e R

ik

Abstract Partial Deduction Challenged

(Summary)

Stefan Gruner

Declarative Systems and Software Engineering Group
Department of Electronics and Computer Science
University of Southampton - S017 1BJ (GB)
sg@ecs.soton.ac.uk

“Buery day try to falsify your
Favourite theory” (Karl Popper}

This short paper (poster) summarises my presentation [6] at this workshop [1]
in September 20021, It also reflects some of the discussions at (and some new
insights since) the workshop, before this summary went into print.

After several years of Abstract Partial Deduction (APD) —which is, for rea-
sons of simplicity, here just regarded as a joint technique combining Partial
Deduction and Abstract Interpretation— at least two APD tool prototypes are
available: These are sP [4] and ECCE [8] which both operate in the abstract
domain of Regular Unary Logic {RUL} {13]. Both are implemented in PROLOG,
and both transform PrOLOG input to PROLOG output during an abstract partial
deduction run. These two are the tools under consideration here. (The system
CPE [12] is not considered because it doesn’t support the language ProLoa.)
Due to cooperation between the authors of {8][4], essential parts of the RUL
processing source code of SP are reused and integrated into the source code of
the BCOE software system. Despite of certain problems which these tools may
still run into on particular input programs (especially nontermination? --— see
discussion in [10]), it had been conjectured in [9] that RUL-APD could pro-
duce interesting results in Infinite State Systems Verification (ISSV), especially
when applied to systems described in terms of a process algebra (e.g. CSP). My
experiments referred to in this summary were mainly motivated by that conjec-
ture [9] {but also by the insights of [11]). Further I was interested into a direct
performance comparison between the above mentioned RUL-APD tools in their
currently available versions [8](4]. Finally, by choosing the well-known Bakery
protocol [7] as an example which has already been successfully used as a test
case for another logic-based approach to ISSV [2](3], the RUL-APD approach
explored here can be roughly compared to that other {(and partially successful)
approach?.

! I have safely kept my program source codes for those who wish to repeat or extend
my experiments. Please contact me to obtain the according files which, due to lack
of space, cannot be printed out into an appendix to this summary.

2 Note though that [2] did not specify Lamport’s original protocol. They analysed an
over-simplified variant of it which is flawed by cireularity: mutual exclusion is there
achisved by means of mutual exclusion because their specification does not allow
more than one involved process at the same time to read the registers of the other

processes.

Abstract Partial Deduction Challenged 259

In the context sketched above, my experiments have shown that in two vari-
ations of the Bakery system with parameters (variables) for the number of pro-
cesses and the number of system steps, neither ECCE nor sP were able to detect
the implicit system safety property by means of APD, In a parameterless CSP.
wrapped variant with two “hard-wired” processes, however, the safety property
could indeed be APD-detected®. Sufficient explanations of the reasons of those
phencmens are still missing, but I regard this epistemical gap as a reasonable
motivation for further research®. Latest work on APD with an abstract domain
different from RUL already seems to indicate a promising direction [5].

References

1. P. Bueno & M. Leuschel (Eds.): LOPSTR02 PreProceedings of the International
Workshop on Logic Based Program Development and Transformation (This Work-
shop). Technical Report, Facultad de Informitica, Universidad Politéenica de
Madrid (E), September 2002.

2. F. Fioravauti & A. Pettorossi & M, Proietti: Verification of Sets of Infinite State
Processes using Program Tronsformation. Proc. of LOPSTR'2001, LNCS 2372,
Springer, 2002.

3. F. Fioravanti & A. Pettorossi & M. Proietti: Combining Logic Programs and
Monadic Second Order Logic by Program Transformation. This Workshop 1],
pp.166-181.

4. J. Gallagher: SP System. http://www.cs.bris.ac.uk/~john/software.html

5. J. Gallagher & J. Peralta: Conver Hull Abstractions in Specialisation of CLP
Programs. This Workshop {1}, pp.104-114.

6. S. Gruner: Abstract Partial Deduction Challenged — Eztended Abstract of Ongoing
Work. This Workshop [1], pp.251-258.

7. L. Lamport: A New Soluiion to Dijkstra’s Concurrent Programming Problem.
Communications of the ACM 17/8, pp.453-455, 1974,

8. M. Leuschel: ECCE. http://wwvw.ecs.soton, ac.uk/~mal/systens/ecce html

9. M. Leuschel & S. Gruner: Abstract Conjunctive Partial Deduction using Regulor
Types and its Application to Model Checking. Proc. of LOPSTR2001, LNCS 2372,

 Springer, 2002.

10. P. Mildner: Type Domains for Abstract Interpretation — A Critical Study. Uppsala
Theses in Comp. Se. 31, ISBN 91-506-1345-6, Univ. Uppsala. (8), 1999,

11. G. Snelting: Paul Feyembend und die Soﬂwar‘etechnoingze Informatik Spektrum
21/5, pp.273-276, Springer 1998.

12. G, Vidal: Curry Partial Fvaluator. hetp://www.dsic. upv.es/users/elp/peval/
peval. htm]

13. E. Yardeni & E. Shapiro: A Type Systern for Logic Programs. Journal of Logic
Programming 10/2, pp.125-153, Elsevier, 1991,

3 A significant difference between s and ECGGE could not be found in these experiments.

* In a later experiment (after this workshop) I found out that in the context of the
test specification the tools could not detect the uniqueness of the minimum oper-
ation, thus the validity of ({(§ = §') ~s (min(S) = min(9')), which is a crucial
preliminary of Lamport’s original safety property proof.




