30355 (0.01708) 0.30394 (0.01652) 0.30501 (0.019857) 0.30708 (0.021311)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.965; 0.7851 39.05; 4.9374 36.239; 9.9186 30.788; 14.2028

1.5 0.27214 Error (Std) 0.2819 (0.017886) 0.28342 (0.019388) 0.28439 (0.020174) 0.28555 (0.022249)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.965; 0.7826 38.09; 6.9014 34.274; 11.7731 28.494; 15.048

2 0.21843 Error (Std) 0.22646 (0.012718) 0.22694 (0.012924) 0.23002 (0.01779) 0.23351 (0.023268)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.878; 1.4564 36.442; 8.9565 30.377; 13.5813 24.149; 15.0411

2.3 0.18885 Error (Std) 0.1964 (0.011725) 0.19719 (0.013034) 0.19871 (0.016607) 0.20334 (0.024273)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.597; 2.5681 35.118; 10.0921 28.726; 14.0559 21.506; 14.4718

2.5 0.17042 Error (Std) 0.17652 (0.008564) 0.17823 (0.012688) 0.18117 (0.016814) 0.1834 (0.019881)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.385; 3.0887 33.949; 10.8101 26.258; 14.1655 20.236; 13.9321

3 0.12928 Error (Std) 0.13454 (0.007787) 0.13646 (0.011883) 0.1398 (0.01715) 0.1434 (0.024023)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.847; 4.0289 30.24; 12.1003 22.794; 13.3659 15.879; 11.2038

4 0.06833 Error (Std) 0.07294 (0.008035) 0.07663 (0.014831) 0.07925 (0.020909) 0.08023 (0.019564)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.521; 6.7656 23.765; 10.7928 16.345; 8.7334 12.256; 5.7692
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D.2. QDA RESULTS

TABLE D.2.6 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the QDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.32001 (0.019228) 0.32056 (0.020111) 0.32124 (0.020435) 0.32316 (0.023011)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.981; 0.6008 38.941; 5.2735 35.852; 10.3742 32.677; 13.2864

1.3 0.29754 Error (Std) 0.29729 (0.015866) 0.29809 (0.016015) 0.29983 (0.020057) 0.30113 (0.021798)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.968; 0.7166 38.571; 6.0244 35.268; 10.8468 30.506; 14.3292

1.5 0.27772 Error (Std) 0.28097 (0.015925) 0.28139 (0.014609) 0.2812 (0.015791) 0.28544 (0.020793)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.875; 1.4925 38.492; 6.2252 35.101; 11.0691 29.244; 14.703

2 0.22973 Error (Std) 0.23642 (0.011852) 0.23643 (0.01321) 0.23891 (0.01649) 0.2404 (0.019565)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.877; 1.4056 36.822; 8.5655 31.948; 12.986 25.23; 15.1764

2.3 0.20265 Error (Std) 0.20924 (0.011097) 0.21074 (0.013255) 0.21249 (0.01795) 0.21752 (0.025535)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.698; 2.2144 35.632; 9.7616 29.268; 13.8959 22.533; 14.7411

2.5 0.18551 Error (Std) 0.19239 (0.01123) 0.19443 (0.014678) 0.19643 (0.017698) 0.2009 (0.024818)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.553; 2.6691 34.95; 10.2862 27.53; 14.1318 20.33; 14.2799

3 0.14628 Error (Std) 0.15208 (0.008508) 0.15372 (0.011267) 0.15867 (0.02362) 0.16087 (0.022908)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.918; 4.0241 32.025; 11.82 24.056; 13.8729 17.429; 12.5729

4 0.08473 Error (Std) 0.08961 (0.008093) 0.09234 (0.012821) 0.09673 (0.021061) 0.09817 (0.022029)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 36.579; 6.3049 25.509; 11.6262 17.781; 10.1072 12.794; 7.1701
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D.3. 5-NN RESULTS

D.3 5-nn results

TABLE D.3.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.38008 (0.025224) 0.37782 (0.023774) 0.3775 (0.025864) 0.37529 (0.031878)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 88.851; 9.3293 82.897; 22.6492 72.182; 33.1842

1.3 0.28633 Error (Std) 0.33257 (0.024872) 0.33011 (0.025554) 0.32924 (0.026277) 0.32685 (0.030739)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.862; 3.0842 86.021; 17.0056 78.332; 27.8111 63.626; 37.0076

1.5 0.25982 Error (Std) 0.29941 (0.023229) 0.2992 (0.025167) 0.29817 (0.029154) 0.29498 (0.030096)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.805; 3.562 84.344; 19.9144 73.039; 32.1075 59.407; 37.7755

2 0.19885 Error (Std) 0.22692 (0.020414) 0.22641 (0.020916) 0.22293 (0.022254) 0.22535 (0.027977)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.016; 7.9808 76.429; 28.8554 57.455; 37.6951 43.159; 36.8851

2.3 0.16656 Error (Std) 0.18932 (0.018129) 0.18923 (0.020346) 0.18821 (0.02428) 0.18671 (0.024048)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 87.115; 13.5024 70.683; 32.3577 49.054; 37.2711 29.153; 30.5044

2.5 0.14697 Error (Std) 0.16607 (0.017434) 0.16534 (0.019292) 0.16676 (0.022461) 0.16557 (0.024204)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.545; 16.42 64.066; 34.6543 41.983; 35.286 23.275; 24.9212

3 0.10485 Error (Std) 0.11877 (0.014383) 0.11894 (0.017221) 0.11921 (0.018859) 0.12051 (0.020939)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 78.822; 24.1662 47.099; 34.7159 26.649; 25.962 15.509; 14.692

4 0.04789 Error (Std) 0.05409 (0.008925) 0.0557 (0.010886) 0.05709 (0.012795) 0.058 (0.013084)
Min; Max 21; 90 11; 90 8; 90 6; 50
n̄; Sd 54.246; 28.3958 26.587; 18.3184 15.796; 8.0502 11.831; 4.7725
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D.3. 5-NN RESULTS

TABLE D.3.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.47587 (0.01054) 0.47513 (0.01494) 0.47062 (0.02676) 0.46195 (0.03812)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.091; 11.9448 83.647; 21.7113 73.297; 32.5036

1.3 0.29473 Error (Std) 0.47972 (0.00999) 0.47592 (0.01956) 0.46784 (0.03513) 0.45932 (0.04452)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.866; 2.9952 86.687; 15.5768 79.254; 26.9635 69.231; 34.3071

1.5 0.27214 Error (Std) 0.47992 (0.01139) 0.47696 (0.02061) 0.46777 (0.04024) 0.45094 (0.05541)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.865; 3.0173 85.419; 18.1154 76.477; 29.7417 60.786; 37.6795

2 0.21843 Error (Std) 0.48434 (0.01254) 0.47435 (0.03545) 0.45828 (0.05652) 0.4392 (0.0738)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.606; 5.0755 79.444; 26.1593 66.452; 35.2402 48.224; 38.0001

2.3 0.18885 Error (Std) 0.48528 (0.0141) 0.47143 (0.04425) 0.44422 (0.07311) 0.42356 (0.08473)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.364; 10.2347 75.016; 29.7408 55.085; 37.4359 35.673; 34.1691

2.5 0.17042 Error (Std) 0.48412 (0.01743) 0.46722 (0.05426) 0.44301 (0.08157) 0.41683 (0.08968)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.437; 14.8029 71.31; 32.039 51.163; 37.037 33.553; 32.7304

3 0.12928 Error (Std) 0.48497 (0.02165) 0.45434 (0.06958) 0.41211 (0.09612) 0.38423 (0.10764)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 83.998; 18.7398 58.425; 35.4486 35.113; 32.5414 19.104; 20.3698

4 0.06833 Error (Std) 0.46801 (0.04596) 0.4081 (0.09942) 0.36813 (0.11527) 0.34372 (0.12761)
Min; Max 21; 90 11; 90 8; 90 6; 66
n̄; Sd 65.277; 29.7882 32.148; 25.5308 17.353; 12.5453 12.093; 6.095
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D.3. 5-NN RESULTS

TABLE D.3.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.46677 (0.01336) 0.46384 (0.01958) 0.45815 (0.03408) 0.4502 (0.04189)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.295; 11.3756 83.282; 22.2223 75.013; 30.679

1.3 0.29754 Error (Std) 0.46895 (0.01362) 0.46594 (0.02476) 0.45617 (0.04483) 0.44428 (0.05355)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.932; 2.1503 87.013; 14.9119 79.906; 26.2451 70.299; 33.992

1.5 0.27772 Error (Std) 0.46993 (0.01429) 0.46644 (0.02439) 0.45356 (0.04642) 0.4389 (0.06025)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.809; 3.4907 86.082; 16.812 75.642; 30.2631 64.773; 36.3862

2 0.22973 Error (Std) 0.47528 (0.01395) 0.46588 (0.03776) 0.44306 (0.06716) 0.42257 (0.0754)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.47; 5.9064 82.296; 22.912 68.042; 34.8597 50.959; 38.0277

2.3 0.20265 Error (Std) 0.47643 (0.01755) 0.45974 (0.05047) 0.43481 (0.07291) 0.40605 (0.08976)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.151; 7.411 77.475; 28.1124 60.241; 37.0223 42.559; 36.6259

2.5 0.18551 Error (Std) 0.47694 (0.01953) 0.4587 (0.05668) 0.42913 (0.08143) 0.39585 (0.09029)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.105; 10.9917 74.328; 30.3255 56.29; 37.323 35.026; 34.1627

3 0.14628 Error (Std) 0.47805 (0.0223) 0.44268 (0.07541) 0.40243 (0.09674) 0.36727 (0.10308)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.761; 16.039 64.17; 34.8395 42.109; 35.2254 25.141; 27.0931

4 0.08473 Error (Std) 0.46472 (0.05164) 0.39132 (0.10606) 0.35029 (0.1123) 0.31949 (0.12178)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 73.297; 27.426 39.006; 31.2692 22.003; 20.4566 13.955; 10.9875
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D.3. 5-NN RESULTS

TABLE D.3.4 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.37937 (0.033388) 0.38009 (0.035261) 0.37747 (0.03465) 0.37769 (0.037315)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 39.305; 4.273 36.999; 9.0736 34.121; 12.2671

1.3 0.28633 Error (Std) 0.3331 (0.034691) 0.33426 (0.034905) 0.33273 (0.037773) 0.33041 (0.037796)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.936; 1.0114 38.892; 5.3223 35.167; 11.012 31.211; 13.9482

1.5 0.25982 Error (Std) 0.29947 (0.033142) 0.30006 (0.033847) 0.2973 (0.034383) 0.30011 (0.037935)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.894; 1.2745 38.413; 6.2464 34.239; 11.7336 29.71; 14.4815

2 0.19885 Error (Std) 0.22881 (0.028436) 0.22996 (0.032241) 0.22858 (0.032494) 0.22709 (0.032091)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.765; 1.927 35.43; 9.9185 29.545; 13.92 23.909; 15.0414

2.3 0.16656 Error (Std) 0.18955 (0.025204) 0.18946 (0.025547) 0.18865 (0.026054) 0.18918 (0.027498)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.335; 3.2045 33.928; 10.8236 25.813; 14.1121 19.703; 14.0017

2.5 0.14697 Error (Std) 0.16784 (0.022451) 0.16671 (0.022231) 0.1672 (0.025731) 0.16683 (0.025506)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.043; 3.7123 31.529; 11.9305 24.184; 13.8285 18.496; 13.0681

3 0.10485 Error (Std) 0.11877 (0.018617) 0.11882 (0.018709) 0.12072 (0.02103) 0.11992 (0.020296)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.882; 5.2509 27.719; 12.1494 19.444; 11.74 13.782; 9.1602

4 0.04789 Error (Std) 0.05562 (0.011459) 0.05636 (0.013687) 0.05636 (0.011894) 0.05801 (0.014381)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34.214; 7.0592 22.49; 9.0293 15.627; 6.3773 11.861; 4.1772
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D.3. 5-NN RESULTS

TABLE D.3.5 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.37644 (0.032149) 0.37585 (0.032117) 0.37614 (0.033723) 0.37456 (0.036759)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.983; 0.5376 39.457; 3.8117 37.255; 8.727 34.329; 12.1091

1.3 0.29473 Error (Std) 0.34094 (0.032699) 0.34243 (0.032815) 0.34167 (0.035179) 0.33937 (0.036404)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.966; 0.7612 38.873; 5.4119 36.278; 9.8639 31.736; 13.8738

1.5 0.27214 Error (Std) 0.31754 (0.033909) 0.31711 (0.035132) 0.31837 (0.036265) 0.31349 (0.039845)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.962; 0.8493 38.692; 5.788 35.116; 11.0317 30.463; 14.339

2 0.21843 Error (Std) 0.25273 (0.030605) 0.25228 (0.031475) 0.25142 (0.032935) 0.25082 (0.034571)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.882; 1.4114 36.67; 8.8435 31.019; 13.4416 25.723; 15.1465

2.3 0.18885 Error (Std) 0.21691 (0.028628) 0.21703 (0.028561) 0.21627 (0.029775) 0.21587 (0.033217)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.671; 2.3057 35.198; 10.0886 29.093; 13.7923 22.178; 14.5761

2.5 0.17042 Error (Std) 0.19614 (0.026441) 0.19179 (0.025208) 0.19589 (0.03094) 0.19456 (0.029315)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.414; 2.9886 33.763; 10.9945 27.49; 14.0977 19.776; 13.8594

3 0.12928 Error (Std) 0.1467 (0.022029) 0.14643 (0.021026) 0.14742 (0.024216) 0.14763 (0.025942)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.745; 4.2023 30.257; 12.1217 22.267; 13.4266 15.459; 11.3411

4 0.06833 Error (Std) 0.07777 (0.013909) 0.07991 (0.016911) 0.08 (0.016163) 0.08121 (0.017996)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.826; 6.677 24.268; 10.9084 16.39; 8.6732 12.318; 6.1575
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D.3. 5-NN RESULTS

TABLE D.3.6 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 5-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.43061 (0.02548) 0.4287 (0.02762) 0.42395 (0.0321) 0.42021 (0.03881)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 39.178; 4.6832 37.306; 8.6756 34.631; 11.8441

1.3 0.29754 Error (Std) 0.43251 (0.02921) 0.43013 (0.0326) 0.42692 (0.03658) 0.41576 (0.04795)
Min; Max 26; 40 11; 40 8; 40 6; 40
n̄; Sd 39.986; 0.4427 38.671; 5.8315 36.393; 9.7504 32.002; 13.582

1.5 0.27772 Error (Std) 0.43316 (0.03236) 0.43418 (0.03322) 0.42523 (0.04502) 0.41317 (0.05415)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.966; 0.7651 38.583; 5.9881 35.235; 11.0008 31.031; 14.0708

2 0.22973 Error (Std) 0.44114 (0.03536) 0.43581 (0.04063) 0.42276 (0.05574) 0.39974 (0.07036)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.899; 1.3132 37.365; 7.95 33.076; 12.3897 26.443; 15.159

2.3 0.20265 Error (Std) 0.44547 (0.03575) 0.43284 (0.05082) 0.41326 (0.069) 0.39206 (0.07984)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.718; 2.1576 35.764; 9.6803 29.79; 13.8388 24.042; 15.0507

2.5 0.18551 Error (Std) 0.4445 (0.03635) 0.43124 (0.0547) 0.41066 (0.07183) 0.38618 (0.08564)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.517; 2.817 35.169; 10.1494 28.785; 13.9364 22.239; 14.7034

3 0.14628 Error (Std) 0.44587 (0.04192) 0.42105 (0.06971) 0.38981 (0.08847) 0.35973 (0.10269)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.772; 4.2734 32.333; 11.6052 24.683; 13.9553 17.695; 12.8894

4 0.08473 Error (Std) 0.44185 (0.05049) 0.38467 (0.09713) 0.34131 (0.11291) 0.30578 (0.11667)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 36.536; 6.4154 26.051; 11.8011 17.571; 10.3112 12.605; 7.2595
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D.4. 3-NN RESULTS

D.4 3-nn results

TABLE D.4.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.39172 (0.021777) 0.39169 (0.024267) 0.38762 (0.025446) 0.38796 (0.028179)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 87.6; 13.4286 82.728; 22.9411 76.368; 29.9515

1.3 0.28633 Error (Std) 0.34796 (0.024607) 0.34575 (0.025236) 0.34443 (0.027725) 0.34231 (0.029582)
Min; Max 24; 90 11; 90 8; 90 6; 90
n̄; Sd 89.934; 2.0871 86.918; 15.1119 79.217; 27.135 69.703; 34.441

1.5 0.25982 Error (Std) 0.31676 (0.023472) 0.31505 (0.026178) 0.31335 (0.029644) 0.31021 (0.033922)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.864; 3.0395 84.498; 19.7321 74.399; 31.3084 60.673; 37.9134

2 0.19885 Error (Std) 0.24221 (0.022653) 0.23806 (0.02362) 0.23559 (0.028605) 0.23479 (0.033729)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.398; 6.3215 77.97; 27.7126 59.113; 37.4405 42.66; 37.1164

2.3 0.16656 Error (Std) 0.20237 (0.02125) 0.19944 (0.023581) 0.19665 (0.026826) 0.19744 (0.031488)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 87.966; 11.392 71.578; 32.0532 51.285; 37.6364 32.203; 33.0427

2.5 0.14697 Error (Std) 0.17892 (0.020614) 0.17421 (0.022943) 0.17474 (0.027917) 0.17512 (0.03249)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.164; 15.3737 64.973; 34.8347 45.633; 36.5035 25.717; 28.0994

3 0.10485 Error (Std) 0.12603 (0.017224) 0.12541 (0.020215) 0.1253 (0.025664) 0.12615 (0.029248)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 79.008; 24.0248 52.368; 35.4262 27.356; 27.3635 16.819; 16.5841

4 0.04789 Error (Std) 0.05692 (0.011568) 0.05799 (0.014494) 0.05796 (0.013016) 0.05927 (0.017202)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 56.826; 28.6241 26.455; 18.4834 16.274; 8.6034 11.959; 5.7582
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D.4. 3-NN RESULTS

TABLE D.4.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.48528 (0.007337) 0.48362 (0.010941) 0.48044 (0.019645) 0.47661 (0.026224)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 88.386; 11.0293 83.952; 21.1633 76.894; 29.5135

1.3 0.29473 Error (Std) 0.48639 (0.00822) 0.48538 (0.012964) 0.48107 (0.021532) 0.47229 (0.032846)
Min; Max 25; 90 11; 90 8; 90 6; 90
n̄; Sd 89.935; 2.0555 87.079; 14.7172 80.53; 25.7445 68.481; 35.4979

1.5 0.27214 Error (Std) 0.48747 (0.008276) 0.48572 (0.013954) 0.48219 (0.02224) 0.46952 (0.038827)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.803; 3.5949 85.404; 18.216 79.694; 26.3809 62.52; 37.3572

2 0.21843 Error (Std) 0.49035 (0.008122) 0.48592 (0.021276) 0.47284 (0.039867) 0.46383 (0.046541)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.206; 7.2129 80.889; 24.5866 65.505; 35.9409 51.704; 38.417

2.3 0.18885 Error (Std) 0.49054 (0.008725) 0.4844 (0.025918) 0.47296 (0.041601) 0.45503 (0.057508)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.394; 10.086 75.594; 29.5917 59.964; 36.8411 39.528; 36.1869

2.5 0.17042 Error (Std) 0.49101 (0.010228) 0.48299 (0.029293) 0.47083 (0.045376) 0.45375 (0.060451)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.106; 10.9909 71.809; 31.9027 54.078; 37.3575 34.558; 33.551

3 0.12928 Error (Std) 0.49088 (0.014025) 0.47427 (0.042024) 0.46031 (0.059006) 0.43874 (0.070531)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 83.388; 19.4522 59.041; 35.9602 36.726; 33.3188 22.431; 24.0352

4 0.06833 Error (Std) 0.48428 (0.027055) 0.45844 (0.05882) 0.43228 (0.073295) 0.40747 (0.084775)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 66.744; 29.5869 33.402; 27.5377 20.097; 17.7052 12.572; 8.4013
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D.4. 3-NN RESULTS

TABLE D.4.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.37104 (0.023112) 0.37128 (0.022905) 0.36882 (0.025041) 0.36838 (0.0282)
Min; Max 29; 90 11; 90 8; 90 6; 90
n̄; Sd 89.939; 1.929 88.627; 10.1606 82.244; 23.5661 72.579; 32.7042

1.3 0.29754 Error (Std) 0.34917 (0.022847) 0.34747 (0.023812) 0.34667 (0.027186) 0.34416 (0.028594)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 87.995; 12.2813 79.485; 26.8133 71.16; 33.5598

1.5 0.27772 Error (Std) 0.3318 (0.023383) 0.33036 (0.025457) 0.32886 (0.027332) 0.32872 (0.032012)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 86.116; 16.7781 77.527; 28.866 66.362; 35.9851

2 0.22973 Error (Std) 0.28136 (0.023891) 0.28021 (0.026451) 0.27769 (0.029602) 0.27483 (0.033094)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.33; 6.6728 82.726; 22.3923 70.154; 33.7939 54.911; 38.3179

2.3 0.20265 Error (Std) 0.25019 (0.023997) 0.24798 (0.026197) 0.24489 (0.029991) 0.24242 (0.03448)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.998; 8.1249 79.548; 26.0293 62.698; 36.6844 45.874; 37.8914

2.5 0.18551 Error (Std) 0.22905 (0.023946) 0.22632 (0.026271) 0.22568 (0.029665) 0.22535 (0.036741)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.442; 9.9594 75.041; 29.9259 59.3; 37.0329 41.091; 36.7081

3 0.14628 Error (Std) 0.17764 (0.021018) 0.17732 (0.02539) 0.17298 (0.026092) 0.17516 (0.032837)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.705; 16.1086 66.665; 34.1264 42.895; 35.9381 27.317; 29.0824

4 0.08473 Error (Std) 0.1002 (0.015097) 0.10134 (0.018631) 0.10226 (0.024309) 0.10397 (0.02713)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 73.88; 26.8382 41.797; 32.7118 22.025; 21.3859 14.032; 11.2883
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TABLE D.4.4 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.39357 (0.030982) 0.39229 (0.033702) 0.39001 (0.034) 0.38943 (0.035035)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.967; 0.7379 39.376; 4.0283 37.407; 8.5079 35.084; 11.5109

1.3 0.28633 Error (Std) 0.34834 (0.033819) 0.34452 (0.034354) 0.34499 (0.03632) 0.34323 (0.037422)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.965; 0.7826 39.039; 4.9906 36.17; 10.0255 32.261; 13.4693

1.5 0.25982 Error (Std) 0.31688 (0.034872) 0.31684 (0.034608) 0.31374 (0.036979) 0.31362 (0.038973)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.956; 0.8347 38.282; 6.5621 34.306; 11.6334 30.181; 14.4227

2 0.19885 Error (Std) 0.24196 (0.03162) 0.2431 (0.033311) 0.23916 (0.034535) 0.23905 (0.038948)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.659; 2.3884 36.286; 9.1102 30.285; 13.7033 23.736; 15.2432

2.3 0.16656 Error (Std) 0.2028 (0.02945) 0.20044 (0.02798) 0.19877 (0.031281) 0.19884 (0.035)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.353; 3.1674 34.106; 10.8102 26.472; 14.176 20.795; 14.271

2.5 0.14697 Error (Std) 0.17946 (0.026675) 0.17703 (0.029052) 0.17668 (0.030434) 0.17494 (0.033741)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.15; 3.602 32.204; 11.6193 25.105; 13.9992 18.158; 13.1286

3 0.10485 Error (Std) 0.12847 (0.023725) 0.12477 (0.022838) 0.12534 (0.024392) 0.12495 (0.02676)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.868; 5.2353 27.57; 12.1852 20.376; 12.4737 14.251; 9.9921

4 0.04789 Error (Std) 0.05772 (0.013146) 0.05817 (0.014663) 0.05918 (0.017306) 0.05959 (0.017662)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34.511; 7.0599 22.615; 9.3544 15.898; 6.4988 12.002; 4.4748
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TABLE D.4.5 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.3856 (0.03063) 0.38742 (0.031068) 0.38814 (0.032929) 0.38625 (0.033353)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 39.482; 3.7285 37.573; 8.2635 34.482; 11.9649

1.3 0.29473 Error (Std) 0.35426 (0.032155) 0.35381 (0.032967) 0.35383 (0.0335) 0.35228 (0.03661)
Min; Max 25; 40 11; 40 8; 40 6; 40
n̄; Sd 39.985; 0.4743 38.851; 5.5088 36.37; 9.7653 32.744; 13.1969

1.5 0.27214 Error (Std) 0.33157 (0.034664) 0.33036 (0.03324) 0.32887 (0.034763) 0.32719 (0.038121)
Min; Max 28; 40 11; 40 8; 40 6; 40
n̄; Sd 39.988; 0.3795 38.625; 5.9109 35.41; 10.7379 31.604; 13.8305

2 0.21843 Error (Std) 0.26974 (0.032535) 0.26896 (0.035273) 0.2649 (0.035132) 0.26448 (0.038265)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.863; 1.4575 37.12; 8.2175 31.875; 13.1544 26.512; 15.1299

2.3 0.18885 Error (Std) 0.23353 (0.033054) 0.23046 (0.033772) 0.22794 (0.033376) 0.22628 (0.035137)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.646; 2.4513 34.968; 10.2919 29.273; 13.9224 23.802; 14.9461

2.5 0.17042 Error (Std) 0.2078 (0.029908) 0.2064 (0.031027) 0.20676 (0.032965) 0.20371 (0.034122)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.326; 3.1862 34.319; 10.6794 27.703; 14.2385 21.691; 14.6322

3 0.12928 Error (Std) 0.15767 (0.026345) 0.1553 (0.025536) 0.15605 (0.030945) 0.15538 (0.030674)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.678; 4.3191 30.529; 12.2089 22.919; 13.4354 16.831; 12.1695

4 0.06833 Error (Std) 0.08346 (0.018727) 0.08136 (0.016796) 0.08394 (0.022692) 0.08251 (0.020032)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.748; 6.752 24.919; 11.0562 17.074; 9.2116 12.474; 6.1762

107

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



D.4. 3-NN RESULTS

TABLE D.4.6 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the 3-nn classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential steps

is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.4552 (0.02009) 0.45499 (0.021269) 0.45036 (0.025856) 0.44514 (0.032981)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.981; 0.6008 39.504; 3.6171 37.306; 8.6513 33.968; 12.317

1.3 0.29754 Error (Std) 0.45876 (0.0206) 0.45734 (0.023308) 0.45348 (0.027979) 0.44465 (0.037658)
Min; Max 24; 40 11; 40 8; 40 6; 40
n̄; Sd 39.984; 0.506 39.081; 4.8565 37.012; 8.998 32.378; 13.552

1.5 0.27772 Error (Std) 0.46003 (0.021726) 0.45849 (0.024087) 0.4532 (0.031151) 0.44398 (0.039247)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.948; 0.953 38.919; 5.3121 36.149; 10.0247 31.415; 14.0089

2 0.22973 Error (Std) 0.46513 (0.023061) 0.46055 (0.029709) 0.45166 (0.043546) 0.43854 (0.053676)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.885; 1.3826 37.35; 7.9882 32.264; 12.9896 27.46; 15.0951

2.3 0.20265 Error (Std) 0.46842 (0.023388) 0.46261 (0.031914) 0.45155 (0.045113) 0.4353 (0.058335)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.649; 2.4265 36.214; 9.2082 30.723; 13.5376 25.297; 15.1314

2.5 0.18551 Error (Std) 0.46842 (0.024383) 0.46326 (0.034579) 0.44478 (0.053689) 0.43143 (0.061907)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.573; 2.643 35.982; 9.3953 28.896; 14.1434 23.317; 14.8676

3 0.14628 Error (Std) 0.4715 (0.023959) 0.45867 (0.044452) 0.43695 (0.063977) 0.4187 (0.071335)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.135; 3.5586 32.694; 11.3888 25.324; 13.8616 18.742; 13.3721

4 0.08473 Error (Std) 0.47105 (0.030817) 0.44462 (0.061241) 0.41695 (0.079434) 0.38996 (0.086296)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 36.855; 6.2197 26.324; 11.5999 19.081; 11.0799 13.219; 8.1392
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D.5 LRIM results

TABLE D.5.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LRIM classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential steps

is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.34321 (0.022092) 0.34223 (0.020212) 0.34343 (0.022548) 0.34312 (0.022382)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.933; 2.1187 87.448; 13.8267 81.771; 24.1033 71.967; 32.626

1.3 0.28633 Error (Std) 0.29573 (0.013159) 0.29548 (0.013211) 0.29678 (0.013767) 0.29688 (0.017492)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.662; 4.7714 84.825; 19.1871 74.848; 30.8957 60.863; 37.6043

1.5 0.25982 Error (Std) 0.26723 (0.011193) 0.2675 (0.011418) 0.26852 (0.014951) 0.27016 (0.01764)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.676; 4.5863 82.879; 22.1823 71.839; 32.8119 54.38; 37.9256

2 0.19885 Error (Std) 0.20222 (0.006478) 0.2037 (0.008973) 0.2051 (0.01155) 0.20814 (0.015034)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.797; 8.707 75.59; 29.418 54.502; 37.4299 33.652; 32.6839

2.3 0.16656 Error (Std) 0.16987 (0.006159) 0.17127 (0.010333) 0.17347 (0.012298) 0.17531 (0.014156)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.37; 14.9604 66.835; 33.9901 42.949; 35.6598 25.233; 27.0529

2.5 0.14697 Error (Std) 0.1498 (0.005169) 0.15172 (0.009265) 0.15429 (0.01389) 0.15598 (0.013704)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.36; 16.7214 58.711; 35.7186 35.966; 33.0031 19.354; 20.1823

3 0.10485 Error (Std) 0.10817 (0.006161) 0.11106 (0.010497) 0.11279 (0.012403) 0.11357 (0.0129)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 76.273; 26.1044 43.937; 33.4581 23.224; 21.5337 13.882; 10.9684

4 0.04789 Error (Std) 0.05298 (0.006028) 0.05453 (0.008534) 0.05532 (0.009749) 0.05627 (0.010761)
Min; Max 21; 90 11; 90 8; 82 6; 55
n̄; Sd 54.574; 28.6094 24.486; 15.3112 15.28; 5.9858 11.683; 3.8193
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TABLE D.5.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5 ini-

tial observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.35661 (0.030651) 0.35656 (0.031817) 0.35683 (0.032831) 0.35921 (0.034343)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.931; 2.182 87.905; 12.5848 83.609; 21.6526 73.933; 31.811

1.3 0.29473 Error (Std) 0.31405 (0.023897) 0.31532 (0.024884) 0.31332 (0.024811) 0.31461 (0.028482)
Min; Max 23; 90 11; 90 8; 90 6; 90
n̄; Sd 89.87; 2.9068 87.556; 13.4558 77.992; 28.0492 65.171; 35.9034

1.5 0.27214 Error (Std) 0.28594 (0.019476) 0.28673 (0.020435) 0.28742 (0.023892) 0.28861 (0.025745)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.932; 2.1503 84.294; 20.137 74.373; 31.1169 57.543; 38.3332

2 0.21843 Error (Std) 0.22492 (0.011295) 0.22623 (0.013054) 0.22799 (0.014911) 0.22929 (0.018452)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.35; 6.4818 77.99; 27.5135 60.576; 36.7273 41.619; 36.5687

2.3 0.18885 Error (Std) 0.19343 (0.00794) 0.19505 (0.011899) 0.19659 (0.014635) 0.199 (0.016005)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.211; 10.7548 71.905; 32.006 52.084; 37.2906 33.635; 32.7116

2.5 0.17042 Error (Std) 0.17438 (0.00704) 0.17647 (0.011585) 0.1782 (0.013331) 0.18146 (0.020007)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 86.931; 13.7569 68.128; 33.6102 44.84; 36.412 26.713; 28.6331

3 0.12928 Error (Std) 0.13312 (0.006529) 0.13523 (0.010408) 0.13774 (0.012981) 0.13961 (0.014768)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 82.257; 20.9007 55.383; 35.5615 32.69; 30.1293 17.48; 18.3451

4 0.06833 Error (Std) 0.07607 (0.008425) 0.07861 (0.01159) 0.08006 (0.014317) 0.08009 (0.013937)
Min; Max 21; 90 11; 90 8; 90 6; 83
n̄; Sd 66.061; 29.8858 31.88; 25.8305 16.782; 10.7704 12.004; 5.7697
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TABLE D.5.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5 ini-

tial observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.37024 (0.044895) 0.36938 (0.043749) 0.36871 (0.045063) 0.37281 (0.049199)
Min; Max 90; 90 11; 90 8; 90 6; 90
n̄; Sd 90; 0 88.382; 11.0571 82.384; 23.3289 74.246; 31.5387

1.3 0.29754 Error (Std) 0.32656 (0.034877) 0.32566 (0.03293) 0.32463 (0.033979) 0.3248 (0.03642)
Min; Max 24; 90 11; 90 8; 90 6; 90
n̄; Sd 89.803; 3.5932 87.5; 13.6963 78.952; 27.3065 65.851; 36.073

1.5 0.27772 Error (Std) 0.29889 (0.025596) 0.29903 (0.028859) 0.29869 (0.028373) 0.30133 (0.032515)
Min; Max 22; 90 11; 90 8; 90 6; 90
n̄; Sd 89.867; 2.9732 85.849; 17.3942 74.992; 30.7914 64.231; 36.3779

2 0.22973 Error (Std) 0.23999 (0.015894) 0.24013 (0.016679) 0.24261 (0.019197) 0.24385 (0.027122)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.388; 6.4263 80.116; 25.4999 66.034; 35.6971 46.182; 38.0856

2.3 0.20265 Error (Std) 0.2096 (0.012568) 0.21081 (0.014377) 0.21258 (0.015641) 0.21536 (0.02424)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.145; 7.4573 75.566; 29.3639 55.684; 37.5297 39.249; 35.1915

2.5 0.18551 Error (Std) 0.19023 (0.008723) 0.19226 (0.011123) 0.19512 (0.015605) 0.19693 (0.018229)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 88.2; 10.6457 71.959; 31.9092 49.833; 37.5697 31.577; 32.4725

3 0.14628 Error (Std) 0.15015 (0.006662) 0.15326 (0.011835) 0.15528 (0.01336) 0.15821 (0.018936)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.434; 16.6738 62.348; 35.2392 36.581; 32.5813 20.405; 22.0441

4 0.08473 Error (Std) 0.09352 (0.009206) 0.09682 (0.013424) 0.09807 (0.01515) 0.09903 (0.016667)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 73.71; 27.2572 39.688; 31.0294 19.908; 17.3107 12.483; 8.0551
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TABLE D.5.4 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5 ini-

tial observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 2) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32771 Error (Std) 0.34926 (0.031343) 0.34995 (0.03346) 0.34864 (0.030902) 0.35134 (0.037352)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.981; 0.6008 39.315; 4.294 36.799; 9.3066 33.275; 12.9652

1.3 0.28633 Error (Std) 0.30048 (0.021323) 0.30008 (0.023404) 0.30229 (0.025664) 0.30179 (0.024801)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.968; 0.7166 38.282; 6.5579 35.204; 10.9594 31.122; 14.0018

1.5 0.25982 Error (Std) 0.26974 (0.01678) 0.27184 (0.019493) 0.27175 (0.019917) 0.27299 (0.021182)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.946; 0.988 38.168; 6.7469 33.612; 12.0751 28.231; 14.9074

2 0.19885 Error (Std) 0.2054 (0.011534) 0.2062 (0.013043) 0.20711 (0.013785) 0.20922 (0.0177)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.699; 2.1788 34.172; 10.8557 28.005; 14.1075 21.27; 14.6065

2.3 0.16656 Error (Std) 0.17233 (0.009645) 0.1729 (0.010467) 0.17462 (0.012467) 0.17587 (0.01415)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.188; 3.4838 32.768; 11.4942 25.281; 14.1195 18.613; 13.2493

2.5 0.14697 Error (Std) 0.15189 (0.007591) 0.15368 (0.009851) 0.15464 (0.010937) 0.15593 (0.015927)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.872; 4.1159 30.632; 12.2539 22.367; 13.4611 16.473; 11.5894

3 0.10485 Error (Std) 0.10996 (0.00776) 0.11176 (0.010843) 0.11289 (0.012427) 0.11422 (0.014432)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 37.51; 5.6498 26.758; 12.2308 18.532; 11.1349 13.495; 8.4692

4 0.04789 Error (Std) 0.05363 (0.007139) 0.05461 (0.008654) 0.05591 (0.010262) 0.05632 (0.011065)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 34; 7.2119 22.768; 9.3724 15.386; 5.9315 11.882; 3.9045
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TABLE D.5.5 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5 ini-

tial observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 3) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32919 Error (Std) 0.36683 (0.047542) 0.36676 (0.04473) 0.36648 (0.044871) 0.37004 (0.051158)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.982; 0.5692 39.063; 5.003 37.187; 8.7945 34.336; 12.0658

1.3 0.29473 Error (Std) 0.31878 (0.033682) 0.31923 (0.034966) 0.32145 (0.036532) 0.32056 (0.036299)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.966; 0.7599 39.011; 5.0749 35.92; 10.3288 31.495; 14.0346

1.5 0.27214 Error (Std) 0.29198 (0.029549) 0.29198 (0.029839) 0.29228 (0.032058) 0.29378 (0.034066)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.963; 0.8272 37.966; 7.1369 33.98; 11.9482 28.825; 14.8945

2 0.21843 Error (Std) 0.22826 (0.016839) 0.22962 (0.01913) 0.23188 (0.02394) 0.23149 (0.021645)
Min; Max 23; 40 11; 40 8; 40 6; 40
n̄; Sd 39.911; 1.1526 36.262; 9.2036 30.955; 13.4049 24.329; 15.1144

2.3 0.18885 Error (Std) 0.19624 (0.013342) 0.19763 (0.01436) 0.19961 (0.018911) 0.20138 (0.021371)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.494; 2.7389 34.401; 10.6692 27.404; 14.1794 21.352; 14.4776

2.5 0.17042 Error (Std) 0.17732 (0.011333) 0.17932 (0.015112) 0.17985 (0.014651) 0.17981 (0.014612)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.29; 3.3537 32.707; 11.6783 25.826; 14.2547 19.037; 13.5243

3 0.12928 Error (Std) 0.13528 (0.008498) 0.13693 (0.011078) 0.13807 (0.013833) 0.14033 (0.015943)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.368; 4.8231 29.463; 12.3366 21.095; 12.9532 14.702; 10.3468

4 0.06833 Error (Std) 0.07664 (0.009478) 0.07855 (0.012151) 0.07976 (0.013665) 0.07989 (0.013984)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 35.534; 6.9528 24.048; 10.7124 16.153; 7.853 11.746; 5.0888
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D.5. LRIM RESULTS

TABLE D.5.6 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LRIM classifier is given below. 5 ini-

tial observations were generated from a N(0, 1) distribution and 5 additional observations

were generated a N(∆, 4) distribution, α = 0.05 and the maximum number of sequential

steps is 40 (i.e. M = 40). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.32743 Error (Std) 0.38395 (0.060374) 0.38187 (0.059518) 0.37992 (0.058269) 0.38172 (0.060556)
Min; Max 27; 40 11; 40 8; 40 6; 40
n̄; Sd 39.987; 0.4111 39.274; 4.385 37.513; 8.2841 34.975; 11.5586

1.3 0.29754 Error (Std) 0.33832 (0.052738) 0.33416 (0.048372) 0.33413 (0.04926) 0.33375 (0.050707)
Min; Max 22; 40 11; 40 8; 40 6; 40
n̄; Sd 39.947; 0.967 39.027; 5.0529 35.563; 10.6616 31.621; 13.7554

1.5 0.27772 Error (Std) 0.30961 (0.042489) 0.30894 (0.044759) 0.30816 (0.044169) 0.30793 (0.044131)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.936; 1.0349 38.247; 6.6437 35.085; 11.0313 30.391; 14.3168

2 0.22973 Error (Std) 0.24422 (0.025062) 0.24554 (0.026011) 0.24643 (0.027813) 0.24794 (0.0289)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.777; 1.895 37.101; 8.2092 31.542; 13.2497 25.166; 15.1485

2.3 0.20265 Error (Std) 0.21418 (0.021255) 0.21625 (0.024131) 0.21723 (0.025172) 0.21893 (0.031311)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.687; 2.3204 34.825; 10.4703 29.418; 13.8575 23.051; 14.8569

2.5 0.18551 Error (Std) 0.1955 (0.017943) 0.19607 (0.018171) 0.19785 (0.020131) 0.19799 (0.019091)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 39.478; 2.8649 34.792; 10.3935 27.458; 14.1972 20.901; 14.3016

3 0.14628 Error (Std) 0.15359 (0.013717) 0.15492 (0.01322) 0.15661 (0.016054) 0.15783 (0.016823)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 38.738; 4.2689 30.814; 12.2029 22.413; 13.5995 16.735; 11.9037

4 0.08473 Error (Std) 0.09469 (0.010962) 0.09657 (0.013524) 0.09893 (0.017288) 0.09866 (0.015547)
Min; Max 21; 40 11; 40 8; 40 6; 40
n̄; Sd 36.484; 6.4957 25.826; 11.6396 17.75; 10.1283 12.431; 7.0953
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D.6. CHANGES TO SAMPLING PROBABILITIES

D.6 Changes to sampling probabilities

TABLE D.6.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 9 initial

observations were generated from a N(0, 1) distribution and 1 observation was generated

from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential steps is 90

(i.e. M = 90). The minimum, maximum, mean and standard deviation of the number of

sequential steps required to train the classifier is also provided (denoted Min, Max, n̄ and

Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.098664 Error (Std) 0.10225 (0.026447) 0.10498 (0.044611) 0.1116 (0.0762) 0.11494 (0.084567)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 77.817; 24.843 50.492; 33.7206 30.509; 27.1625 20.11; 18.897

1.3 0.093761 Error (Std) 0.0967 (0.005075) 0.10131 (0.045158) 0.10192 (0.038002) 0.10877 (0.072855)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 78.008; 24.7133 46.024; 33.2122 25.781; 22.798 16.554; 14.7071

1.5 0.088312 Error (Std) 0.09194 (0.004915) 0.09506 (0.027302) 0.09823 (0.04567) 0.10089 (0.052934)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 73.131; 27.6366 41.933; 31.8929 24.459; 22.2731 14.842; 12.4204

2 0.070061 Error (Std) 0.07461 (0.007512) 0.07742 (0.010173) 0.08094 (0.038682) 0.08338 (0.040373)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 66.587; 29.5584 33.837; 26.648 18.163; 14.0808 13.117; 8.5015

2.3 0.058151 Error (Std) 0.06263 (0.007725) 0.06622 (0.011103) 0.06844 (0.029516) 0.06997 (0.030014)
Min; Max 21; 90 11; 90 8; 90 6; 66
n̄; Sd 58.837; 29.5645 27.295; 20.5604 16.491; 9.7223 12.308; 5.8753

2.5 0.050496 Error (Std) 0.05473 (0.007316) 0.05878 (0.028859) 0.05979 (0.012412) 0.06143 (0.029758)
Min; Max 21; 90 11; 90 8; 77 6; 59
n̄; Sd 56.338; 29.2241 26.389; 17.4138 16.319; 8.1052 11.828; 4.7258

3 0.033651 Error (Std) 0.03774 (0.007368) 0.03963 (0.0091) 0.04057 (0.010352) 0.04133 (0.011524)
Min; Max 21; 90 11; 90 8; 52 6; 43
n̄; Sd 48.116; 23.9813 23.523; 11.2685 16.096; 5.2633 12.258; 3.4154

4 0.0122 Error (Std) 0.01401 (0.003331) 0.01557 (0.005611) 0.01611 (0.005976) 0.01687 (0.007458)
Min; Max 21; 90 11; 53 8; 29 6; 22
n̄; Sd 45.553; 16.197 24.749; 6.5831 17.061; 3.6073 12.993; 2.3118
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D.6. CHANGES TO SAMPLING PROBABILITIES

TABLE D.6.2 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 8

initial observations were generated from a N(0, 1) distribution and 2 observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.18616 Error (Std) 0.19046 (0.005939) 0.19257 (0.028325) 0.19392 (0.022398) 0.19765 (0.031246)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 87.171; 13.3666 75.465; 29.5437 54.239; 37.0799 36.393; 33.727

1.3 0.16672 Error (Std) 0.17098 (0.006678) 0.17344 (0.011299) 0.17502 (0.012073) 0.18088 (0.042394)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 87.121; 13.3035 70.53; 32.3272 47.176; 36.4995 27.27; 28.5264

1.5 0.15147 Error (Std) 0.15578 (0.007262) 0.15833 (0.011653) 0.16137 (0.02448) 0.16308 (0.015486)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.861; 15.7832 62.164; 35.1934 39.594; 34.6786 22.963; 23.8766

2 0.11207 Error (Std) 0.11584 (0.007707) 0.11839 (0.01179) 0.12085 (0.013284) 0.1229 (0.016186)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 80.838; 22.2787 48.292; 34.6782 26.975; 26.3049 15.261; 13.1234

2.3 0.09028 Error (Std) 0.09353 (0.006207) 0.0966 (0.01102) 0.09941 (0.013595) 0.1014 (0.016833)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 72.473; 27.9107 41.437; 31.8886 20.288; 18.0169 12.927; 8.7389

2.5 0.07714 Error (Std) 0.08055 (0.006219) 0.08315 (0.009691) 0.08484 (0.011095) 0.08725 (0.01588)
Min; Max 21; 90 11; 90 8; 90 6; 61
n̄; Sd 67.642; 29.4206 35.615; 27.6538 17.884; 12.8587 12.42; 6.6786

3 0.04983 Error (Std) 0.05273 (0.005114) 0.05481 (0.008117) 0.05636 (0.009283) 0.05747 (0.01037)
Min; Max 21; 90 11; 90 8; 74 6; 56
n̄; Sd 53.821; 27.9111 26.066; 17.2744 16.259; 8.002 12.067; 4.3932

4 0.0174 Error (Std) 0.01921 (0.003242) 0.02002 (0.004331) 0.02074 (0.005767) 0.02099 (0.005194)
Min; Max 21; 90 11; 76 8; 29 6; 21
n̄; Sd 45.062; 17.9185 24.328; 7.5398 16.861; 3.7659 12.821; 2.4118
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D.6. CHANGES TO SAMPLING PROBABILITIES

TABLE D.6.3 - The average and standard deviation of the misclassification rate
(denoted Error and Std respectively) in training the LDA classifier is given below. 6

initial observations were generated from a N(0, 1) distribution and 4 observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 90 (i.e. M = 90). The minimum, maximum, mean and standard deviation of the

number of sequential steps required to train the classifier is also provided (denoted Min,

Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.2945 Error (Std) 0.29926 (0.008016) 0.29977 (0.01028) 0.30086 (0.012626) 0.30301 (0.015594)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.865; 3.0179 86.391; 16.2662 77.098; 28.9675 61.648; 37.5361

1.3 0.24789 Error (Std) 0.2515 (0.006611) 0.25206 (0.007578) 0.2536 (0.011309) 0.25615 (0.016119)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.535; 5.545 81.815; 23.6122 69.696; 33.9644 49.839; 37.889

1.5 0.21856 Error (Std) 0.22171 (0.006204) 0.2228 (0.009954) 0.22447 (0.010955) 0.22697 (0.01647)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 89.129; 7.5979 77.902; 27.6509 60.662; 37.2291 40.918; 36.1438

2 0.15378 Error (Std) 0.15639 (0.005393) 0.15825 (0.007623) 0.16005 (0.011232) 0.16171 (0.012494)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 85.66; 16.2358 61.804; 35.3964 39.059; 33.7807 21.264; 22.7407

2.3 0.12146 Error (Std) 0.12398 (0.005067) 0.12579 (0.008092) 0.12841 (0.010793) 0.12993 (0.012452)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 81.153; 21.9087 52.55; 35.5923 27.428; 26.6925 16.293; 15.6695

2.5 0.1027 Error (Std) 0.1048 (0.004987) 0.10741 (0.00841) 0.10908 (0.010715) 0.11024 (0.01161)
Min; Max 21; 90 11; 90 8; 90 6; 90
n̄; Sd 76.55; 25.5821 44.975; 33.4877 21.759; 20.0345 13.658; 10.3907

3 0.06507 Error (Std) 0.06744 (0.004433) 0.06926 (0.007111) 0.07065 (0.009354) 0.07173 (0.009869)
Min; Max 21; 90 11; 90 8; 90 6; 72
n̄; Sd 60.75; 29.9426 29.427; 22.5406 16.495; 9.8049 11.795; 5.0299

4 0.02221 Error (Std) 0.02375 (0.002975) 0.02448 (0.003917) 0.02497 (0.004302) 0.02511 (0.004673)
Min; Max 21; 90 11; 65 8; 35 6; 33
n̄; Sd 44.116; 18.3193 23.78; 7.5385 16.347; 4.0987 12.624; 2.6829
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D.7. CHANGING MAXIMUM NUMBER OF SEQUENTIAL STEPS

D.7 Changing maximum number of sequential steps

TABLE D.7.1 - The average and standard deviation of the misclassification rate (de-
noted Error and Std respectively) in training the LDA classifier is given below. 5 initial

observations were generated from a N(0, 1) distribution and 5 additional observations were

generated from a N(∆, 1) distribution, α = 0.05 and the maximum number of sequential

steps is 300 (i.e. M = 300). The minimum, maximum, mean and standard deviation

of the number of sequential steps required to train the classifier is also provided (denoted

Min, Max, n̄ and Sd respectively).

∆ Bayes error ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20

1 0.30854 Error (Std) 0.3116 (0.006455508) 0.31243 (0.010963) 0.31551 (0.019036) 0.31926 (0.025056)
Min; Max 23; 300 11; 300 8; 300 6; 300
n̄; Sd 299.723; 8.75951 290.47; 51.196 247.571; 107.621 183.643; 128.818

1.3 0.25785 Error (Std) 0.261 (0.006524) 0.26293 (0.013892) 0.26774 (0.02549) 0.27162 (0.027994)
Min; Max 21; 300 11; 300 8; 300 6; 300
n̄; Sd 298.342; 21.352 276.46; 77.858 214.121; 122.996 128.188; 119.637

1.5 0.22663 Error (Std) 0.23009 (0.00736) 0.2329 (0.01807) 0.24028 (0.029012) 0.24709 (0.036581)
Min; Max 21; 300 11; 300 8; 300 6; 300
n̄; Sd 297.238; 27.496 263.568; 93.408 180.131; 128.659 90.52; 103.66

2 0.15866 Error (Std) 0.16332 (0.011152) 0.17098 (0.029493) 0.1807 (0.040026) 0.18882 (0.045265)
Min; Max 21; 300 11; 300 8; 300 6; 300
n̄; Sd 288.726; 54.556 209.605; 122.798 84.253; 96.374 31.797; 43.806

2.3 0.12507 Error (Std) 0.13109 (0.01504) 0.144 (0.039547) 0.15594 (0.050247) 0.16581 (0.061292)
Min; Max 21; 300 11; 300 8; 300 6; 210
n̄; Sd 278.697; 72.449 151.871; 125.587 47.81; 65.011 20.547; 25.992

2.5 0.10565 Error (Std) 0.11282 (0.016814) 0.12694 (0.043258) 0.13572 (0.048943) 0.14534 (0.059173)
Min; Max 21; 300 11; 300 8; 300 6; 234
n̄; Sd 263.073; 92.03 111.339; 112.812 35.646; 45.936 16.752; 17.778

3 0.06681 Error (Std) 0.0775 (0.021215) 0.09704 (0.049834) 0.10324 (0.06012) 0.11316 (0.066498)
Min; Max 21; 300 11; 300 8; 228 6; 87
n̄; Sd 210.269; 120.207 50.234; 62.692 20.858; 22.037 11.982; 7.006

4 0.02275 Error (Std) 0.04087 (0.03075) 0.05803 (0.060197) 0.06842 (0.074307) 0.06586 (0.071539)
Min; Max 21; 300 11; 300 8; 98 6; 62
n̄; Sd 72.33; 69.521 24.957; 18.653 15.298; 7.001 11.773; 3.702
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D.8. CRITICAL VALUES FOR PRESCRIBED COVERAGE PROBABILITY

D.8 Critical values for prescribed coverage probabil-

ity

TABLE D.8.1 - The parameter values for a and γ as determined by Frey (2010), used
to determine a fixed-width interval for a proportion p. The half-width of the interval is

denoted by h.

α = 0.1 α = 0.05 α = 0.01

Half-width h α γ α γ α γ

0.1 4 0.0754 4 0.0356 6 0.0068
0.05 4 0.0859 6 0.0433 8 0.0083
0.01 8 0.0972 10 0.0487 14 0.0097
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Appendix E

SAS Code

options compress = Y minoperator cpucount = actual threads;

%macro determine_sample_size(StopRule,sample_sz1,sample_sz2,mu1,mu2,sig1,sig2,

eps,alpha,h,repititions,max_sample,lambda_method,

Nearest_Neighbours,two_normal_out_m);

%if &StopRule. = ’NEW’%then %do;

%let eps_loop = 0.2;

%let epsloop = 20;

%end;

proc iml;

start LDA_two_normal_distributions(StopRule,sample_sz1,sample_sz2,mu1,mu2,sig1,

sig2,eps,alpha,h,repititions,max_sample,lambda_method,

KNN_Neighbours,two_normal_out_m);

/*StopRule - NEW indicates proposed method, OLD indicates current methodology*/

/*sample_sz1 = the number of observations to generate from sample1;*/

/*sample_sz2 = the number of observations to generate from sample2;*/

/*mu1 = mean value for generating sample1 observations;*/

/*mu2 = mean value for generating sample2 observations;*/

/*sig1 = variance for generating sample1 observations;*/

/*sig2 = variance for generating sample2 observations;*/

/*eps = epsilon;*/

/*a = alpha significance level;*/

/*h = halfwidth of confidence interval for proposed approach*/

/*repititions = number of repititions that the recursive method should be iterated;*/

/*max_sample = maximum number of trails allowed;*/

/*lambda_method = LDA, QDA, KNN, REG variable to select whether lambda is

calculated using K-Nearest, LDA, QDA or Regression of Indicator Matrix*/

/*KNN_Neighbours = K-Nearest Neighbours if LAMBDA_METHOD = KNN*/
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/*two_normal_out_m = Output matrix for two normal distribution inputs*/

************************* Parameters *************************;

sampsize1 = sample_sz1;

sampsize2 = sample_sz2;

epsilon = eps;

mean1 = mu1;

mean2 = mu2; ***** changes with delta;

var1 = sig1;

var2 = sig2;

sample_ratio = sample_sz1/(sample_sz1 + sample_sz2);

if KNN_Neighbours > 0 then KNN_Number = KNN_Neighbours;

if strip(upcase(StopRule)) = ’NEW’then max_sample = 50000;

************************* Recursive *************************;

N_Zero = log(alpha)/(log(1-epsilon));

do rep1 = 1 to repititions;

************************* Generating data *************************;

sample = (randnormal(sampsize1,mean1,var1)||J(sampsize1,1,0))//
(randnormal(sampsize2,mean2,var2)||J(sampsize2,1,1));

*********** Determining the initial Classifier - LDA ***********;

if upcase(lambda_method) = ’LDA’then do;

lambda_use_in = sample;

call lambda_calc_LDA(lambda_use_in,lambda_use);

end;

if upcase(lambda_method) = ’QDA’then do;

lambda_use_in = sample;

call lambda_calc_QDA(lambda_use_in,lambda_use,qda_mean_0,

qda_mean_1,qda_var_0,qda_var_1);

end;

if upcase(lambda_method) = ’REG’then do;

lambda_use_in = sample;

call lambda_calc_REG(lambda_use_in,lambda_use);

end;

*********** Set up initial variables ***********;

Perfect_Class_Counter = 0;

Missclass_Matrix = J(1,1,0);

121

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



*********** Recursive run to reach stopping critria ***********;

do i3 = 1 to max_sample;

*********** Randomly Sampling Record ***********;

u = ranuni(0);

val_chosen = randnormal(1,mean1,var1)||0;
if u >= sample_ratio then val_chosen = randnormal(1,mean2,var2)||1;
sample = sample//val_chosen;

*********** Reclassifying Lambda - KNN ***********;

if upcase(lambda_method) = ’KNN’then do;

call lambda_calc_KNN(sample,KNN_Number,lambda_use);

end;

*********** Classify Sampled Record ***********;

if upcase(lambda_method) = ’LDA’then do;

if (val_chosen[,2] = 0 & val_chosen[,1] < lambda_use) |
(val_chosen[,2] = 1 & val_chosen[,1] >= lambda_use) then do;

Missclass_Matrix = Missclass_Matrix//0;

Perfect_Class_Counter = Perfect_Class_Counter + 1;

end;

else do;

Missclass_Matrix = Missclass_Matrix//1;

Perfect_Class_Counter = 0;

end;

end;

if upcase(lambda_method) = ’QDA’then do;

if (val_chosen[,2] = 0 & 0.5*((val_chosen[,1]-qda_mean_0)‘*

inv(qda_var_0)*(val_chosen[,1]-qda_mean_0) -

(val_chosen[,1]-qda_mean_1)‘*inv(qda_var_1)*

(val_chosen[,1]-qda_mean_1)) < lambda_use) |
(val_chosen[,2] = 1 & 0.5*((val_chosen[,1]-qda_mean_0)‘*

inv(qda_var_0)*(val_chosen[,1]-qda_mean_0) -

(val_chosen[,1]-qda_mean_1)‘*inv(qda_var_1)*

(val_chosen[,1]-qda_mean_1)) >= lambda_use) then do;

Perfect_Class_Counter = Perfect_Class_Counter + 1;

Missclass_Matrix = Missclass_Matrix//0;

end;

else do;

Missclass_Matrix = Missclass_Matrix//1;
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Perfect_Class_Counter = 0;

end;

end;

if upcase(lambda_method) = ’KNN’then do;

if val_chosen[,2] = lambda_use then do;

Perfect_Class_Counter = Perfect_Class_Counter + 1;

Missclass_Matrix = Missclass_Matrix//0;

end;

else do;

Missclass_Matrix = Missclass_Matrix//1;

Perfect_Class_Counter = 0;

end;

end;

if upcase(lambda_method) = ’REG’then do;

if (val_chosen[,2] = 0 & max((1||val_chosen[,1])*lambda_use) =
((1||val_chosen[,1])*lambda_use)[,1]) |
(val_chosen[,2] = 1 & max((1||val_chosen[,1])*lambda_use) =
((1||val_chosen[,1])*lambda_use)[,2]) then do;

Perfect_Class_Counter = Perfect_Class_Counter + 1;

Missclass_Matrix = Missclass_Matrix//0;

end;

else do;

Missclass_Matrix = Missclass_Matrix//1;

Perfect_Class_Counter = 0;

end;

end;

if i3 = 1 then Missclass_Matrix = Missclass_Matrix[2,];

Q = Missclass_Matrix[,1];

*********** Stopping Criteria ***********;

accept_ind = 0;

/******************** Current Rules ********************/

if strip(upcase(StopRule)) = ’OLD’then do;

pie_i = J(i3,1,0);

do i4 = 1 to i3;

pie_i[i4,1] = (1/i4)*(Q[1:i4,])‘*J(i4,1,1);

end;

Kappa_N = (1/i3)*((pie_i#(1-pie_i))‘*J(nrow(pie_i),1,1));

param1 = inv(i3)*(Q[1:i3]‘*J(i3,1,1));
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if param1 < epsilon && Kappa_N > 0 && param1 > 0 then do;

crit1 = ( (probit(1-alpha)*kappa_n)/(epsilon - param1) )**2;

if i3 >= crit1 | perfect_class_Counter >= N_Zero
then accept_ind = 1;

end;

else do;

if perfect_class_Counter >= N_Zero then

accept_ind = 1;

end;

end;

/******************** New Rules ********************/

if strip(upcase(StopRule)) = ’NEW’then do;

if alpha = 0.1 then do;

if h = 0.1 then do;

a = 4; gamma = 0.0754;

end;

if h = 0.05 then do;

a = 4; gamma = 0.0859;

end;

if h = 0.03 then do;

a = 6; gamma = 0.0916;

end;

if h = 0.02 then do;

a = 6; gamma = 0.0945;

end;

if h = 0.01 then do;

a = 6; gamma = 0.0972;

end;

end;

if alpha = 0.05 then do;

if h = 0.1 then do;

a = 4; gamma = 0.0356;

end;

if h = 0.05 then do;

a = 6; gamma = 0.0433;

end;

if h = 0.03 then do;
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a = 6; gamma = 0.0455;

end;

if h = 0.02 then do;

a = 8; gamma = 0.0472;

end;

if h = 0.01 then do;

a = 10; gamma = 0.0487;

end;

end;

if alpha = 0.01 then do;

if h = 0.1 then do;

a = 6; gamma = 0.0068;

end;

if h = 0.05 then do;

a = 8; gamma = 0.0083;

end;

if h = 0.03 then do;

a = 12; gamma = 0.0092;

end;

if h = 0.02 then do;

a = 14; gamma = 0.0095;

end;

if h = 0.01 then do;

a = 14; gamma = 0.0097;

end;

end;

p_hat = (Q[+,1])/(nrow(Q));

p_hat_adj = (Q[+,1] + a)/(nrow(Q) + 2*a);

interval_upper = p_hat + probit(1 - gamma/2)*

sqrt(p_hat_adj*(1 - p_hat_adj)/nrow(Q));

interval_lower = p_hat - probit(1 - gamma/2)*

sqrt(p_hat_adj*(1 - p_hat_adj)/nrow(Q));

if interval_lower >= (p_hat - h) & interval_lower <= (p_hat + h) &

interval_upper >= (p_hat - h) & interval_upper <= (p_hat + h)

then accept_ind = 1;

end;

/******* Calculate Misclassification Rate *******/

if accept_ind = 1 then do;
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if strip(upcase(lambda_method)) = ’LDA’then do;

call Error_calc_lda(lambda_use,missclass_rate,mu1,mu2,sig1,sig2,

10000,sample_sz1,sample_sz2);

end;

if upcase(lambda_method) = ’QDA’then do;

call Error_calc_qda(lambda_use,missclass_rate,mu1,mu2,sig1,sig2,

10000,sample_sz1,sample_sz2,qda_mean_0,

qda_mean_1,qda_var_0,qda_var_1);

end;

if upcase(lambda_method) = ’KNN’then do;

call Error_calc_knn(sample,KNN_Number,missclass_rate,mu1,mu2,

sig1,sig2,10000,sample_sz1,sample_sz2);

end;

if upcase(lambda_method) = ’REG’then do;

call Error_calc_reg(lambda_use,missclass_rate,mu1,mu2,sig1,sig2,

10000,sample_sz1,sample_sz2);

end;

call Error_calc_theoret(sample_sz1,sample_sz2,mu1,

mu2,sig1,sig2,Bayes_Error);

Two_Normal_Out_M = Two_Normal_Out_M//

(mu1||mu2||eps||alpha||h||i3||
missclass_rate||Bayes_Error);
i3 = max_Sample;

end;

else if accept_ind = 0 & i3 = max_sample then do;

if upcase(lambda_method) = ’LDA’then do;

call Error_calc_lda(lambda_use,missclass_rate,mu1,mu2,sig1,

sig2,10000,sample_sz1,sample_sz2);

end;

if upcase(lambda_method) = ’QDA’then do;

call Error_calc_qda(lambda_use,missclass_rate,mu1,mu2,sig1,

sig2,10000,sample_sz1,sample_sz2,

qda_mean_0,qda_mean_1,

qda_var_0,qda_var_1);

end;

if upcase(lambda_method) = ’KNN’then do;

call Error_calc_knn(sample,KNN_Number,missclass_rate,mu1,mu2,

sig1,sig2,10000,sample_sz1,sample_sz2);

end;
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if upcase(lambda_method) = ’REG’then do;

call Error_calc_reg(lambda_use,missclass_rate,mu1,mu2,sig1,sig2,

10000,sample_sz1,sample_sz2);

end;

call Error_calc_theoret(sample_sz1,sample_sz2,mu1,mu2,

sig1,sig2,Bayes_Error);

Two_Normal_Out_M = Two_Normal_Out_M//

(mu1||mu2||eps||alpha||h||i3||
missclass_rate||Bayes_Error);

end;

*********** Reclassifying Lambda - LDA ***********;

if accept_ind = 0 & i3 < max_sample then do;

lambda_use_in = sample;

if upcase(lambda_method) = ’LDA’then do;

call lambda_calc_LDA(lambda_use_in,lambda_use);

end;

if upcase(lambda_method) = ’QDA’then do;

call lambda_calc_QDA(lambda_use_in,lambda_use,qda_mean_0,

qda_mean_1,qda_var_0,qda_var_1);

end;

if upcase(lambda_method) = ’REG’then do;

call lambda_calc_REG(lambda_use_in,lambda_use);

end;

end;

end;

end;

varnames = ’mu1’||’mu2’||’eps’||’alpha’||’h’||’sequential_steps’||
’missclass_rate’||’Bayes_Error’;

create Two_Normal_Out_D from Two_Normal_Out_M [colname = varnames];

append from Two_Normal_Out_M;

finish LDA_two_normal_distributions;

*************** Calculating lambda practically - LDA ***************;

start lambda_calc_LDA(input_matrix,output_matrix);

mean_matrix = input_matrix[loc(input_matrix[,ncol(input_matrix)] = 0),1][:]||
input_matrix[loc(input_matrix[,ncol(input_matrix)] = 1),1][:];

var_matrix = (input_matrix[loc(input_matrix[,ncol(input_matrix)] = 0),1] -

mean_matrix[,1])[##,] +

(input_matrix[loc(input_matrix[,ncol(input_matrix)] = 1),1]
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- mean_matrix[,2])[##,];

var_matrix = var_matrix/nrow(input_matrix - 2);

var_matrix = var_matrix||var_matrix;
output_matrix = ( log(input_matrix[+,2]/(nrow(input_matrix)-input_matrix[+,2]))

+ ((mean_matrix[1,1]**2)/(var_matrix[1,1]) - (mean_matrix[1,2]**2)/

(var_matrix[1,2]))/2 ) /(mean_matrix[1,1]/

var_matrix[1,1] - mean_matrix[1,2]/var_matrix[1,2]);

finish lambda_calc_LDA;

*************** Calculating lambda practically - QDA ***************;

start lambda_calc_QDA(input_matrix,output_matrix,mean_matrix_0,

mean_matrix_1,var_matrix_0,var_matrix_1);

qda_train_0 = input_matrix[loc(input_matrix[,ncol(input_matrix)] = 0),];

qda_train_1 = input_matrix[loc(input_matrix[,ncol(input_matrix)] = 1),];

mean_matrix_0 = qda_train_0[:,1:(ncol(qda_train_0)-1)];

mean_matrix_1 = qda_train_1[:,1:(ncol(qda_train_1)-1)];

var_matrix_0 = (qda_train_0[,1:(ncol(qda_train_0)-1)]-mean_matrix_0)‘*

(qda_train_0[,1:(ncol(qda_train_0)-1)]-mean_matrix_0)/

(nrow(qda_train_0)-1);

var_matrix_1 = (qda_train_1[,1:(ncol(qda_train_1)-1)]-mean_matrix_1)‘*

(qda_train_1[,1:(ncol(qda_train_1)-1)]-mean_matrix_1)/

(nrow(qda_train_1)-1);

output_matrix = log(nrow(qda_train_0)/nrow(qda_train_1)) -

0.5*log(det(var_matrix_0)) +

0.5*log(det(var_matrix_1));

finish lambda_calc_QDA;

*************** Calculating lambda practically - Regression ***************;

start lambda_calc_REG(input_matrix,output_matrix);

X_Matrix = J(nrow(input_matrix),1,1)||input_matrix[,1];
Y_Matrix = (1-input_matrix[,2])||input_matrix[,2];
output_matrix = (inv(X_Matrix‘*X_Matrix))*X_Matrix‘*Y_Matrix;

finish lambda_calc_REG;

*************** Calculating lambda practically - KNN ***************;

start lambda_calc_KNN(input_matrix,KNN,Output_value);

KNN_sample = input_matrix[1:nrow(input_matrix)-1,]||
abs(input_matrix[1:nrow(input_matrix)-1,]-

input_matrix[nrow(input_matrix),1]);

ndx = 0;
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call sortndx(ndx,KNN_sample,3,);

new_index = ndx[1:KNN,];

KNN_Sample_KNN = J(1,ncol(KNN_Sample),987);

do knn_cnt = 1 to KNN;

Knn_val_idx = new_index[knn_cnt,1];

KNN_Sample_KNN = KNN_Sample_KNN//

KNN_Sample[Knn_val_idx,];

end;

KNN_Sample_KNN=KNN_Sample_KNN[2:nrow(KNN_Sample_KNN),];

if (KNN_Sample_KNN[,2][+])/KNN < 0.5 then Output_Value = 0;

else Output_Value = 1;

finish lambda_calc_KNN;

*************** Calculating error LDA ***************;

start Error_calc_lda(input_val,output_val,mean_val1,mean_val2,var_val1,

var_val2,holdout_sample_size,sample1,sample2);

output_val = 0;

rat = sample1/(sample1 + sample2);

output_val = ncol(loc(randnormal(holdout_sample_size*

rat,mean_val1,var_val1) > input_val));

output_val = output_val + ncol(loc(randnormal(holdout_sample_size*

(1-rat),mean_val2,var_val2) <= input_val)) ;

output_val = output_val/holdout_sample_size;

finish Error_calc_lda;

*************** Calculating error KNN ***************;

start Error_calc_knn(training,KNN,output_val,mean_val1,mean_val2,var_val1,

var_val2,holdout_sample_size,sample1,sample2);

output_val = 0;

rat = sample1/(sample1 + sample2);

input_matrix = (randnormal(holdout_sample_size*rat,mean_val1,var_val1)

||J(holdout_sample_size*rat,1,0))//
(randnormal(holdout_sample_size*(1-rat),mean_val2,var_val2)

||J(holdout_sample_size*(1-rat),1,1));
do iii = 1 to nrow(input_matrix);

value = ((training[,1:ncol(training)-1]-

input_matrix[iii,1:ncol(input_matrix)-1])##2)

*J(ncol(input_matrix)-1,1,1);

KNN_sample = training||value;
ndx = 0;
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call sortndx(ndx,KNN_sample,ncol(KNN_sample),);

new_index = ndx[1:KNN,];

KNN_Sample_KNN = J(1,ncol(KNN_Sample),9876);

do knn_cnt = 1 to KNN;

Knn_val_idx = new_index[knn_cnt,1];

KNN_Sample_KNN = KNN_Sample_KNN//

KNN_Sample[Knn_val_idx,];

end;

KNN_Sample_KNN=KNN_Sample_KNN[2:nrow(KNN_Sample_KNN),];

if (KNN_Sample_KNN[,ncol(KNN_Sample_KNN)-1][+])/KNN < 0.5

then knn_class = 0;

else knn_class = 1;

if knn_class ^= input_matrix[iii,ncol(training)] then

output_val = output_val + 1;

end;

output_val = output_val/nrow(input_matrix);

finish Error_calc_knn;

*************** Calculating error QDA ***************;

start Error_calc_qda(input_val,output_val,mean_val1,mean_val2,var_val1,var_val2,

holdout_sample_size,sample1,sample2,mean_matrix_0,

mean_matrix_1,var_matrix_0,var_matrix_1);

rat = sample1/(sample1 + sample2);

x0 = randnormal(holdout_sample_size*rat,mean_val1,var_val1);

x1 = randnormal(holdout_sample_size*(1-rat),mean_val2,var_val2);

x0 = 0.5*((x0-mean_matrix_0)#inv(var_matrix_0)#(x0-mean_matrix_0) -

(x0-mean_matrix_1)#inv(var_matrix_1)#(x0-mean_matrix_1));

x1 = 0.5*((x1-mean_matrix_0)#inv(var_matrix_0)#(x1-mean_matrix_0) -

(x1-mean_matrix_1)#inv(var_matrix_1)#(x1-mean_matrix_1));

output_val = (ncol(loc(x0 > input_val)) + ncol(loc(x1 <= input_val)))

/holdout_sample_size;

finish Error_calc_qda;

*************** Calculating error Regression ***************;

start Error_calc_reg(input_val,output_val,mean_val1,mean_val2,var_val1,var_val2,

holdout_sample_size,sample1,sample2);

rat = sample1/(sample1 + sample2);

x0 = randnormal(holdout_sample_size*rat,mean_val1,var_val1);

x1 = randnormal(holdout_sample_size*(1-rat),mean_val2,var_val2);

output_val = 0;
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do ii1 = 1 to nrow(x0);

if max((1||x0[ii1,])*input_val) = ((1||x0[ii1,])*input_val)[,2] then
output_val = output_val + 1;

end;

do ii2 = 1 to nrow(x1);

if max((1||x1[ii2,])*input_val) = ((1||x1[ii2,])*input_val)[,1] then
output_val = output_val + 1;

end;

output_val = output_val/holdout_sample_size;

finish Error_calc_reg;

*************** Calculating error theoretically i.e. Bayes error ***************;

start Error_calc_theoret(sampsize1,sampsize2,mean1,mean2,sigma1,sigma2,output_val);

rat = sampsize1/(sampsize1 + sampsize2);

if sigma1 = sigma2 then do;

sigma_overall = ( sigma1*(sampsize1 - 1) + sigma2*(sampsize2 - 1) )/

(sampsize1 + sampsize2 - 2);

lambda_bayes = (log(sampsize1/sampsize2) + 0.5*(mean2*inv(sigma_overall)*

mean2 - mean1*inv(sigma_overall)*mean1))/

(inv(sigma_overall)*(mean2 - mean1));

output_val = rat*(1 - probnorm( (lambda_bayes - mean1)/sqrt(sigma1) ))

+(1 - rat)*probnorm( (lambda_bayes - mean2)/

sqrt(sigma2) );

end;

else do;

lambda_bayes1 = (2*(mean1/sigma1 - mean2/sigma2) +

sqrt(4*(mean1/sigma1 - mean2/sigma2)**2

- 4*(1/sigma1 - 1/sigma2)*( -2*log(sampsize1/sampsize2)

+ log(sigma1/sigma2) +mean1*mean1/sigma1 -

mean2*mean2/sigma2 ))) / (2*(1/sigma1 - 1/sigma2));

lambda_bayes2 = (2*(mean1/sigma1 - mean2/sigma2) -

sqrt(4*(mean1/sigma1 - mean2/sigma2)**2

- 4*(1/sigma1 - 1/sigma2)*( -2*log(sampsize1/sampsize2)

+ log(sigma1/sigma2) +mean1*mean1/sigma1 -

mean2*mean2/sigma2 ))) / (2*(1/sigma1 - 1/sigma2));

if lambda_bayes1 > lambda_bayes2 then lambda_bayes = lambda_bayes1;

else lambda_bayes = lambda_bayes2;

output_val = rat*(1 - probnorm( (lambda_bayes - mean1)/sqrt(sigma1) ))

+ (1 - rat)*probnorm( (lambda_bayes - mean2)/
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sqrt(sigma2) );

end;

finish Error_calc_theoret;

call LDA_two_normal_distributions(&StopRule.,&sample_sz1.,&sample_sz2.,&mu1.,

&mu2.,&sig1.,&sig2.,&eps.,&alpha.,&h.,

&repititions.,&max_sample.,&lambda_method.,

&Nearest_Neighbours.,&two_normal_out_m.);

*** Parameter order ****;

/*StopRule - NEW indicates proposed method, OLD indicates current methodology*/

/*sample_sz1 = the number of observations to generate from sample1;*/

/*sample_sz2 = the number of observations to generate from sample2;*/

/*mu1 = mean value for generating sample1 observations;*/

/*mu2 = mean value for generating sample2 observations;*/

/*sig1 = variance for generating sample1 observations;*/

/*sig2 = variance for generating sample2 observations;*/

/*eps = epsilon;*/

/*a = alpha significance level;*/

/*h = halfwidth of confidence interval for proposed approach*/

/*repititions = number of repititions that the recursive method should be iterated;*/

/*max_sample = maximum number of trails allowed;*/

/*lambda_method = LDA, QDA, KNN, REG variable to select whether lambda

is calculated using K-Nearest, LDA, QDA or Regression of Indicator Matrix*/

/*KNN_Neighbours = K-Nearest Neighbours if LAMBDA_METHOD = KNN*/

/*two_normal_out_m = Output matrix for two normal distribution inputs*/

quit;

data _null_;

delta = transtrn(input(&mu2. - &mu1.,$12.),’.’,(’_’));

epsname = transtrn(input(&eps.,$12.),’.’,’_’);

call symput(’delta’,compress(delta));

call symput(’epsname’,compress(epsname));

run;

proc means data = Two_normal_out_d noprint;

var sequential_steps missclass_rate Bayes_Error;

output out = output_&delta._&epsname._metric (keep = mean_missclass

std_missclass min_seq max_seq mean_seq std_seq mean_Bayes)

min = min_seq min_missclass min_Bayes max = max_seq max_missclass

132

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



max_Bayes mean = mean_seq mean_missclass mean_Bayes std = std_seq

std_missclass std_Bayes;

quit;

data output_&delta._&epsname._metric;

set output_&delta._&epsname._metric;

delta = transtrn("&delta.","_",".");

epsilon = transtrn("&epsname.","_",".");

run;

%if %sysfunc(EXIST(final_output)) ^= 1 %then %do;

data final_output;

set Output_1_0_05_metric;

run;

%end;

%else %do;

data final_output;

set final_output output_&delta._&epsname._metric;

run;

%end;

%mend determine_sample_size;

%macro all_delta;

%do epsloop =%sysevalf(0.05*100) %to %sysevalf(0.2*100) %by%sysevalf(0.05*100);

%let eps_loop = %sysevalf(&epsloop./100);

%loop(%str(1, 1.3, 1.5, 2, 2.3, 2.5, 3, 4));

/*This is the list of all delta values you want to loop through*/

%end;

%mend all_delta;

%macro loop(values);

/* Count the number of values in the string */

%let count=%sysfunc(countw(&values,’,’));

/* Loop through the total number of values */

%do i = 1 %to &count;

%let delta_loop=%qscan(&values,&i,%str(,));

%determine_sample_size(’OLD’,5,5,0,&delta_loop.,1,1,&eps_loop.,0.05,0.1,1000

,90,’LDA’,3,Output);

%end;

%mend;
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******* Now running the program *******;

%all_delta;
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