Chemistry by Number Theory

Jan C.A. Boeyens and Peter Comba

Abstract Aspects of elementary number theory pertaining to the goidéo and
the golden spiral are shown to be related to and thereforenpbitance in the
simulation of chemical phenomena. Readily derived corsciegtude atomic struc-
ture, electronegativity, bond order, the theory of covalateraction and aspects
of molecular chirality. The physical interpretation of ttesults implicates the 4D
structure of space-time as a fundamental consideratianirplied classical nature
of 3D molecular structure identifies molecular mechanicarasdeal method for
structure optimization, and it is shown that the parameteng be related to number
theory. All results point at a 4D wave structure of electatistcharge.

Keywords: atomic structure, bond order, electronegativity, goldatio, periodic
function

1 Introduction

One of the most mysterious observations in Nature is theappee of a single
parameter that determines the macroscopic structure oj@vVariety of apparently
unrelated objects, such as the distribution of florets inmamusite seed head [1], the
periodic table of the elements [2], the flight path of a predatrd in pursuit of its
prey, the curvature of a kudu horn [1] and the surface feataf@ nanopatrticle [3].
This ubiquitous parameter, known as g@den ratiq has also been called tde/ine
proportionand for millenia has been used in architectural design, asasure of
human anatomical features, in works of art and in musicalpasition [1].
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The periodic table of the elements is one of the first and nmagbitant concepts
in chemistry, and we consider its relation to the golderorasi compelling evidence
that number theory could provide a significant basis of tagcal chemistry. In
order to explore this contingency it is necessary to exarmagelevant properties
of the remarkable golden parameter in more detail.

2 The Golden Ratio

Mathematically, the golden ratio is formulated by the dimisof a unit line into two
segments. An intermediate point on the line [ABC] divides time in mean and
extreme ratios AB/BC and BC/AB, BEAB.
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At the point where
AB BC, 1-x X

BC AC' x 1’
the section is described by the quadratic equation

Xt=1-X Q)

2x=—-1+5
x=0.61803..0or —1.61803..

This so-called golden section or golden ratio is defined Hyeeiof the irrational
numbers

71=0.61803.. or ®=1.61803--= %

This result follows on substituting= 1/x in (1). Multiplication by t":

n+2 n+1
b

e=r"—1

shows that any power af (or @) can be written as the difference between smaller
powers. For example:

o=r-1°

=2r*-73
=2(r’—13) —(1-1?)
=2(2r°—1)—(21-1)
=2(2-31)—(21-1)
=5-8r1



Chemistry by Number Theory 3

Any power reduces to this form, in which the coefficients arecessive terms in
the Fibonacci series
0,1,1,2,3,5,8,13 21,...

in which any term is the sum of the two preceeding terinas,
Froi=Fn+Fn1,n>0F =1.
A general power of therefore becomes
"M=F._1—FnT.

It follows that

. Fn71 . Tn
lim =Ilim(|=—+T7
n—oo Fn n—oo <F +

=T.

The golden ratio is expressed as a trigonometric functiagherform:

T_ZCOS(%H) <D:2005(7—5T).

It is therefore not surprising that the golden mean turnswymoblems of five-fold
symmetry. In particular, it is found that the diagonal of @ pentagon,

d=+/1+1-2cog3m/5) = @

has the measure of the golden mean, as in Fig. 1. By notinghbajuadrilateral
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Fig. 1 Diagram to demonstrate Euclid’s construction of a regulanfagon and the golden section.

ABCe is a paralellogram and thatACeand ADEeare similar triangles, it follows
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that
AD Ae

Ae eD’
which means that the intersecting diagonals divide onehemdn golden ratio.
Euclid used this property to construct a regular pentagmtisg from a unit
square. A circle, centred at the midpofM) of one side, intersects the extension of
that side aB. By construction

MS=MH =+vBMU =SU+1=®—1.

HenceSU= @ — 1= 1 andAC= @, the diagonal of a unit pentagon. This process,
repeated twice, yields the complete pentagon.
The distanceBD, Bd, Bc, cd, cf, fg, are in geometrical progression, equal to

o, 1, 0 Y1), d72(1?), 13, 1%, etc

The construction of smaller or larger pentagrams arounaéméral pentagon can
be continued indefinitely to define an infinite geometricalesebased om:

S={®", n= -, 0} (2)

and the corresponding infinite structure consisting ofsigffilar pentagrams.

In the same way, addition of a line segment of lengtie a unit line yields the
extended line [ABC], again divided in golden ratio by theeimhediate point B, as
before. This process, when continued indefinitely, gersratsequence of larger
and larger copies of the original line in golden section. $ame process unfolds in
the opposite sense to create ever smaller copies. Thisgyppedledself-similarity,
is vividly illustrated by the definition of as a continued fraction:

1

T

1
X=1+ :1+;; X=1+4+T

Truncation of the algorithm at finite steps generates asefigtional fractions that
convergesto ¥ 1 = @. The convergents are the numbers

1 3 1 5
L,1+1=21+—=5,1+ —— =3, etc
1+1 2 1+ £ 3

This sequence of fractions are given by

m 1235813
(n)i_1717273757 87"'7
a series of Fibonacci fractions, as before.
Self-similarity is illustrated particularly well as theqperty of a Fibonacdree
which contains infinituple copies of itself as shown in FigE2ch black dot repre-
sents the start of a fresh tree.
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Fig. 2 The Fibonacci tree that contains an infinite number of copigsself.

The self-similarity associated with the golden sectiomidedied geometrically
in the spiral inscribed within a rectangle with sides in goidatio. Removal of a
square (gnomon) from such a golden rectangle leaves a srgalden rectangle
as residu. On continuing the process indefinitely rectangieliminishing size are
created, as shown in Fig. 3.

13

Fig. 3 A Fibonacci spiral inscribed in a rectangle defined by a Fioc sequence. The increasing
size of successive squares is defined by the Fibonacci labedsd the ratio of their side lengths
approached as n— . The inscribed spiral approximates a golden spiral and @s@quiangular
logarithmic spiral [4].

To good approximation, the side lengths of successive gnsrdecrease in line
with the Fibonacci numbers, such that Fibonacci squaresrtbg composite golden
rectanglee.g.

124124224324 524824132 =13x (13+8) = 13x 21
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Likewise, the firstn rectangles in a Fibonacci sequence cover the largest gnomon
for nodd,e.qg.

(1x1)+(1x 1)+ (1x2)+(2x3)+(3x5)+ (5x8) + (8 x 13) + (13x 21) = 212

Circular segments inscribed between opposite verticassoftowing gnomons de-
fine a spiral which is approximated by the logarithmic spiral

r=ae’% ¢ —729° cotp = 1/2,

in whicha and¢ are constants and the andlalefines the dilative rotation.

3 The Periodic Function

Emile de Chancourtois, co-discoverer of elemental petitdclaimed [5] that

... the properties of the elements are the properties of etsnb

His claim was vindicated with the discovery of atomic numlert the theme re-
mained undeveloped until it was conjectured by Peter Riif8it that the electron
configuration of atoms is mapped by the distribution of primenbers. Based on the

Fig. 4 The natural numbers arranged on a spiral with a period of 2épAime numbers> 3 and
of the form6n + 1 occur on eight straight lines of the cross, which has beeerpmeted [6] to
simulate the electronic structure of atoms.
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observation that all prime numbers3 are of the type 6+ 1 he defined a prime-
number cross that intersects a display of natural numbers set of concentric
circles with a period of 24. In Fig. 4 the construct is shovearranged as a number
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Fig. 5 Using half-life as criterion the naturally occurring stabinuclides can be divided into
four series of mass numberrAod4)= 0,1,2,3, i.e two even series of 81 and two odd series of
51, considered as the product afparticle addition [7]. A plot of the ratio ZN vs A defines a
converging field of stability, in line with the presumed pelicity of 24; condition (c).

spiral. Noting that the numbers on each cycle add up to

24(j+1)
o(j+1) = z n=(2j+1)300,j=0,1,2,...
n=24j

such thatoi = a,3a,5a,7a... (a = 300), these odd-number coefficients were
likened to the degeneracy of spherical electronic shelis gpectroscopic notation
s p,d, f.

Re-interpretation of the sums as electron pairs over dlstauclides, suggests

(a)A totalt of 300 different nuclides;
(b)100 different elements ;
(c)nuclide periodicity of 24;
(d)elemental periodicity of 8 .

1300 isotopes of 100 elements, wifhN = 1 are synthesized by-particle addition in massive
stellar objects. In interstellar space radioactive deeayinates at 264 stable isotopes of 81 ele-
ments.
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This interpretation is supported [7] by analysis of the neutimbalance of sta-
ble atomic species as a function of mass number, shown inSFighe region of
nuclide stability is demarcated here by two zig-zag linethwieflection points at
common values of mass numbfrVertical hem lines through the deflection points
divide the field into 11 segments of 24 nuclides each, in lifth wondition (c). This
theme is developed in more detail in the paper on Atomic 8iradn this volume
[8]. Defining neutron imbalance as eith&fN or (N — Z)/Z the isotopes of each
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Fig. 6 Neutron imbalance of atomic nuclei is defined either by thi®i&/N or the relative excess
(N—2)/Z. As functions of mass number these quantities map thepsowf a given element to
respective circular segments and straight lines, the sgetion of which defines the golden ratio.

element, as shown in Fig. 6, map to either circular segmanstraight lines that
intersect where 7 Nz

£_N—2. 2 N2

N Z ,i.e. Z°4+NZ—-N-=0,

with solutions of
Z=iN(1+V5)=1N.

This result provides the exact value of the convergencé bifiiZ /N first identi-
fied by William Harkins [9] as 0.62 according to the curvesig.b.

To show that the periodic table of the elements is a subsédteofrtore general
nuclide periodicity, the data of Fig. 5 are replotted on af€s/N vs Z as in Fig. 7.

In Fig. 7 the hem lines are no longer vertical, but still devithe field into 11
groups of 24. A remarkable feature of the diagram is the wayhith the hem lines
intersect the horizontal ling/N = 1 at points, which rounded off to the nearest
integer, correspond with familiar values of atomic numibet represent the closure
of periodic subgroups:

10(2p), 18(3p), 28(3d), 36(4p), 38(5s), 46(4d), 48(5s), 56(65), 62(4f : 6/8), 70(4f),80(5d)
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Fig. 7 The periodic distribution of stable nuclides as a functidratomic number. Open circles
represent odd mass numbers and the filled circles the tworeass-number series. The hem lines
that define the nuclide periodicity of 24 are no longer paghtb the Z/N axis and their points of
intersection with the lines at/AN = 7 and 1 are of special importance in the definition of elemental
periodicity as a subset of the nuclide periodic function.

Extrapolated t&Z/N = 1 the points of intersection represent an inverted periodic
table:

14(a1),24(3d),32(15), 38(3p), 54(51), 60(4p), 76(5p), 84(6p), 94(5d), 100(7p).

The only known mechanism that could cause such an inversianstate of ex-
tremely high pressure [10]. We conjecture that the unibrafiZ/N coupled with
high pressure describes ideal conditions for the build4upd® nuclide$ of 100
elements bya —particle fusion in massive stellar objects, explainingditans (a)
and (b).

The cardinal points of intersection of the hem lines of FigtZ/N = 1.04 are
arranged symmetrically abodt= 51. On identification of the poin#d = 0 and 102
a closed function is generated. Operating with the sameeazieof mirror symme-
try on the hemlines two sets, characteristic of both nusligied anti-nuclides, are
generated as shown in Fig. 8.

By following the hem lines fronZ /N = 0 to 1.04 and back to zero, through
the involution, a completely closed set is traced out, asvehio Fig. 9. Closed
in four dimensions the resulting topology defines real e space. Possible
implications of this construction on molecular shape aseussed in the final paper
of this volume [11].

Like objects in the solar system (next section) the peritalie of the elements
can also be rationalized by elementary number theory. AstiieZ /N always rep-

2 On release into interstellar space radioactive decay teegulthe survival of only 264 stable
nuclides as two sets of 81 with= 2n and two sets of 51 with odéd.
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Fig. 8 Variability of the periodic table of the elements dependsjpace-time curvature as shown
in the frame on the left. The triangular segment defines theé @ stability. The symmetrical

version on the right is conveniently mapped to the surfaca bfobius band as in Fig. 9, but

resolution is only possible in 4D projective space.

resents a rational fraction, the pattern of Fig. 7 corredpda some special ordering
of rational fractions. The best-known order for the enurtienzof rational fractions
is known as a Farey sequence [12], which is generated bym@mttiseparate addi-
tion of numerators and denominators of adjacent fractiorise interval (0,1):

Fig. 9 Schematic diagram to
illustrate the involuted nature
of the periodic relationship

between matter and antimat-

-
' s
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Fig. 10 A plot of k-modular
Farey sequences as a function {S,}
of the natural numbers defines
a set of infinite festoons that
resembles the arrangement of
nuclides in Fig. 5 and 7. The

segment, obtained as a subset
defined by limiting Fibbonacci /8 N /4
fractions that converge from 6/7
1 to 1, and subject to the Sy 56
condition A(mod4y 0 — 3, 4
corresponds to the observed 5
field of nuclide stability.
3
4
2
3 n
0 1
i 151
0 1 1 g
i 2 1
112 1 g
1 323 173

The variation oZ/N with Z, shown in Fig. 7, mirrors the variation of the infinite
k-modular sets of Farey sequences, defined by

n hi h;
= K\=0,12,..., k=—]| 1+t
S( 9 (na) ) ==y & ] kikiJrl

n+k
as a function of. For simple Farey sequendes- 1. For example:

)

1 1 1 1

{S} = 1111 ...modulus 0
0 1 2 3 4

{Sl}_1 5 3 2 g...modl
0 1 2 3 4 1

Part of these sets is plotted in Fig. 10 with the convergiagity limits shown.
Each point within the triangle of stability represents agmbial nuclide. However,

naturally occurring nuclides are limited to four series afss numberé(mod4)=

0 — 3, interpreted to correspond to a process of nucleogenasedmon the fusion
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of a—particles to yield two even series of 81 members each and ddseries with
51 members [7]. Significantly, by this procedure all stahlelides are identified
correctly, except for a fewr —unstable ones. Isotopes of elements 43 and 61 are
excluded naturally. Fan = Z isotopes of the same element are mapped to the same
vertical line.

More simply, a plot of the unimodular Farey sequence

z,.10111231
47112323231

as Ford circles [13], directly represents the periodicdad in Fig. 11.

As discussed in the paper on Atomic Structure [8] touchinglFaircles have
radii andy-coordinates of 12k? andx-coordinates oh/k. The resulting map of
Z4 converts into the periodic table through the reciprocalirafithe numbered
circles. Condition (d) is clearly implied.

It all seems to hang together. To account for such cons#igRtichta [6] con-
jectured that numbers have real existence in the same ssrsg@ee and time. A
more conservative interpretation would link numbers, tigto the golden ratio, to
the curvature of space-time. A common inference is that pipearance of numbers
as a manifestation of the periodicity of atomic matter is ttue spherical wave
structure of the atom. A decisive argument is that the fulhs\etry, implied by the
golden ratio, incorporates both matter and antimatter deseed periodic function
with involution, as in Fig. 9, in line with projective spatieae structure.

2k?2

[8788 94 95 102 103 11p 111 118 32
[3738 39 46|4748 54 18

1111 18] 8

[1 2] 2

3 4 10 8

[192021 282930 36 18

[55 56] 62[63 7071 78/7980 8§ 32

Fig. 11 Mapping of the periodic table of the elements as the recgdroadii of the %, unimodular
Ford circles.
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4 Commensur ability in the Solar System

.. Uranus

Saturn

Neptune

Fig. 12 Simulation of planetary orbits by golden-spiral optimizat With the mean orbital radius
of Jupiter as unit the outer planets are on orbits defined bggral multiples thereof. On the same
scale the asteroid belt is at a distancdrom the sun and the inner planets have orbital radii of
7/n. For clarity the inner planets are shown on a larger setfiar scale.

Like the golden ratio, golden spirals give a description afiersity of natu-
ral phenomena such as the shape of nautilus shells, trdpicetanes and spiral
galaxies [1]. Golden spirals have the property of self-Einty, or invariance with
respect to scale transformation, in which small parts ofacsire have geometri-
cal properties that resemble the whole structure or largis flzereof. Numerically,
both golden ratio and golden spiral are described by theargence of Fibonacci
series. The convergence properties have been put to §iciers in the theoretical
reconstruction of atomic periodicity [7] and the solutidroptimization problemsin
engineering [14]. As a significant demonstration we showtthedistribution of all
matter in the solar system is correctly predicted by golsiginal optimization. The
assumption is that in a spiralling dust cloud matter accateslat specific points
along the spiral, specified by @nvergence angleThe result for a convergence
angle of(180/5)° is shown in Fig. 12.

The mean orbits of all planets, including Ceres, the largstgroid, are correctly
predicted [15] by the relative distances from the spirakieWith the orbital radii
expressed as rational fractions, a quantized distribudfomajor planets, as num-
bered, is revealed. On this scale the orbit of Ceres measaed those of the inner
planets as rational fractions of the golden ratio. The saatte was shown to
repeat itself for the orbital motion of planetary moons ands [15].

From this observation we infer self-similarity on a cosntale, from atoms to
galaxies, which implies the same numerical basis for thma&tanodels of Nagaoka
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[16] and Bohr, assumed self-similar with the rings of Satmd the planets, respec-
tively. In principle the periodic accumulation of extratesr electron density on an
atom could also be optimized by specifying an appropriateemence angle.

5 Atomic Structure

The Ford circles that represent the Farey sequence of orégrdsents the periodic
table of the elements in complete detalil. In particulary fiedict the appearance of
electron shells witm = 1,6, consisting of 2, 8, 8, 18, 18, 32 electrons, in this order.
This arrangement is ideally suited to optimization by a galdpiral. A chemi-
cally meaningful solution results by stipulating a divarge angle of 4/(2n—1),
as explained in the paper on Atomic Structure [8]. The resyldistribution has
extrema at integral distancesmf from the nucleus. If we assume that an electron
cannot approach the nucleus more closely than the Bohrgaflag the distribution
can be considered as a spherical standing wave with zeraceuat a radiuag and
nodal surfaces at ali’ag. With the electron count known from the periodic func-
tion the mean electron density within each shell follows iediately. The predicted
distribution scales directly to the Thomas-Fermi stat&timodel of the atom, and
the periodicity for individual atoms agrees with the Hagtfeock results, as shown
in Fig. 13.

10 (r): Thomas—Fermi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Atomic radius/a

Fig. 13 Simulation of Thomas-Fermi and Hartree-Fock electron @esssfor unit atoms as de-

scribed later on [8]. The calculated points are those préelicby golden-spiral optimization and
scaled to match the Thomas-Fermi curve, shown as a solidTimedotted curve simulates the HF
result.
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6 Electronegativity

The ground-state electron configuration of an atom is oftéchivalue as a predictor
of chemical affinity since most chemical reactions resulirfrinteraction between
atoms in an activated valence state. The valence state imoaiy considered to
be reached by thermal activation, which gives rise to higérgy atomic collisions.
Activation by uniform compression of an atom, which is noeadible laboratory
procedure, is more convenient for mathematical simuldti®n 17]. Computerized
compression is done by Hartree-Fock simulation with modiifieundary conditions
that restrict wave functions to a finite sphere [17]. All ¢éteaic energies move to
higher levels as the limiting radius is reduced, until a Erglectron reaches the
ionization limit. At this point the valence electron, depted from interaction with
the nucleus, is confined to a sphere of characteristic ragiusiterpreted as the
ionization radius This is a standard problem in free-electron quantum thesiigh
calculates the energy of an electron, which is uniformlysgdracross the confining
sphere, as [18]:

h2

Eg= — .
97 8mr2

When the valence electron reaches the ionization limitatgiptial energy with re-
spect to the nucleus goes to zero and in uniform distributioas no kinetic energy.
The calculated confinement ener(y) can therefore only represent quantum po-
tential energy, defined as [19]:

_ PR
97 2mR’

This equation is solved big, on the basis of which the valence electron is now
interpreted to have reached an activated state at a cheputattial ofEg. This
state defineglectronegativity To be in line with traditional practice it is formally
defined ag( = /Eg, with rg in A units andEg in eV [20].

Starting from the numerically optimized valence densityaiground-state va-
lence shell the radius of an equivalent sphere, which acamstates this total den-
sity at a uniform level, is readily calculated by simple gedm. There is very good
correspondence with Hartree-Fock values of ionizatioii,raith the added advan-
tage of higher accuracy for the chemically important sequeribd elements where
the HF results are notoriously unreliable [17, 21].

By the use of elementary number theory, to simulate unifoistridution of a
valence electron over the ionization sphere, a completefdenization radii and
electronegativities is now available for the simulatioraafhole range of chemical
properties as described in the papers to follow.
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7 Bond Order

On looking for a relationship between ionization radius ahd chemistry of
homonuclear covalent interaction the classification imgls and multiple bonds
is followed as a first approximation. An immediate obsenvativalid for most single
bonds is a constant value of the dimensionless distance

d =d/ro=0.869

whered is the experimentally known covalent interatomic distaidetable excep-
tions occur for F—F, O-0O and I-I witd' = 0.935. A similar trend is observed for
most double and triple bonds. For the smaller number of quAdrdimetal bonds
d’ = 1, to good approximation. Assuming zero-order interactmodcur at = ro, it
follows thatd’ converges from unity t@ with increasing bond order, corresponding
to a divergence angle af/2 on a golden spiral.

Fig. 14 Simulation of inte-
ger bond orders on a golden
spiral. The dimensionless dis- 4
tances d= 1 and 1, which 3
represent zero and fourth 2

order respectively, must, by
definition, be separated by a \
convergence angle of 9®n 1
a golden spiral. Convergence
angles for intermediate inte-
ger and half-integer orders
follow directly. 0

Divergence angles af/8 andrt/16 for integer and half-integer bond orders are
implied and shown in Fig. 14. This solution corresponds i empirical values
derived beforei.e.:

bo { 1 1. 2 22 3 3 4

2

d’ 1.0 .935 .869 .804 .764 .724 .683 .658 .618

The corresponding numerical solution defines bond ofgjday the equation
d/ — jb.[n

where bothn and the covariant integer coefficiepy, for bond ordetb, depend in
a simple way on Fibonacci numbers. This procedure is desttritore fully in the
Covalence paper [25].

The quantized variation of bond order may be rationalizedibwing overlap-
ping charge spheres as spherical standing waves. Thess waedere construc-

3 Bond order, assumed to stipulate the number of electros pragovalent interaction, although a
poor measure of bond strength [22, 23, 24], is a conveniamgrgéworking model.
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tively at specific interatomic distances that depend on lesagh. Destructive in-
terference that occurs at intermediate distances tenddmaliéze the interaction
and to prevent continuous variation of bond order. Distortdf the interference
pattern requires work, as measured by bond-stretching favnstants.

8 Covalent Interaction

With the relationship between ionization radius and bordkoin hand, the cal-
culation of covalent interaction parameters becomes ansltrivial exercise. The
common volumeg, between overlapping spheres of radiyst characteristic sep-
arationgd’ for given bond order, and considered proportional to disgimn energy,
varies in a quantized fashion similarda This allows definition of a dimensionless
dissociation energlp’ = Drg/K, as explained in the paper on Covalent Interaction
[25]. K is a dimensional constant. Noting the connection wfith spherical volume
one looks for a dependence of the type

Dyr

o =D'0r.
First-order homonuclear interactions are seen to obeyuleeDy = Krgr”, where
n correlates positively with bond order.

By taking electronegativity difference into account digation energy for het-

eronuclear interactions are calculated as

De=Kr3(1)/ro(2) ; ro(1)>ro(2).

Exhaustive testing has shown the formula to hold for all tegteclear interactions
of any order.

Resistance against change of bond order is measured as arfiastretching
force constant. It depends on the relative energies of adjdmond orders and on
the slope of the linear curve that describes continuousgsah bond order. In
general /

e = Gar
(Ad)
Estimation of AD’ is facilitated by the special property of the golden ratib—
™1 = "2 = ¢+ in shorthand notation. In the common units of Nchthe general
expression becomes
4.615t"s
(Ad")?ro(1)-ro(2)”

The formula can be demonstrated convincingly, applied tb-researched series of
diatomic molecules. Individual bonds in larger molecules lass well described,
but MM force constants derived by this method are in goodement with other
general parameters [26].

ki =
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Exploiting the possibility of representing polarizatidfeets in diatomic molecules
many dipole moments, especially for diatomics such as #adidlalides can be sim-
ulated with a high degree of confidence. A general lack of erpental values to
serve as empirical guidance has so far prevented the deneltmf the method to
its full capacity.

9 The Physical Meaning

Based on elementary number theory we have arrived at a catignal scheme that
works unexpectedly well for the simulation of chemical pberena. The problem
is to find a plausible interpretation to connect the abstramiel with the concrete.
The statistical scheme of probability densities and paantiples adopted in physics
does not provide a satisfactory answer in this case. We aceddo enquire more
deeply into the fundamental nature of matter.
The only fundamental theory that considers the genesis tienia the theory of

general relativity. It is formulated in 4D space-time astaoddield equations,

Gu’v - kTU,V 5 IJ7 V= 073

that balances space-time curvature against the mattegyecentent of the system.
The implication of this relationship is that the appearasfamatter is unequivocally
linked to the curvature of space-time. In particular, nratesnot exist in Euclidean
space [27].

For convenience humans consider their living space to béidean and even
advanced cosmologies are still formulated in such termesrder to operate in Eu-
clidean space it is necessary to separate the mathemgaticalivalent variables of
Einstein’s equation into a universal time variable and tiree familiar variables
of coordinate space. This operation destroys the 4D fieldtous and no longer
provides any insight into the nature of matter. For thisoedhe existence of matter
is added to physical theory as ad hocpostulate — the prescription of classical
Newtonian mechanics.

Quantum mechanics follows the same prescription, by s@pgrde 4D poten-
tial function, formulated as

1092
DZ = i i 2_ 2 = 0.
® =0 into the wave equation (D =2 atz) =0
The suspicion that this separation of variables, althougithematically sound,
leads to a less than perfect description of quantum systsrosrifirmed [28] by
statistical testing of the seminal equation that relatesftequency of the energy
radiated or absorbed by a H atom to the integers in the Rydbergila

_ 1 1
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This is the equation of a straight line, which, for the Lymamias withn = 1,
reduces to

V=—-R/K+R
(y = mx+c)

A plot of v vs —1/k? should be linear, with equal slope and intercept. The most
reliable and accurate data available fail this test stedilty [28]. The discrepancy is
not large but significant and reminiscent of the spectrosaaul shift measured in
galactic light. The common origin of these discrepanciemoabe a Doppler effect
and is probably due to space-time curvature.

In the 4D equation space and time coordinates are inexlyi@iiangled. Its
mathematical solutions are hypercomplex functions, otea#ns, without a com-
mutative algebra. Quaternions are used to describe whabisrkas spherical rota-
tion, also called the spin function, and the complex rotakioown as the Lorentz
transformation of special relativity.

The separated 3D wave equation can no longer describe angsa fundamental
rotations. For this reason, the discovery of electron spoessitated its introduction
into quantum theory as anothet hocpostulate. The anomalous consequence is the
unphysical situation of a point particle with spin. Only pafrthe spin function sur-
vives solution of the 3D wave equation, in the form of a complriable interpreted
as orbital angular momentum. In the so-calfgd- state it has the peculiar property
of non-zero orbital angular momentum with zero componetiédirection of an
applied magnetic field. This is the price to pay for eliminatof spherical rotation.

Despite this anomaly the complex angular-momentum funat@m be used to ra-
tionalize many features of stereochemistry. It represigt®nly vector quantity in
wave mechanics which could interact with an applied magffietd. It accounts for
the so-calledaraday effectwhich is a property of achiral molecules in an applied
magnetic field to rotate the plane of polarized light. It isyeéo demonstrate that
atomic orbital angular momentum vectors always line up-patallel in diatomic
interaction and continue to do so in more complicated symoattatomic assem-
blies on molecule formation. It is only in chiral molecul&gthout reflection or
inversion symmetry, that total quenching of orbital anguf®mentum is no longer
possible. The residual orbital angular momentum with isamted magnetic mo-
ment is responsible for optical activity in such cases.

This tendency to quench orbital angular momentum may be tasgdod effect
to predict the mutual orientation of sub-molecular fragtegnadicals) on form-
ing a molecule. The symmetry of substituted methanes aret sthall molecules
has been successfully analyzed by this method [29, 18]. @Mipeenching requires
a specific mutual orientation in 3D the interaction exhilsisric rigidity. By sys-
tematic use of these principles it is possible to predict3Destructure of complex
molecules, without allowing for the effects of non-bondad &rsional interactions.
The resulting structures are suitable as trial input foirojziation by MM [26].

These positive results are not without exception. Immetiiabbvious is the
anomalous optical effects observed in a homochiral seuels as the biologically
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active amino acids. Despite their uniform chiralignly about half of them rotate
an optical plane of polarization in the same sense. Theabrditgular momentum
of 3D wave mechanics is clearly inadequate as an explanatioptical activity in
such detail. For a deeper understanding of the phenomeisomatessary to recon-
sider the effect of 4D molecular symmetry.

The discovery of quantum mechanics was seen as a dramatctdepfrom
classical theory because of the unforeseen appearancmpfeofunctions and dy-
namic variables that do not commute. These effects gavéoribe lore of quantum
theory as an outlandish mystery that defies comprehensionriview this is a valid
assessment only in so far as human beings have become ewmalyticonditioned
to interpret the world as strictly three dimensional. Thecdvery of a 4D world
in special relativity has not been properly digested ash@tause all macroscopic
structures are three dimensional. Or, more likely, minscipancies between 4D
reality and its 3D projection are simply ignored. In the aimand molecular do-
mains, where events depend more directly on 4D potentiahioal projection into
3D creates a misleading image of reality. We argue this gmirthe basis of differ-
ent perceptions of chirality in 3D and 2D respectively. Aewh in Fig. 15 inversion

Fig. 15 Diagram to show that B C A
three-dimensional inversion
(3DI) could be mistaken 3DI
as rotation (2DR) in two 2DR
dimensions.
A C B

of a chiral tetrahedron, with the base ABC in a fixed 2D plah@nges the 3D chi-
rality, but appears as a simple rotation in 2D. We anticijsat@lar discrepancies
between 4D symmetry and its projection into 3D as respoadinl the irregular
variation of optical activity as a function of 3D chirality.

The appearance of non-commuting quantum variables can tsmwba traced
back to the non-commutative algebra of 4D hypercomplextians. On projec-
tion into 3D by the separation of space and time variablegjttagernion variables
are reduced to complex functions that characterize oraitgular momentum, but
the commutation properties remain. Not appreciating tserase of complex wave
functions, an unfortunate tradition to reduce them to reatfions, has developed
in quantum chemistry. These real orbitals and basis seyshave classical mean-
ing. Relations in the complex plane, which describe orlitejular momentum, are
reduced to harmonic oscillations on a real line.

Topologists describe the projection from four to three digiens in terms of an
underlying 4D curved space-time and a Euclidean spacegtdng the 4D mani-
fold, with a universal time coordinate. The only 4D sphertghwai continuous group
structure isS® and the space of antipodal points®his known agprojective space
and denoted bf?;(R) [32]. A section through projective space is a Mobius band —

4 For the sake of simplicity we do not consider degrees of titjras distinguished by chirality
functions [30, 31]
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a 2D construct which cannot be embedded in 2D space. Condspy a Mobius
band, closed on all sides, cannot be embedded in 3D spadectre space, al-
though hard to visualize is the physically most likely sture of the underlying 4D
curved space-time.

The previous statement is based on the results of reforingléte theory of
general relativity in projective space, as a model of unifiégttromagnetic and
gravitational fields [33]. On transformation of the eleatiagnetic part into tangent
space the relationship between 3D and 4D potentials is dbiine [34]:

e 5
(@)Vj = gqu =(T+ 1)¢;.
Here is the first inkling about the universal importance @& folden ratio. If it
measures the relationship between underlying space agdrtaspace it is not sur-
prising for it to show up in the apparent structure of so manjgcts from atoms to
galaxies. It might even be interpreted as a measure of dfraessurvature.

The relationship between space-time curvature and theegalatio amounts to
little more than a suspicion, based on the factor that casntbe electromagnetic
field from projective space into an affine theory. To accoontlie ubiquitous ap-
pearance of golden spirals in self-similar chemical andmiostructures we may
look for a related factor in the construction of a golden alpirom the series of
gnomonic circular segments as in Fig. 3. The ratio betweeneagth,r /2, and
chord,/2r, i.e. between curve and tangent/(2y/2) = 1.111~ +/5/2, supports
the suspicion. If the curvature of space-time depends omgadden ratio it is no
longer surprising to find that structures of all sizes aréseatilar and conditioned
by 1. To summarize: the golden ratio features in the packing afeuns [7], the
electronic structure of atoms, the details of chemicalraton, the periodicity of
atomic matter [2], the structure of nanopatrticles [3], batal phyllotaxis, planetary
and solar systems [15], spiral galaxies and the large-staleture of the universe
[27].

It is reasonable to expect that any growing structure shimlilolv this curvature
and for 3D observers to find the imprint of the golden ratiorgwhere, also in the
structure of molecules. It would not be surprising to find ¢jodden ratio among
the topological features of macromolecules or even refleiciéhe torsion angles
within smaller molecules [35].

We are reaching the conclusion that the modelling of mokacstructure by
number-theoretic golden parameters may well be a fundaiheappropriate pro-
cedure. At this stage, the simulation of important intemalecular structural pa-
rameters, with the exception of torsion angles, can be dakkem with confidence.
It is quite clear however, that at the present very earlyestafgdevelopment, the
optimized structures, for many reasons, are quite crudakttanoptimization of the
functional forms and parameter sets, based on experimggii®| may be required.
The final objective might be structure optimization by MMjngsa generic force
field based on number theory.
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10 Molecular M echanics

Molecular modelling by minimization of the steric energgrgs from an assumed
structure in which the rigid bonds are replaced by flexiblengfs of characteristic
lengths and strengths (force constants in Hookes law)jairharmonic potentials
are used to model angular distortions and torsional flagijB6].

In the fully empirical approach a characteristic bond l&reyid a matching force
constant are assigned to a molecular fragment to reproduckeserved interatomic
distance on energy minimization. In the number theory apgng26] an ideal bond
length, free of strain, is calculated as a function of iotimaradii and bond order.
For smaller, chemically important atoms, it may be necgswaallow for the dis-
tortion of atomic sphericity by first-neighbours. Calcidatof the stretching force
constant requires, in addition, an estimate of the diataiigsociation energies at
different bond orders, which are obtained as functions pization radii and the
golden ratio. That is, modeling of bond distances is basedemeric parameters,
and these may be computed very efficiently for all possiblalmoations of the
entire periodic table, various oxidation and electronimud states included.

Second-neighbour interactions are optimized empirictatiyn a characteristic
valence angle and a matching angle-bending force constatite number theory
approach 1,3-interactions are calculated as a lower-antinaction with an asso-
ciated stretching force constant, readily converted imtargle-bending force con-
stant, as needed. The interactions between more distagitbwirs are considered
as weak bonds with a minimum at the characteristic van deds/éggaration. In
number theory these are zero-order interactions. The paeasgenerated by num-
ber theory would therefore be ideally suited for use with até# Force Field [37]
in which two-body forces between atoms are used exclusiuelplace of bond
angles and torsion angles.

Torsional interactions are empirically modelled with aipéic function based
on local geometry around the central bond. This problem loas/et been stud-
ied in number theory. Neither have any of the other parammetach as cross-
term interactions, electrostatic interactions, out-lafre deformation, and more spe-
cific electronic interactions been considered for numhepty-based simulation
[38, 39, 40, 41].

The purpose of the number-theory analysis is not primaailproduce another
force field (to which all these special features might be djidmut rather to demon-
strate that the MM approach is fundamentally sound, and auige a simple ap-
proach for efficiently computing generic force field paraangtvhich might be used
directly or after optimization based on experimental d&ther generic force field
approaches have been used in various universal force fielldooe [42, 43, 44].
Important additional contributions that number theory ke to MM simulations
are to also provide generic force field parameters for ictaras that involve metal
ions, and possibly also to efficiently compute charge distions based on elec-
tronegativities [26, 45].
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11 Chemical M atter

As in wave mechanics, the simulation of chemical phenomgraumber theory is
characterized by the appearance of integers; in this caseiaged with chemical
structures and transformations. An obvious conclusiohas the elementary units
of matter should be viewed as wave structures rather thant particles, which is
consistent with the first appearance of matter in curvedesgiate. Even 3D wave
packets behave in a manner convincingly like ponderabléemand rationalize the
equivalence of mass and energy in a natural way. There is mpelting reason
why this simple model should be obfuscated with the notiowaie/particle dual-
ity. And more so on realising that the wave-like space-tinstodtions are strictly
4D structures. In response to environmental pressure atr@béc wave packet can
shrink to the effective size of an elementary particle oréase to enfold a proton
as a spherical standing wave.

A wave structure of the electron, which is routinely veriftedelectron diffrac-
tion, facilitates the understanding of atomic structuré enncepts like bond order.
It provides a logical explanation of the photoelectric effes an interaction between
waves, doing away with photons and wavicles at the same time.

Interacting elementary wave packets are expected to azaleto larger wave
packets. All extranuclear electrons on an atom therefayetter constitute a sin-
gle spherical standing wave with internal structure, comsneate with a logarith-
mic optimization pattern. In the activated valence stagectntral core of the wave
packet is compressed into a miniscule sphere, comparee tatbnce shell which
dominates the extranuclear space up to the ionizationsadiu

When atoms interact, these standing waves interfere torgnan interference
pattern that determines the molecular charge distribut@oser interaction hap-
pens stepwise in stages, described in chemical termin@sdgcreasing bond or-
der. Charge densities recorded in X-ray crystallograptidiss, clearly resemble
such a distribution.
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