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Abstract Aspects of elementary number theory pertaining to the golden ratio and
the golden spiral are shown to be related to and therefore of importance in the
simulation of chemical phenomena. Readily derived concepts include atomic struc-
ture, electronegativity, bond order, the theory of covalent interaction and aspects
of molecular chirality. The physical interpretation of theresults implicates the 4D
structure of space-time as a fundamental consideration. The implied classical nature
of 3D molecular structure identifies molecular mechanics asan ideal method for
structure optimization, and it is shown that the parametersmay be related to number
theory. All results point at a 4D wave structure of electrostatic charge.
Keywords: atomic structure, bond order, electronegativity, goldenratio, periodic
function

1 Introduction

One of the most mysterious observations in Nature is the appearance of a single
parameter that determines the macroscopic structure of a large variety of apparently
unrelated objects, such as the distribution of florets in a composite seed head [1], the
periodic table of the elements [2], the flight path of a predator bird in pursuit of its
prey, the curvature of a kudu horn [1] and the surface features of a nanoparticle [3].
This ubiquitous parameter, known as thegolden ratio, has also been called thedivine
proportionand for millenia has been used in architectural design, as a measure of
human anatomical features, in works of art and in musical composition [1].

Corresponding author: Jan C.A. Boeyens
Centre for Advanced Scholarship, University of Pretoria, South Africa
e-mail: Jan Boeyens<jan.boeyens@up.ac.za>

Peter Comda
Anorganisch-Chemisches Institut, Universität Heidelberg
e-mail: Comba, Peter<Peter.Comba@aci.uni-heidelberg.de>

1



2 Jan C.A. Boeyens and Peter Comba

The periodic table of the elements is one of the first and most important concepts
in chemistry, and we consider its relation to the golden ratio as compelling evidence
that number theory could provide a significant basis of theoretical chemistry. In
order to explore this contingency it is necessary to examinethe relevant properties
of the remarkable golden parameter in more detail.

2 The Golden Ratio

Mathematically, the golden ratio is formulated by the division of a unit line into two
segments. An intermediate point on the line [ABC] divides the line in mean and
extreme ratios AB/BC and BC/AB, BC>AB.

CA B

1−x x

At the point where
AB
BC

=
BC
AC

;
1−x

x
=

x
1

,

the section is described by the quadratic equation

x2 = 1−x (1)

i.e.

2x = −1±
√

5

x = 0.61803. . . or −1.61803. . .

This so-called golden section or golden ratio is defined by either of the irrational
numbers

τ = 0.61803. . . or Φ = 1.61803· · ·= 1
τ

This result follows on substitutingx = 1/x in (1). Multiplication byτn:

τn+2 = τn− τn+1 ,

shows that any power ofτ (or Φ) can be written as the difference between smaller
powers. For example:

τ6 = τ4− τ5

= 2τ4− τ3

= 2(τ2− τ3)− (τ − τ2)

= 2(2τ2− τ)− (2τ −1)

= 2(2−3τ)− (2τ−1)

= 5−8τ
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Any power reduces to this form, in which the coefficients are successive terms in
the Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

in which any term is the sum of the two preceeding terms,i.e.:

Fn+1 = Fn +Fn−1 , n > 0, F1 = 1.

A general power ofτ therefore becomes

τn = Fn−1−Fnτ .

It follows that

lim
n→∞

Fn−1

Fn
= lim

n→∞

(

τn

Fn
+ τ

)

= τ .

The golden ratio is expressed as a trigonometric function inthe form:

τ = 2cos

(

2π
5

)

Φ = 2cos
(π

5

)

.

It is therefore not surprising that the golden mean turns up in problems of five-fold
symmetry. In particular, it is found that the diagonal of a unit pentagon,

d =
√

1+1−2cos(3π/5) = Φ

has the measure of the golden mean, as in Fig. 1. By noting thatthe quadrilateral
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Fig. 1 Diagram to demonstrate Euclid’s construction of a regular pentagon and the golden section.

ABCe is a paralellogram and that△ACeand△DEeare similar triangles, it follows
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that
AD
Ae

=
Ae
eD

,

which means that the intersecting diagonals divide one another in golden ratio.
Euclid used this property to construct a regular pentagon, starting from a unit

square. A circle, centred at the midpoint(M) of one side, intersects the extension of
that side atS. By construction

MS= MH =
√

5MU = SU+ 1
2 = Φ − 1

2 .

Hence,SU= Φ −1= τ andAC= Φ, the diagonal of a unit pentagon. This process,
repeated twice, yields the complete pentagon.

The distancesBD, Bd, Bc, cd, c f , f g, are in geometrical progression, equal to

Φ, 1, Φ−1(τ), Φ−2(τ2), τ3, τ4, etc.

The construction of smaller or larger pentagrams around thecentral pentagon can
be continued indefinitely to define an infinite geometrical series based onτ:

S= {Φn, n = −∞, ∞} (2)

and the corresponding infinite structure consisting of self-similar pentagrams.
In the same way, addition of a line segment of lengthτ to a unit line yields the

extended line [ABC], again divided in golden ratio by the intermediate point B, as
before. This process, when continued indefinitely, generates a sequence of larger
and larger copies of the original line in golden section. Thesame process unfolds in
the opposite sense to create ever smaller copies. This property, calledself-similarity,
is vividly illustrated by the definition ofτ as a continued fraction:

x = 1+
1

1+ 1
1+ 1

1+ 1
1+...

= 1+
1
x

; x = 1+ τ

Truncation of the algorithm at finite steps generates a series of rational fractions that
converges to 1+ τ = Φ. The convergents are the numbers

1, 1+1= 2, 1+
1

1+1
=

3
2
, 1+

1

1+ 1
1+1

=
5
3
, etc.

This sequence of fractions are given by

(m
n

)

i
=

1
1
,

2
1
,

3
2
,

5
3
,

8
5
,

13
8

, . . . ,

a series of Fibonacci fractions, as before.
Self-similarity is illustrated particularly well as the property of a Fibonaccitree,

which contains infinituple copies of itself as shown in Fig. 2. Each black dot repre-
sents the start of a fresh tree.
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Fig. 2 The Fibonacci tree that contains an infinite number of copiesof itself.

The self-similarity associated with the golden section is embodied geometrically
in the spiral inscribed within a rectangle with sides in golden ratio. Removal of a
square (gnomon) from such a golden rectangle leaves a smaller golden rectangle
as residu. On continuing the process indefinitely rectangles of diminishing size are
created, as shown in Fig. 3.
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Fig. 3 A Fibonacci spiral inscribed in a rectangle defined by a Fibonacci sequence. The increasing
size of successive squares is defined by the Fibonacci labels(n) and the ratio of their side lengths
approachesτ as n→∞. The inscribed spiral approximates a golden spiral and alsoan equiangular
logarithmic spiral [4].

To good approximation, the side lengths of successive gnomons decrease in line
with the Fibonacci numbers, such that Fibonacci squares cover the composite golden
rectangle,e.g.

12 +12+22+32+52+82+132 = 13× (13+8)= 13×21.
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Likewise, the firstn rectangles in a Fibonacci sequence cover the largest gnomon
for n odd,e.g.

(1×1)+(1×1)+(1×2)+(2×3)+(3×5)+(5×8)+(8×13)+(13×21)= 212

Circular segments inscribed between opposite vertices of the growing gnomons de-
fine a spiral which is approximated by the logarithmic spiral

r = aeθ cotϕ , ϕ = 72.9◦, cotϕ = τ/2,

in whicha andϕ are constants and the angleθ defines the dilative rotation.

3 The Periodic Function

Èmile de Chancourtois, co-discoverer of elemental periodicity claimed [5] that

... the properties of the elements are the properties of numbers.

His claim was vindicated with the discovery of atomic number, but the theme re-
mained undeveloped until it was conjectured by Peter Plichta [6] that the electron
configuration of atoms is mapped by the distribution of primenumbers. Based on the
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Fig. 4 The natural numbers arranged on a spiral with a period of 24. All prime numbers> 3 and
of the form6n± 1 occur on eight straight lines of the cross, which has been interpreted [6] to
simulate the electronic structure of atoms.
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observation that all prime numbers> 3 are of the type 6n±1 he defined a prime-
number cross that intersects a display of natural numbers ona set of concentric
circles with a period of 24. In Fig. 4 the construct is shown, rearranged as a number
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4n
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Fig. 5 Using half-life as criterion the naturally occurring stable nuclides can be divided into
four series of mass number A(mod4)≡ 0,1,2,3, i.e two even series of 81 and two odd series of
51, considered as the product ofα-particle addition [7]. A plot of the ratio Z/N vs A defines a
converging field of stability, in line with the presumed periodicity of 24; condition (c).

spiral. Noting that the numbers on each cycle add up to

σ( j +1) =
24( j+1)

∑
n=24j

n = (2 j +1)300, j = 0,1,2, . . .

such thatσi = a,3a,5a,7a. . . (a = 300), these odd-number coefficients were
likened to the degeneracy of spherical electronic shells with spectroscopic notation
s, p,d, f .

Re-interpretation of the sums as electron pairs over all stable nuclides, suggests

(a)A total1 of 300 different nuclides;
(b)100 different elements ;
(c)nuclide periodicity of 24;
(d)elemental periodicity of 8 .

1 300 isotopes of 100 elements, withZ/N = 1 are synthesized byα-particle addition in massive
stellar objects. In interstellar space radioactive decay terminates at 264 stable isotopes of 81 ele-
ments.
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This interpretation is supported [7] by analysis of the neutron imbalance of sta-
ble atomic species as a function of mass number, shown in Fig.5. The region of
nuclide stability is demarcated here by two zig-zag lines with deflection points at
common values of mass numberA. Vertical hem lines through the deflection points
divide the field into 11 segments of 24 nuclides each, in line with condition (c). This
theme is developed in more detail in the paper on Atomic Structure in this volume
[8]. Defining neutron imbalance as eitherZ/N or (N−Z)/Z the isotopes of each
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Fig. 6 Neutron imbalance of atomic nuclei is defined either by the ratio Z/N or the relative excess
(N−Z)/Z. As functions of mass number these quantities map the isotopes of a given element to
respective circular segments and straight lines, the intersection of which defines the golden ratio.

element, as shown in Fig. 6, map to either circular segments or straight lines that
intersect where

Z
N

=
N−Z

Z
, i.e. Z2 +NZ−N2 = 0,

with solutions of
Z = 1

2N(1±
√

5) ≡ τN.

This result provides the exact value of the convergence limit of Z/N first identi-
fied by William Harkins [9] as 0.62 according to the curves in Fig. 5.

To show that the periodic table of the elements is a subset of the more general
nuclide periodicity, the data of Fig. 5 are replotted on axesof Z/N vs Z, as in Fig. 7.

In Fig. 7 the hem lines are no longer vertical, but still divide the field into 11
groups of 24. A remarkable feature of the diagram is the way inwhich the hem lines
intersect the horizontal lineZ/N = τ at points, which rounded off to the nearest
integer, correspond with familiar values of atomic number that represent the closure
of periodic subgroups:

10(2p),18(3p),28(3d),36(4p),38(5s),46(4d),48(5s),56(6s),62(4 f : 6/8),70(4 f ),80(5d)
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Fig. 7 The periodic distribution of stable nuclides as a function of atomic number. Open circles
represent odd mass numbers and the filled circles the two evenmass-number series. The hem lines
that define the nuclide periodicity of 24 are no longer parallel to the Z/N axis and their points of
intersection with the lines at Z/N = τ and 1 are of special importance in the definition of elemental
periodicity as a subset of the nuclide periodic function.

Extrapolated toZ/N = 1 the points of intersection represent an inverted periodic
table:

14(4 f ),24(3d),32(1s),38(3p),54(5 f ),60(4p),76(5p),84(6p),94(5d),100(7p).

The only known mechanism that could cause such an inversion is a state of ex-
tremely high pressure [10]. We conjecture that the unit ratio of Z/N coupled with
high pressure describes ideal conditions for the build-up of 300 nuclides2 of 100
elements byα−particle fusion in massive stellar objects, explaining conditions (a)
and (b).

The cardinal points of intersection of the hem lines of Fig. 7at Z/N = 1.04 are
arranged symmetrically aboutZ = 51. On identification of the pointsZ = 0 and 102
a closed function is generated. Operating with the same element of mirror symme-
try on the hemlines two sets, characteristic of both nuclides and anti-nuclides, are
generated as shown in Fig. 8.

By following the hem lines fromZ/N = 0 to 1.04 and back to zero, through
the involution, a completely closed set is traced out, as shown in Fig. 9. Closed
in four dimensions the resulting topology defines real projective space. Possible
implications of this construction on molecular shape are discussed in the final paper
of this volume [11].

Like objects in the solar system (next section) the periodictable of the elements
can also be rationalized by elementary number theory. As theratioZ/N always rep-

2 On release into interstellar space radioactive decay results in the survival of only 264 stable
nuclides as two sets of 81 withA = 2n and two sets of 51 with oddA.
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Fig. 8 Variability of the periodic table of the elements depends onspace-time curvature as shown
in the frame on the left. The triangular segment defines the field of stability. The symmetrical
version on the right is conveniently mapped to the surface ofa Möbius band as in Fig. 9, but
resolution is only possible in 4D projective space.

resents a rational fraction, the pattern of Fig. 7 corresponds to some special ordering
of rational fractions. The best-known order for the enumeration of rational fractions
is known as a Farey sequence [12], which is generated by continued separate addi-
tion of numerators and denominators of adjacent fractions in the interval (0,1):

Fig. 9 Schematic diagram to
illustrate the involuted nature
of the periodic relationship
between matter and antimat-
ter.
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Fig. 10 A plot of k-modular
Farey sequences as a function
of the natural numbers defines
a set of infinite festoons that
resembles the arrangement of
nuclides in Fig. 5 and 7. The
segment, obtained as a subset
defined by limiting Fibbonacci
fractions that converge from
1 to τ , and subject to the
condition A(mod4)= 0 → 3,
corresponds to the observed
field of nuclide stability.
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The variation ofZ/N with Z, shown in Fig. 7, mirrors the variation of the infinite
k-modular sets of Farey sequences, defined by

Sk =
n
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∣
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as a function ofn. For simple Farey sequencesk = 1. For example:
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Part of these sets is plotted in Fig. 10 with the converging stability limits shown.
Each point within the triangle of stability represents a potential nuclide. However,

naturally occurring nuclides are limited to four series of mass numbersA(mod4)≡
0→ 3, interpreted to correspond to a process of nucleogenesis based on the fusion
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of α−particles to yield two even series of 81 members each and two odd series with
51 members [7]. Significantly, by this procedure all stable nuclides are identified
correctly, except for a fewα−unstable ones. Isotopes of elements 43 and 61 are
excluded naturally. Forn = Z isotopes of the same element are mapped to the same
vertical line.

More simply, a plot of the unimodular Farey sequence

F4 =

{

0
1

1
4

1
3

1
2

2
3

3
4

1
1

}

as Ford circles [13], directly represents the periodic table as in Fig. 11.
As discussed in the paper on Atomic Structure [8] touching Ford circles have

radii andy-coordinates of 1/2k2
i andx-coordinates ofhi/ki . The resulting map of

F4 converts into the periodic table through the reciprocal radii of the numbered
circles. Condition (d) is clearly implied.

It all seems to hang together. To account for such consilience, Plichta [6] con-
jectured that numbers have real existence in the same sense as space and time. A
more conservative interpretation would link numbers, through the golden ratio, to
the curvature of space-time. A common inference is that the appearance of numbers
as a manifestation of the periodicity of atomic matter is dueto a spherical wave
structure of the atom. A decisive argument is that the full symmetry, implied by the
golden ratio, incorporates both matter and antimatter as a closed periodic function
with involution, as in Fig. 9, in line with projective space-time structure.
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Fig. 11 Mapping of the periodic table of the elements as the reciprocal radii of theF4 unimodular
Ford circles.
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4 Commensurability in the Solar System
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Fig. 12 Simulation of planetary orbits by golden-spiral optimization. With the mean orbital radius
of Jupiter as unit the outer planets are on orbits defined by integral multiples thereof. On the same
scale the asteroid belt is at a distanceτ from the sun and the inner planets have orbital radii of
τ/n. For clarity the inner planets are shown on a larger self-similar scale.

Like the golden ratio, golden spirals give a description of adiversity of natu-
ral phenomena such as the shape of nautilus shells, tropicalhurricanes and spiral
galaxies [1]. Golden spirals have the property of self-similarity, or invariance with
respect to scale transformation, in which small parts of a structure have geometri-
cal properties that resemble the whole structure or large parts thereof. Numerically,
both golden ratio and golden spiral are described by the convergence of Fibonacci
series. The convergence properties have been put to scientific use in the theoretical
reconstruction of atomic periodicity [7] and the solution of optimization problems in
engineering [14]. As a significant demonstration we show that the distribution of all
matter in the solar system is correctly predicted by golden-spiral optimization. The
assumption is that in a spiralling dust cloud matter accumulates at specific points
along the spiral, specified by aconvergence angle. The result for a convergence
angle of(180/5)◦ is shown in Fig. 12.

The mean orbits of all planets, including Ceres, the largestasteroid, are correctly
predicted [15] by the relative distances from the spiral centre. With the orbital radii
expressed as rational fractions, a quantized distributionof major planets, as num-
bered, is revealed. On this scale the orbit of Ceres measuresτ and those of the inner
planets as rational fractions of the golden ratio. The same pattern was shown to
repeat itself for the orbital motion of planetary moons and rings [15].

From this observation we infer self-similarity on a cosmic scale, from atoms to
galaxies, which implies the same numerical basis for the atomic models of Nagaoka
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[16] and Bohr, assumed self-similar with the rings of Saturnand the planets, respec-
tively. In principle the periodic accumulation of extranuclear electron density on an
atom could also be optimized by specifying an appropriate convergence angle.

5 Atomic Structure

The Ford circles that represent the Farey sequence of order 4represents the periodic
table of the elements in complete detail. In particular, they predict the appearance of
electron shells withn = 1,6, consisting of 2, 8, 8, 18, 18, 32 electrons, in this order.

This arrangement is ideally suited to optimization by a golden spiral. A chemi-
cally meaningful solution results by stipulating a divergence angle of 4π/(2n−1),
as explained in the paper on Atomic Structure [8]. The resulting distribution has
extrema at integral distances ofn2 from the nucleus. If we assume that an electron
cannot approach the nucleus more closely than the Bohr radius ofa0 the distribution
can be considered as a spherical standing wave with zero surface at a radiusa0 and
nodal surfaces at alln2a0. With the electron count known from the periodic func-
tion the mean electron density within each shell follows immediately. The predicted
distribution scales directly to the Thomas-Fermi statistical model of the atom, and
the periodicity for individual atoms agrees with the Hartree-Fock results, as shown
in Fig. 13.
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Fig. 13 Simulation of Thomas-Fermi and Hartree-Fock electron densities for unit atoms as de-
scribed later on [8]. The calculated points are those predicted by golden-spiral optimization and
scaled to match the Thomas-Fermi curve, shown as a solid line. The dotted curve simulates the HF
result.
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6 Electronegativity

The ground-state electron configuration of an atom is of limited value as a predictor
of chemical affinity since most chemical reactions result from interaction between
atoms in an activated valence state. The valence state is commonly considered to
be reached by thermal activation, which gives rise to high-energy atomic collisions.
Activation by uniform compression of an atom, which is not a feasible laboratory
procedure, is more convenient for mathematical simulation[10, 17]. Computerized
compression is done by Hartree-Fock simulation with modified boundary conditions
that restrict wave functions to a finite sphere [17]. All electronic energies move to
higher levels as the limiting radius is reduced, until a single electron reaches the
ionization limit. At this point the valence electron, decoupled from interaction with
the nucleus, is confined to a sphere of characteristic radiusr0, interpreted as the
ionization radius. This is a standard problem in free-electron quantum theorywhich
calculates the energy of an electron, which is uniformly spread across the confining
sphere, as [18]:

Eg =
h2

8mr20
.

When the valence electron reaches the ionization limit its potential energy with re-
spect to the nucleus goes to zero and in uniform distributionit has no kinetic energy.
The calculated confinement energy(Eg) can therefore only represent quantum po-
tential energy, defined as [19]:

Vq = − h̄∇2R
2mR

.

This equation is solved byEg, on the basis of which the valence electron is now
interpreted to have reached an activated state at a chemicalpotential ofEg. This
state defineselectronegativity. To be in line with traditional practice it is formally
defined asχ =

√

Eg, with r0 in Å units andEg in eV [20].
Starting from the numerically optimized valence density ina ground-state va-

lence shell the radius of an equivalent sphere, which accommodates this total den-
sity at a uniform level, is readily calculated by simple geometry. There is very good
correspondence with Hartree-Fock values of ionization radii, with the added advan-
tage of higher accuracy for the chemically important secondperiod elements where
the HF results are notoriously unreliable [17, 21].

By the use of elementary number theory, to simulate uniform distribution of a
valence electron over the ionization sphere, a complete setof ionization radii and
electronegativities is now available for the simulation ofa whole range of chemical
properties as described in the papers to follow.
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7 Bond Order

On looking for a relationship between ionization radius andthe chemistry of
homonuclear covalent interaction the classification into single and multiple bonds3

is followed as a first approximation. An immediate observation, valid for most single
bonds is a constant value of the dimensionless distance

d′ = d/r0 = 0.869,

whered is the experimentally known covalent interatomic distance. Notable excep-
tions occur for F–F, O–O and I–I withd′ = 0.935. A similar trend is observed for
most double and triple bonds. For the smaller number of quadruple dimetal bonds
d′ = τ, to good approximation. Assuming zero-order interaction to occur atd = r0, it
follows thatd′ converges from unity toτ with increasing bond order, corresponding
to a divergence angle ofπ/2 on a golden spiral.

Fig. 14 Simulation of inte-
ger bond orders on a golden
spiral. The dimensionless dis-
tances d′ = 1 and τ , which
represent zero and fourth
order respectively, must, by
definition, be separated by a
convergence angle of 90◦ on
a golden spiral. Convergence
angles for intermediate inte-
ger and half-integer orders
follow directly.

1

0

2
3

4

Divergence angles ofπ/8 andπ/16 for integer and half-integer bond orders are
implied and shown in Fig. 14. This solution corresponds withthe empirical values
derived before,i.e.:

b 0 1
2 1 11

2 2 21
2 3 31

2 4
d′ 1.0 .935 .869 .804 .764 .724 .683 .658 .618

The corresponding numerical solution defines bond order,b, by the equation

d′ = jbτn

where bothn and the covariant integer coefficientjb, for bond orderb, depend in
a simple way on Fibonacci numbers. This procedure is described more fully in the
Covalence paper [25].

The quantized variation of bond order may be rationalized byviewing overlap-
ping charge spheres as spherical standing waves. These waves interfere construc-

3 Bond order, assumed to stipulate the number of electron pairs in covalent interaction, although a
poor measure of bond strength [22, 23, 24], is a convenient general working model.
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tively at specific interatomic distances that depend on wavelength. Destructive in-
terference that occurs at intermediate distances tend to destabilize the interaction
and to prevent continuous variation of bond order. Distortion of the interference
pattern requires work, as measured by bond-stretching force constants.

8 Covalent Interaction

With the relationship between ionization radius and bond order in hand, the cal-
culation of covalent interaction parameters becomes an almost trivial exercise. The
common volume,ε, between overlapping spheres of radiusr0 at characteristic sep-
arationsd′ for given bond order, and considered proportional to dissociation energy,
varies in a quantized fashion similar tod′. This allows definition of a dimensionless
dissociation energyD′ = Dr0/K, as explained in the paper on Covalent Interaction
[25]. K is a dimensional constant. Noting the connection ofε with spherical volume
one looks for a dependence of the type

Dxr0

K
= D′ ∝ r3

0.

First-order homonuclear interactions are seen to obey the rule,Dx = Kr2
0τn, where

n correlates positively with bond order.
By taking electronegativity difference into account dissociation energy for het-

eronuclear interactions are calculated as

Dc = Kr3
0(1)/r0(2) ; r0(1) > r0(2).

Exhaustive testing has shown the formula to hold for all heteronuclear interactions
of any order.

Resistance against change of bond order is measured as a harmonic stretching
force constant. It depends on the relative energies of adjacent bond orders and on
the slope of the linear curve that describes continuous change of bond order. In
general

1
2kr =

∆D′

(∆d′)2 .

Estimation of∆D′ is facilitated by the special property of the golden ratio:τn −
τn+1 = τn+2 = τ+, in shorthand notation. In the common units of Ncm−1 the general
expression becomes

kr =
4.615τ+s

(∆d′)2r0(1) · r0(2)
.

The formula can be demonstrated convincingly, applied to well-researched series of
diatomic molecules. Individual bonds in larger molecules are less well described,
but MM force constants derived by this method are in good agreement with other
general parameters [26].
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Exploiting the possibility of representing polarization effects in diatomic molecules
many dipole moments, especially for diatomics such as the alkali halides can be sim-
ulated with a high degree of confidence. A general lack of experimental values to
serve as empirical guidance has so far prevented the development of the method to
its full capacity.

9 The Physical Meaning

Based on elementary number theory we have arrived at a computational scheme that
works unexpectedly well for the simulation of chemical phenomena. The problem
is to find a plausible interpretation to connect the abstractmodel with the concrete.
The statistical scheme of probability densities and point particles adopted in physics
does not provide a satisfactory answer in this case. We are forced to enquire more
deeply into the fundamental nature of matter.

The only fundamental theory that considers the genesis of matter is the theory of
general relativity. It is formulated in 4D space-time as a set of field equations,

Gµ,ν = kTµ,ν , µ ,ν = 0,3

that balances space-time curvature against the matter-energy content of the system.
The implication of this relationship is that the appearanceof matter is unequivocally
linked to the curvature of space-time. In particular, matter cannot exist in Euclidean
space [27].

For convenience humans consider their living space to be Euclidean and even
advanced cosmologies are still formulated in such terms. Inorder to operate in Eu-
clidean space it is necessary to separate the mathematically equivalent variables of
Einstein’s equation into a universal time variable and the three familiar variables
of coordinate space. This operation destroys the 4D field equations and no longer
provides any insight into the nature of matter. For this reason the existence of matter
is added to physical theory as anad hocpostulate — the prescription of classical
Newtonian mechanics.

Quantum mechanics follows the same prescription, by separating the 4D poten-
tial function, formulated as

2
2Φ = 0 into the wave equation

(

∇2− 1
c2

∂ 2

∂ t2

)

Φ = 0.

The suspicion that this separation of variables, although mathematically sound,
leads to a less than perfect description of quantum systems is confirmed [28] by
statistical testing of the seminal equation that relates the frequency of the energy
radiated or absorbed by a H atom to the integers in the Rydbergformula

ν̄ = R

(

1
n2 −

1
k2

)

.
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This is the equation of a straight line, which, for the Lyman series withn = 1,
reduces to

ν̄ = −R/k2+R

(y = mx+c)

A plot of ν̄ vs−1/k2 should be linear, with equal slope and intercept. The most
reliable and accurate data available fail this test statistically [28]. The discrepancy is
not large but significant and reminiscent of the spectroscopic red shift measured in
galactic light. The common origin of these discrepancies cannot be a Doppler effect
and is probably due to space-time curvature.

In the 4D equation space and time coordinates are inextricably entangled. Its
mathematical solutions are hypercomplex functions, or quaternions, without a com-
mutative algebra. Quaternions are used to describe what is known as spherical rota-
tion, also called the spin function, and the complex rotation known as the Lorentz
transformation of special relativity.

The separated 3D wave equation can no longer describe any of these fundamental
rotations. For this reason, the discovery of electron spin necessitated its introduction
into quantum theory as anotherad hocpostulate. The anomalous consequence is the
unphysical situation of a point particle with spin. Only part of the spin function sur-
vives solution of the 3D wave equation, in the form of a complex variable interpreted
as orbital angular momentum. In the so-calledpz−state it has the peculiar property
of non-zero orbital angular momentum with zero component inthe direction of an
applied magnetic field. This is the price to pay for elimination of spherical rotation.

Despite this anomaly the complex angular-momentum function can be used to ra-
tionalize many features of stereochemistry. It representsthe only vector quantity in
wave mechanics which could interact with an applied magnetic field. It accounts for
the so-calledFaraday effect, which is a property of achiral molecules in an applied
magnetic field to rotate the plane of polarized light. It is easy to demonstrate that
atomic orbital angular momentum vectors always line up anti-parallel in diatomic
interaction and continue to do so in more complicated symmetrical atomic assem-
blies on molecule formation. It is only in chiral molecules,without reflection or
inversion symmetry, that total quenching of orbital angular momentum is no longer
possible. The residual orbital angular momentum with its associated magnetic mo-
ment is responsible for optical activity in such cases.

This tendency to quench orbital angular momentum may be usedto good effect
to predict the mutual orientation of sub-molecular fragments (radicals) on form-
ing a molecule. The symmetry of substituted methanes and other small molecules
has been successfully analyzed by this method [29, 18]. Where quenching requires
a specific mutual orientation in 3D the interaction exhibitssteric rigidity. By sys-
tematic use of these principles it is possible to predict the3D structure of complex
molecules, without allowing for the effects of non-bonded and torsional interactions.
The resulting structures are suitable as trial input for optimization by MM [26].

These positive results are not without exception. Immediately obvious is the
anomalous optical effects observed in a homochiral series such as the biologically
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active amino acids. Despite their uniform chirality4 only about half of them rotate
an optical plane of polarization in the same sense. The orbital angular momentum
of 3D wave mechanics is clearly inadequate as an explanationof optical activity in
such detail. For a deeper understanding of the phenomenon itis necessary to recon-
sider the effect of 4D molecular symmetry.

The discovery of quantum mechanics was seen as a dramatic departure from
classical theory because of the unforeseen appearance of complex functions and dy-
namic variables that do not commute. These effects gave riseto the lore of quantum
theory as an outlandish mystery that defies comprehension. In our view this is a valid
assessment only in so far as human beings have become evolutionary conditioned
to interpret the world as strictly three dimensional. The discovery of a 4D world
in special relativity has not been properly digested as yet,because all macroscopic
structures are three dimensional. Or, more likely, minor discrepancies between 4D
reality and its 3D projection are simply ignored. In the atomic and molecular do-
mains, where events depend more directly on 4D potential balance, projection into
3D creates a misleading image of reality. We argue this pointon the basis of differ-
ent perceptions of chirality in 3D and 2D respectively. As shown in Fig. 15 inversion

Fig. 15 Diagram to show that
three-dimensional inversion
(3DI) could be mistaken
as rotation (2DR) in two
dimensions.

2DR
3DI

CA

AC

B

B

of a chiral tetrahedron, with the base ABC in a fixed 2D plane, changes the 3D chi-
rality, but appears as a simple rotation in 2D. We anticipatesimilar discrepancies
between 4D symmetry and its projection into 3D as responsible for the irregular
variation of optical activity as a function of 3D chirality.

The appearance of non-commuting quantum variables can now also be traced
back to the non-commutative algebra of 4D hypercomplex functions. On projec-
tion into 3D by the separation of space and time variables thequaternion variables
are reduced to complex functions that characterize orbitalangular momentum, but
the commutation properties remain. Not appreciating the essence of complex wave
functions, an unfortunate tradition to reduce them to real functions, has developed
in quantum chemistry. These real orbitals and basis sets only have classical mean-
ing. Relations in the complex plane, which describe orbitalangular momentum, are
reduced to harmonic oscillations on a real line.

Topologists describe the projection from four to three dimensions in terms of an
underlying 4D curved space-time and a Euclidean space, tangent to the 4D mani-
fold, with a universal time coordinate. The only 4D sphere with a continuous group
structure isS3 and the space of antipodal points onS

3 is known asprojective space,
and denoted byP3(R) [32]. A section through projective space is a Möbius band —

4 For the sake of simplicity we do not consider degrees of chirality as distinguished by chirality
functions [30, 31]
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a 2D construct which cannot be embedded in 2D space. Correspondingly a Möbius
band, closed on all sides, cannot be embedded in 3D space. Projective space, al-
though hard to visualize is the physically most likely structure of the underlying 4D
curved space-time.

The previous statement is based on the results of reformulating the theory of
general relativity in projective space, as a model of unifiedelectromagnetic and
gravitational fields [33]. On transformation of the electromagnetic part into tangent
space the relationship between 3D and 4D potentials is of theform [34]:

( e
mc2

)

Vj =

√
5

2
ϕ j = (τ + 1

2)ϕ j .

Here is the first inkling about the universal importance of the golden ratio. If it
measures the relationship between underlying space and tangent space it is not sur-
prising for it to show up in the apparent structure of so many objects from atoms to
galaxies. It might even be interpreted as a measure of space-time curvature.

The relationship between space-time curvature and the golden ratio amounts to
little more than a suspicion, based on the factor that converts the electromagnetic
field from projective space into an affine theory. To account for the ubiquitous ap-
pearance of golden spirals in self-similar chemical and cosmic structures we may
look for a related factor in the construction of a golden spiral from the series of
gnomonic circular segments as in Fig. 3. The ratio between arc length,πr/2, and
chord,

√
2r, i.e. between curve and tangent,π/(2

√
2) = 1.111≃

√
5/2, supports

the suspicion. If the curvature of space-time depends on thegolden ratio it is no
longer surprising to find that structures of all sizes are self-similar and conditioned
by τ. To summarize: the golden ratio features in the packing of nucleons [7], the
electronic structure of atoms, the details of chemical interaction, the periodicity of
atomic matter [2], the structure of nanoparticles [3], botanical phyllotaxis, planetary
and solar systems [15], spiral galaxies and the large-scalestructure of the universe
[27].

It is reasonable to expect that any growing structure shouldfollow this curvature
and for 3D observers to find the imprint of the golden ratio everywhere, also in the
structure of molecules. It would not be surprising to find thegolden ratio among
the topological features of macromolecules or even reflected in the torsion angles
within smaller molecules [35].

We are reaching the conclusion that the modelling of molecular structure by
number-theoretic golden parameters may well be a fundamentally appropriate pro-
cedure. At this stage, the simulation of important internalmolecular structural pa-
rameters, with the exception of torsion angles, can be undertaken with confidence.
It is quite clear however, that at the present very early stage of development, the
optimized structures, for many reasons, are quite crude, and the optimization of the
functional forms and parameter sets, based on experimentaldata, may be required.
The final objective might be structure optimization by MM, using a generic force
field based on number theory.
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10 Molecular Mechanics

Molecular modelling by minimization of the steric energy starts from an assumed
structure in which the rigid bonds are replaced by flexible springs of characteristic
lengths and strengths (force constants in Hookes law); similar harmonic potentials
are used to model angular distortions and torsional flexibility [36].

In the fully empirical approach a characteristic bond length and a matching force
constant are assigned to a molecular fragment to reproduce an observed interatomic
distance on energy minimization. In the number theory approach [26] an ideal bond
length, free of strain, is calculated as a function of ionization radii and bond order.
For smaller, chemically important atoms, it may be necessary to allow for the dis-
tortion of atomic sphericity by first-neighbours. Calculation of the stretching force
constant requires, in addition, an estimate of the diatomicdissociation energies at
different bond orders, which are obtained as functions of ionization radii and the
golden ratio. That is, modeling of bond distances is based ongeneric parameters,
and these may be computed very efficiently for all possible combinations of the
entire periodic table, various oxidation and electronic ground states included.

Second-neighbour interactions are optimized empiricallyfrom a characteristic
valence angle and a matching angle-bending force constant.In the number theory
approach 1,3-interactions are calculated as a lower-orderinteraction with an asso-
ciated stretching force constant, readily converted into an angle-bending force con-
stant, as needed. The interactions between more distant neighbours are considered
as weak bonds with a minimum at the characteristic van der Waals separation. In
number theory these are zero-order interactions. The parameters generated by num-
ber theory would therefore be ideally suited for use with a Central Force Field [37]
in which two-body forces between atoms are used exclusively, in place of bond
angles and torsion angles.

Torsional interactions are empirically modelled with a periodic function based
on local geometry around the central bond. This problem has not yet been stud-
ied in number theory. Neither have any of the other parameters such as cross-
term interactions, electrostatic interactions, out-of-plane deformation, and more spe-
cific electronic interactions been considered for number-theory-based simulation
[38, 39, 40, 41].

The purpose of the number-theory analysis is not primarily to produce another
force field (to which all these special features might be added), but rather to demon-
strate that the MM approach is fundamentally sound, and to provide a simple ap-
proach for efficiently computing generic force field parameters which might be used
directly or after optimization based on experimental data.Other generic force field
approaches have been used in various universal force field methods [42, 43, 44].
Important additional contributions that number theory canmake to MM simulations
are to also provide generic force field parameters for interactions that involve metal
ions, and possibly also to efficiently compute charge distributions based on elec-
tronegativities [26, 45].
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11 Chemical Matter

As in wave mechanics, the simulation of chemical phenomena by number theory is
characterized by the appearance of integers; in this case associated with chemical
structures and transformations. An obvious conclusion is that the elementary units
of matter should be viewed as wave structures rather than point particles, which is
consistent with the first appearance of matter in curved space-time. Even 3D wave
packets behave in a manner convincingly like ponderable matter and rationalize the
equivalence of mass and energy in a natural way. There is no compelling reason
why this simple model should be obfuscated with the notion ofwave/particle dual-
ity. And more so on realising that the wave-like space-time distortions are strictly
4D structures. In response to environmental pressure an electronic wave packet can
shrink to the effective size of an elementary particle or increase to enfold a proton
as a spherical standing wave.

A wave structure of the electron, which is routinely verifiedby electron diffrac-
tion, facilitates the understanding of atomic structure and concepts like bond order.
It provides a logical explanation of the photoelectric effect as an interaction between
waves, doing away with photons and wavicles at the same time.

Interacting elementary wave packets are expected to coalesce into larger wave
packets. All extranuclear electrons on an atom therefore together constitute a sin-
gle spherical standing wave with internal structure, commensurate with a logarith-
mic optimization pattern. In the activated valence state the central core of the wave
packet is compressed into a miniscule sphere, compared to the valence shell which
dominates the extranuclear space up to the ionization radius.

When atoms interact, these standing waves interfere to generate an interference
pattern that determines the molecular charge distribution. Closer interaction hap-
pens stepwise in stages, described in chemical terminologyas increasing bond or-
der. Charge densities recorded in X-ray crystallographic studies, clearly resemble
such a distribution.
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