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Abstract 
 
A stochastic frontier is fitted to two panels of wine grape farms (34 in Robertson and 36 in 
Worcester) for 2003 and 2004 and a cross section of 37 table grape farms in De Doorns for 2004 
only. The panel of wine grape farms is the best model as tests show that De Doorns is different. 
Output is explained by land, labour and machinery and efficiency is affected by labour quality, age 
and education of the farmer, location, the percentage of non-bearing vines and expenditures on 
electricity for irrigation. There is evidence of a small degree of increasing returns to scale. 
JEL Classification: Q12 

1. INTRODUCTION 

Battese and Coelli’s (1995) inefficiency model, in which the efficiency differences are 
simultaneously estimated from the stochastic frontier and explained by further variables, 
also incorporates tests that choose between functional forms and between frontier and 
traditional models. This model is here applied to five small samples of grape producers in 
the Western Cape province of South Africa. The data covers two panels of wine grape 
farms (34 in Robertson and 36 in Worcester) for 2003 and 2004 and 37 table grape farms 
in De Doorns for 2004 only. The two years were similar, with no unusual weather, and 
the three regions are located close together, with all farms using irrigation. These data 
cover outputs, inputs and farm specific characteristics that can be used to explain 
efficiency at the farm level. The focus of the paper is simple. The majority of production 
frontier studies in agriculture pool cross section and time series data or use panel 
techniques to improve results. The recent literature on panel data (Baltagi, 2005) has 
begun to pay more attention to tests that determine whether data should be pooled. Here, 
we exploit the fact that despite the small samples, these data are good enough to produce 
acceptable results without pooling, to see if pooling tests are useful in determining what 
level of aggregation to use. 

The paper proceeds as follows. The next section reviews the salient features of grape 
production in the three regions, with the aid of summary statistics and describes the data 
used for estimation. Section three outlines the stochastic frontier model with inefficiency 
effects and reports on the hypothesis tests for model selection. The fourth section reports 
the results and is followed by a brief conclusion. 

 

ooppeennUUPP  ((JJuunnee  22000077))  



2. SUMMARY STATISTICS AND VARIABLE DEFINITIONS 

The descriptive statistics for this sample presented by Conradie (2005) show that wine 
grapes are different from table grapes in several respects. Wine farms are significantly 
larger in terms of output and fruit produced, although table grape operations employ 
more workers. The average wine farm in these four samples produces 1,140 tons of 
wine grapes and 340 tons of other fruit, consisting mostly of apricots, peaches, plums 
and pears. The average table grape farm produces 1,008 tons of table grapes and 28 
tons of other fruit, including wine grapes and citrus. The cost of production is R2,515 
per ton for the sample as a whole, but is significantly higher in the table grape industry 
(R6,255/ton) than for the wine industry (R1,550/ton). This is not surprising given that 
table grapes are packaged on the farm while most wine grapes are processed centrally. 
Table grape costs include packing, cooling and shipping while cellar costs are not 
included in the wine industry data. The estimated processing costs are roughly R900 
per ton, so even net of this figure table grapes are far more expensive to produce than 
wine grapes. This is balanced out by the price, which is about 3.7 times the cost of 
wine grapes. 

Table 1 reports the summary statistics for these samples, in terms of the variables used 
in estimation. Thus, following the convention of keeping the inputs in physical terms, the 
outputs are expressed in terms of tons of wine grape equivalents, with fruit and table 
grapes converted to wine grapes at average relative prices. The first column shows that the 
average output per farm is similar for the four wine grape samples, while the table grape 
farms show more variance and produce almost twice as much, due to the higher price of 
table grapes. This is despite the average farm size, in terms of area, which is far smaller 
than Worcester, while Robertson is in between. The greater input intensity of table grapes 
is again evident in labour use, which despite the smaller farms, is about three times that 
of the wine farms. Use of machinery (tractors, plus a few diggers and harvesters) is fairly 
uniform across the samples and machinery was the third and last input in most estimates. 
However, fuel costs were also recorded and for table grapes these proved a better measure 
of machinery use. As the Table shows, about twice as much fuel was used in table grape 
production, which suggests more intensive use of the available machinery. For the panel 
of wine farms, the best measure of machinery input proved to be the more sophisticated 
service flow from the capital stock, which was taken to be 10% depreciation on the 
machinery value, plus the running costs, represented by fuel expenditures. 

The next five variables are the farm-specific factors that are used to explain the 
efficiencies in the second part of the model. The first is the average wage, which varies 
as some farms employ more skilled labour. The Table shows that wages are higher in 
Worcester than in Robertson and highest in De Doorns. An analysis of labour differences 
and wages can be found in Conradie (2005), but here the wage serves to pick up the lack 
of quality adjustment in the labour variable. Age and education of the farmer are both 
uniform across the samples, but three farmers have over 17 years of education. They are 
older and have “semi-retired” into farming. 

One difficulty of measuring efficiency for a permanent crop like grape vines is partly 
captured by the percentage of the hectarage which is too recently planted to be yielding 
grapes. This varies from zero to two thirds of the farm in one case and as the new vines 
still use inputs, this must affect efficiency, as inputs are used on vines that are as yet 
unproductive. 
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Thus, there is normally an expectation that farms that are heavily involved in the 
establishment phase may appear to be less efficient. Expenditures on electricity which is 
used mainly for irrigation systems, are also far higher in table grape production. The next 
two columns report land and labour productivity. Land productivity is highest in De Doorns 
and lowest in Worcester, while labour productivity is lowest in De Doorns and highest in 
Robertson. Finally, the last two columns show factor ratios. The land/labour ratio is far 
lower in table grapes, while the machinery/labour is far less different across the samples. 

3. CHOICE OF MODEL, FUNCTIONAL FROM AND LEVEL OF AGGREGATION 

The measurement of firm level technical efficiency has become commonplace with the 
development of frontier production functions, as the survey by Battese (1992) shows. Fried, 
Lovell and Schmidt (1993) provide a comprehensive survey of methods and applications. 
Following Aigner, Lovell and Schmidt (1977) the general form of the production frontier, 
for a set of panel data is 

/ e,t = vlt-V,t    
whereYlt = a + YPjX,Jt + eit 

>=1 (1) 
with     u ~ \N{0, (Ju )|    and    v ~ N(0, Oy) 

where Yit is output, the Xgt are inputs and the two elements of the error term £it are 
independent. The v’s are independently and identically distributed random error terms and 
uncorrelated with the regressors, and the u’s are non-negative random variables associated 
with the technical inefficiency of the firm. 

In Battese and Coelli’s (1995) inefficiency effects model, the «,’s, in equation (1) are 
assumed to be non-negative random variables that reflect the technical efficiency of 
production. They are assumed to be independently distributed and are obtained by truncating 
the normal distribution, with mean [!&, and variance C7«2, at zero. Thus, 

uit = zito + wit (2) 

where Z;t are explanatory variables associated with firm level technical inefficiencies in 
production, 8 are unknown parameters to be estimated and w’s are the errors. The variance, 
(Ju

2, is also an unknown parameter to be estimated. 
First, the functional form of the stochastic frontier is determined by testing the adequacy 

of the Cobb-Douglas relative to the less restrictive translog. These frontier models are 
defined as 

/ 1    J    K 
Yit = fi0 + ^ f}jX;jt H----- XX PjkXijt + Vit ~ Uit (3) 

j=1 2 j=1 k=1 

where all of the variables are in logarithms and if terms under the double summation are not 
significantly different from zero, the translog reduces to the Cobb-Douglas. Y;t is grape 
output in physical terms and the independent variables (x;jt) are land, labour and machinery. 
This gives nine independent variables in the translog due to the addition of three squared 
terms and three cross products. In the inefficiency model, there are five explanatory 
variables, which are the wage rate, farmer’s age and education, the percentage 
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of the farm area planted with non-bearing vines and electricity expenditure. The remaining 
two variables are regional dummies for Worcester and De Doorns, to allow for regional 
variations. 

The maximum-likelihood estimates (MLE) of the parameters in the Cobb-Douglas and 
translog stochastic frontier production function models defined by (3), given the 
specifications for the technical inefficiency effects defined by (2), were obtained using 
FRONTIER 4.1 (Coelli, 1994). First, a series of hypothesis tests were conducted to select the 
level of aggregation, the functional form and to choose between the frontier model and the 
standard average production function. The results reported in Table 2 are interdependent, in 
the sense that functional form and frontier test results are used in the pooling tests. For the 
functional form tests the null hypothesis (H0) is that jS^ = 0, i,j = 1, . . . , n, meaning that the 
Cobb-Douglas frontier is an adequate representation for these data. Generalised Likelihood 
Ratio (LR) tests show that the Cobb-Douglas is an adequate representation of the data for all 
five grape samples, as X is less than the critical value. However, for the three panels that the 
pooling tests allow, the translog is preferred in two. The problem here is that the results for 
the translog do not comply with the theoretical restrictions for any production function. The 
basic requirement is that the coefficients of the three inputs must all lie between zero and 
unity, since they are output elasticities. Thus, the Cobb-Douglas results are preferred, despite 
the tests. 

Having selected the Cobb-Douglas functional form, the next section of Table 2 reports the 
results of tests of the hypothesis that the technical efficiency effects are not simply random 
errors. The key parameter is J= (JU

2/((JU
2 + O2), which is the ratio of the errors in equation 

(1). So, yis defined between zero and one, where if J= 0, technical inefficiency is not 
present, and if J= 1, there is no random noise. The null hypothesis is thus that J= 0, 
indicating that the mean response function (OLS) is an adequate representation of the data, 
whereas the closer J is to unity, the more likely it is that the frontier model is appropriate. If 
J is not significantly different from zero, the variance of the inefficiency effects (Wi in 
equation 2) is zero and the model reduces to a mean response function in which the 
inefficiency variables enter directly (Battese and Coelli, 1995). This test is unambiguous, 
with all values close to unity and all t tests indicating that the frontier is the appropriate 
model. The next column in this section reports X, the LR test values for the more powerful 
test with the null hypothesis that y= S0 = (5; = 0, which means that in addition to /being 
insignificant, the inefficiency effects are not present in the model. The null hypothesis, H0, is 
soundly rejected in all cases at the 5% level, with degrees of freedom (DOF) equal to the 
numbers of parameters set to zero.1 

In the last section, LR tests determine the extent to which the five samples can be pooled, 
or estimated as a panel. The test is that suggested by Battese and Coelli (1988), which 
compares the LR for the pooled model (H0) with the sum of the LRs for the sub-samples 
estimated separately (H1). Thus, the LR when both Robertson years are pooled is —1.382, 
compared with 8.815 (the sum of the two H0 LRs in the functional form test, below), giving a 
test statistic (X) of 19.134. This is compared with the critical ^ value at the 5% significance 
level, with 12 DOF. The DOF is the number of parameters estimated, which is 12 (see Table 
3) times by the difference in the number of 

1 As the null hypothesis involves parameter g, which as a ratio of two variances is necessarily 
positive, the test statistic follows a mixed chi-squared distribution and the critical values are found 
in Kodde and Palme (1986). 
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estimating equations, which is two, minus one. The outcome is close, but the two can be 
pooled, as can the two years for Worcester, with greater certainty. However, the two wine 
regions should not be pooled in either year, which is a little surprising since the years were 
not very different. The three regions can be pooled for 2004 if the function is translog, 
but this gave unacceptable results and is not pursued further. This was also the case with 
pooling all five samples, so the only high level of aggregation allowed is all four wine 
samples, which narrowly qualifies even with a Cobb-Douglas function. These tests 
explain why only three panels are reported in the next section. 

4. STOCHASTIC PRODUCTION FUNCTION AND INEFFICIENCY 
MODEL RESULTS 

(i) Output Elasticities, Returns to Scale and Farm Size For all five samples, the Cobb-
Douglas function was found to be an adequate representation of the unknown, 
underlying production function, meaning that the cross products and squared terms did 
not improve the fit sufficiently to justify inclusion. Table 3 reports the parameter 
estimates and t statistics for these models, beginning with the output elasticities for the 
inputs. 

For Robertson in 2003, all three elasticities are significant at the 5% level and a 1% 
increase in labour increases output by 0.577%.2 Land is far less important and machinery 
contributes still less, so that the elasticities sum to only 0.812, which indicates that on 
average, there is decreasing returns to scale. 

In the second year, land becomes the dominant input, labour falls and machinery is 
still last, but the sum is 1.207, which would suggest increasing returns to scale. With 
samples of only 34, it is perhaps not surprising that the results are so unstable, so forming 
a two-year panel to reduce the variability makes perfect sense. This results in more 
reasonable elasticities for land and labour and a sum that is much closer to constant 
returns to scale, but at the cost of machinery being insignificant. Aggregation by panel 
estimation may well be inferior to simply aggregating the two previous results. The 
pooling test is also odd, in that it allowed pooling despite such different slope coefficients. 
Were the two sub-samples larger, such aggregation could well be destroying real 
information rather than improving the estimates. 

The Worcester results are less different, with land dominating both years and 
machinery contributing least, so it is no surprise that pooling was permitted, but in this 
circumstance it really isn’t needed and rather than improving the significance of 
machinery, it makes this input insignificant. Again, a simple average would perhaps have 
been preferable. For De Doorns, the three elasticities all have reasonable values and are 
significant, but the sum of 1.489 is rather too much evidence of increasing returns. 

The last results are for a panel comprised of both regions in both years. The 
programme for the inefficiency model does not handle panels, but equivalent results are 
obtained by using time and regional dummies. All three inputs have reasonable elasticities 
and are significant at the 5% level, while there is still evidence of increasing returns to 
scale and the time dummy proved insignificant. 

2 The t test critical values at the 5% and 10% levels are shown at the bottom of the Table. The test is 
one tailed as the elasticities must be positive. 
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In many papers, where the data refuses to cooperate, this panel could well have been 
the only results reported, but in this case the small samples gave good results, so the 
pooling issue could be examined. The pooling tests are somewhat useful: for instance, 
confirming the impression given by the summary statistics, that table grapes really are 
different from wine grapes. This conforms with the expectation stated in section two, 
based on the differences between the two crops and we thank an anonymous referee for 
pointing out that De Doorns also has a different micro climate, being considerably colder. 
However, it is not clear how well the tests guide the researcher beyond this point. Not 
allowing pooling of the two regions in either single year, when the small sample sizes 
suggest that this form of aggregation may be needed, is unfortunate. Yet when the two 
years have already been pooled and the sample size has been increased, further pooling is 
allowed when it is much less needed. 

The sum of the output elasticities provides an indication of the predominant scale 
effect in a sample, but it is an average and can be quite misleading, if farms that are too 
large and those that are too small balance out. The Frontier programme calculates an 
efficiency level for each farm, so if the farms are then ranked according to size, some 
indication of the effect of size on efficiency can be gained. However, just as yield is a 
partial measure of productivity, returns to scale is output per unit of all inputs, not just 
land. Data envelopment analysis could be used to calculate scale efficiency, but this paper 
merely notes that the efficiency levels from the stochastic frontier estimation do appear to 
be a monotonically increasing function of farm size. The quartile of smallest farms has an 
average efficiency of 65%, the next quartile 71%, the next 75% and the largest 76%, so 
the scale effects are relaively unimportant, when judged according to land area. This 
conforms with the only previous study of scale efficiency in wine grape production, by 
Townsend, Kirsten and Vink (1998), which found no consitent relationship between 
yield, labour productivity, or total factor productivity and farm size, which was measured 
by area or number of workers. In their Robertson and Worcester samples, the small and 
medium sized farms were often more efficienct than the largest farms. 

(ii) Explaining the Inefficiencies The same variables are reported for each sample in 
explaining the inefficiencies, to facilitate comparisons, with the exception of De Doorns, 
where only electricity was significant. For all but De Doorns and Worcester in 2003, 
higher average wages decrease inefficiency (hence the negative coefficients). This is to be 
expected, since this serves as quality adjustment for the labour input. Expenditures on 
electricity reduced inefficiency in De Doorns, which suggest that irrigation is important 
for table grapes. For Robertson the same effect dominates, but for Worcester pooled and 
the full pooled sample the sign is positive. This may well reflect the locations of the farms, 
as those on higher ground will have to spend more on pumping irrigation water. 

The same type of problem arises with non-bearing vines, which increase inefficiency, 
in accordance with the conventional wisdom, only in Worcester in 2004. In the four cases 
in which non-bearing vines increase efficiency, the causality may run from efficient 
production to planting new vines. This follows, as any farmer who intends to continue 
producing has to do some replanting almost every year. If a farm is prospering, it is also 
likely to be investing, so it seems to be those that are inefficient that are not investing. 
Thus, the dynamics of the situation reverse the expected static result. Age and education 
often give odd results in these models and here age reduces efficiency, but so too does 
education, in Robertson especially. As was noted above, wine farmers with 17 years of 
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education may have bought vineyards late in life as an attractive retirement lifestyle (the 
prospect certainly appeals to the authors). The last statistics are the variance parameters 
s2 = su

2 + sv
2 and g = su

2/sv
2 which do not require further discussion. 

5. CONCLUSIONS 

This paper uses a stochastic frontier and inefficiency model to test the efficiency of grape 
production in the Western Cape. The data cover two panels of wine grape farms (34 in 
Robertson and 36 in Worcester) for 2003 and 2004 and 37 table grape farms in De 
Doorns for 2004 only. Tests show that Cobb-Douglas stochastic production frontiers, 
with variables to explain the inefficiencies are an appropriate representation of the five 
individual samples. 

The stochastic frontier results indicate that output can be explained by land, labour 
and machinery and that efficiency cab be affected by labour quality, age and education of 
the farmer, location, the percentage of non-bearing vines and expenditures on electricity 
for irrigation. Efficiency is also dependent on farm size, so returns to scale are further 
investigated, showing that there are very modest returns to scale in grape production. 

These data are sufficiently good to produce reasonable results without pooling, but 
most applied economists would consider the possibility of improving the estimates by 
pooling the samples. However, pooling tests show that in this situation with small 
samples, when pooling is permissible it may not be helpful and when it is needed it may 
not be permitted. More effort on determining the true distributions is needed to improve 
the way small samples are handled and Bayesian methods may be helpful in this respect. 
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