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Summary 

 

Distribution-free (nonparametric) control charts can be useful to the quality practitioner 

when the underlying distribution is not known. The term nonparametric is not intended to imply 

that there are no parameters involved, in fact, quite the contrary. While the term distribution-free 

seems to be a better description of what we expect from these charts, that is, they remain valid for a 

large class of distributions, nonparametric is perhaps the term more often used. In the statistics 

literature there is now a rather vast collection of nonparametric tests and confidence intervals and 

these methods have been shown to perform well compared to their normal theory counterparts. 

Remarkably, even when the underlying distribution is normal, the efficiency of some nonparametric 

tests relative to the corresponding (optimal) normal theory methods can be as high as 0.955 (see e.g. 

Gibbons and Chakraborti (2010) page 218). For some other heavy-tailed and skewed distributions, 

the efficiency can be 1.0 or even higher. It may be argued that nonparametric methods will be ‘less 

efficient’ than their parametric counterparts when one has a complete knowledge of the process 

distribution for which that parametric method was specifically designed. However, the reality is that 

such information is seldom, if ever, available in practice. Thus it seems natural to develop and use 

nonparametric methods in statistical process control (SPC) and the quality practitioners will be well 

advised to have these techniques in their toolkits. In this thesis we only propose univariate 

nonparametric control charts designed to track the location of a continuous process since very few 

charts are available for monitoring the scale and simultaneously monitoring the location and scale 

of a process. 

 

 Chapter 1 gives a brief introduction to SPC and provides background information regarding 

the research conducted in this thesis. This will aid in familiarizing the reader with concepts and 

terminology that are helpful to the following chapters. Details are given regarding the three main 

classes of control charts, namely the Shewhart chart, the cumulative sum (CUSUM) chart and the 

exponentially weighted moving average (EWMA) chart. 

 

We begin Chapter 2 with a literature overview of Shewhart-type Phase I control charts 

followed by the design and implementation of these charts. A nonparametric Shewhart-type Phase I 

control chart for monitoring the location of a continuous variable is proposed. The chart is based on 

the pooled median of the available Phase I samples and the charting statistics are the counts 

(number of observations) in each sample that are less than the pooled median. The derivations 

recognize that in Phase I the signalling events are dependent and that more than one comparison is 
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made against the same estimated limits simultaneously; this leads to working with the joint 

distribution of a set of dependant random variables. An exact expression for the false alarm 

probability is given in terms of the multivariate hypergeometric distribution and this is used to 

provide tables for the control limits. Some approximations are discussed in terms of the univariate 

hypergeometric and the normal distributions.  

 

In Chapter 3 Phase II control charts are introduced and considered for the case when the 

underlying parameters of the process distribution are known or specified. This is referred to as the 

‘standard(s) known’ case and is denoted Case K. Two nonparametric Phase II control charts are 

considered in this chapter, with the first one being a nonparametric exponentially weighted moving 

average (NPEWMA)-type control chart based on the sign (SN) statistic. A Markov chain approach 

(see e.g. Fu and Lou (2003)) is used to determine the run-length distribution of the chart and some 

associated performance characteristics (such as the average, standard deviation, median and other 

percentiles). In order to aid practical implementation, tables are provided for the chart’s design 

parameters. An extensive simulation study shows that on the basis of minimal required 

assumptions, robustness of the in-control run-length distribution and out-of-control performance, 

the proposed NPEWMA-SN chart can be a strong contender in many applications where traditional 

parametric charts are currently used. Secondly, we consider the NPEWMA chart that was 

introduced by Amin and Searcy (1991) using the Wilcoxon signed-rank statistic (see e.g. Gibbons 

and Chakraborti (2010) page 195). This is called the nonparametric exponentially weighted moving 

average signed-rank (NPEWMA-SR) chart. In their article important questions remained 

unanswered regarding the practical implementation as well as the performance of this chart. In this 

thesis we address these issues with a more in-depth study of the NPEWMA-SR chart. A Markov 

chain approach is used to compute the run-length distribution and the associated performance 

characteristics. Detailed guidelines and recommendations for selecting the chart’s design 

parameters for practical implementation are provided along with illustrative examples. An extensive 

simulation study is done on the performance of the chart including a detailed comparison with a 

number of existing control charts. Results show that the NPEWMA-SR chart performs just as well 

as and in some cases better than the competitors. 

 

In Chapter 4 Phase II control charts are introduced and considered for the case when the 

underlying parameters of the process distribution are unknown and need to be estimated. This is 

referred to as the ‘standard(s) unknown’ case and is denoted Case U. Two nonparametric Phase II 

control charts are proposed in this chapter. They are a Phase II NPEWMA-type control chart and a 

nonparametric cumulative sum (NPCUSUM)-type control chart, based on the exceedance statistics, 
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respectively, for detecting a shift in the location parameter of a continuous distribution. The 

exceedance statistics can be more efficient than rank-based methods when the underlying 

distribution is heavy-tailed and / or right-skewed, which may be the case in some applications, 

particularly with certain lifetime data. Moreover, exceedance statistics can save testing time and 

resources as they can be applied as soon as a certain order statistic of the reference sample is 

available. We also investigate the choice of the order statistics (percentile), from the reference 

(Phase I) sample that defines the exceedance statistic. It is observed that other choices, such as the 

third quartile, can play an important role in improving the performance of these exceedance charts. 

It is seen that these exceedance charts perform as well as and, in many cases, better than its 

competitors and thus can be a useful alternative chart in practice. 

 

Chapter 5 wraps up this thesis with a summary of the research carried out and offers 

concluding remarks concerning unanswered questions and / or future research opportunities. 
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Chapter 1 

 

Introduction 

 

1.1. Notation 

 

The table below lists some of the abbreviations and notation that will be used frequently 

throughout the dissertation. 

 

Table 1.1. Abbreviations and notation 

SPC Statistical process control 

NSPC Nonparametric statistical process control 

pmf Probability mass function 

cdf Cumulative distribution function 

n Sample size / rational subgroup size ��, ��, … , �� Random variables in a sample ��, ��, … , �� Observations in a sample �	 Target value or known or specified in-control location parameter
i
 

CUSUM Cumulative sum 

EWMA Exponentially weighted moving average 

ARL  Average run-length 

0ARL  In-control average run-length 

δARL  Out-of-control average run-length 

SDRL Standard deviation of the run-length 

MRL Median run-length 

UCL Upper control limit 

CL Center line 

LCL Lower control limit 

FAR False alarm rate 

FAP False alarm probability 

IC In-control 

OOC Out-of-control 

TPM Transition probability matrix 

A Absorbent 

NA Non-absorbent 

 

  

                                                 
i
 The location parameter could be the mean, median or some percentile of the distribution. When the underlying 

distribution is known to be highly skewed, the median or some percentile is preferred to the mean. 
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1.2. The control chart 

 

 A control chart typically is a two dimensional graphic consisting of the values of a plotting 

(charting) statistic plotted on the vertical axis against time or subgroup number on the horizontal 

axis along with the associated control limits. The charting statistic and the control limits are 

calculated from the data which can be individual or subgroups (samples) of observations, collected 

sequentially over time. A typical two-sided Shewhart-type control chart (Walter A. Shewhart 

developed the statistical control chart concept in 1924) is shown in Figure 1.1.  

 

Sample number / Time
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rt

in
g
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ta

ti
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it
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151413121110987654321

5.0

2.5

0.0

-2.5

-5.0

Upper control limit (UCL)

Center line (CL)

Lower control limit (LCL)

Figure 1.1. A two-sided Shewhart-type control chart 

 

 From Figure 1.1 it can be seen that a control chart usually has a center line (CL) and two 

horizontal lines, one on each side of the CL. The line above the CL is called the upper control limit 

(UCL) whereas the line below the CL is called the lower control limit (LCL). These three lines are 

placed on the control chart to aid the user in making an informed and objective decision whether a 

process is in-control (IC) or out-of-control (OOC). When a charting statistic plots on or outside 

either of the control limits it is said that a signal has been observed and the process is declared 

OOC. The event is called a signalling event. On the contrary, when the charting statistic randomly 

plots between the upper and the lower control limits the process is thought to be IC and hence no 

signal is observed on the control chart. The corresponding event is called a non-signalling event. 

Both one-sided and two-sided charts are considered in this thesis. The one-sided charts are more 
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useful when only a directional shift (higher or lower) in the location and / or scale is of interest. The 

two-sided charts, on the other hand, are typically used to detect a shift or change in the location and 

/ or scale in any direction. 

 

1.3. Distribution of chance causes 

 

One of the main goals of statistical process control (SPC) is to distinguish between two 

sources of variability, namely common causes (chance causes) of variability and assignable causes 

(special causes) of variability (see e.g. Montgomery (2009) page 181). A common cause of 

variability is an inherent or natural (yet random) variability that is present in any process, whereas 

an assignable cause of variability may be a result of factors that are not solely random and which 

can be identified and eliminated. In SPC, the pattern of chance causes is usually assumed to follow 

some parametric distribution (such as the normal distribution). The charting statistic and the control 

limits depend on this assumption and as such the properties of these control charts are ‘exact’ only 

if this assumption is satisfied. However, often the chance distribution is either unknown or far from 

being normal in many applications and consequently the performance of standard control charts is 

highly affected in such situations. Thus, there is a need for some easy to use, flexible and robust 

control charts that do not require normality or any other specific parametric model assumption 

about the underlying chance distribution. Distribution-free or nonparametric control charts can 

serve this broader purpose. On this point see e.g. Woodall and Montgomery (1999) and Woodall 

(2000). These researchers and others provide ample reasons for the development of nonparametric 

control charts. 

   

1.4. Nonparametric or distribution-free 

 

The term nonparametric is not intended to imply that there are no parameters involved, in 

fact, quite the contrary. While the term distribution-free seems to be a better description of what we 

expect from distribution-free or nonparametric charts, that is, they remain valid for a large class of 

distributions, nonparametric is perhaps the term more often used. In the statistics literature there is 

now a rather vast collection of nonparametric tests and confidence intervals and these methods have 

been shown to perform well compared to their normal theory counterparts. Remarkably, even when 

the underlying distribution is normal, the efficiency of some nonparametric tests relative to the 

corresponding (optimal) normal theory methods can be as high as 0.955 (see e.g. Gibbons and 

Chakraborti (2010) page 218). For some other heavy-tailed and skewed distributions, the efficiency 

can be 1.0 or even higher. It may be argued that nonparametric methods will be ‘less efficient’ than 
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their parametric counterparts when one has a complete knowledge of the process distribution for 

which that parametric method was specifically designed. However, the reality is that such 

information is seldom, if ever, available in practice. Thus it seems natural to develop and use 

nonparametric methods in SPC and the quality practitioners will be well advised to have these 

techniques in their toolkits.   

 

Nonparametric control charts also have the added advantage that they are robust. A robust 

statistical procedure (see e.g. Rocke et al. (1982)) is a procedure that performs well not only under 

ideal conditions (under which it is designed and proposed) but also under departures from the ideal. 

In the same spirit, a control chart is robust if its IC run-length distribution remains stable 

(unchanged, or nearly unchanged) when the underlying distributional assumption(s) (normality, for 

example) are violated (see e.g. Rocke (1989)). A nonparametric chart is robust by definition and can 

be more useful in situations where not much is known about the underlying process distribution. A 

control chart is nonparametric if its IC run-length distribution is the same for every continuous 

distribution (see e.g. Chakraborti et al. (2001)). Note that this definition includes the class of 

symmetric as well as asymmetric distributions. Thus, while the notion of robustness is somewhat 

vague insofar as specifying the degree of ‘departure from the ideal’ and the precise meaning of 

‘performs well’, it is clear that while a robust control chart is not necessarily nonparametric, a 

nonparametric chart is robust.   

 

Only univariate nonparametric control charts designed to track the location of a continuous 

process are considered in this body of work. The location charts continue to dominate the control 

charting literature, both parametric and nonparametric. An interesting and challenging problem is 

monitoring the scale parameter and very few charts are available for this problem. On the other 

hand, very recently, a few authors have considered nonparametric control charts for simultaneously 

monitoring the location and scale of a process. The field of multivariate control charts, particularly 

nonparametric charts, is interesting and the body of literature on nonparametric multivariate control 

charts is growing. However, that is not the focus of this work and is better postponed for the future. 

  

1.5. Run-length distribution 

 

 “The number of rational subgroups to be collected or the number of charting statistics to be 

plotted on a control chart before the first OOC signal is observed is the run-length of a chart” 

Human and Graham (2007). The run-length is a random variable, denoted usually by N, with a 

mean and variance. The most widely used chart performance metric is the mean of the run-length, 
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referred to as the average run-length (ARL). However, since the run-length distribution is 

significantly right-skewed, researchers have advocated using other, more representative, measures 

for the assessment of chart performance. These include the standard deviation of the run-length 

(SDRL) and other percentiles of the run-length, more specifically, the median run-length (MRL), 

which provides additional and more meaningful information about the in-control and out-of-control 

performances of control charts, not given by the ARL. The idea of looking at percentiles, in SPC, 

goes back to Barnard (1959) and more recently researchers such as Gan (1994), Chakraborti (2007) 

and Khoo et al. (2011) have advocated the use of percentiles, such as the median, for assessment of 

chart performance. The run-length distribution and the characteristics of the run-length distribution 

can be obtained using four methods, namely 

 

i. The exact approach (for Shewhart and some Shewhart-type charts)  

ii. The Markov chain approach 

iii. The integral equation approach 

iv. The computer simulations (the Monte Carlo) approach 

 

 In this body of work the emphasis falls on the computer simulations (the Monte Carlo) 

approach and the Markov chain approach. More details on these approaches are given later on.  

  

1.6. Nonparametric control charts 

 

Although nonparametric statistical methods have been around since at least the 1940’s in the 

statistical estimation and testing literature, the work of Chakraborti et al. (2001) may be viewed as 

the first coherent discussion of the applicability of these methods in the quality literature. 

Continuing this line of work, Chakraborti and Graham (2007) and most recently Chakraborti et al. 

(2011) provided thorough overviews of the nonparametric control charting literature. A formal 

definition of a nonparametric or distribution-free control chart is given in terms of its IC run-length 

distribution. 
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Definition 1.1 

 

Distribution-free or nonparametric control chart 

 

If the IC run-length distribution is the same for every continuous distribution, then the chart is 

called distribution-free.  

 

Note that this Definition 1.1 includes the class of symmetric as well as asymmetric 

distributions. Chakraborti et al. (2001) summarized the advantages of nonparametric control charts 

as follows:  

 

i. it is easy to implement, i.e. simplicity,  

 

ii. no need to assume a particular parametric distribution for the underlying process,  

 

iii. the in-control run-length distribution is the same for all continuous distributions,  

 

iv. more robust and outlier resistant,  

 

v. more efficiency in detecting changes when the true distribution is markedly non-normal, 

particularly with heavier tails, and  

 

vi. no need to estimate the variance to set up charts for the location parameter.  

 

It is emphasized that from a technical point of view most nonparametric procedures require 

the population to be continuous in order to be distribution-free and thus in a SPC context we 

consider the so-called ‘variables control charts’ (see e.g. Montgomery (2009) page 226). While the 

nonparametric charts offer many advantages, they are not without their critics. Some disadvantages 

of nonparametric control charts are as follows (see Chakraborti et al. (2001) page 306):  

 

i. they will be ‘less efficient’ than their parametric counterparts when one has a complete 

knowledge of the process distribution for which that parametric method was specifically 

designed,  

 

ii. one usually requires special tables when the sample sizes are small, and  
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iii. nonparametric methods are not well-known amongst all researchers and quality 

practitioners. 

 

 The basic point is this. If the underlying model is known or can be assumed, a parametric 

statistical procedure, such as a control chart, would be expected to be more efficient than a 

nonparametric method which does not make a model assumption. However, the reality is that in 

practice, such a model assumption may not often be justifiable. 

 

1.7. Terminology and problem statement 

 

Two important problems in usual SPC are monitoring the process mean and / or the process 

standard deviation. In the nonparametric setting, we consider, more generally, monitoring the center 

or the location (or a shift) parameter and / or a scale parameter of a process. The location parameter 

represents a typical value and could be the mean or some percentile, such as the median of the 

distribution; the latter is especially attractive when the underlying distribution is expected to be 

skewed. Let 
(�) denote the unknown cumulative distribution function (cdf) of the monitored 

continuous variable �. In analogy with the parametric, mainly the normal distribution case, it is 

assumed that 
 follows either  

 

i. a location model, with a cdf 
(� − �), where ��(−∞,∞) and ��(−∞,∞) is the location 

parameter, or,  

 

ii. a scale model, with a cdf 
 ����, where ��(−∞,∞) and  � > 0 is the scale parameter, or, 

 

iii. a location-scale model with cdf 
 ����� �, where ��(−∞,∞) and ��(−∞,∞)	and � > 0  are 

the location and the scale parameter, respectively. 

 

Thus in the nonparametric setting, the problem is to track � or � or both, under these model 

assumptions, based on random samples or subgroups of data usually taken at equally spaced time 

points. To highlight the analogy, in the usual parametric control charting problems 
 is assumed to 

be the cdf (Φ) of the standard normal distribution whereas in the nonparametric setting, for 

variables data, 
 is some unknown continuous cdf. Although the location-scale model seems to be a 

natural model to consider paralleling the normal theory case with mean and variance both unknown, 
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most of what is currently available in the nonparametric statistical process control (NSPC) literature 

deals mainly with the location model.  As noted earlier, this is the main focus of the present work. 

 

1.8. Phase I and Phase II  

 

 Before going further, it is useful to note that recent work in SPC make a distinction between 

two phases (or stages): Phase I (also called the retrospective phase) and Phase II (also called the 

prospective or monitoring phase). The analysis of historical or preliminary data, in order to establish 

that a process is IC, generally comes under what is referred to as Phase I. A process that operates at 

or around a desirable level or specified target with no assignable causes of variation is said to be in 

statistical control, or simply in-control. In Phase I, the primary interest is assessing process stability, 

often trying to bring a process IC by locating and eliminating any assignable causes, estimating any 

unknown quantities (parameters) and setting up control charts (limits) so that effective process 

monitoring can begin in Phase II. Control charts play a crucial role in Phase I. They help in 

diagnosing source(s) of assignable causes and their removal. The process of establishing control 

may be iterative and the control limits in this phase are usually viewed as trial limits. Once 

statistical control is established, the parameters are estimated and control limits are finalized based 

on IC data (also called reference data). Once this is ascertained, SPC moves to the next phase, 

called Phase II, where the control limits and / or the estimators obtained in Phase I are used for 

process monitoring based on new incoming samples of data.  

 

 When the underlying parameters of the process distribution are known or specified, this is 

referred to as the ‘standard(s) known’ case and is denoted Case K. In contrast, if the distribution’s 

parameters are unknown and need to be estimated, it is typically done in Phase I, with in-control 

data. This situation is referred to as the ‘standard(s) unknown’ case and is denoted Case U. In this 

text we are going to consider decision problems under both Phase I and Phase II. One of the main 

differences between the two phases is the fact that the false alarm rate (FAR) (or in-control average 

run-length ARL0) is typically used to construct and evaluate Phase II control charts, whereas the 

false alarm probability (FAP) is used to construct and evaluate Phase I control charts. The FAP is 

the probability of at least one false alarm out of the comparison of all the charting statistics to the 

control limits simultaneously, whereas the FAR is the probability of a single false alarm involving 

only a single comparison of a charting statistic to the control limits. Various authors have studied 

the Phase I problem; see for example King (1954), Chou and Champ (1995), Sullivan and Woodall 

(1996), Jones and Champ (2002), Champ and Chou (2003), Champ and Jones (2004), Koning 

(2006) and Human et al. (2009). It is recognized that since not much is typically known or can be 
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assumed about the underlying process distribution in a Phase I setting, nonparametric Phase I 

control charts can be of great value.  

   

1.9. Types of control charts 

 

There are three main classes of control charts: the Shewhart chart, the cumulative sum 

(CUSUM) chart and the exponentially weighted moving average (EWMA) chart and their 

refinements. Relative advantages and disadvantages of these charts are well documented in the 

literature (see e.g. Montgomery (2009)). Analogs of these charts have been considered in the 

nonparametric setting. We describe some of the charts in more detail in each of the three sections 

that follow. 

 

1.9.1. Shewhart-type control charts 

 

Shewhart-type charts are the most popular charts in practice because of their simplicity, ease 

of application, and the fact that these versatile charts are quite efficient in detecting moderate to 

large shifts. To describe the Shewhart chart in more detail, assume that ���, ���, … , ��� denote a 

random sample (i.e. measurements from some quality characteristic) of size � ≥ 1 form the process 

at time � = 1,2,3,… . Let w be a sample statistic that measures some quality characteristic of 

interest, and suppose that the mean of w is  !, the variance of w is "!�  and the standard deviation of 

w is "!. Then the control limits and CL are given by 

 

UCL =  ! + $"! 

CL =  ! (1.1) 

LCL =  ! − $"! 

 

where $ > 0 is the charting constant which is a design parameter that determines the ‘distance’ of 

the control limits from the CL expressed in standard deviation units. When a charting statistic plots 

on or outside either of the control limits it is said that a signal has been observed and the process is 

declared OOC. Typically, a search for assignable causes is then started. 
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1.9.2. CUSUM-type control charts 

 

While the Shewhart-type charts are widely known and most often used in practice because 

of their simplicity and global performance, other classes of charts, such as the CUSUM charts, are 

useful and sometimes more naturally appropriate in the process control environment in view of the 

sequential nature of data collection. CUSUM control charts were first introduced by Page (1954) 

(although not in its present form) and have been studied by many authors, for example, Barnard 

(1959), Ewan and Kemp (1960), Johnson (1961), Goldsmith and Whitfield (1961), Page (1961), 

Ewan (1963), Hawkins (1992, 1993), Woodall and Adams (1993) and Hawkins and Olwell (1998). 

 

These charts, typically based on the cumulative sums of a charting statistic, obtained as data 

accumulate over time, are known to be more efficient for detecting certain types of shifts in the 

process. The normal theory CUSUM chart for the mean is typically based on the cumulative sum of 

the deviations of the individual observations (or the subgroup means) from the specified target 

mean.  

 

To describe the CUSUM chart in more detail, assume that ���, ���, ��%, … , ��� denote a 

sample (subgroup) of size � ≥ 1 on the process output at each sampling instance �, � = 1,2,…, from 

a process with a known process mean  	 and a known process standard deviation "	. A statistic  

 

&� = &(���, ���, … , ���)  

(1.2) 

 

is constructed using the data in the �'( sample, � = 1,2,… . The statistic in Equation (1.2) is referred 

to as the basic (pivot) statistic; see Bakir (2011). 

 

The upper one-sided CUSUM works by accumulating deviations from  	 + $ that are above 

target. For the upper one-sided CUSUM chart we use 

 

)�* = +,�-0, &� − $ + )���* .  for  � = 1,2,3... (1.3) 

 

to detect positive deviations from  	 with starting value )	* = 0 and the so-called reference value 

$ ≥ 0. A signalling event occurs for the first i such that )�* ≥ /, where / > 0 is the decision 

interval. The lower one-sided CUSUM works by accumulating deviations from  	 − $ that are 

below target 
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 )�� = +��-0, &� + $ + )���� .  for  � = 1,2,3... (1.4) 

 

or 

 

)��∗ = +,�10, −$ − &� + )����∗ 2  for  � = 1,2,3... (1.5) 

 

and is used to detect negative deviation from  	 with starting value )	� = )	�∗ = 0. Here a 

signalling event occurs for the first i such that )�� ≤ −/ (if Expression (1.4) is used) or )��∗ ≥ / (if 

Expression (1.5) is used). For a visually appealing chart, Expression (1.4) will be used to construct 

the lower one-sided CUSUM. The two-sided CUSUM chart signals for the first i at which either 

one of the two inequalities is satisfied, that is, either )�* ≥ / or )�� ≤ −/. For the CUSUM chart 

there are quantities or counters, 4* and 4�, which indicate the number of consecutive periods that 

the CUSUM’s )�* and )��  have been non-zero which helps in identifying at what point in time the 

shift may have taken place. This is illustrated later on in Chapter 4. Both $ and / are design 

parameters of the chart which are needed in order to implement the CUSUM chart. This is 

discussed next.  

 

The design parameters $ and / are chosen so that the chart has a specified nominal ARL0 

and is capable of detecting a shift, specially a small shift, as soon as possible. The first step in this 

direction is to choose $.  For the parametric CUSUM chart for the normal mean, the choice of $ has 

been discussed by many authors; see e.g. Lucas (1985), Hawkins and Olwell (1998), Kim et al. 

(2007) and Montgomery (2009). Lucas (1985) stated “The CUSUM parameter $ is determined by 

the acceptable mean level ( 5) and by the unacceptable mean ( 6) level which the CUSUM scheme 

is to detect quickly. For normally distributed variables the $ value is chosen half way between the 

acceptable mean level and the unacceptable mean level.” In the more recent literature, see e.g. 

Montgomery (2009), it is agreed that in the normal theory setting $ is typically chosen relative to 

the size of the shift we want to detect, that is, $ = �� 7, where 7 is the size of the shift in the mean 

expressed in standard deviation units. More details on the choice of 7 is given later in this section. 

Hawkins and Olwell (1998; page 54), investigated the sensitivity of the ARL of the CUSUM chart 

for the normal mean to the choice of k. They considered four values of $, namely $ = 0.25, 0.5, 1 

and 2 and concluded that “… the CUSUM with $ = 0.25 is the best of the four for all ∆ less than 

0.73. The $ = 0.50 CUSUM, which is tuned to shifts of size ∆ = 1 then takes the lead and is the best 

of the four in the range 0.73 < ∆ < 1.46. The CUSUM $ = 1 leads in the range 1.46 < ∆ < 2.87, and 

the $ = 2 CUSUM is the best of these four for ∆ value above 2.87.” Take note that, in their 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



12 

 

conclusion, ∆ denotes the size of the actual mean shift
ii
. For the parametric CUSUM chart for the 

normal mean, Kim et al. (2007) considered two values of the reference value $, namely, $ = 0 and  

$ = 0.5 and found that the CUSUM chart with $ = 0 is more effective in detecting shifts of size 

0.25"9, where "9 is the process standard deviation, whereas the chart with $ = 0.5 detects any shift 

exceeding 0.25"9 much faster. Hawkins and Olwell (1998; page 35) made the following comment 

concerning the choice of $ = 0 for the parametric CUSUM chart for the normal mean: “The in-

control ARL of the CUSUM depends on the value of $ and ℎ. Larger values of either of these 

parameters lead to larger ARLs. At the extremes, if $ and ℎ are both zero, then the ARL is 1, since 

the first point will necessarily give a value of at least 0.” 

 

After choosing $, the next step is to find the decision interval /, in conjunction with the 

chosen $, so that a specified nominal ARL0 is attained. Note, however, for a discrete random 

variable the chances are that / cannot always be found such that the specified nominal ARL0 is 

attained exactly and hence using a conservative approach, / is found so that the attained ARL0 is 

less than or equal to the specified nominal ARL0. The decision interval, /, is found using a grid 

search algorithm using 100 000 Monte Carlo simulations using SAS
® 

v 9.3.  

 

 Let us consider the parametric CUSUM chart for monitoring of normal mean with 

individual data (� = 1) with no reference sample. In this case, the pivot statistic in Equations (1.3), 

(1.4) and (1.5) is replaced by �� where �� follows a normal distribution. To examine the impact of 

$, we examine the out-of-control ARL (denoted ARLδ) for the normal distribution in Figure 1.2, 

taking the IC mean  	 = 0 and standard deviation " = 1 (without loss of generality) and setting the 

nominal ARL0 = 500, for  � = 0.1, 0.25, 0.5 and 1.0. Note that  � represents the increased value of   

to be detected ‘quickly’ from  	 = 0; hence  � represents the true shift in the mean, that is, 7 =  �.  

 

  

                                                 
ii
 Relationship between 7 and ∆: Let  	 denote the target IC mean and let  � denote the OOC value of the mean. Then 7 

is the size of the shift in the mean expressed in standard deviation units, i.e.  � =  	 + 7" so that 7 = | � −  	|/". In 

Hawkins and Olwell (1998) ∆ denotes the size of the actual mean shift, i.e. ∆= 7". 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 1.2. ARLδ  values of the traditional CUSUM chart with the nominal ARL0 = 500 for different 

values of $ and  � = 0.1, 0.25, 0.5 and 1.0 

 

  From Figure 1.2 several interesting observations can be made. When the shift is small (see 

panels (a) and (b) of Figure 1.2) and a larger value of $ is chosen, the ARLδ values become 

unacceptably high. On the other hand, if the shift is large (see panels (c) and (d) of Figure 1.2) and a 

smaller value of $ is chosen, the ARLδ  values are also high, but not as high as in the latter case. 

This suggests that when there is little or no a-priori information regarding the size of the shift, a 

smaller value of $ is the safest choice (to protect against any unnecessary delays in detection). Later 

we shall see that similar conclusions can be drawn about nonparametric CUSUM charts (see 

Section 4.3). Note that although we are considering an unknown shift, we are primarily interested in 

detecting a smaller and moderate shift with a CUSUM chart. Therefore, we recommend using $ = 0 

(or letting 7 tend to 0).  

 

Note that this general discussion regarding the CUSUM chart is for Case K, i.e. when the 

process parameters are known. However, in Case U the process parameters are unknown and need 

to be estimated. More details are given on Case U in Chapter 4. 

150

200

250

300

350

0

0
.1

0
.2

0
.3

0
.5

0
.7

0
.9

A
R

L
w

h
en

 t
ru

e 
sh

if
t 

=
 0

.1

k

50

70

90

110

130

150

170

0

0
.1

0
.2

0
.3

0
.5

0
.7

0
.9

A
R

L
w

h
en

 t
ru

e 
sh

if
t 

=
 0

.2
5

k

20

25

30

35

40

45

50

55

60

0

0
.1

0
.2

0
.3

0
.5

0
.7

0
.9

A
R

L
w

h
en

 t
ru

e 
sh

if
t 

=
 0

.5

k

5

10

15

20

25

0

0
.1

0
.2

0
.3

0
.5

0
.7

0
.9

A
R

L
w

h
en

 t
ru

e 
sh

if
t 

=
 1

k

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



14 

 

 

With so much work done with parametric control charts, it is natural to consider analogs of 

these charts using nonparametric charting statistics. This approach has led to NPCUSUM charts 

considered in this work to be discussed later. The reader is referred to Hawkins and Olwell (1998) 

for a detailed overview on parametric CUSUM charts. 

 

1.9.3. EWMA-type control charts 

 

Another popular class of control charts is the exponentially weighted moving average 

(EWMA) charts. The EWMA charts also take advantage of the sequentially (time ordered) 

accumulating nature of the data arising in a typical SPC environment and are known to be efficient 

in detecting smaller shifts but are easier to implement than the CUSUM charts (see e.g. 

Montgomery (2009) page 419). The classical EWMA charts for the mean were introduced by 

Roberts (1959) and they contain the Shewhart-type charts as a special case. The literature on 

EWMA charts is enormous and continues to grow at a substantial pace (see e.g. the overview in the 

Encyclopedia of Statistics in Quality and Reliability by Ruggeri et al. (2007) and the references 

therein). Some more recent references include Capizzi and Masarotto (2012) and Ross et al. (2012). 

 

To describe the EWMA chart in more detail, assume that ���, ���, ��%, … , ��� denote a 

sample (subgroup) of size � ≥ 1 on the process output at each sampling instance �, � = 1,2,…, from 

a process with a known process mean  	 and a known process standard deviation "	. The charting 

statistic for the EWMA control chart is defined as 

 

>� = ?&� + (1 − ?)>���  for  � = 1,2,3... (1.6) 

 

where 0 < ? ≤ 1 is a constant called the smoothing parameter and &� is the pivot statistic defined 

in Equation (1.2). The starting value >	 is typically taken to be the process mean, i.e. >	 =  	. The 

expected value and variance of >� are given by  

 A(>�) =  	 (1.7) 

 

and 

 

BCD(>�) = "	� E ?2 − ?G H1 − (1 − ?)��I (1.8) 
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respectively (see Appendix 1A for the derivations). The exact control limits and the center line of 

the EWMA control chart are given by 

 

J)K = A(>�) + K × MNOAB(>�) =  	 + K"	PE ?2 − ?G (1 − (1 − ?)��) 
 

)K = A(>�) =  	 (1.9) 

 

 

K)K = A(>�) − K × MNOAB(>�) =  	 − K"	PE ?2 − ?G (1 − (1 − ?)��) 
 

where L > 0 is a charting constant. The steady-state control limits (which are typically used when 

the EWMA chart has been running for several time periods so that the term H1 − (1 − ?)��I in (1.9) 

approaches unity) are given by 

 

J)K = 	 	 + K"	PE ?2 − ?G 

 

and (1.10) 

 

K)K = 	 	 − K"	PE ?2 − ?G. 
 

 

 The two-sided EWMA chart is constructed by plotting >� against the sample number � (or 

time). If the charting statistic >� falls between the two control limits, that is, K)K < >� < J)K, the 

process is considered to be IC. If the charting statistic >� falls on or outside one of the control limits, 

that is >� ≤ K)K or >� ≥ J)K, the process is considered to be OOC and a search for assignable 

causes is necessary. 

 

 The two-sided EWMA can be modified to form a one-sided statistic in much the same way a 

CUSUM can be made into a one-sided statistic. For example, an upper one-sided EWMA is given 

by >�* = max	- 	, ?&� + (1 − ?)>���. for  � = 1,2,3... with starting value U	* =  	 where  	 is the 

IC process mean or the target value. If the charting statistic >� plots on or above the J)K the 

process is considered to be OOC and a search for assignable causes is necessary. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



16 

 

 The design parameters K and λ are chosen so that the chart has a specified nominal ARL0 

and is capable of detecting a shift, specially a small shift, as soon as possible. Montgomery (2009, 

page 422) states that “The optimal design procedure would consist of specifying the desired in-

control and out-of-control average run-lengths and the magnitude of the process shift that is 

anticipated, and then to select the combination of λ and L that provide the desired ARL 

performance.” The EWMA chart is designed by specifying λ and L so that a specified ARL0 is 

achieved. The constant λ (0 < ? ≤ 1)	is the smoothing parameter (λ = 1 yields the well-known 

Shewhart chart) and is selected depending on the magnitude of the shift to be detected while the 

constant L > 0 is the distance of the control limits from the CL (the larger the value of L, the wider 

the control limits and vice versa) and is selected in combination with the value of the smoothing 

parameter λ. With regard to the implementation of the EWMA chart, the first step is to choose λ. 

The recommendation is to choose a small λ, say equal to 0.05, when small shifts are of interest, if 

moderate shifts are of greater concern, choose λ = 0.10, whereas choose λ = 0.20 if larger shifts are 

of interest (see e.g. Montgomery (2005) page 423)). After λ is chosen, the second step involves 

choosing L, so that a desired ARL0 is attained.  

 

Note that this general discussion regarding the EWMA chart is for Case K, i.e. when the 

process parameters are known. However, in Case U the process parameters are unknown and need 

to be estimated. More details are given on Case U in Chapter 4. 

 

With so much work done with parametric control charts, it is natural to consider analogs of 

these charts using nonparametric charting statistics. This approach has led to nonparametric EWMA 

(NPEWMA) charts considered in this work to be discussed later.  

 

1.10. Methods to calculate the run-length distribution 

 

 There are four methods to calculate (or at least approximate) a control chart’s run-length 

distribution. These methods are 

 

i. The exact approach (for Shewhart and some Shewhart-type charts)  

ii.   The Markov chain approach 

iii.   The integral equation approach 

iv.   The computer simulations (the Monte Carlo) approach 
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A discussion on each method follows. 

 

1.10.1. The exact approach (for Shewhart and some Shewhart-type charts) 

 

 For Shewhart control charts and some Shewhart-type control charts it is possible to calculate 

the characteristics of the run-length distribution exactly. For an example the reader is referred to 

Bakir (2004) where the ARL of the nonparametric Shewhart signed-rank control chart is computed 

exactly. 

 

1.10.2. The Markov chain approach 

 

 A simple and unified method, which is based on a finite homogenous Markov chain, can be 

used to evaluate the run-length distribution and the characteristics of the run-length distribution of 

various types of control charts. These include the Shewhart-type chart (see e.g. Klein (2000), Khoo 

(2003), Khoo and Ariffin (2006) and Human et al. (2010a)), the EWMA-type chart (see e.g. 

Saccucci and Lucas (1990), Borror et al. (1998) and Reynolds and Arnold (2001)) and the CUSUM-

type chart (see e.g. Brook and Evans (1972), Bakir and Reynolds (1979), Woodall (1984), Crosier 

(1986), Reynolds et al. (1990) and Reynolds (2012)). In this section, definitions, results and 

theorems are provided that give the necessary background to calculate the characteristics of the run-

length distribution via the Markov chain approach. The theorems and results are critical to the 

following chapters. 

 

The Markov chain approach for calculating the run-length distribution entails that the 

charting statistic is viewed as following a Markov chain, characterized by a state space S and a 

transition probability matrix V. The state space consists of two types of states:  

 

i. one absorbing state (i.e. this state is entered when the chart signals, that is when the 

charting statistic is greater than or equal to the UCL or less than or equal to the LCL) and  

 

ii. W transient or non-absorbing states, so that there are W + 1 states in total.  

 

 The	W transient states correspond to W equal length subintervals obtained by dividing the 

interval between the upper and the lower control limits. The choice of W is important; its value 

directly impacts the accuracy of the results (i.e. the larger the value of W, the more exact / accurate 

the approximate results are). For convenience, W is taken to be an odd positive integer, equal to     
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2X + 1 with X ≥ 1 so that there is a unique middle subinterval between the upper and lower control 

limits, i.e. the transient states range from −X,−X + 1,… ,0, … X − 1, X with state 0 representing the 

middle subinterval between the upper and lower control limits; for a graphical representation the 

reader is referred to Figure 3.2 in Section 3.2.3.1. Later on we define the initial probability vector so 

that we start in state 0 with probability one, ensuring that the process starts in-control. The             

(W + 1) × (W + 1) transition probability matrix, V, is written in a partitioned form, 

 

V(Y*�)×(Y*�) = Z[Y×Y−0′�×Y			
|−| 			

]Y×�−1�×�^ (1.11) 

 

where the sub-matrix [Y×Y contains all the probabilities of going from one transient state to another 

and is called the essential transition probability matrix; the column vector ]Y×� contains all the 

probabilities of going from each transient state to the absorbing state; 0′�×Y	 a row vector of zeros 

which contains all the probabilities of going from the absorbing state to each transient state and the 

scalar value 1 is the probability of going from the absorbing state to the absorbing state.  Note that 

the key component in using the Markov chain approach is to obtain the essential transition 

probability sub-matrix [Y×Y . 
 

The run-length random variable N of the control chart is the waiting time for the Markov 

chain to enter the absorbing state for the first time. Using this analogy and assuming that the process 

starts IC when the chart is implemented, the probability mass function, the expected value (ARL), 

the SDRL and the cumulative distribution function of N are given by (see Fu and Lou (2003; 

Theorems 5.2 and 7.4 pages 68 and 143, respectively))  

 

_(4 = `) = a['��(b − [)1									for							`	 = 	1,2,3, … (1.12) 

 

A(4) = a(I − [)��1 (1.13) 

 

MO(4) = ea(b + [)(b − [)��1 − (A(4))� 
(1.14) 

 

_(4 ≤ `) = 1 − a['1								for							`	 = 	1,2,3, … (1.15) 

 

respectively, where b = bY×Y is the identity matrix, [ = [Y×f is the essential transition probability 

sub-matrix, 1 = 1Y×� is a column vector with all elements equal to one and a = a�×Y is a row 
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vector called the initial probability vector which contains the probabilities that the Markov chain 

starts in a given state. The vector a = (a�g, … , ag) is typically chosen such that ∑ a� = 1g�i�g . For a 

detailed discussion on the choice of the initial probability vector, see the Appendix of Lucas and 

Saccucci (1990). We take ξ	 = 1 and ξ�  = 0 for all � ≠ 0, which implies that the Markov chain starts 

in state zero (i.e., >	 = 0) with probability one. This essentially implies that the process is IC when 

we start monitoring the process. The steps for discretizing the infinite state transition probability 

matrix are as follows:  

 

Step 1: Divide the interval between the LCL and the UCL into W = 2X + 1 subintervals of width    

2� = (UCL – LCL)/	W (see Figure 1.3) where each subinterval corresponds to a transient (or 

an accessible) state of the Markov chain; state k is said to be accessible from state � if and 

only if, starting in state �, it is possible that the process will at some stage enter state k. Note 

that 2� = (UCL – LCL)/	W will equal 2� = 2UCL/	W so that � = UCL/	W if the control limits 

are symmetrically placed around zero, i.e. – LCL = UCL. 

 

Step 2: Choose the number of discretized subintervals W to be an odd positive integer so that there 

is a unique middle entry. 

 

Step 3: Declare the charting statistic, >�, to be in the transient state k at time � if                          

Ml − � < >� ≤ Ml + � for k = −X,−X + 1, … , X − 1 and Ml − � < >� < Ml + � for k = X, 

where Ml denotes the midpoint of the kth
 interval. 

 

Step 4: Calculate the one-step transition probabilities (]�l 's) where ]�l  denotes the probability of 

moving from state � to state k in one step at any point in time. 

 

Step 5: Construct the transition probability matrix, consisting of the one-step transition 

probabilities, to find the run-length distribution. 

 

It should be noted that the midpoints (defined in Step 3) can be found using the following general 

calculation formula 

 

Ml = K)K + (2(X + k) + 1)�  and  M	 = 0 
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since we assume (for simplicity) that – LCL = UCL. The charting statistic is said to be in the 

absorbing or OOC state (i.e. k = X + 1) if >� falls on or outside the control limits. This region is 

considered absorbing since the process is stopped when a signal is given by the chart. Hence, the 

process is declared to be OOC whenever >� is in the absorbing state, whereas the process is 

considered to be IC whenever >� is in a transient state (also referred to as an IC state). Therefore, 

the IC region consists of v non-absorbing states, whereas the OOC region is treated as a single 

absorbing state. 

 

 
Figure 1.3. Partitioning of the interval between the LCL and the UCL into W = 2X + 1 subintervals 

 

 Next, we need expressions for the signalling probabilities. The elements inside of the 

transition probability matrix are called the one-step transition probabilities; [ = 1]�l2 for          

�, k = −X,−X + 1,… , X − 1, X. In order to calculate these probabilities we assume that the charting 

statistic is equal to M� whenever it is in state �. However, for each control chart under consideration, 

the one-step transition probabilities are calculated differently. This is considered in later chapters as 

various control charts are considered. 
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1.10.3. The integral equation approach 

 

 The integral equation approach utilizes mathematics and combinatorics to find a closed form 

expression of the run-length distribution. This approach is sometimes challenging, in that the 

expression obtained is typically complex or difficult to evaluate numerically. Very often the exact 

expression of the run-length distribution can be found, but simulations are done instead, since it is 

much easier. An example of where the run-length distribution is found using the exact approach is 

Jones et al. (2004) and Human et al. (2009) used combinatorics to calculate the run-length 

distributions of nonparametric Shewhart-type control charts. 

 

1.10.4. The computer simulations (the Monte Carlo) approach 

 

Monte Carlo simulations can be used to calculate the characteristics of the run-length 

distribution. The popularity of this method stems from the fact that no matter how complicated the 

run-length distribution is, computer simulations can almost always be used with relative ease to 

calculate the run-length distribution and its associated characteristics fairly accurately, provided the 

simulation size is big enough. In this body of work we use 100 000 simulations, since it is well 

known that the error of a run-length characteristic can be bounded by increasing the simulation size 

sufficiently. Chakraborti and Van de Wiel (2008) stated the 10% error band (i.e. run-length 

characteristic + 0.1(run-length characteristic)) might be too wide to detect practical departures of 

the simulated results from the target value. They used a narrower 2% error band to examine the 

robustness of a nonparametric chart with regards to its ARL. For all simulations in this body of work 

SAS
® 

v 9.3 is used. The programs are made available in the Appendices at the end of each chapter. 

 

 A stepwise computer simulation procedure to calculate the run-length distribution for a two 

sided control chart, where the charting statistic is calculated from a random sample, is given as 

follows: 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



22 

 

 

Step 1: After specifying some necessary parameters, such as the subgroup size, calculate the 

control limits. 

 

Step 2: Generate random subgroups from some process distribtuion, say, the normal distribution. 

 

Step 3: Calculate the charting statistic for each subgroup and compare it to the control limits 

calculated in Step 1. 

 

Step 4: The number of subgroups needed until the charting statistics plots on or outside the 

control limits is recorded as an observation from the run-length distribution. 

 

Step 5: Repeat steps 1 to 4 a total of 100 000 times. 

 

Step 6:  Once we have obtained a ‘dataset’ with 100 000 observations from the run-length 

distribution, proc univariate of SAS
®

v 9.3 was used to obtain the run-length 

characteristics. 

 

 Examples of where the run-length distribution or characteristics of the run-length 

distribution is found through computer simulations or Monte Carlo simulations are Bodden and 

Ridgon (1999) and Molnau et al. (2001). 
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1.11. Appendices 

 

1.11.1. Appendix 1A: Some mathematical results 

 

Proof to Equation (1.8) 

 

The exponentially weighted moving average is defined as 

 

>� = ?&� + (1 − ?)>���  with >	 =  	 (A1.1) 

 

By expanding Equation (A1.1) we find 

 

>� = ?&� + (1 − ?)>���  

= ?&� + (1 − ?)(?���� + (1 − ?)>���)  ⋮  
= ?∑ (1 − ?)l���li	 &��l + (1 − ?)�>	  

 

Thus, by continuing to recursively substitute for >��l, k = 2, 3, …, `, we obtain  

>� = ?n(1 − ?)l���
li	

&��l + (1 − ?)�>	 

 

(A1.2) 
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BCD(>�) = BCDH?∑ (1 − ?)l���li	 &��l + (1 − ?)�>	I  

= λ�BCDH∑ (1 − ?)l���li	 &��lI  since  (1 − ?)�>	  is constant 

= λ� �BCDH�� + (1 − λ)&��� + (1 − λ)�&��� +⋯+ (1 − λ)���&� + (1 − λ)���&�I�  

= λ�H"� + (1 − λ)�"� + (1 − λ)p"� +⋯+ (1 − λ)���p"� + (1 − λ)����"�I  

  

Thus, 

BCD(>�) = λ�"�H1 + (1 − λ)� + (1 − λ)p +⋯+ (1 − λ)���p + (1 − λ)����I (A1.3) 

 

 

In general, for a finite geometric series the sum of the first n terms of a geometric series is  

 

 ∑ ,ql���li	 = , ��rs��r   with  q ≠ 1 (A1.4) 

 

By using a geometric series (Equation (A1.4)) and applying it to Equation (A1.3) we obtain 

 

BCD(>�) = λ�"� t��H(��λ)uIv��(��λ)u w  

 = λ�"� ���(��λ)uv�λ�λu �  

= λ"� ���(��λ)uv��λ �  

  

Thus, 

BCD(>�) = "� E λ2 − λ
G H1 − (1 − λ)��I (A1.5) 
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1.11.2. Appendix 1B: Distributions considered in this study 

 

 A list of the distributions considered in this study is given below along with general 

formulae to calculate their means, medians and variances. Note the following regarding these 

distributions: 

 

• All distributions have been adjusted / standardized i.e. shifted and / or scaled, such that the 

mean / median equals 0 and the standard deviation equals 1 (when the process is IC), so that 

the results are easily comparable across the different distributions. 

 

• Only those distributions for which the parameters could not be tweaked or chosen such that 

the mean is zero and the variance is one have been adjusted. 

 

• Asymmetric distributions were not transformed to become more symmetric; only there 

means and variances were adjusted. 

 

The adjustment of the distributions was done as follows: 

 

 Suppose �	~	
y with the expected value and variance of � given by A(�) =   and 

BCD(�) = "�, respectively. Then, it is well-known that we can standardize the variable � by 

subtracting the mean and dividing by the standard deviation i.e. z	{	 	y�|} ,  and we have that   

A(z) = 0 and BCD(z) =	1.  
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Distribution 
Probability density  

function (pdf) 
Mean Median Variance Transformation Cases considered 

Standard Normal �~N(0,1)  � ∈ (−∞,∞) 

�(�) = 
 �√�� ��	�u�u  

0 0 1 None necessary N(0,1) 

Student’s t �~`(�)  � ∈ (−∞,∞) � > 0 denotes the degrees of 

freedom  

�(�) = 
 

�����u �
√f����u� �1 + �uf ���

���u �
  

0 0 

ff�� for � > 2 
   ∞ for � = 2 
   

else undefined 

z = y�	
e ���u

= ef��f �  
`(3) `(4) `(8) 

Gamma
iii

 �~GAM(�, �)  � ∈ [0,∞) � > 0 and � > 0 denote the 

shape and scale parameters 

�(�) = 
 ���� ��� �⁄
�(�)��  

�� 

No 

simple 

closed 

form 

���  z = y���√��   
GAM(0.5,1) 

GAM(1,1) 

GAM(3,1) 

Logistic �~Logistic(�, �)  � ∈ (−∞,∞) −∞ < � < ∞ and � > 0 

denote the location and scale 

parameters 

�(�) = 
 ��(���) �⁄

�H�*��(���) �⁄ Iu  
� � 

�u% ��  z = y���√��   
LogisticH0, √3 �⁄ I with  A(�) = 0 & BCD(�) = 1 

(no transformation needed) 

 

  

                                                 
iii

 Note that the Gamma distribution is positively skewed and the skewness of the Gamma distribution increases as the shape parameter � decreases. Also note that the GAM(1,1) 

distribution is the Exponential distribution with mean 1, EXP(1).  
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Distribution 

Probability 

density 

function (pdf) 

Mean Median Variance Transformation Cases considered 

Log-Logistic �~Log-Logistic(�, �) � ∈ [0,∞) � > 0 and � > 0 denote 

the scale and shape 

parameters 

�(�) = 
 � �� (� �⁄ )���

H�*(� �⁄ )�Iu   

��g��(�)   � = ��  � > 1 
   

else 

undefined 

� 

�� E ��g��(��) − (�)u
Hg��(�)IuG  

with � = �� for � > 2 

   

else undefined 

z = 
   y� ���vs(�)

�P u��vs(u�)� (�)u
H�vs(�)Iu

  

   

with � = �� 

Log-Logistic(1, 2.5) 

Laplace or  

Double Exponential �~DE(�, �) � ∈ (−∞,∞) −∞ < � < ∞ and � > 0 

denote the location and 

scale parameters 

�(�) = 
 12� ��	
|���|�  

� � 2�� z = � − �√2�  

DE�0, �√�	� with  A(�) = 0 & BCD(�) = 1 

(no transformation needed) 

and 

DE(0,1) 
(transformation needed) 

Uniform distribution �~J(,, �) � ∈ [,, �] −∞ < , < � < ∞ 

�(�) = ���5   
5*��   

5*��   
(��5)u��   z = y����u(���)√�u

  J(−1,1) 
Contaminated or 

Mixture Normal 

Since the formulae for the Contaminated or Mixture Normal distribution is too lengthy to fit into this table, a discussion 

follows below. 
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Contaminated or Mixture Normal distribution 

 

 The Contaminated Normal (CN) distribution (also referred to as the Mixture Normal 

distribution), is a linear combination of two normal random variables:                 

(1 − �)4( �, "��) + �4( �, "��), where 0 < � < 1 denotes the level of contamination.  

  

If �~(1 − �)4( �, "��) + �4( �, "��) then the pdf is given by  

 

�(�) = (1 − �)φ( �, "�) + �φ( �, "�) 
 

where φ( , ") is the pdf of a Normal distribution with mean   and variance "�. The expected value 

and variance of the CN distribution are given by  

 

A(�) = (1 − �) � + � � 

 

and 

 

BCD(�) = (1 − �)( �� + "��) + �( �� + "��) − H(1 − �) � + � �I�,  

 

respectively. Thus, the CN distribution is shifted and scaled such that the mean / median equals 0 

and the standard deviation equals 1 by using the following transformation: 

 

z = � − (1 − �) � + � �
e(1 − �)( �� + "��) + �( �� + "��) − H(1 − �) � + � �I�

. 
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In this dissertation we consider the following CN distributions: 

 

i. 0.954 � � = 0, "�� = ��.��� + 0.054 � � = 0, "�� = p�.��� 

 

ii. 0.6N� � = 0, "�� = ���� + 0.4N( � = 0, "�� = 16) 
 

iii. 0.6N� � = 0.25, "�� = ���� + 0.4N( � = 0, "�� = 16) 
 

iv. 0.6N� � = −0.25, "�� = ���� + 0.4N( � = 0, "�� = 16) 
 

 Note that, for the symmetric distributions listed in (i) and (ii), the median will be equal to 

the mean. However, for the asymmetric distributions listed in (iii) and (iv), the cumulative 

distribution function (cdf) will have to be used in order to calculate the median. The steps are as 

follows: 

 

 The 100¡'( percentile (0 < ¡ < 1) is defined as the smallest integer k such that the 

cumulative probability is at least  ¡, i.e. _(4 ≤ k) ≥ ¡. Thus, we set ¡ = 0.5 for the median and use 

the cdf of the CN distribution given by 

 


(�) = (1 − �)Φ( �, "�) + �Φ( �, "�) 
 

where Φ( , ") is the cdf of a Normal distribution with mean   and variance "�. 
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Chapter 2 

 

Phase I control charts 

 

2.1. Introduction 

 

 As noted in Section 1.8, Phase I control charting is an iterative process where these problem 

(OOC) subgroups are first investigated and possibly discarded, and then based on the remaining 

subgroups the parameters are re-estimated, the control limits are recalculated and the control 

charting procedure is repeated. This trial-and-error process is continued until at some stage all the 

charting statistics plot between the most recent control limits, leading to a decision that the process 

is IC. The final set of subgroups (data) is often referred to as the in-control or reference data, from 

which any necessary parameters are estimated and used to find appropriate control limits which are 

used for prospective process monitoring in Phase II. The problem under a Phase I control charting 

scenario is similar in principle to that in a testing of hypothesis problem for homogeneity, where 

one tests whether the data from various groups come from the same IC process distribution. This is 

noted, for example, by Champ and Jones (2004). Under this motivation, the FAP, which is the 

probability of at least one false alarm, is used to measure and evaluate Phase I control limits. Hence 

a Phase I control chart is designed by specifying a nominal false alarm probability, say FAP0, 

typically taken to be 0.01, 0.05 or 0.10, and not the FAR, which is the probability for a single 

charting statistic to plot outside the estimated limits under an IC process. It may be noted that this 

objective is different from designing Phase II control charts based on IC data, where typically, one 

specifies some attribute of the IC run-length distribution, such as the average run-length, to 

determine the control limits. 

 

 A number of research outputs related to and based on this thesis have seen the light. In 

Chapter 5 we provide a list with the details of the technical reports and the peer-reviewed articles 

that have been published, the articles that have been accepted for publication, the local and 

international conferences where papers have been presented and draft articles that have been 

submitted and are currently under review. Here, we solely mention the peer-reviewed articles that 

have been published based on this chapter. 
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i. Chakraborti, S., Human, S.W. and Graham, M.A. (2009). “Phase I statistical process control 

charts: An overview and some results.” Quality Engineering, 21 (1), 52-62. 

 

ii. Graham, M.A., Human, S.W. and Chakraborti, S. (2010). “A Phase I nonparametric 

Shewhart-type control chart based on the median.” Journal of Applied Statistics, 37 (11), 

1795-1813. 

 

2.1.1. False alarm probability  

 

Without any loss of generality, we assume that m denotes the ‘final’ number of reference 

samples at the end of a Phase I analysis. Thus the reference data set is assumed to have � = �� 

observations. An OOC situation is indicated when a charting statistic falls on or outside either of the 

control limits. This important event is often called a signal or a signalling event. It is convenient to 

consider the complementary event, that is when a subgroup does not signal, called the non-

signalling event. Thus, for the i
th

 subgroup, �� = {�	
� < 	� < �	
�}, i = 1,2,...,m, denotes the non-

signalling event. Note that �	
� and �	
� denote the estimated Phase I control limits and that 	� 
denotes the charting statistic. As we discussed earlier, the FAP is usually the recommended chart 

design criterion adopted in Phase I (see e.g. Chakraborti et al. (2009)). This probability can be 

expressed as follows:  

 ��� = ��At	least	one	false	alarm	from	the	�	subgroups#	= 1 − ��No	signal	among	the	�	subgroups	|IC#	= 1 − ���+, �-, … , �/	|	IC#	
= 1 − � 012�	
� < 	� < �	
�	}3IC/

�4+ 5. 

 

 

 

 

(2.1) 

 

Equation (2.1) equals mm

LCU

LCL

LCU

LCL

LCU

LCL

CCC dcdccccf
m

...),...,,(1 121

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,...,, 21∫ ∫ ∫−= L  if the joint distribution 

of the 	�’s is continuous where ),...,,( 21,...,, 21 mCCC cccf
m

 denotes the joint probability density 

function of the charting statistics 	+,	-, … , 	/ when the process is IC. 
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If the joint distribution of the 	�’s is discrete then �7⋂ 2�	
� < 	� < �	
�	}3IC/�4+ 9 can be re-

written as �7⋂ 2�	
� + 1 ≤ 	� ≤ �	
� − 1	}3IC/�4+ 9 and consequently Equation (2.1) equals 

∑ ∑ ∑
−

+=

−

+=

−

+=

−=

1ˆ

1ˆ

1ˆ

1ˆ

1ˆ

1ˆ
121,...,,

1 2

21
...),...,,(1

LCU

LCLc

LCU

LCLc

LCU

LCLc

mmCCC

m

m
dcdccccfL  where ),...,,( 21,...,, 21 mCCC cccf

m
 denotes 

the joint probability mass function of the charting statistics 	+,	-, … , 	/ when the process is IC.  

 

Thus the FAP involves the m non-signalling (or, equivalently, signalling) events 

simultaneously and depends on the fact that the control limits are estimated in Case U.  Note that 

these events are dependent since the charting statistics are all compared with the same pair of 

control limits. Hence, calculation of the FAP requires knowledge of the joint distribution of the 

charting statistics, when the process is IC. Derivation of this and determination of the control limits 

(and the associated charting constants; which differs depending on the type of control chart under 

consideration) pose some important practical challenges, particularly in an SPC context where the 

number of comparisons (m) can be as few as 25 or as high as 300 or more.   

 

2.1.2. False alarm rate 

 

The false alarm rate, which is the probability of a single charting statistic plotting on or 

outside the control limits when the process is IC, can be expressed as  

 ��< = 1 − �7�	
� < 	� < �	
�|IC9. (2.2) 

 

Equation (2.2) equals = 1 − = >?@�A�#B?
CC?
C DA�  if the marginal distribution of 	� is continuous 

where >?@�A�# denotes the marginal pdf of any of the charting statistic 	� when the process is IC and 

Equation (2.2) equals = ∑ >?@�A�#B?
CF+C?
CG+  if the marginal distribution of 	� is discrete where >?@�A�# 
denotes the marginal pmf of the charting statistic 	� when the process is IC. From Equation (2.2) it 

can be seen that the FAR involves a single non-signalling event and thus calculation of this 

probability requires only the marginal distribution of the i
th

 charting statistic 	� when the process is 

IC. It should be noted that Equation (2.2) is the general formula to calculate a FAR regardless of the 

phase the process is in. However, the FAR has interpretability problems in Phase I since the charting 

statistics are dependent. For more details on the application of FAR in Phase II control charting the 

reader is referred to Chapters 3 and 4. 
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2.1.3. Implementation of Shewhart-type Phase I control charts 

 

Montgomery (2009) recommends that Shewhart-type charts are particularly suitable in Phase I 

applications. There are primarily two methods in the literature for constructing Phase I Shewhart-

type control charts in Case U.  

 

Method 1: FAR-based control limits 

 

Hillier (1969) and Yang and Hillier (1970) proposed a methodology in which the probability 

of a false alarm or FAR is controlled at a desired level such as 0.0027 in order to determine the 

control limits. Although they did consider the effects of parameter estimation, they did not 

explicitly consider (i) the fact that the subgroups are all compared to the same control limits so the 

signals, or the signalling events, are statistically dependent and (ii) that many subgroups are all 

compared to the same control limits at the same time (so there is the issue of simultaneous 

comparisons that needs to be accounted for). As noted by several authors in the literature, these 

reasons limit the applicability of their methods in a Phase I setting since there will be too many false 

alarms with a chart constructed for a fixed FAR.     

 

Method 2: FAP-based control limits 

 

Under this method the control limits are calculated for a specified nominal false alarm 

probability (FAP0, say). This method correctly takes into account the fact that the signalling events 

are dependent and uses the relevant joint (multivariate) distribution, plus it accounts for the issue of 

simultaneity. Hence this is the method to be used in practice. 

 

Method 3: Bonferroni control limits 

 

While the FAR (see Method 1) is an important chart performance criterion in some 

applications, as noted before, the typical chart performance criterion in Phase I applications is the 

FAP (see Method 2). By using Bonferroni’s inequality (see e.g. Casella and Berger (2002)) it can be 

seen that one can find an upper bound for the FAP as a function of the FAR; this upper bound is 

given by  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



34 

 

��� = 1 − � 01{��}	|	IC/
�4+ 5

										≤ � −H��{��}	|	IC#/
�4+

											= � −H�1 − ��<#/
�4+= ���<.

 

 

(2.3) 

Note that for the derivation of Equation (2.3) equal sample sizes were assumed. If it is 

desired that the ��� ≤ ���I, it is seen from Equation (2.3) that setting ���< = ���I i.e. setting 

the false alarm rate equal to ��< = ���I �⁄ , would meet the requirement; in this case the 

symmetrically placed control limits are given by the    

 ����I/2�#100NO  and  71 − ����I/2�#9100NO 

 

percentiles of the marginal IC distribution of a single charting statistic. 

 

The three methods are illustrated in Figure 2.1 for Case U. For this illustration it was 

assumed that m = 15 random samples each of size n = 5 are available. The control limits for each 

method is given in Table 2.1 and illustrated in Figure 2.1. 

 

Table 2.1. The FAR-based, the FAP-based and the Bonferroni control limits 

FAR-based control limits FAP-based control limits Bonferroni control limits ± 0.2411 ± 0.3064 ± 0.3453 
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-0.2

-0.3

-0.4

LCL(FAP) = -0.3064

UCL(FAP) = 0.3064

LCL(FAR) = -0.2411

UCL(FAR) = 0.2411

UCL(Bon) = 0.3453

LCL(Bon) = -0.3453

 
Figure 2.1. The FAR-based, the FAP-based and the Bonferroni control limits 

 

The FAR-based and FAP-based control limits are denoted by LCL(FAR), UCL(FAR), 

LCL(FAP) and UCL(FAP), respectively. From Figure 2.1 it is seen that there can be many more 

false alarms if the control limits are based on the FAR criterion, that is, Method 1. The Bonferroni 

control limits, denoted by LCL(Bon) and UCL(Bon), respectively, are slightly wider than the FAP-

based control limits and it is thus likely that one would observe less false alarms if one uses the 

Bonferroni control limits instead of the FAP-based control limits. Although less false alarms are 

appealing from a practical point of view, if the control limits are too wide, unwanted variation 

might go undetected. Consequently, we will focus on the method that controls the FAP. 

 

2.2. Phase I median control chart 

 

 In Section 2.1 we considered some existing Phase I control charts. In this section a 

nonparametric Phase I Shewhart-type control chart is proposed to check if the process is IC, that is, 

if the medians are all equal.   

 

2.2.1. Introduction 

 

A nonparametric Shewhart-type Phase I control chart based on the joint median test (see e.g. 

Gibbons and Chakraborti (2010) page 241) is considered to monitor the location of a continuous 
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process distribution. This methodology can be applied when the process distribution is continuous 

but unknown. The proposed chart is shown to be distribution-free so that its application does not 

require the assumption of a parametric model (such as normality) about the underlying process. All 

in-control properties of distribution-free control charts remain the same for all continuous 

distributions. This is by design and is the definition of a nonparametric chart (refer to Section 1.6). 

This is of practical significance since the corresponding properties for a parametric chart depends 

on the distribution and would generally vary across applications, sometimes substantially, 

depending on the shape of the distribution and the amount of available data. This is not the case 

with nonparametric charts. The reader is referred to Human et al. (2011) for a detailed discussion on 

the robustness of parametric charts.  

 

2.2.2. Model assumptions 

 

Let (Q�+, Q�-, … , Q�R@) denote an independent random sample (subgroup) of size �� ≥ 1, 

taken from the i
th

 population with a continuous cdf iF , mi ,...,2,1= . It is often the case that the 

samples (subgroups) are all of the same size, �, so that the subscript T in �� can be suppressed. 

However, unequal sample sizes can be considered, but it is not investigated here. Thus suppose that 

there are m independent random samples each of size � and these �� data points are used in a 

Phase I analysis. We assume the location model )( )( ii xFxF θ−= , where F is some arbitrary 

continuous cdf and iθ  denotes the location parameter of interest. To keep matters simple we 

consider the case where the location parameter iθ  is the median of the i
th

 population. We focus on 

the median because of its robustness properties and the simplicity of the resulting control charts. 

Note that, although we focus on the median from the point of view of robustness and simplicity, 

other percentiles can be considered and this is discussed in more detail in Section 2.2.6. We propose 

a distribution-free Shewhart-type control chart to check if the process is IC, that is, if the medians 

are all equal. The chart consists of plotting � charting statistics (denoted ��, T = 1,2, … ,�) and 

comparing them simultaneously to a �	
� and an �	
�. The control limits are estimated from the 

data. Note that there is no CL defined for this chart. If the ��’s all plot between the control limits we 

say that the process is IC. If this is the case, the data at hand are called IC or reference data and are 

subsequently used for constructing control limits for Phase II process monitoring. However, if one 

or more of the ��’s plot on or outside the control limits there is evidence that at least one of the 

medians is different from the others and the process is declared OOC. In this case the data at hand 

do not constitute an IC or a reference sample and the usually iterative process of examining, 

retesting and possibly removing the problem samples is started and continued until the IC state is 
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established. At that point the existing data constitute a reference or IC dataset and Phase II process 

monitoring begins on the basis of such data after calculating Phase II limits which may be different 

from the Phase I limits.   

 

The chart is constructed as follows. First, pool the � samples together and find the pooled 

or overall median U of the combined sample of � = �� observations. Thus  





+
=

+

+

even is   if2/)(

odd is  if

)2/)2(()2/(

)2/)1((

NXX

NX
M

NN

N
 

where Q�+# < Q�-# < ⋯ < Q�W# denotes the order statistics of the combined sample. Second, find 

the observed value X� of �� (where �� ∈ {0,1,2, … , �}), the random number of observations less 

than U in the i
th

 sample, i.e. �� = ∑ Z7Q�[ < U9R[4+  for T = 1,2, … ,�, where Z��# = 1 or 0 

according as � is true or false, respectively. Finally, plot the � observed values X+, X-, … , X/ of the 

charting statistics on the control chart and simultaneously compare them to the �	
� and the �	
� in 

order to assess whether or not the process is IC. Finding the appropriate control limits is considered 

next.   

 

2.2.3. Design of the control chart 

 

 A Phase I control chart is designed for a given FAP, that is, the probability of at least one 

false alarm out of the � samples, where a false alarm is the event that a (single) charting statistic 

plots on or outside the control limits when the process is IC. Thus a Phase I chart is designed by 

specifying a nominal false alarm probability, say FAP0, which is typically taken to be 0.01, 0.05 or 

0.10 (see e.g. Chakraborti et al. (2009)). The event, when a charting statistic falls on or outside of 

either control limit, is called a signalling event. Since the FAP is the probability of a composite 

event that deals with the � charting statistics simultaneously and the corresponding signalling 

events are dependent (all the charting statistics are compared with the same estimated control 

limits), the IC joint distribution of the charting statistics is necessary in order to calculate the FAP.   
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IC Joint probability distribution of the charting statistics 

 

 Because the charting statistics (�+, �-, … , �/) all depend on the combined sample median U 

they are dependent random variables. It can be shown that (see Appendix 2A) the IC joint 

distribution of �+, �-, … , �/ is the multivariate hypergeometric distribution, given by 

 

\B],B^,…,B_�X+, X-, … , X/# = ` �X+a ` �X-a⋯` �X/ab�Xcd
= ∏ `�X�a ` �Xc − X+ −⋯− X/F+a/F+�

b�Xcd
 

 

(2.4) 

 

(see e.g. Lehmann (1975) page 381). Note that Xc = ∑ X�/�4+  denotes the total number of 

observations among the combined sample of � = �� observations that are less than the median U 

Thus, while each X� is an integer value between and including 0 and �, Xc is a fixed number equal 

to � 2⁄   or �� − 1# 2⁄  depending on whether � is odd or even. 

  

 The expression in (2.4) makes it clear that the IC joint distribution of the charting statistics 

depends only on � and � and not on the underlying process distributions �+, �-, … , �/. Thus any 

control charting procedure based on the statistics, i.e. charting statistics, �+, �-, … , �/, is 

distribution-free, as long as the underlying distributions are continuous. Next this joint distribution 

is used to calculate the false alarm probability. 

 

The false alarm probability 

 

 The FAP is most conveniently calculated by considering the complement of a signalling 

event, i.e. the event when a charting statistic plots between the control limits, which is called a non-

signalling event and is denoted by �� = {�	
� < �� < �	
�}, T = 1,2, … ,�. Since the FAP depends 

on the number of samples, �, the sample size, �, (both of these quantities are specified by the 

practitioner) and the estimated control limits, it is denoted by �����, �, �	
�, �	
�# and calculated 

as follows (refer back to Equation (2.1))  

 �����, �, �	
�, �	
�# = ��At	least	one	false	alarm	from	the	�	samples	|	IC# = 	1	 − 	��No	signal	among	the	�	samples	|	IC# 
 

No signal among the � samples indicate that all the charting statistics plot between the estimated 

control limits, i.e. ⋂ 2�	
� < �� < �	
�f/�4+  , so that  
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�����, �, �	
�, �	
�# = 1 − � 012�	
� < �� < �	
�f|	IC/
�4+ 5 

 

and since 2�	
� < �� < �	
�f can be written as 2�	
� + 1 ≤ �� ≤ �	
� − 1f we obtain 

 																										�����, �, �	
�, �	
�#
= 1 − H H ⋯ H \B],B^,…,B_�X+, X-, … , X/#B?
CF+

g_4C?
CG+
B?
CF+

g^4C?
CG+
B?
CF+

g]4C?
CG+
 

 

(2.5) 

 

where \B],B^,…,B_�X+, X-, … , X/# is the IC joint distribution of �+, �-, … , �/ given in Equation 

(2.4). From Equation (2.5) it can be seen that the FAP is a function of �, �, �	
� and �	
�. 

However, since the number of samples, �, the sample size, �, are specified by the practitioner, we 

focus on finding the �	
� and �	
� next. 

 

Marginal distribution of a charting statistic and the false alarm rate 

 

 The FAR is the probability of a false alarm at any sample. While the joint probability 

distribution of the charting statistics �+, �-, … , �/ is necessary to calculate the FAP, only the IC 

marginal distribution of the i
th

 charting statistic is necessary to calculate the FAR. Again, it can be 

shown (see e.g. Lehmann (1975) page 339) that the IC marginal distribution of ��, T = 1,2, … ,�, is 

the well-known univariate hypergeometric distribution with pmf, expected value and variance given 

by 

 

>B@�X�# = `�X�a b � − �Xc − X�db�Xcd
= `�X�a b�� − 1#�Xc − X� db�Xcd

,  

(2.6) 

 

����# = � Xc� , (2.7) 

 

h�<���# = Xc�� − Xc# �� `1 − ��a� − 1 , (2.8) 

 

respectively. The covariance and correlation between any �� and �[ for T ≠ j are given by 
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	kh7�� , �[9 = −Xc �� − Xc#�� − 1# �-�- (2.9) 

 

and 

 

	k<<7��, �[9 = − 1� − 1 (2.10) 

 

respectively. From Equation (2.10) it can be seen that the correlation between any two charting 

statistics approaches zero for ‘large’ values of � and, consequently, we can approximate the control 

limits by ignoring the dependence among the charting statistics and by simply using the marginal 

univariate hypergeometric distribution of the ��’s. For example, when � equals 20, 50 and 100, 

respectively, the values of the correlation between any two charting statistics (from Equation (2.10)) 

equal -0.053, -0.020 and -0.010, respectively. Clearly, the correlation between any two charting 

statistics approaches zero as m increases. A more thorough discussion on this point follows later 

when the approximate control limits are proposed.  

 

 Returning to the IC marginal distribution of ��, T = 1,2, … ,�, (given in Equation (2.6)), the 

FAR can be calculated from 

 

��< = 1 − �7�	
� < �� < �	
�	|	IC9 = 1 − H >B@�X�
B?
CF+

g@4C?
CG+
#. (2.11) 

 

While the FAR is an important chart performance criterion in some applications, as noted 

before, the typical chart performance criterion in Phase I applications is the FAP. By using 

Bonferroni’s inequality (see Method 3 in Section 2.1.3) it can be seen that one can find an upper 

bound for the FAP as a function of the FAR; this upper bound is given by ��� ≤ ���< (see 

Equation (2.3)) and in case the signalling events are independent, it is easy to show that         ��� = 1 − �1 − ��<#/. To see this, from Equations (2.1) and (2.2) and using the fact that if � is 

large, the common IC correlation among the charting statistics approaches zero (see Equation 

(2.10)) and the charting statistics are approximately independent, it can be seen that 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



41 

 

��� ≈ 1 −m����	|	IC#/
�4+ = 1 − 71 − ����	|	IC#9/ = 1 − �1 − ��<#/ (2.12) 

 

so that 

��< ≈ 1 − �1 − ���# +/. (2.13) 

 

The latter relationship will be used in constructing approximate control limits later. More 

discussions on FAP and FAR in a Phase I context can be found in Chakraborti et al. (2009). 

 

Exact control limits 

  

 The design of a Phase I chart entails that for the � and � at hand the practitioner specifies a 

FAP value, say FAP0, and find the corresponding control limits. Thus we need to find values for �	
� and �	
�, denoted by n and o, respectively, that satisfies 

 																										���I = �����, �, �	
� = n, �	
� = o#
= 1 − H H ⋯ H \B],B^,…,B_�X+, X-, … , X/#pF+

g_4qG+
pF+

g^4qG+
pF+

g]4qG+
 

 

(2.14) 

 

where 0 ≤ n < o ≤ �. This requires that two unknowns, n and o, be solved from one equation 

which could be computationally challenging. This is necessary when asymmetrically placed control 

limits are used, which sometimes, occur in practice. However, the IC joint distribution of 

�+, �-, … , �/ is symmetric about its mean, given by �7�9 = 7���+#,… , ���/#9 where ����# 
equals �/2 when N is even and ��/2# × 7�� − 1#/�9 when N is odd (see e.g. Lehmann (1975) 

page 381). Accordingly, it is reasonable to use symmetrically placed (equidistant from both ends) 

control limits and set o = � − n so that only the charting constant n needs to be found. This implies 

that instead of solving for both n and o from Equation (2.14) we need to solve only for n from  

 

																										���I = 1 − H H ⋯ H \B],B^,…,B_�X+, X-, … , X/#RFqF+
g_s]4qG+

RFqF+
g^4qG+

RFqF+
g]4qG+

. (2.15) 

 

 However, since the joint distribution of the ��’s is discrete, chances are that the equality in 

(2.15) will not be attained exactly and using a conservative approach n is found so that the attained 

FAP is less than or equal to the specified FAP. Thus  
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	n = 

�nt		 uA:	���I ≥ 1 − H H ⋯ H \B],B^,…,B_�X+, X-, … , X/#RFwF+
g_s]4wG+

RFwF+
g^4wG+

RFwF+
g]4wG+

x. (2.16) 

 

 

so that n is the largest integer which ensures that the attained or actual FAP is less than or equal to 

the specified (or desired or stipulated) FAP.  

 

  In Tables 2.2, 2.3 and 2.4 values are provided for the control limits (n and o = � − n) and 

the corresponding FAP values, called attained FAP values, when the desired or nominal FAP value 

(FAP0) equals 0.01, 0.05 and 0.10, respectively, for � = 4(1)10 and n = 3(1)24. These values were 

obtained by solving Equation (2.16) using R


 Version 2.6.1 (see Appendix 2B) and are referred to 

as the exact limits. Note that for the same FAP0 value, the attained FAP values can be different for 

different combinations of � and � values since the IC distribution of the charting statistic is 

discrete and depends (only) on � and �; using Equation (2.16) we take the solution as the largest 

integer so that the FAP is at most equal to the specified FAP0.  
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Table 2.2. Attained FAP values and the control limits (n, o)
i
 for FAP0 = 0.01 

    Number (m) of Phase I samples 

    4 5 6 7 8 9 10 

S
a

m
p

le
 s

iz
e 

(n
) 

3 
0.4740 0.6224 0.7001 0.7830 0.8302 0.8764 0.9041 

(0,3) (0,3) (0,3) (0,3) (0,3) (0,3) (0,3) 

4 
0.2429 0.3344 0.4157 0.4875 0.5508 0.6064 0.6553 

(0,4) (0,4) (0,4) (0,4) (0,4) (0,4) (0,4) 

5 
0.1137 0.1707 0.2163 0.2672 0.3092 0.3540 0.3918 

(0,5) (0,5) (0,5) (0,5) (0,5) (0,5) (0,5) 

6 
0.0508 0.0780 0.1052 0.1321 0.1584 0.1841 0.2092 

(0,6) (0,6) (0,6) (0,6) (0,6) (0,6) (0,6) 

7 
0.0222 0.0366 0.0494 0.0642 0.0775 0.0920 0.1052 

(0,7) (0,7) (0,7) (0,7) (0,7) (0,7) (0,7) 

8 
0.0095 0.0160 0.0228 0.0299 0.0370 0.0442 0.0513 

(0,8) (0,8) (0,8) (0,8) (0,8) (0,8) (0,8) 

9 
0.0041 0.0073 0.0104 0.0141 0.0174 0.0212 0.0247 

(0,9) (0,9) (0,9) (0,9) (0,9) (0,9) (0,9) 

10 
0.0017 0.0032 0.0047 0.0064 0.0082 0.0100 0.0118 

(0,10) (0,10) (0,10) (0,10) (0,10) (0,10) (0,10) 

11 
0.0007 0.0014 0.0022 0.0030 0.0038 0.0047 0.0056 

(0,11) (0,11) (0,11) (0,11) (0,11) (0,11) (0,11) 

12 
0.0070 0.0006 0.0010 0.0014 0.0018 0.0022 0.0026 

(1,11) (0,12) (0,12) (0,12) (0,12) (0,12) (0,12) 

13 
0.0032 0.0059 0.0086 0.0006 0.0008 0.0010 0.0013 

(1,12) (1,12) (1,12) (0,13) (0,13) (0,13) (0,13) 

14 
0.0015 0.0028 0.0042 0.0058 0.0074 0.0090 0.0006 

(1,13) (1,13) (1,13) (1,13) (1,13) (1,13) (0,14) 

15 
0.0083 0.0013 0.0020 0.0029 0.0037 0.0046 0.0054 

(2,13) (1,14) (1,14) (1,14) (1,14) (1,14) (1,14) 

16 
0.0041 0.0072 0.0010 0.0014 0.0018 0.0023 0.0027 

(2,14) (2,14) (1,15) (1,15) (1,15) (1,15) (1,15) 

17 
0.0020 0.0037 0.0055 0.0076 0.0096 0.0011 0.0014 

(2,15) (2,15) (2,15) (2,15) (2,15) (1,16) (1,16) 

18 
0.0084 0.0018 0.0028 0.0039 0.0050 0.0062 0.0074 

(3,15) (2,16) (2,16) (2,16) (2,16) (2,16) (2,16) 

19 
0.0043 0.0077 0.0014 0.0020 0.0026 0.0033 0.0039 

(3,16) (3,16) (2,17) (2,17) (2,17) (2,17) (2,17) 

20 
0.0022 0.0040 0.0061 0.0082 0.0014 0.0017 0.0020 

(3,17) (3,17) (3,17) (3,17) (2,18) (2,18) (2,18) 

21 
0.0078 0.0021 0.0032 0.0045 0.0057 0.0071 0.0084 

(4,17) (3,18) (3,18) (3,18) (3,18) (3,18) (3,18) 

22 
0.0041 0.0074 0.0017 0.0024 0.0031 0.0038 0.0046 

(4,18) (4,18) (3,19) (3,19) (3,19) (3,19) (3,19) 

23 
0.0022 0.0041 0.0061 0.0083 0.0017 0.0021 0.0025 

(4,19) (4,19) (4,19) (4,19) (3,20) (3,20) (3,20) 

24 
0.0070 0.0021 0.0033 0.0046 0.0059 0.0073 0.0087 

(5,19) (4,20) (4,20) (4,20) (4,20) (4,20) (4,20) 

 

                                                 
i
 The rows of each cell show the attained FAP value and the control limits (n, o) 
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Table 2.3. Attained FAP values and the control limits (n, o)
ii
 for FAP0 = 0.05 

    Number (m) of Phase I samples 

    4 5 6 7 8 9 10 

S
a

m
p

le
 s

iz
e 

(n
) 

3 
0.4740 0.6224 0.7001 0.7830 0.8302 0.8764 0.9041 

(0,3) (0,3) (0,3) (0,3) (0,3) (0,3) (0,3) 

4 
0.2429 0.3344 0.4157 0.4875 0.5508 0.6064 0.6553 

(0,4) (0,4) (0,4) (0,4) (0,4) (0,4) (0,4) 

5 
0.1137 0.1707 0.2163 0.2672 0.3092 0.3540 0.3918 

(0,5) (0,5) (0,5) (0,5) (0,5) (0,5) (0,5) 

6 
0.0508 0.0780 0.1052 0.1321 0.1584 0.1841 0.2092 

(0,6) (0,6) (0,6) (0,6) (0,6) (0,6) (0,6) 

7 
0.0222 0.0366 0.0494 0.0642 0.0775 0.0920 0.1052 

(0,7) (0,7) (0,7) (0,7) (0,7) (0,7) (0,7) 

8 
0.0095 0.0160 0.0228 0.0299 0.0370 0.0442 0.0513 

(0,8) (0,8) (0,8) (0,8) (0,8) (0,8) (0,8) 

9 
0.0041 0.0073 0.0104 0.0141 0.0174 0.0212 0.0247 

(0,9) (0,9) (0,9) (0,9) (0,9) (0,9) (0,9) 

10 
0.0315 0.0500 0.0047 0.0064 0.0082 0.0100 0.0118 

(1,9) (1,9) (0,10) (0,10) (0,10) (0,10) (0,10) 

11 
0.0150 0.0252 0.0350 0.0459 0.0038 0.0047 0.0056 

(1,10) (1,10) (1,10) (1,10) (0,11) (0,11) (0,11) 

12 
0.0070 0.0121 0.0175 0.0231 0.0289 0.0347 0.0405 

(1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) 

13 
0.0328 0.0059 0.0086 0.0117 0.0147 0.0179 0.0210 

(2,11) (1,12) (1,12) (1,12) (1,12) (1,12) (1,12) 

14 
0.0167 0.0274 0.0387 0.0058 0.0074 0.0090 0.0107 

(2,12) (2,12) (2,12) (1,13) (1,13) (1,13) (1,13) 

15 
0.0083 0.0144 0.0205 0.0272 0.0337 0.0406 0.0472 

(2,13) (2,13) (2,13) (2,13) (2,13) (2,13) (2,13) 

16 
0.0305 0.0486 0.0107 0.0143 0.0181 0.0219 0.0257 

(3,13) (3,13) (2,14) (2,14) (2,14) (2,14) (2,14) 

17 
0.0161 0.0270 0.0377 0.0493 0.0096 0.0117 0.0139 

(3,14) (3,14) (3,14) (3,14) (2,15) (2,15) (2,15) 

18 
0.0479 0.0144 0.0208 0.0275 0.0343 0.0411 0.0480 

(4,14) (3,15) (3,15) (3,15) (3,15) (3,15) (3,15) 

19 
0.0267 0.0434 0.0113 0.0152 0.0191 0.0232 0.0272 

(4,15) (4,15) (3,16) (3,16) (3,16) (3,16) (3,16) 

20 
0.0146 0.0243 0.0345 0.0450 0.0105 0.0128 0.0152 

(4,16) (4,16) (4,16) (4,16) (3,17) (3,17) (3,17) 

21 
0.0398 0.0137 0.0196 0.0261 0.0324 0.0391 0.0456 

(5,16) (4,17) (4,17) (4,17) (4,17) (4,17) (4,17) 

22 
0.0227 0.0369 0.0110 0.0147 0.0186 0.0226 0.0266 

(5,17) (5,17) (4,18) (4,18) (4,18) (4,18) (4,18) 

23 
0.0127 0.0216 0.0305 0.0401 0.0495 0.0129 0.0153 

(5,18) (5,18) (5,18) (5,18) (5,18) (4,19) (4,19) 

24 
0.0326 0.0122 0.0177 0.0235 0.0295 0.0355 0.0415 

(6,18) (5,19) (5,19) (5,19) (5,19) (5,19) (5,19) 

 

                                                 
ii
 The rows of each cell show the attained FAP value and the control limits (n, o) 
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Table 2.4. Attained FAP values and the control limits (n, o)
iii

 for FAP0 = 0.10 

   Number (m) of Phase I samples 

   4 5 6 7 8 9 10 

S
a

m
p

le
 s

iz
e 

(n
) 

3 
0.4740 0.6224 0.7001 0.7830 0.8302 0.8764 0.9041 

(0,3) (0,3) (0,3) (0,3) (0,3) (0,3) (0,3) 

4 
0.2429 0.3344 0.4157 0.4875 0.5508 0.6064 0.6553 

(0,4) (0,4) (0,4) (0,4) (0,4) (0,4) (0,4) 

5 
0.1137 0.1707 0.2163 0.2672 0.3092 0.3540 0.3918 

(0,5) (0,5) (0,5) (0,5) (0,5) (0,5) (0,5) 

6 
0.0508 0.0780 0.1052 0.1321 0.1584 0.1841 0.2092 

(0,6) (0,6) (0,6) (0,6) (0,6) (0,6) (0,6) 

7 
0.0222 0.0366 0.0494 0.0642 0.0775 0.0920 0.1052 

(0,7) (0,7) (0,7) (0,7) (0,7) (0,7) (0,7) 

8 
0.0095 0.0160 0.0228 0.0299 0.0370 0.0442 0.0513 

(0,8) (0,8) (0,8) (0,8) (0,8) (0,8) (0,8) 

9 
0.0648 0.0073 0.0104 0.0141 0.0174 0.0212 0.0247 

(1,8) (0,9) (0,9) (0,9) (0,9) (0,9) (0,9) 

10 
0.0315 0.0500 0.0688 0.0877 0.0082 0.0100 0.0118 

(1,9) (1,9) (1,9) (1,9) (0,10) (0,10) (0,10) 

11 
0.0150 0.0252 0.0350 0.0459 0.0561 0.0670 0.0772 

(1,10) (1,10) (1,10) (1,10) (1,10) (1,10) (1,10) 

12 
0.0632 0.0963 0.0175 0.0231 0.0289 0.0347 0.0405 

(2,10) (2,10) (1,11) (1,11) (1,11) (1,11) (1,11) 

13 
0.0328 0.0528 0.0717 0.0920 0.0147 0.0179 0.0210 

(2,11) (2,11) (2,11) (2,11) (1,12) (1,12) (1,12) 

14 
0.0167 0.0274 0.0387 0.0502 0.0618 0.0735 0.0850 

(2,12) (2,12) (2,12) (2,12) (2,12) (2,12) (2,12) 

15 
0.0563 0.0873 0.0205 0.0272 0.0337 0.0406 0.0472 

(3,12) (3,12) (2,13) (2,13) (2,13) (2,13) (2,13) 

16 
0.0305 0.0486 0.0671 0.0858 0.0181 0.0219 0.0257 

(3,13) (3,13) (3,13) (3,13) (2,14) (2,14) (2,14) 

17 
0.0836 0.0270 0.0377 0.0493 0.0605 0.0721 0.0833 

(4,13) (3,14) (3,14) (3,14) (3,14) (3,14) (3,14) 

18 
0.0479 0.0743 0.0208 0.0275 0.0343 0.0411 0.0480 

(4,14) (4,14) (3,15) (3,15) (3,15) (3,15) (3,15) 

19 
0.0267 0.0434 0.0597 0.0770 0.0936 0.0232 0.0272 

(4,15) (4,15) (4,15) (4,15) (4,15) (3,16) (3,16) 

20 
0.0681 0.0243 0.0345 0.0450 0.0556 0.0628 0.0769 

(5,15) (4,16) (4,16) (4,16) (4,16) (4,16) (4,16) 

21 
0.0398 0.0630 0.0856 0.0261 0.0324 0.0391 0.0456 

(5,16) (5,16) (5,16) (4,17) (4,17) (4,17) (4,17) 

22 
0.0903 0.0369 0.0516 0.0665 0.0815 0.0964 0.0266 

(6,16) (5,17) (5,17) (5,17) (5,17) (5,17) (4,18) 

23 
0.0549 0.0851 0.0305 0.0401 0.0495 0.0592 0.0686 

(6,17) (6,17) (5,18) (5,18) (5,18) (5,18) (5,18) 

24 
0.0326 0.0518 0.0715 0.0913 0.0295 0.0355 0.0415 

(6,18) (6,18) (6,18) (6,18) (5,19) (5,19) (5,19) 

 

                                                 
iii

 The rows of each cell show the attained FAP value and the control limits (n, o) 
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The attained FAP values are illustrated graphically in Figures 2.2, 2.3 and 2.4 for desired 

FAP values equal to 0.01, 0.05 and 0.10, respectively. Note that although the values of � we taken 

to be � = 3(1)24, not all � are illustrated on the same graph.  

 

For FAP0 = 0.01 it can be seen that 3 ≤ � ≤ 10 give attained FAP values greater than the 

desired FAP value of 0.01, whereas 11 ≤ � ≤ 24 give attained FAP values less than the desired 

FAP value of 0.01. Accordingly, 3 ≤ � ≤ 10 is graphically illustrated in Figure 2.2a and               

11 ≤ � ≤ 24 is graphically illustrated in Figure 2.2b. 

 

For FAP0 = 0.05 it can be seen that 3 ≤ � ≤ 8 give attained FAP values greater than the 

desired FAP value of 0.05, whereas 9 ≤ � ≤ 24 give attained FAP values less than the desired FAP 

value of 0.05. Accordingly, 3 ≤ � ≤ 8 is graphically illustrated in Figure 2.3a and                            

9 ≤ � ≤ 24 is graphically illustrated in Figure 2.3b. 

 

For FAP0 = 0.10 it can be seen that 3 ≤ � ≤ 7 give attained FAP values greater than the 

desired FAP value of 0.10, whereas 8 ≤ � ≤ 24 give attained FAP values less than the desired FAP 

value of 0.10. Accordingly, 3 ≤ � ≤ 7 is graphically illustrated in Figure 2.4a and                            

8 ≤ � ≤ 24 is graphically illustrated in Figure 2.4b. 

 

From Tables 2.2, 2.3 and 2.4 and Figures 2.2,a 2.3a and 2.4a it can be seen that ‘small’ 

values of � do not give desirable results, since some of the attained FAP values are greater than the 

desired FAP values.  
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Figure 2.2a. Attained FAP values for 3 ≤ � ≤ 10 for a desired FAP0 = 0.01 
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Figure 2.2b. Attained FAP values for 11 ≤ � ≤ 24 for a desired FAP0 = 0.01 
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Figure 2.3a. Attained FAP values for 3 ≤ � ≤ 8 for a desired FAP0 = 0.05 
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Figure 2.3b. Attained FAP values for 9 ≤ � ≤ 24 for a desired FAP0 = 0.05 
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Figure 2.4a. Attained FAP values for 3 ≤ � ≤ 7 for a desired FAP0 = 0.10 
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Figure 2.4b. Attained FAP values for 8 ≤ � ≤ 24 for a desired FAP0 = 0.10 
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 In Figures 2.5, 2.6 and 2.7 the choice of the number of Phase I samples (�) is investigated 

for a desired FAP value (FAP0) equal to 0.01, 0.05 and 0.10, respectively. Note that it was found 

that the subgroup size � needs to be larger than the number of subgroups � in order to achieve a 

small attained FAP value. This may be due to the discreteness of the IC distribution of the charting 

statistic. For example, from Figures 2.5, 2.6 and 2.7 it can be seen that smaller values of � are 

performing better. Note, however, that for a fixed value of m, a larger value of n will not always 

give a better attained FAP value. For example, from Table 2.4 it can be seen that for � = 10 and     � = 17 the attained FAP equals 0.0833 which is much closer to the desired FAP of 0.10 than in the 

case of � = 10 and � = 24 where the attained FAP equals 0.0415. The nature of the relationship 

among the FAP, � and � can be explored further. 

 

 The situation (the subgroup size � needs to be larger than the number of subgroups �) 

appears to be similar to control charting with attributes data, where typically the subgroup size � is 

taken to be much larger than the number of subgroups �; see e.g. all the examples and problems in 

Chapter 7 of Montgomery (2009). This raises an interesting question as to how to design a Phase I 

study and allocate resources fairly, optimally and economically. For example, if a total of 100 Phase 

I observations are to be used, how should these be collected, in 20 groups of 5 or in 5 groups of 20? 

The answer depends on the particular situation. Let us consider an example. Suppose 240 

observations are available. The question is should we take 24 groups of 10 or 10 groups of 24? For � = 24 and � = 10 we find attained FAP values of 0.0380 and 0.3651 for �n, o# = (0,10) and (1,9), 

respectively. For � = 10 and � = 24 we find attained FAP values of 0.0097 and 0.0384 for       �n, o# = (4,20) and (5,19), respectively. Therefore, the attained FAP values of 0.0380 and 0.0384 

are close to the desired FAP value of 0.05, so either 24 groups of 10 could be used with control 

limits �n, o# = (0,10) or 10 groups of 24 could be used with control limits �n, o# = (5,19). 
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Figure 2.5. Attained FAP values for a desired FAP0 = 0.01  
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Figure 2.6. Attained FAP values for a desired FAP0 = 0.05 
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Figure 2.7. Attained FAP values for a desired FAP0 = 0.10
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Approximate control limits 

 

Hypergeometric approximation 

 

Computations and computer resources for the exact control limits can take a considerable 

amount of time, particularly when � and / or � are large, say � ≥ 10. Since the correlation 

between any two charting statistics equals −1 �� − 1#⁄  when the process is IC (given in Equation 

(2.10)) and approaches zero for ‘large’ values of �, we can approximate the control limits by 

ignoring the dependence among the charting statistics and using simply the marginal univariate 

hypergeometric distribution of the ��’s. Thus for ‘large’ � the FAP of the median chart can be 

approximated by using Equation (2.12), i.e. ��� ≈ 1 − �1 − ��<#/. Hence for large �, the FAP 

can be expressed as a simple function of the FAR (which is  a function of �, �, �	
� = n and �	
� = o), and one can approximate the control limits from the distribution of a single charting 

statistic. This is a considerable simplification. In passing note that, when the process parameters are 

known or specified (referred to as Case K), it is well known that FARARL /10 =  and the charting 

statistics are independent. Thus, in Case K, m
ARLFAP )/11(1 0−−= .   

  

From Equation (2.13) it follows that the control limits n and o can be approximated by ny 
and oz by solving the following expression 

 

�1 − ���I# +/ ≤ 1 − ��< = �7ny < �� < oz	|	IC9. (2.17) 

 

Because the in-control marginal distribution of �� is symmetric when the percentile of 

interest is the median, we have �(�� ≤ ny	|	IC) = �(�� ≥ � − ny	|	IC) and we can again use 

symmetric control limits and set oz = � − ny. Consequently, the expression in (2.17) can be re-

written as (1 − ���I) ]_ ≤ 1 − 2�(�� ≤ ny	|	IC) which means that we need to solve only for ny from  

 

�(�� ≤ ny	|	IC) ≤ 1
2 b1 − (1 − ���I)

+/d (2.18) 

 

where FAP0 is specified and � is known. For any particular set of values of �, � and FAP0, 

Expression (2.18) can be solved uniquely by setting ny equal to  

 

ny = �nt {D: �(�� ≤ D	|	IC) ≤ 1
2 b1 − (1 − ���I)

+/d| (2.19) 
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where �� follows the hypergeometric (�,�, �, Xc) distribution shown in Equation (2.6). In order to 

illustrate why the maximum is taken in Equation (2.19) an illustrative example is given (see 

Example 2.2). The attained FAP in this case is equal to 1 − 71 − 2�(�� ≤ ny	|	IC)9/. The accuracy 

of this approximation is examined later. 

 

Normal approximation 

 

 

 The charting constants can also be obtained by a normal approximation to the univariate 

hypergeometric distribution (see Lehmann (1975) page 216). These are given by   

 

n} = ~+-�� + A��R^(/F+)
/RF+ �� and o� = � − n} (2.20) 

 

where A� = ΦF+20.5[1 − (1 − ���I)+ /⁄ ]f
 
and [x] denotes the greatest integer not exceeding t. In 

our comparisons, both sets of approximate solutions were quite close to the exact solutions for       

� = 10 and � greater than 15.   

 

Exact control limits vs. approximate control limits 

 

Since computations for the exact control limits can take a considerable amount of time, 

particularly when � and / or � are large, it is recommended that either one of the approximations 

(hypergeometric or normal) be used when � and / or � are large in order to save the practitioner 

time. In addition, from a practical point of view there are advantages to using the approximate 

solutions 7ny, oz9 and 7n}, o�9 since most software packages provide standard normal and 

hypergeometric probabilities. 

 

2.2.4. Illustrative examples 

 

Example 2.1 

 

The median chart is illustrated by building on a dataset from Montgomery (2005, Table 5.3, 

page 223) on the inside diameters of piston rings manufactured by a forging process. In this dataset 

there are 25 samples (� = 25) each of size 5 (� = 5). However, we need n to be much larger than � 

for the attainable FAP values to be closer to some typical values of FAP0 used in practice and so we 
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took � = 24 and � = 7. Thus 7 samples of each of size 24 are assumed to be available for a Phase I 

analysis. Our data were generated from a normal distribution, with the same mean and standard 

deviation as those of the original dataset. The simulated observations, along with the charting 

statistics, are given in Table 2.5. We plot the seven charting statistics on the control chart shown in 

Figure 2.8 and compare them to three sets of control limits obtained from Tables 2.2. 2.3 and 2.4 for 

three nominal FAP values, 0.01, 0.05 and 0.10, respectively. 

 

Table 2.5.  The data for Example 2.1 and the corresponding charting statistics for the  

Phase I median control chart and the Phase I Q control chart 

Sample 

number 

i 

Observations 
Ui �� 

Overall Median M = 74.000 

1 
74.004 74.012 73.982 73.987 74.002 74.001 74.000 74.001 74.007 74.013 74.009 73.999 

9 74.001 
73.985 74.013 73.999 73.996 73.998 74.000 74.011 74.002 74.007 73.991 73.995 74.013 

2 
73.998 73.990 74.001 74.001 74.019 74.010 74.004 74.004 74.021 74.003 74.011 74.016 

6 74.004 
74.009 74.013 73.998 74.002 73.987 74.002 74.001 73.991 74.004 74.009 73.992 74.002 

3 
73.995 73.987 74.004 74.015 74.015 74.013 73.982 74.017 73.999 74.021 73.990 74.010 

12 74.002 
74.000 74.006 73.993 73.999 74.008 73.999 74.023 73.990 74.008 73.997 73.991 73.991 

4 
73.990 74.002 73.996 74.016 73.996 74.001 74.005 73.990 73.999 73.998 73.997 73.995 

15 73.997 
74.011 73.969 73.997 73.983 73.988 74.001 74.005 74.000 73.996 73.996 73.986 74.009 

5 
74.000 74.000 73.990 74.001 74.000 73.989 73.998 73.992 74.005 74.000 73.987 74.010 

12 73.997 
74.012 73.981 74.008 73.999 73.973 74.013 73.992 73.998 74.013 74.008 73.978 73.985 

6 
73.998 73.984 73.978 74.031 74.001 73.992 73.997 73.995 73.999 73.996 73.988 73.998 

18 73.998 
73.984 73.994 74.015 73.994 74.017 74.020 73.996 73.985 74.019 73.990 73.984 73.989 

7 
73.983 74.010 74.005 74.017 74.009 73.987 74.009 74.009 73.979 74.005 74.004 73.993 

7 74.003 
74.011 74.000 74.014 74.032 73.995 74.003 73.997 73.978 74.014 74.012 74.002 74.015 

 

Sample number

Ui

7654321

20.0

17.5

15.0
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10.0

7.5

5.0

LCL = 6 (FAP0 = 0.10)

UCL = 18 (FAP0 = 0.10)

LCL = 4 (FAP0 = 0.01)

UCL = 20 (FAP0 = 0.01)

LCL = 5 (FAP0 = 0.05)

UCL = 19 (FAP0 = 0.05)

 
Figure 2.8. The Phase I median control chart for � = 7 and � = 24 
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 Note that the practitioner would specify the desired FAP; in this example we consider three 

values for the desired FAP, namely a FAP0 = 0.01, 0.05 and 0.10, respectively. As might be 

expected, the lower the FAP0, the wider the IC region (the further are the control limits from each 

other) and vice versa and this can affect the assessment of whether or not the process is IC; wider 

control limits lead to lower FAP values and narrower control limits lead to higher FAP values. For 

example, for a FAP0 of 0.01, we have LCL = 4 and UCL = 20 with an attained FAP of 0.0046. But 

for a FAP0 of 0.05, LCL = 5 and UCL = 19 with an attained FAP of 0.0235. In both of these cases 

the seven charting statistics all fall between the control limits, indicating that the process is IC. 

However, for a FAP0 of 0.10, LCL = 6 and UCL = 18 (with an attained FAP of 0.0913) and in this 

case, the second and the sixth samples plot on the LCL and UCL, respectively. Thus, at a FAP0 of 

0.10 the conclusion is that the process is OOC; hence, when the desired FAP equals 0.10, the data 

cannot be thought of as a reference sample and a search for assignable causes is necessary. Note 

that since these were simulated data, we know that samples 2 and 6 are not from an OOC process 

but the fact that the chart indicates that they are is not entirely surprising since, there is about a 10% 

chance of at least one false alarm by design. For illustration of the iterative implementation in Phase 

I, suppose that upon further investigation by the management, samples 2 and 6 are deleted from the 

analysis. The lower and upper control limits for the remaining data are then obtained from Table 

2.4, but for � = 5 and � = 24. For a FAP0 of 0.10, these limits are found to be equal to 6 and 18 and 

hence all five of the charting statistics plot IC. This final set of 120 data points constitutes an IC or a 

reference sample at FAP0 = 0.10, from which, for example, one can estimate any necessary 

parameters (which is this case is the charting constant a) and construct the control limits to be used 

in Phase II process monitoring. Finally, note that for the complete data set (� = 7 and � = 24) the 

lower and upper control limits for the Shewhart-type Phase I Q chart, as proposed in Champ and 

Jones (2004), are found to be 73.995 and 74.005, respectively, for FAP0 = 0.10, so that no points are 

declared OOC under this chart.   

 

Example 2.2 

 

Suppose that � = 15, � = 30 and FAP0 = 0.20 (a combination of values for �, � and FAP0 

not covered by Tables 2.2, 2.3 and 2.4). In this case, the IC correlation between any two charting 

statistics equals − +/F+ = − ++�F+ = – 0.0714, which can be thought to be small and we can 

approximate the control limits. Recall that, from earlier discussions, when � is ‘large’ enough, the 

correlation between the charting statistics approaches zero and we can approximate the control 

limits by ignoring the dependence among the charting statistics. In this case �� follows a 
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hypergeometric �� = 450,� = 15, � = 30, Xc = 225# distribution. The pmf and cdf for the 

hypergeometric �� = 450,� = 15, � = 30, Xc = 225# distribution is given in Table 2.6 and for 

FAP0 = 0.20 the lower control limit ny is found from Equation (2.19)  

 

ny = �nt {D: ���� ≤ D	|	IC) ≤ 1
2 71 − (1 − 0.20)+/+�9| = 8 

 

with  
+
- 71 − (1 − 0.20)+/+�9 = 0.00738 so that oz = � − ny = 30 − 8 = 22, which results in an 

approximately attained FAP of 1 − 71 − 2�(�� ≤ 8	|	IC)9+� = 0.1760, which is quite ‘close’ to 

the specified FAP0 of 0.20. To explore the accuracy of the approximation further, we show in Table 

2.7 the approximate charting constants (ny and oz = � − ny) and the approximate attained FAP values 

for � = 15 and � = 30 for a specified FAP0  = 0.01, 0.05, 0.10 and 0.20, respectively.  
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Table 2.6. The pmf and cdf for the hypergeometric (� = 450,� = 15, � = 30, Xc = 225) 
distribution 

x pmf cdf  

0 0.0000 0.0000 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 0.0000 0.0000 

4 0.0000 0.0000 

5 0.0001 0.0001 

6 0.0004 0.0005 

7 0.0014 0.0019 

8 0.0045 0.0064 ny = �nt�D: �(�� ≤ D	|	IC) ≤ 0.00738 
9 0.0116 0.0180  

10 0.0257 0.0438 

11 0.0488 0.0926 

12 0.0799 0.1724 

13 0.1133 0.2857 

14 0.1395 0.4252 

15 0.1495 0.5748 

16 0.1395 0.7143 

17 0.1133 0.8276 

18 0.0799 0.9074 

19 0.0488 0.9562 

20 0.0257 0.9820 

21 0.0116 0.9936 

22 0.0045 0.9981 

23 0.0014 0.9995 

24 0.0004 0.9999 

25 0.0001 1.0000 

26 0.0000 1.0000 

27 0.0000 1.0000 

28 0.0000 1.0000 

29 0.0000 1.0000 

30 0.0000 1.0000 
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Table 2.7. Approximate
iv

 charting constants based on the marginal distribution of ��  
(ny and oz = � − ny) for � = 15 and � = 30  

FAP0 +F(+F����) ]_
-   ny oz Approximate attained FAP =  

1 − 71 − 2�(�� ≤ ny	|	IC)9/    

0.01 0.00033 5 25 0.0031 

0.05 0.00171 6 24 0.0147 

0.10 0.00350 7 23 0.0566 

0.20 0.00738 8 22 0.1760 

 

Looking at the entries of Table 2.7 it might first appear that the approximation is not so 

satisfactory since the values in the last column are not very close to those in the first unless FAP0 

gets large. However, we need to keep in mind the discreteness of the charting statistics and the 

conservative answers, i.e. attained FAP ≤ desired FAP, we sought in the first place. To clarify this 

point, we further examine this issue in Table 2.8 by listing the approximate control limits (ny and 

oz = � − ny), the corresponding approximately attained FAP, the exact control limits (n and o) as 

well as the exact attained FAP (the last two figures obtained from Tables 2.2, 2.3 and 2.4) for � = 7 

and � = 24 (i.e. the (�,�) values of Example 2.1), for a specified FAP0 = 0.01, 0.05, 0.10 and 0.20, 

respectively. This throws new light on the efficacy of the proposed approximation. We observe that:  

 

i. In all cases the approximate charting constants are equal to the exact charting constants 

(illustrating that accuracy of the approximations). 

 

ii. The approximate attained FAP is either exactly equal or is ‘very close’ to the exact attained 

FAP. Thus a value of � as low as 7 might be large enough for one to use the easily found 

approximate control limits in practice. 

 

Table 2.8. Approximate
v
 charting constants based on the marginal distribution of ��  and exact 

charting constants and corresponding FAP values for � = 7 and � = 24 

 Approximate Exact 

Desired / 

Nominal 

FAP0 

+F(+F����)
]_

-   ny oz Approximate attained FAP =  

1 − 71 − 2�(�� ≤ ny	|	IC)9/
 
 

a b 

Exact attained FAP 

(from Tables 2.2, 2.3  

and 2.4) 

0.01 0.00072 4 20 0.0046 4 20 0.0046 

0.05 0.00365 5 19 0.0238 5 19 0.0235 

0.10 0.00747 6 18 0.0939 6 18 0.0913 

0.20 0.01569 6 18 0.0939 NA
vi 

NA NA 

2.2.5. Performance comparison 

                                                 
iv
 The hypergeometric approximation is used. 

v
 The hypergeometric approximation is used. 

vi
 The exact charting constants and exact attained FAP for a desired FAP0 of 0.20 is not available (NA) from Tables 2.2, 

2.3 and 2.4. 
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As noted earlier, evaluating the performance of Phase I control charts requires a different 

paradigm than evaluating the performance of Phase II charts. In the latter case, the performance is 

usually compared by looking at characteristics associated with their run-length distributions such as, 

for example, the FAR and the ARL. In contrast, the FAP (the probability of at least one signal) is 

used to evaluate and compare the performance of Phase I charts. 

 

We compare both the IC and the OOC performance of Phase I control charts. The IC 

performance indicates how robust the chart is with respect to the specified nominal FAP value; the 

nonparametric charts are expected to be IC robust (because they are distribution-free) but it is of 

interest to see what the attained FAP values are and how far off they might be from the nominal 

values. On the other hand, the OOC comparison involves comparing the probabilities of alarm (at 

least one signal) under some ‘out-of-control condition’ when the charts have roughly the same 

nominal FAP (i.e. the same IC performance). The chart with the highest probability of at least one 

signal under the OOC condition is favored. Since our proposed Shewhart-type Phase I chart is for 

monitoring the location of a continuous process distribution, it is appropriate to compare its 

performance with the parametric Phase I X  chart for the mean (see e.g. Champ and Jones (2004)) 

assuming a normal distribution. Their Phase I Q chart is designed using �̂I = Q� where Q�	 is the 

grand mean, i.e. Q� = +
/R∑ ∑ Q�[R[4+/�4+ , �}I,� = +

w� � +/∑ ��-/�4+ �
]
^
 where A� is an unbiasing constant and 

��- is the i
th

 sample variance. It follows that (see Equation (1.1)), UCL / LCL = �̂I ± �� �}I,� √�⁄  

where tables for the charting constant �� are provided by Champ and Jones (2004) for                    

� = 4(1)10,15, � = 3(1)10 and for a FAP0 of 0.10, 0.05 and 0.01, respectively.  In some cases, a 

more extensive set of tables was used by Nelson et al. (2005) to calculate the charting constant. 

Four process distributions are considered in the simulation study:  

 

i. The standard Normal distribution (N(0,1)),  

 

ii. the Student’s t-distribution with four degrees of freedom (t(4)) which is symmetric but 

with heavier tails than the normal,  

 

iii. the Gamma distribution (GAM(1,1)) which is positively skewed, and  

 

iv. the Uniform distribution (�(-1,1)) which is symmetric but with a different kurtosis and 

lighter tails than the normal distribution.  
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Note that, wherever necessary, the distributions in the study have been shifted and scaled 

such that the mean / median equals 0 and the standard deviation equals 1, so that the results are 

easily comparable across the distributions. The details for these steps are shown in Appendix 1B.  

 

 We compare the nonparametric Phase I median chart to the parametric Phase I Q chart (see 

Champ and Jones (2004)). However, although Champ and Jones (2004) proposed the Phase I Q 

chart and examined methods for obtaining probability limits for the Q chart when the process mean 

and standard deviation are estimated, they did not investigate the OOC performance of the chart. 

Thus, in order find out what types of shifts have been considered in the literature regarding Phase I 

control charting applications, we turned to Jones-Farmer et al. (2009) who proposed a 

nonparametric Phase I control chart based on standardized subgroup mean-ranks and Coelho et al. 

(2013) who gave a performance comparison between the three nonparametric charts, i.e. the Phase I 

median chart proposed here, the Phase I Q chart proposed by Champ and Jones (2004) and the 

Phase I mean-rank chart proposed by Jones-Farmer et al. (2009). Both Jones-Farmer et al. (2009) 

and Coelho et al. (2013) considered shifts of size   in units of population standard deviations and, 

without loss of generality, this shift was added to the first subgroup. Following what has been done 

in the literature and in order to have a fair comparison between the proposed chart and the Phase I Q 

chart, a shift of   = -2(0.25)2 in terms of population standard deviations is added to the first 

subgroup in this chapter. 

 

Simulation is used to compare the performance of the Phase I median chart to that of the 

Phase I Q chart using SAS


 v9.3 (see Appendix 2B). Simulation was used, because Champ and 

Jones (2004) only provided tables for the charting constant �� for � = 3(1)10, and here larger 

values of n are considered. The steps in the simulation study were:  
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Step 1: Generate � samples each of size � from one of the four distributions. 

  

Step 2: Add a shift (  = -2(0.25)2) in terms of population standard deviations to the first 

subgroup. 

  

Step 3: Find the control limits: For the median chart use Tables 2.2, 2.3 and 2.4 for FAP0 of 

0.01, 0.05 and 0.10, respectively. For the  Q chart the tables by Champ and Jones 

(2004) and Nelson et al. (2005) can be used for certain values of � and �, however, for 

values of � and � not provided by the tables the SAS


 program in Appendix 2B should 

be used to obtain the charting constant ��. 

  

Step 4: Calculate the charting statistics for both the Phase I median and Phase I Q chart, 

respectively. For each of the charts we then check if at least one of the respective 

charting statistics plots on or outside the control limits, in which case a counter is 

incremented.  

 

 Steps 1 to 4 are repeated 100 000 times and the proportion of times there is at least one 

signal is obtained by dividing the final value of the counter by 100 000. This proportion estimates 

the alarm probability of a chart and this estimate is referred to as the empirical (or the simulated) 

alarm probability of the corresponding Phase I control chart. Note that 100 000 simulations are used 

to achieve an acceptable error rate.  

 

 It is important to note that, in the simulation study, for the Phase I median chart the control 

limits were selected from Tables 2.2, 2.3 and 2.4 for FAP0 = 0.01, 0.05 and 0.10, respectively. 

These control limits were kept fixed at all times when running the simulations for the IC robustness 

study. However, for the OOC simulations the process is stopped and a counter is incremented. In 

practice, at this point, one would stop the manufacturing process, search for assignable causes and 

take corrective action. 

 

In-control robustness 

 

 Since the proposed Phase I chart is nonparametric, the statistical properties of the chart, such 

as the FAP, should remain the same for all continuous distributions. The empirical (simulated) FAP 

values of the Phase I median chart and that of the Phase I Q chart are shown in Tables 2.9, 2.10 and 
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2.11 and are displayed in Figure 2.9 for various combinations of (�,�) under all four the 

distributions where the FAP0 equals of 0.01, 0.05 and 0.10, respectively.  

 

Table 2.9. Empirical FAP values of the Phase I median control chart and the Phase I Q control chart 

for FAP0 = 0.01 
   (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

M
e
d

ia
n

 N(0,1) 0.0080 0.0021 0.0073 0.0031 0.0083 0.0047 0.0057 0.0021 0.0080 

t(4) 0.0079 0.0022 0.0070 0.0026 0.0082 0.0045 0.0055 0.0022 0.0087 

GAM(1,1) 0.0083 0.0021 0.0069 0.0030 0.0080 0.0045 0.0051 0.0021 0.0091 

U(-1,1) 0.0086 0.0024 0.0070 0.0029 0.0084 0.0047 0.0054 0.0022 0.0088 

Q  

N(0,1) 0.0097 0.0100 0.0102 0.0097 0.0098 0.0101 0.0099 0.0100 0.0099 

t(4) 0.0092 0.0094 0.0097 0.0116 0.0118 0.0120 0.0143 0.0144 0.0139 

GAM(1,1) 0.0110 0.0104 0.0107 0.0166 0.0162 0.0151 0.0208 0.0185 0.0179 

U(-1,1) 0.0102 0.0100 0.0105 0.0099 0.0099 0.0100 0.0101 0.0098 0.0103 

 

Table 2.10. Empirical FAP values of the Phase I median control chart and the Phase I Q control 

chart for FAP0 = 0.05 
   (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

M
e
d

ia
n

 N(0,1) 0.0081 0.0146 0.0328 0.0272 0.0460 0.0234 0.0471 0.0157 0.0414 

t(4) 0.0085 0.0148 0.0323 0.0269 0.0450 0.0240 0.0469 0.0154 0.0419 

GAM(1,1) 0.0080 0.0147 0.0327 0.0270 0.0453 0.0236 0.0465 0.0144 0.0419 

U(-1,1) 0.0083 0.0144 0.0320 0.0273 0.0450 0.0232 0.0480 0.0154 0.0415 

Q  

N(0,1) 0.0083 0.0146 0.0326 0.0272 0.0450 0.0235 0.0472 0.0152 0.0415 

t(4) 0.0500 0.0498 0.0499 0.0493 0.0505 0.0487 0.0506 0.0497 0.0508 

GAM(1,1) 0.0478 0.0499 0.0496 0.0543 0.0543 0.0544 0.0635 0.0627 0.0607 

U(-1,1) 0.0479 0.0493 0.0505 0.0569 0.0549 0.0550 0.0676 0.0641 0.0614 

 

Table 2.11. Empirical FAP values of the Phase I median control chart and the Phase I Q control 

chart for FAP0 = 0.10 
   (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

M
e
d

ia
n

 N(0,1) 0.0561 0.0677 0.0329 0.0261 0.0444 0.0903 0.0483 0.0775 0.0415 

t(4) 0.0560 0.0673 0.0315 0.0274 0.0447 0.0907 0.0480 0.0777 0.0419 

GAM(1,1) 0.0557 0.0671 0.0338 0.0271 0.0453 0.0917 0.0477 0.0764 0.0419 

U(-1,1) 0.0558 0.0669 0.0329 0.0271 0.0455 0.0900 0.0468 0.0751 0.0403 

Q  

N(0,1) 0.0563 0.0681 0.0326 0.0272 0.0450 0.0913 0.0472 0.0769 0.0415 

t(4) 0.1002 0.1001 0.1000 0.1009 0.0996 0.1020 0.1005 0.1019 0.1002 

GAM(1,1) 0.0976 0.0993 0.0984 0.1090 0.1083 0.1081 0.1226 0.1191 0.1163 

U(-1,1) 0.0952 0.0966 0.0956 0.1059 0.1043 0.1030 0.1175 0.1141 0.1108 

 

 To make the comparisons easier, the empirical FAP values of the median chart are shown as 

vertical bars whereas the FAP values of the Q chart are depicted by line graphs in Figures 2.9a, b 

and c for FAP0 = 0.01, 0.05 and 0.10, respectively.  
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Figure 2.9a. Simulated / Empirical FAP values of the Phase I median control chart and the  

Phase I Q control chart for FAP0 = 0.01 

 

 
Figure 2.9b. Simulated / Empirical FAP values of the Phase I median control chart and the  

Phase I Q control chart for FAP0 = 0.05 

 

 
Figure 2.9c. Simulated / Empirical FAP values of the Phase I median control chart and the  

Phase I Q control chart for FAP0 = 0.10 
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From Tables 2.9, 2.10 and 2.11 and Figure 2.9 several observations can be made: 

 

i. The empirical FAP values of the Phase I median chart are nearly indistinguishable from the 

attained FAP values (calculated theoretically) for all four the distributions. For example, 

for � = 10, � = 15 and FAP0 = 0.10, the attained FAP equals 0.0472 as shown in Table 

2.4, while the empirical FAP values for the N(0,1), t(4) , GAM(1,1) and �(-1,1) 

distributions equal 0.0483, 0.0480, 0.0477 and 0.0468, respectively, as shown in Table 

2.11. This provides convincing evidence that the proposed distribution-free Phase I median 

chart is IC robust i.e. the empirical FAP values remain the same for all continuous 

distributions for a given � and �. 

 

ii. By design, the Phase I median chart is conservative in that its attained FAP values are less 

than or equal to the FAP0 values. 

 

iii. The Phase I Q chart does not have the IC robustness property of the nonparametric Phase I 

median chart. Although for the normal and the uniform distributions the Phase I Q chart 

has empirical FAP values ‘very near’ the FAP0 values, for the heavy-tailed t(4) and the 

skewed GAM(1,1) distributions, the Q chart has empirical FAP values much higher than 

the FAP0 value. The non-robustness of the Q chart is known in the literature for Phase II 

applications (see e.g. Chakraborti et al. (2004)) but this study confirms it for the Phase I 

case as well. What seems to be a more serious problem is that there appears to be an 

upward trend developing in the empirical FAP values of the Q chart for the t and Gamma 

distributions as �, the number of subgroups, increases from 4. This is bound to be 

problematic in practice. Hence the empirical alarm probabilities for the Q chart do not 

allow a meaningful performance comparison in the OOC (discussed next) case for the t and 

the Gamma distributions. These results are shown here because the Q chart is the most 

familiar control chart in practice. 
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Out-of-control chart performance 

 

  Tables 2.12, 2.13 and 2.14 contain the empirical alarm probabilities of the Phase I median 

and the Phase I Q chart for shifts   = −2(0.25)2 when the FAP0 equals 0.01, 0.05 and 0.10, 

respectively, and (�, �) = (4, 20) and (10, 24), respectively. These are displayed in Figures 2.10, 

2.11 and 2.12 for FAP0 = 0.01, 0.05 and 0.10, respectively. Note that these particular values of 

(�, �) are shown for illustration purposes; other combinations were considered and the results were 

comparable. Recall that the empirical FAP values of the Phase I Q chart for the t and the Gamma 

distributions were found to be not close to the FAP0 values when the process is IC so that it is not 

practically meaningful to compare the OOC performance of the Phase I Q chart with that of the 

median chart.  However, this was still done for reference purposes by recalculating the Q chart 

constants (i.e. ��) so that the empirical FAP values were close to the FAP0 values.  

 

Table 2.12a. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 4, � = 20 and FAP0 = 0.01 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (3,17) 
¥¦ =  

3.000 

¥¦ = 

3.100 

¥¦ = 

3.125 

¥¦ = 

3.130 

-2.00 0.9845 0.9954 0.9224 0.9523 1.0000 0.9991 0.9996 1.0000 

-1.75 0.9344 0.9841 0.8486 0.7999 0.9998 0.9953 0.9970 0.9999 

-1.50 0.8026 0.9423 0.7196 0.5421 0.9951 0.9846 0.9848 0.9981 

-1.25 0.5710 0.8255 0.5379 0.2991 0.9511 0.9417 0.9339 0.9578 

-1.00 0.3070 0.5824 0.3278 0.1204 0.7692 0.7925 0.7790 0.7742 

-0.75 0.1139 0.2700 0.1469 0.0423 0.4250 0.4809 0.4781 0.4249 

-0.50 0.0280 0.0691 0.0437 0.0110 0.1379 0.1677 0.1634 0.1375 

-0.25 0.0057 0.0094 0.0075 0.0034 0.0278 0.0314 0.0293 0.0272 

0.00 0.0021 0.0022 0.0021 0.0025 0.0094 0.0100 0.0101 0.0098 

0.25 0.0060 0.0091 0.0104 0.0035 0.0270 0.0313 0.0318 0.0273 

0.50 0.0282 0.0686 0.1222 0.0120 0.1378 0.1676 0.1531 0.1366 

0.75 0.1137 0.2724 0.5540 0.0413 0.4261 0.4806 0.4510 0.4239 

1.00 0.3030 0.5763 0.9203 0.1214 0.7685 0.7923 0.7706 0.7741 

1.25 0.5726 0.8241 0.9948 0.2891 0.9531 0.9419 0.9418 0.9579 

1.50 0.8049 0.9421 0.9999 0.5411 0.9955 0.9856 0.9908 0.9971 

1.75 0.9359 0.9842 1.0000 0.8006 0.9997 0.9954 0.9991 0.9999 

2.00 0.9849 0.9956 1.0000 0.9524 1.0000 0.9981 1.0000 1.0000 
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Table 2.12b. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 10, � = 24 and FAP0 = 0.01 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (4,20) 
¥¦ =  

3.300 

¥¦ =  

3.440 

¥¦ =  

3.555 

¥¦ =  

3.310 

-2.00 0.9993 0.9997 0.9735 1.0000 1.0000 0.9992 1.0000 1.0000 

-1.75 0.9934 0.9982 0.9336 0.9909 1.0000 0.9920 0.9998 1.0000 

-1.50 0.9579 0.9897 0.8515 0.8830 0.9999 0.9976 0.9974 0.9998 

-1.25 0.8276 0.9492 0.7012 0.5962 0.9941 0.9825 0.9754 0.9945 

-1.00 0.5604 0.8063 0.4878 0.2865 0.9116 0.8823 0.8561 0.9096 

-0.75 0.2498 0.4916 0.2477 0.1014 0.5828 0.5428 0.5185 0.5746 

-0.50 0.0683 0.1597 0.0832 0.0314 0.1816 0.1547 0.1261 0.1726 

-0.25 0.0154 0.0247 0.0199 0.0118 0.0286 0.0230 0.0164 0.0261 

0.00 0.0089 0.0085 0.0090 0.0084 0.0111 0.0103 0.0108 0.0100 

0.25 0.0157 0.0243 0.0289 0.0116 0.0288 0.0234 0.0228 0.0260 

0.50 0.0690 0.1572 0.3560 0.0306 0.1816 0.1563 0.1294 0.1725 

0.75 0.2500 0.4963 0.9679 0.1011 0.5869 0.5464 0.4709 0.5731 

1.00 0.5611 0.8080 1.0000 0.2877 0.9111 0.8833 0.8565 0.9099 

1.25 0.8307 0.9506 1.0000 0.5967 0.9940 0.9835 0.9883 0.9944 

1.50 0.9593 0.9899 1.0000 0.8836 0.9999 0.9971 0.9998 0.9999 

1.75 0.9935 0.9979 1.0000 0.9909 1.0000 0.9993 1.0000 1.0000 

2.00 0.9996 0.9997 1.0000 0.9999 1.0000 0.9997 1.0000 1.0000 

 

Table 2.13a. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 4, � = 20 and FAP0 = 0.05 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (4,16) 
¥¦ =  
2.530 

¥¦ =  
2.540 

¥¦ =  
2.542 

¥¦ =  
2.540 

-2.00 0.9978 0.9995 0.9813 0.9891 1.0000 1.0000 1.0000 1.0000 

-1.75 0.9861 0.9978 0.9525 0.9293 1.0000 0.9983 0.9993 1.0000 

-1.50 0.9353 0.9874 0.8878 0.7710 0.9993 0.9948 0.9955 0.9998 

-1.25 0.7945 0.9440 0.7658 0.5238 0.9886 0.9799 0.9763 0.9913 

-1.00 0.5472 0.7988 0.5688 0.2911 0.9110 0.9073 0.8986 0.9157 

-0.75 0.2778 0.5066 0.3368 0.1352 0.6668 0.6900 0.6867 0.6640 

-0.50 0.1012 0.1971 0.1379 0.0522 0.3217 0.3467 0.3542 0.3180 

-0.25 0.0304 0.0433 0.0370 0.0218 0.1024 0.1072 0.1084 0.1011 

0.00 0.0146 0.0144 0.0149 0.0144 0.0477 0.0471 0.0463 0.0489 

0.25 0.0303 0.0438 0.0465 0.0219 0.1024 0.1073 0.1042 0.1010 

0.50 0.1015 0.1946 0.2791 0.0523 0.3196 0.3469 0.3290 0.3178 

0.75 0.2792 0.5064 0.7487 0.1353 0.6679 0.6892 0.6707 0.6639 

1.00 0.5454 0.8030 0.9711 0.2922 0.9115 0.9074 0.9082 0.9158 

1.25 0.7943 0.9433 0.9989 0.5249 0.9897 0.9797 0.9852 0.9911 

1.50 0.9369 0.9877 1.0000 0.7704 0.9994 0.9947 0.9987 0.9997 

1.75 0.9860 0.9978 1.0000 0.9294 1.0000 0.9982 0.9990 1.0000 

2.00 0.9979 0.9997 1.0000 0.9892 1.0000 1.0000 1.0000 1.0000 
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Table 2.13b. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 10, � = 24 and FAP0 = 0.05 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (5,19) 
¥¦ =  

2.800 

¥¦ =  

2.893 

¥¦ =  

2.915 

¥¦ =  

2.800 

-2.00 0.9999 1.0000 0.9941 1.0000 1.0000 0.9999 1.0000 1.0000 

-1.75 0.9991 0.9998 0.9809 0.9980 1.0000 0.9998 1.0000 1.0000 

-1.50 0.9897 0.9982 0.9444 0.9600 1.0000 0.9991 0.9994 1.0000 

-1.25 0.9355 0.9868 0.8582 0.7876 0.9987 0.9947 0.9935 0.9989 

-1.00 0.7595 0.9234 0.6928 0.4950 0.9678 0.9545 0.9468 0.9705 

-0.75 0.4493 0.7026 0.4485 0.2401 0.7666 0.7486 0.7462 0.7651 

-0.50 0.1794 0.3266 0.2062 0.1004 0.3541 0.3357 0.3478 0.3532 

-0.25 0.0641 0.0859 0.0728 0.0517 0.1009 0.0919 0.0872 0.0990 

0.00 0.0413 0.0408 0.0409 0.0415 0.0524 0.0501 0.0491 0.0508 

0.25 0.0630 0.0870 0.0954 0.0518 0.0990 0.0919 0.0865 0.0990 

0.50 0.1788 0.3271 0.5618 0.1005 0.3557 0.3371 0.3011 0.3532 

0.75 0.4511 0.7048 0.9896 0.2402 0.7664 0.7463 0.7146 0.7650 

1.00 0.7601 0.9254 1.0000 0.4945 0.9696 0.9570 0.9632 0.9704 

1.25 0.9356 0.9875 1.0000 0.7877 0.9989 0.9945 0.9989 0.9988 

1.50 0.9897 0.9985 1.0000 0.9595 1.0000 0.9992 1.0000 1.0000 

1.75 0.9993 0.9997 1.0000 0.9982 1.0000 0.9996 1.0000 1.0000 

2.00 0.9999 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 

 

Table 2.14a. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 4, � = 20 and FAP0 = 0.10 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (5,15) 
¥¦ =  

2.230 

¥¦ =  

2.240 

¥¦ =  

2.240 

¥¦ =  

2.240 

-2.00 0.9998 1.0000 0.9966 0.9985 1.0000 1.0000 1.0000 1.0000 

-1.75 0.9979 0.9999 0.9890 0.9806 1.0000 1.0000 0.9996 1.0000 

-1.50 0.9846 0.9982 0.9667 0.9111 0.9999 0.9968 0.9982 1.0000 

-1.25 0.9258 0.9869 0.9081 0.7531 0.9954 0.9886 0.9873 0.9967 

-1.00 0.7730 0.9289 0.7843 0.5284 0.9530 0.9440 0.9371 0.9556 

-0.75 0.5155 0.7375 0.5704 0.3150 0.7730 0.7883 0.7802 0.7735 

-0.50 0.2611 0.4078 0.3202 0.1665 0.4462 0.4720 0.4796 0.4450 

-0.25 0.1093 0.1449 0.1308 0.0904 0.1814 0.1892 0.1915 0.1801 

0.00 0.0694 0.0680 0.0668 0.0683 0.0982 0.0980 0.0926 0.0986 

0.25 0.1122 0.1449 0.1525 0.0905 0.1798 0.1892 0.1813 0.1800 

0.50 0.2616 0.4094 0.5023 0.1667 0.4485 0.4718 0.4556 0.4454 

0.75 0.5167 0.7384 0.8856 0.3148 0.7726 0.7884 0.7773 0.7736 

1.00 0.7702 0.9296 0.9919 0.5285 0.9535 0.9441 0.9507 0.9555 

1.25 0.9256 0.9868 0.9998 0.7530 0.9955 0.9887 0.9933 0.9966 

1.50 0.9843 0.9982 1.0000 0.9110 0.9999 0.9969 0.9996 1.0000 

1.75 0.9976 0.9999 1.0000 0.9807 1.0000 1.0000 1.0000 1.0000 

2.00 0.9998 1.0000 1.0000 0.9981 1.0000 1.0000 1.0000 1.0000 
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Table 2.14b. Empirical alarm probabilities of the Phase I median and the Phase I Q charts with  � = 10, � = 24 and FAP0 = 0.10 

  Phase I median chart Phase I � chart 

  N(0,1) t(4) GAM(1,1) ¡(-1,1) N(0,1) t(4) GAM(1,1) ¡(-1,1) 

¢ (£, ¤) = (5,19) 
¥¦ =  

2.550 

¥¦ =  

2.620 

¥¦ =  

2.600 

¥¦ =  

2.550 

-2.00 0.9999 1.0000 0.9941 1.0000 1.0000 1.0000 1.0000 1.0000 

-1.75 0.9991 0.9998 0.9809 0.9980 1.0000 0.9997 1.0000 1.0000 

-1.50 0.9897 0.9982 0.9444 0.9596 1.0000 0.9994 0.9998 1.0000 

-1.25 0.9355 0.9868 0.8582 0.7878 0.9995 0.9972 0.9964 0.9994 

-1.00 0.7595 0.9234 0.6928 0.4946 0.9831 0.9752 0.9710 0.9840 

-0.75 0.4493 0.7026 0.4485 0.2400 0.8408 0.8295 0.8329 0.8415 

-0.50 0.1794 0.3266 0.2062 0.1004 0.4698 0.4579 0.4912 0.4684 

-0.25 0.0641 0.0859 0.0728 0.0518 0.1740 0.1652 0.1720 0.1717 

0.00 0.0413 0.0408 0.0409 0.0415 0.1070 0.1025 0.1023 0.1026 

0.25 0.0630 0.0870 0.0954 0.0518 0.1748 0.1652 0.1610 0.1718 

0.50 0.1788 0.3271 0.5618 0.1005 0.4717 0.4579 0.4350 0.4684 

0.75 0.4511 0.7048 0.9896 0.2402 0.8422 0.8296 0.8226 0.8415 

1.00 0.7601 0.9254 1.0000 0.4945 0.9836 0.9753 0.9852 0.9841 

1.25 0.9356 0.9875 1.0000 0.7877 0.9996 0.9971 0.9998 0.9996 

1.50 0.9897 0.9985 1.0000 0.9595 1.0000 0.9993 1.0000 1.0000 

1.75 0.9993 0.9997 1.0000 0.9982 1.0000 0.9998 1.0000 1.0000 

2.00 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

From Tables 2.12, 2.13 and 2.14 and Figures 2.10, 2.11 and 2.12 we see that: 

 

i. For symmetric distributions such as the normal, the t and the uniform, the direction of the 

shift doesn’t seem to affect the detection capability of the charts (since symmetrically 

placed control limits were used), whereas for the right-skewed Gamma distribution, it 

does.  

 

ii. The Q chart has higher alarm probabilities than the median chart for the normal and the 

uniform distributions. This is not surprising, since the assumed distribution underlying the 

former chart is normal and the uniform distribution is comparable to the normal, but with 

different kurtosis.  

 

iii. For the t(4) distribution the median chart compares very favourably to the Q chart.  

 

iv. For the GAM(1,1) distribution, the median chart performs better than the Q chart for 

positive shifts of approximately 0.5 and greater, while the opposite is true for positive 

shifts smaller than 0.5 and for negative shifts.  

   

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



71 

 

 N(0,1) t(4) GAM(1,1) ¡(-1,1) 

 (a) (b) (c) (d) 
(m

, 
n
) 

=
 (

4
,2

0
) 

    

 (e) (f) (g) (h) 

(m
, 
n
) 

=
 (

1
0
, 
2
4
) 

    
  Phase I Median chart             Phase I Q chart 

Figure 2.10
vii

.  Out-of-control empirical alarm probabilities of the Phase I median and the Phase I Q charts for the N(0,1), t(4), �(-1,1) and 

GAM(1,1) distributions for FAP0 = 0.01 

  

                                                 
vii

 The horizontal and vertical axes in Figure 2.10 represent the shift (  = −2(0.025)2) and the empirical alarm probability, respectively.  
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Figure 2.11
viii

.  Out-of-control empirical alarm probabilities of the Phase I median and the Phase I Q charts for the N(0,1), t(4), �(-1,1) and 

GAM(1,1) distributions for FAP0 = 0.05 

 

  

                                                 
viii

 The horizontal and vertical axes in Figure 2.11 represent the shift (  = −2(0.025)2) and the empirical alarm probability, respectively.  
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Figure 2.12
ix

.  Out-of-control empirical alarm probabilities of the Phase I median and the Phase I Q charts for the N(0,1), t(4), �(-1,1) and 

GAM(1,1) distributions for FAP0 = 0.10 

 
 

                                                 
ix

 The horizontal and vertical axes in Figure 2.12 represent the shift (  = −2(0.025)2) and the empirical alarm probability, respectively.  
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 Our overall conclusion is that in Phase I applications, the proposed nonparametric median 

chart is IC robust and outperforms the Q chart in some situations. However, even though the Q chart 

seems to have slightly better OOC performance, we emphasize that its performance is unstable and 

non-robust in the IC case for the t and the Gamma distributions.  

 

Unequal variances 

 

 The median chart is primarily designed to detect a location shift under equal scales (or 

variances). Thus the effect of unequal variances on the IC robustness and OOC performance may be 

of interest. For the IC case, we examined the robustness of the median chart for constant mean but 

unequal variances, in terms of the simulated empirical FAP values for all four distributions, when 

the first group variance increases from 1.0 to 2.0 in increments of 0.25. The simulated / empirical 

FAP values are given in Tables 2.15, 2.16 and 2.17 and are displayed in Figures 2.13 to 2.16, for 

various combinations of (�, �) when the FAP0 equals 0.01, 0.05 and 0.10, respectively.   

 

Table 2.15. Empirical FAP values of the Phase I median chart with unequal variances 

FAP0 = 0.01 (m,n)  

Dist Var (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

N
(0

,1
) 

1.00 0.0080 0.0021 0.0073 0.0031 0.0083 0.0047 0.0057 0.0021 0.0080 

1.25 0.0080 0.0021 0.0074 0.0029 0.0084 0.0043 0.0054 0.0019 0.0087 

1.50 0.0081 0.0020 0.0073 0.0033 0.0084 0.0047 0.0054 0.0022 0.0089 

1.75 0.0088 0.0021 0.0070 0.0028 0.0082 0.0049 0.0051 0.0019 0.0089 

2.00 0.0086 0.0024 0.0075 0.0027 0.0082 0.0043 0.0058 0.0019 0.0089 

t(
4

) 

1.00 0.0079 0.0022 0.0070 0.0026 0.0082 0.0045 0.0055 0.0022 0.0087 

1.25 0.0087 0.0020 0.0066 0.0028 0.0081 0.0048 0.0054 0.0020 0.0094 

1.50 0.0084 0.0022 0.0071 0.0030 0.0083 0.0044 0.0052 0.0021 0.0084 

1.75 0.0086 0.0020 0.0072 0.0029 0.0082 0.0045 0.0053 0.0020 0.0083 

2.00 0.0083 0.0022 0.0069 0.0029 0.0080 0.0047 0.0057 0.0020 0.0092 

G
A

M
(1

,1
) 1.00 0.0083 0.0021 0.0069 0.0030 0.0080 0.0045 0.0051 0.0021 0.0091 

1.25 0.0085 0.0022 0.0070 0.0028 0.0078 0.0043 0.0052 0.0018 0.0085 

1.50 0.0082 0.0023 0.0072 0.0028 0.0087 0.0045 0.0054 0.0018 0.0088 

1.75 0.0089 0.0024 0.0073 0.0029 0.0083 0.0048 0.0051 0.0022 0.0087 

2.00 0.0086 0.0022 0.0076 0.0029 0.0088 0.0045 0.0054 0.0023 0.0086 

¡ (-
1

,1
) 

1.00 0.0086 0.0024 0.0070 0.0029 0.0084 0.0047 0.0054 0.0022 0.0088 

1.25 0.0086 0.0024 0.0074 0.0029 0.0080 0.0048 0.0053 0.0021 0.0084 

1.50 0.0082 0.0020 0.0071 0.0032 0.0080 0.0046 0.0054 0.0018 0.0087 

1.75 0.0085 0.0024 0.0073 0.0028 0.0079 0.0045 0.0056 0.0021 0.0088 

2.00 0.0085 0.0021 0.0072 0.0029 0.0080 0.0050 0.0052 0.0020 0.0087 
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Table 2.16. Empirical FAP values of the Phase I median chart with unequal variances 

FAP0 = 0.05 (m,n) 

Dist Var (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

N
(0

,1
) 

1.00 0.0081 0.0146 0.0328 0.0272 0.0460 0.0234 0.0471 0.0157 0.0414 

1.25 0.0081 0.0145 0.0332 0.0280 0.0453 0.0236 0.0480 0.0153 0.0412 

1.50 0.0081 0.0146 0.0326 0.0267 0.0458 0.0237 0.0460 0.0155 0.0421 

1.75 0.0088 0.0149 0.0327 0.0269 0.0452 0.0240 0.0472 0.0149 0.0419 

2.00 0.0086 0.0151 0.0327 0.0278 0.0466 0.0233 0.0475 0.0151 0.0403 

t(
4

) 

1.00 0.0085 0.0148 0.0323 0.0269 0.0450 0.0240 0.0469 0.0154 0.0419 

1.25 0.0084 0.0146 0.0331 0.0282 0.0454 0.0229 0.0481 0.0157 0.0419 

1.50 0.0084 0.0145 0.0334 0.0277 0.0451 0.0245 0.0470 0.0153 0.0407 

1.75 0.0086 0.0153 0.0332 0.0276 0.0460 0.0243 0.0478 0.0156 0.0426 

2.00 0.0083 0.0142 0.0339 0.0270 0.0456 0.0230 0.0475 0.0151 0.0412 

G
A

M
(1

,1
) 1.00 0.0080 0.0147 0.0327 0.0270 0.0453 0.0236 0.0465 0.0144 0.0419 

1.25 0.0083 0.0145 0.0339 0.0284 0.0450 0.0239 0.0467 0.0151 0.0424 

1.50 0.0082 0.0149 0.0329 0.0269 0.0449 0.0243 0.0472 0.0157 0.0412 

1.75 0.0089 0.0149 0.0334 0.0275 0.0444 0.0234 0.0466 0.0154 0.0412 

2.00 0.0086 0.0154 0.0342 0.0287 0.0453 0.0245 0.0476 0.0154 0.0416 

¡ (-
1

,1
) 

1.00 0.0083 0.0144 0.0320 0.0273 0.0450 0.0232 0.0480 0.0154 0.0415 

1.25 0.0090 0.0146 0.0324 0.0278 0.0458 0.0243 0.0475 0.0155 0.0415 

1.50 0.0082 0.0144 0.0330 0.0280 0.0450 0.0244 0.0469 0.0153 0.0420 

1.75 0.0085 0.0151 0.0338 0.0279 0.0453 0.0234 0.0491 0.0156 0.0411 

2.00 0.0085 0.0156 0.0336 0.0280 0.0454 0.0233 0.0468 0.0153 0.0418 

 

Table 2.17. Empirical FAP values of the Phase I median chart with unequal variances 

FAP0 = 0.10 (m,n) 

Dist Var (4,15) (4,20) (4,24) (7,15) (7,20) (7,24) (10,15) (10,20) (10,24) 

N
(0

,1
) 

1.00 0.0561 0.0677 0.0329 0.0261 0.0444 0.0903 0.0483 0.0775 0.0415 

1.25 0.0564 0.0690 0.0325 0.0272 0.0447 0.0916 0.0473 0.0768 0.0408 

1.50 0.0572 0.0695 0.0326 0.0267 0.0458 0.0927 0.0460 0.0784 0.0421 

1.75 0.0552 0.0687 0.0327 0.0269 0.0452 0.0899 0.0472 0.0765 0.0419 

2.00 0.0575 0.0707 0.0327 0.0278 0.0466 0.0933 0.0475 0.0764 0.0403 

t(
4

) 

1.00 0.0560 0.0673 0.0315 0.0274 0.0447 0.0907 0.0480 0.0777 0.0419 

1.25 0.0575 0.0680 0.0323 0.0270 0.0444 0.0929 0.0475 0.0766 0.0416 

1.50 0.0575 0.0683 0.0334 0.0277 0.0451 0.0917 0.0470 0.0786 0.0407 

1.75 0.0583 0.0697 0.0332 0.0276 0.0460 0.0921 0.0478 0.0766 0.0426 

2.00 0.0583 0.0684 0.0339 0.0270 0.0456 0.0921 0.0475 0.0783 0.0412 

G
A

M
(1

,1
) 1.00 0.0557 0.0671 0.0338 0.0271 0.0453 0.0917 0.0477 0.0764 0.0419 

1.25 0.0565 0.0693 0.0327 0.0278 0.0444 0.0921 0.0482 0.0770 0.0423 

1.50 0.0576 0.0681 0.0329 0.0269 0.0449 0.0909 0.0472 0.0776 0.0412 

1.75 0.0572 0.0687 0.0334 0.0275 0.0444 0.0913 0.0466 0.0772 0.0412 

2.00 0.0579 0.0715 0.0342 0.0287 0.0453 0.0928 0.0476 0.0787 0.0416 

¡ (-
1

,1
) 

1.00 0.0558 0.0669 0.0329 0.0271 0.0455 0.0900 0.0468 0.0751 0.0403 

1.25 0.0575 0.0695 0.0339 0.0267 0.0446 0.0926 0.0467 0.0764 0.0415 

1.50 0.0575 0.0690 0.0330 0.0280 0.0450 0.0890 0.0469 0.0765 0.0420 

1.75 0.0577 0.0704 0.0338 0.0279 0.0453 0.0924 0.0491 0.0773 0.0411 

2.00 0.0583 0.0704 0.0336 0.0280 0.0454 0.0919 0.0468 0.0766 0.0418 
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(a) (b) (c) 

   

 
Figure 2.13.  Simulated / Empirical FAP values of the Phase I median chart for the N(0,1) distribution with unequal variances 

 

(a) (b) (c) 

   

 
Figure 2.14. Simulated / Empirical FAP values of the Phase I median chart for the t(4) distribution with unequal variances 
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(a) (b) (c) 

   

 
Figure 2.15. Simulated / Empirical FAP values of the Phase I median chart for the GAM(1,1) distribution with unequal variances 

 

(a) (b) (c) 

   

 
Figure 2.16. Simulated / Empirical FAP values of the Phase I median chart for the �(-1,1) distribution with unequal variances 
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 From Figures 2.13 to 2.16, it is seen that in each case the empirical FAP values are nearly 

indistinguishable and remain at or below the FAP0 value as the variance increases from 1.0 to 2.0 in 

increments of 0.25. For example, consider Figure 2.13a for � = 4, � = 15, FAP0 = 0.01, where the 

data are from a normal distribution. The five bars represent the five empirical FAP values, when the 

variance increases from 1.0 to 2.0 in increments of 0.25, with the first bar representing the IC case 

(variance = 1.0). The simulated FAP values are seen to remain close to the IC value for increased 

variance. In other words the empirical FAP values do not change significantly from the IC value as 

the variance increases. The same conclusion appears to hold for other combinations of (�,�) and 

FAP0 values and across all four distributions (in each case the heights of the five bars are close to 

each other). This suggests that the Phase I median chart maintains its IC robustness when the 

variances are not highly unequal.  

  

 The OOC results for the Phase I median chart are shown in Tables 2.18, 2.19 and 2.20 and 

are displayed in Figures 2.17, 2.18 and 2.19, respectively for FAP0 = 0.01, 0.05 and 0.10, 

respectively, for the N(0,1) distribution.  

 

Table 2.18. Empirical alarm probabilities of the Phase I median chart for the N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.01 

Mean / Variance 0.25 0.75 1.00 1.25 1.75 

-0.75 0.5343 0.1668 0.1139 0.0844 0.0538 

-0.50 0.1582 0.0412 0.0280 0.0218 0.0152 

-0.25 0.0200 0.0067 0.0057 0.0051 0.0038 

0.00 0.0030 0.0021 0.0021 0.0021 0.0021 

0.25 0.0200 0.0067 0.0060 0.0054 0.0038 

0.50 0.1582 0.0412 0.0282 0.0218 0.0152 

0.75 0.5343 0.1668 0.1137 0.0836 0.0538 

 

 

Table 2.19. Empirical alarm probabilities of the Phase I median chart for the N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.05 

Mean / Variance 0.25 0.75 1.00 1.25 1.75 

-0.75 0.7550 0.3676 0.2817 0.2291 0.1607 

-0.50 0.3393 0.1294 0.0996 0.0838 0.0649 

-0.25 0.0704 0.0317 0.0267 0.0280 0.0239 

0.00 0.0201 0.0148 0.0142 0.0156 0.0165 

0.25 0.0720 0.0347 0.0295 0.0258 0.0244 

0.50 0.3416 0.1336 0.1030 0.0879 0.0657 

0.75 0.7508 0.3733 0.2770 0.2304 0.1592 
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Table 2.20. Empirical alarm probabilities of the Phase I median chart for the N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.10 

Mean / Variance 0.25 0.75 1.00 1.25 1.75 

-0.75 0.8953 0.6088 0.5057 0.4458 0.3569 

-0.50 0.5827 0.3195 0.2588 0.2281 0.1867 

-0.25 0.1927 0.1192 0.1076 0.0996 0.0923 

0.00 0.0768 0.0694 0.0707 0.0689 0.0706 

0.25 0.1904 0.1264 0.1128 0.1067 0.0996 

0.50 0.5739 0.3010 0.2588 0.2281 0.1895 

0.75 0.9010 0.6074 0.5192 0.4527 0.3677 

 

 
Figure 2.17.  Out-of-control empirical alarm probabilities of the Phase I median chart for the 

N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.01 
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Figure 2.18.  Out-of-control empirical alarm probabilities of the Phase I median chart for the 

N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.05 

 

 
Figure 2.19.  Out-of-control empirical alarm probabilities of the Phase I median chart for the 

N(0,1) distribution for � = 4, � = 20 and FAP0 = 0.10 
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similar conclusions appear to hold (not shown here) for other shifts in mean and variance, other 

combinations of (�, �) and FAP0 values and across all four distributions. 

 

2.2.6. Phase I control charts for other percentiles 

 

We have focussed mainly on monitoring the median from the point of view of robustness 

and the simplicity of the resulting charts. However, we can consider using some other (say the p
th

) 

percentile of a process if that’s more suitable in a particular (practical) situation.  In that case the IC 

joint probability distribution of the charting statistics is similar to Equation (2.4) but it is not 

symmetrically distributed. Thus for a two-sided control chart one would need to simultaneously 

solve for n and o from 

 

���I ≥ 1 − b�Xcd
F+ H H ⋯

pF+

g^4qG+

pF+

g]4qG+
H `�X+a `

�X-a⋯` �Xc − X+ −⋯− X/F+a
pF+

g_s]4qG+
, (2.21) 

 

where X� now denotes the observed value of ��, the number of observations in the i
th

 sample that are 

less than the p
th

 percentile in the combined sample, and Xc = �§. For a unique solution (i.e. a 

unique pair of (n, o)-values) we could use an equal tailed approach which means that we would 

find the charting constants n and o such that the probability for at least one charting statistic to plot 

on or above the UCL is equal to the probability for at least one charting statistic to plot on or below 

the LCL when the process is IC. We do not pursue this any further here. 

 

2.3. Concluding remarks 

 

 Nonparametric Shewhart-type Phase I control charts can make a valuable contribution to the 

overall SPC regime. These charts require minimal assumptions and are especially useful in 

applications where not much is known about the underlying process distribution, which is typically 

the situation in Phase I. The proposed median chart requires simple calculations and can be easily 

implemented on the production floor. The median chart is IC robust but the Q chart is not. For 

symmetric and heavy-tailed distributions the median chart compares favourably to the Q chart in 

terms of OOC performance, whereas for right-skewed distributions (such as the Gamma), the 

median chart performs better for positive shifts of size approximately 0.5 and greater. It may be 

noted that the median chart can be applied when the only information available is whether or not an 

observation is less (or higher) than the pooled median of the combined Phase I samples. This can be 
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an advantage in some situations. In terms of future research one could consider a Phase I control 

chart for monitoring scale and simultaneously monitoring the location and scale of a process. 

However, in this essay the focus is on monitoring the location of a process and discussion on 

monitoring scale and / or simultaneously monitoring location and scale is better postponed for the 

future. 

 

2.4. Appendices 

 

2.4.1. Appendix 2A: Some mathematical results 

 

Proof of Equation (2.4) 

  

 Combinatoric proofs of this result can be found in Lehmann (1975; page 381). Here 

sketches of two different outlines of the proof are given below. 

  

Suppose there is a finite population of � items and each item belongs to one of � exclusive 

and exhaustive categories. Suppose that �� of the � items belong to the th
i  category                 

(�+ + �- +⋯+ �/ = �) and that a random sample of size Xc is drawn from the population.  If 

�+, �-, … , �/ denote the random variables of items in the sample belonging to categories 1,2,…,� 

(so that X+ + X- +⋯+ X/ = Xc), the joint distribution of the �’s is the multiple (multivariate)  

hypergeometric distribution given by 

 

�(�+ = X+, �- = X-, … , �/ = X/) =
`�+X+a⋯`�/X/a

b�Xcd
. (A.1) 

 

 

 To see this, note that in the IC case, � observations are drawn from the same continuous 

distribution; `��X�a is the number of ways of selecting X� items from the �� items of category i and 

b�Xcd is the number of ways of selecting Xc items out of the total sample of � items.  
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Lehmann (1975) gives an alternative expression for this distribution   

 

�(�+ = X+, �- = X-, … , �/ = X/) =
` XcX+, … , X/a b

� − Xc�+ − X+, … , �/ − X/d
b ��+, … , �/d

 (A.2) 

 

which can be seen to be equal to (A.1) after algebraic simplification, noting that  

 

b �X+, … , X/d =
�!

X+! … X/!. 
 

As explained in Lehmann (1975), to see a second way in which this distribution arises, note that 

each of the � items belongs to one of two exclusive and exhaustive categories A (for us less than 

M) and B (greater than or equal to M), with Tu  belonging to A and � − Xc belonging to B.  Samples 

of sizes �+, �-, … , �/	(∑ ��/�4+ = �) are drawn, and �� denotes the number of items in the th
i  

sample belonging to category A. Then the distribution of the �’s is again given by (A.2). This is 

seen by noting that the denominator of (A.2) gives the total number of possible assignments of the 

� items to the � samples, while the numerator provides the number of such assignments for which 

�+ = X+, �- = X-, … , �/ = X/.  

����  
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2.4.2. Appendix 2B: SAS® and R® programs 

 

2.4.2.1. SAS
 program to compute the false alarm and the OOC alarm probabilities for the 

Phase I � control chart for a shift in location when the underlying process 

distribution is normal 

 

proc iml; 

do k = 2 to 4 by 0.0001; 

keep=0; 

z=100000;  * Number of simulations; 

m=15;   * Number of samples; 

n=5;   * Number of observations; 

gamma=0;  * Shift; 

do sim = 1 to z; 

* Generating observations from the Normal distribution; 

obs = j(m,n,.); 

call randgen(obs, "normal", 0,1); 

obs[1,1:n]= obs[1,1:n]+gamma; 

xbar_vector=j(m,1,.); 

do i = 1 to m; 

 xbar_vector[i,]=sum(obs[i,1:n])/n; 

end; 

diff_sq=j(m,n,.); 

do i = 1 to m; 

 do j = 1 to n; 

 diff_sq[i,j]=(obs[i,j]-xbar_vector[i,])#(obs[i,j]-xbar_vector[i,]); 

 end; 

end; 

variance_vector=j(m,1,.); 

do i = 1 to m; 

 variance_vector[i,]=sum(diff_sq[i,1:n])/(n-1); 

end; 

xbarbar=sum(obs)/(m*n); 

UCL = xbarbar + k * sqrt((sum(variance_vector))/m) * sqrt((m-1)/(m*n)); 

LCL = xbarbar - k * sqrt((sum(variance_vector))/m) * sqrt((m-1)/(m*n)); 

signal_ucl=j(m,1,.); 

signal_lcl=j(m,1,.); 

do i = 1 to m; 

 if xbar_vector[i,]>=ucl then signal_ucl[i,]=1; else signal_ucl[i,]=0; 

 if xbar_vector[i,]<=lcl then signal_lcl[i,]=1; else signal_lcl[i,]=0; 

end; 

* Signalling event; 

signal=signal_ucl + signal_lcl; 

at_least=sum(signal); 

if at_least>0 then FAP_sum=1; else FAP_sum=0; 

 keep=keep//FAP_sum; 

end; 

FAP=(sum(keep))/z; 

print  lcl [label='Lower control limit'],  

  ucl [label='Upper control limit'], 

  k [label = 'Constant in control limits'], 

  m [label = 'Number of samples'], 

  n [label = 'Number of observations in each sample'], 

  gamma [label='shift'],   

  FAP [format = .4];  

end; 
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2.4.2.2. SAS® program to compute the false alarm and the OOC alarm probabilities for the 

Phase I median control chart for a shift in location when the underlying process 

distribution is normal 

 

proc iml; 

z=100000;  * Number of simulations; 

m=10;   * Number of samples; 

n=15;   * Number of observations; 

lcl=1;  * Lower control limit; 

ucl=n-lcl;  * Upper control limit; 

gamma=2;  * Shift; 

* Generating observations from the N(mu, var) distribution; 

mu = 0; 

var = 1; 

obs = j(m*z,n,.); 

call randgen(obs, "normal", mu, sqrt(var)); 

do i = 1 to z; 

 obs[(i*m-(m-1)),]=obs[(i*m-(m-1)),]+gamma; 

end; 

do i = 1 to z; 

 vector=0; 

 apart=j(m,n,.); 

 apart[1:m,] = obs[(i*m-(m-1)):(i*m),]; 

 do o = 1 to n; 

  vector=vector//apart[,o]; 

 end; 

 vector = vector [2:nrow(vector),]; 

 me=median(vector); 

 do k = 1 to nrow(apart); 

  do l = 1 to ncol(apart); 

   if apart[k,l]<me then apart[k,l]=1; else apart[k,l]=0; 

  end; 

 end; 

 sum=apart[,+]; 

 signal_ucl=j(nrow(sum),1,.); 

 signal_lcl=j(nrow(sum),1,.); 

 do p = 1 to nrow(signal_ucl); 

  if sum[p,] >= ucl then signal_ucl[p,]=1; else signal_ucl[p,]=0; 

  if sum[p,] <= lcl then signal_lcl[p,]=1; else signal_lcl[p,]=0; 

 end; 

 signal=signal_lcl||signal_ucl; 

 at_least=sum(signal); 

 if at_least>0 then FAP_sum=1; else FAP_sum=0; 

 keep=keep//FAP_sum; 

end; 

total=sum(keep); 

FAP=total/z; 

print  lcl [label='Lower control limit'],  

  ucl [label='Upper control limit'], 

  m [label='Number of samples'], 

  n [label='Number of observations in each sample'], 

  gamma [label='shift'], 

  FAP [format=.4]; 
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2.4.2.3. Necessary amendment to the SAS® programs in Sections 2.4.2.1 and 2.4.2.2 when the 

underlying process distribution is non-normal 

 

Distribution Necessary amendments 

t(4) * Degrees of freedom for the t-distribution; 

df=4; 

obs1 = j(m*z,n,.); 

call randgen(obs1,"t",df); 

*Shift and scale such that mean = 0 and stdev = 1; 

obs=(1/sqrt(2))# obs1; 

GAM(1,1) * Parameter for the Gamma(1,1) distribution; 

kappa=1; 

obs1 = j(m*z,n,.); 

*Shift and scale such that mean = 0 and stdev = 1; 

call randgen(obs1, "gamma", kappa ); 

obs = obs1 - j(m*z,n,1); �(-1,1) call randgen(obs, "uniform"); 

*Shift and scale such that mean = 0 and stdev = 1; 

obs=(2#obs-j(m*z,n,1))#sqrt(3); 
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2.4.2.4. SAS® program for to compute the false alarm and the OOC alarm probabilities for 

the Phase I median control chart for a shift in spread when the underlying process 

distribution is non-normal 

 

proc iml; 

z=100000;  * Number of simulations; 

m=4;   * Number of samples; 

n=20;   * Number of observations; 

lcl=3;  * Lower control limit; 

ucl=n-lcl;  * Upper control limit; 

do sim = 1 to z; 

ic_obs = j(m-1,n,.); 

ooc_obs = j(1,n,.); 

* Generating observations from the IC N(0,1) distribution; 

call randgen(ic_obs, "normal", 0, 1); 

* Generating observations from the OOC Normal distribution; 

call randgen(ooc_obs, "normal", 1.75, sqrt(0.25));   

* Combining the 2 so that the 1st sample (row) is OOC and the rest are IC; 

obs=ooc_obs//ic_obs; 

* Calculating the grand median of the all the N=mn observations; 

begin=0; 

do o = 1 to n; 

 begin=begin//obs[,o]; 

end; 

begin=begin[2:nrow(begin)]; 

me=median(begin); 

* Checking whether observation is smaller than or greater than median; 

do k = 1 to m; 

 do l = 1 to n; 

  if obs[k,l]<me then obs[k,l]=1; else obs[k,l]=0; 

 end; 

end; 

sum=obs[,+]; 

* Signalling event; 

signal_ucl=j(nrow(sum),1,.); 

 signal_lcl=j(nrow(sum),1,.); 

 do p = 1 to nrow(signal_ucl); 

  if sum[p,] >= ucl then signal_ucl[p,]=1; else signal_ucl[p,]=0; 

  if sum[p,] <= lcl then signal_lcl[p,]=1; else signal_lcl[p,]=0; 

 end; 

signal=signal_lcl||signal_ucl; 

at_least=sum(signal); 

if at_least>0 then FAP_sum=1; else FAP_sum=0; 

keep=keep//FAP_sum; 

end; 

* Calculating the FAP; 

FAP=(sum(keep))/z; 

print  lcl [label='Lower control limit'],  

  ucl [label='Upper control limit'], 

  m [label='Number of samples'], 

  n [label='Number of observations in each sample'], 

  FAP [format=.4]; 
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2.4.2.5. Necessary amendment to the SAS® program in Section 2.4.2.4 when the underlying 

process distribution is non-normal 

 

Distribution Necessary amendments 

t(4) * Generating observations from the t(4) distribution with 

mean=0 and var=1; 

call randgen(ic_obs, "t", 4); 

ic_obs=(1/sqrt(2))#ic_obs; 

* Generating observations from the t(4) distribution with 

mean=0 and var>1; 

call randgen(ooc_obs, "t", 4); 

GAM(1,1) * Generating observations from the Gamma(1,1) distribution 

with mean=0 and var=1; 

call randgen(ic_obs, "gamma",1); 

ic_obs=ic_obs - j(m-1,n,1); 

* Generating observations from the Gamma(2,1) distribution 

with mean=0 and var>1; 

call randgen(ooc_obs, "gamma",2); 

ooc_obs=ooc_obs-j(1,n,2);  �(-1,1) * Generating observations from the Uniform(-1,1) distribution 

with mean=0 and var=1; 

call randgen(ic_obs, "uniform"); 

ic_obs=(2#ic_obs-j(m-1,n,1))#sqrt(3); 

* Generating observations from the Uniform(-1,1) with mean=0 

and var>1; 

call randgen(ooc_obs, "uniform"); 

ooc_obs=(2#ooc_obs-j(1,n,1))#sqrt(6); 
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2.4.2.6. R® program for obtaining the obtaining the charting constants (£ and ¤ = © − £) for 

the Phase I median control chart 

 

I would like to acknowledge Phillip Labuschagne for some programming assistance with regards to 

R
®

 programming. 
 
# Lower bound for a :  
a.lb <- 0 
# Upper bound for a : 
a.ub <-9 
# Lower bound for n : 
n.lb <- 3 
# Upper bound for n : 
n.ub <- 24 
# Lower bound for m : 
m.lb <- 4 
# Upper bound for m : 
m.ub <- 4 
# Transforming a 
a.lb <- a.lb + 1 
a.ub  <- a.ub + 1 
# The functions 
erhs <- function(er.u) { 
 erha.out <- 1 
 for (i in c(1:length(er.u))){ 
 erhs.out <- erhs.out*choose(g.n,er.u[i]) 
 } 
erhs.out 
} 
foo <- function(foo.a){ 
 foo.uvals <- unique(foo.a) 
 foo.num_occur <- rep(0,length(foo.uvals)) 
 foo.b <- 1 
 foo.len <- length(foo.a) 
 for (i in c (l:(length(foo.uvals)))){ 
  foo.num_occur <- length(foo.a[foo.a==foo.uvals[i]]) 
  foo.b=foo.b*choose(foo.len,foo.num_occur) 
  foo.len <- foo.len-foo.num_occur 
 } 
 foo.b 
} 
isp <- function(isp.m,isp.uT,isp.a,isp.b){ 
isp.out <- rep(0,isp.m) 
isp.sum <- isp.uT 
isp.j <- isp.a 
for (isp.i in c (l:(isp.m-1))){ 
 isp.done <- FALSE 
 while (isp.done == FALSE) { 
  if ((isp.sum-isp.j)/(isp.m-isp.i)>isp.b) {isp.j <- isp.j+1 
  } 
  else { 
   isp.out[isp.i] <- isp.j 
   isp.sum <- isp.sum-isp.j 
   isp.done <- TRUE 
  } 
 } 
} 
isp.out[isp.m] <- isp.sum 
if ((isp.sum>isp.b)||(isp.sum<isp.a)) {c("CRAP",isp.out)} else {isp.out} 
} 
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mx2 <- function(x2.b) {    # Increases the first element and 
 if (x2.b[1]<x2.b[2]-1) {  # decreases the second element if allowed 
  mx2.out <- c(x2.b[1]+1,x2.b[2]-1) 
 } 
 else { 
  mx2.out <- c(x2.b) 
 } 
 mx2.out 
} 
ife <- function(i.x){   # Increases first element of the vector 

i.m <- length(i.x)  # given to the function 
i.sum <- sum(i.x) 
i.out <- i.x 
i.j <- i.x[1]+1 
i.out[1] <- i.j 
i.busy <- TRUE 
i.i <- 1 
while (i.busy == TRUE) { 
 if (i.out[i.i] > i.out[i,i+1]) { 
     i.out[i,i+1] <- i.out[i.i] 
 } 
 else {i.busy <- FALSE 
 } 

i.i <- i.i+1 
if (i.i == i.m) {i.busy <- FALSE} 

 } 
i.busy <- TRUE 
i.i <- 1 
while (i.busy == TRUE) { 
 if (i.out[i.i] < i.out[i.i+1]) { 
          i.out[i,i+1] <- i.out[i.i+1]-1 
     if (sum(i.out) == i.sum) {i.busy <- FALSE} 
 } 
 else { 

i.i <- i.i+1 
if (i.i==i.m) {i.busy <- FALSE} 

 } 
} 
if (sum(i,out) !=i.sum) {i.out <- c("no",i.out[-i.m])} 
i.out 
} 
mx <- function(x,v){ 
 levelss <- 0 
 x.m <- length(x.v) 
 mx.out <- t(as.matrix(x.v)) 
 x.sp <- t(matrix(mx.out,x.m,x.m-2)) 
 x.done <- FALSE 
 x.level <- 1 
 # for (mx.i in c(1:25)) { 
 while (x.done==FALSE) { 
 if (x.level==1) { 
          x.pos <- x.m-x.level 
     x.f <- x.sp[1,-c(x.pos:(x.pos+1))] 
     x.b <- c(x.sp[1,c(x.pos:(x.pos+1))]) 
     if (x.b[1]>=x.b[2]-1) {x.b[3] <- 0} 
  else {x.b[3] <- 1} 
     while (x.b[3] == 1) { 
  x.b <- mx2(x.b[1:2]) 
  mx.out <- rbind(mx.out,c(x.f,x.b[1:2])) 
  if (x.b[1] >= x.b[2]-1) { 
      x.b[3] <- 0 
  } 
  else { 
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      x.b[3] <- 1 
  } 
 } 
x.level <- 2 
} 
else { 
 x.pos <- x.m-x.level 
 mx.hold2 <- x.sp[(x.level-1),c(x.pos:x.m)] 
 if (mx.hold2[2]>mx.hold2[1]+1) {  
     mx.hold1 <- mx2(x.sp[(x.level-1),c(x.pos,x.pos+1)]) 
     x.sp[(x.level-1),c(x.pos,x.pos+1)] <- mx.hold1 
     for (mx.i2 in c(1:(x.level-2))){ 
  x.sp[mx.i2,] <- x.sp[(x.level-1),] 
 } 
 mx.out <- rbind(mx.out,x.sp[(x.level-1),c(1:x.m)]) 
 x.level <- x.level-1 
} 
else { 
 if (sum(mx.hold2) > (mx.hold2[1])*length(mx.hold2)) { 
     x.pos <- x.pos-1 
     if (x.pos==0) { 
  mx.hold1 <- ife(x.sp[(x.level-1),]) 
     } 
 else { 
     mx.hold1 <- ife(x.sp[(x.level-1),-c(1:x.pos)]) 
 } 
 if (mx.hold1[1]== "no") { 
     x.level <- x.level+1 
 } 
 else { 
     if (x.pos==0){ 
  for (mx.i2 in c(1:(x.level-1))){ 
   x.sp[mx.i2,] <- mx.hold1 
  } 
  x.level <- 2 
     } 
     else { 
  for (mx.i2 in c(1:(x.level-1))){ 
   x.sp[mx.i2,-c(1:x.pos)] <- mx.hold1 
      } 
     x.level <- 2 
 } 
 x.level <- x.level-1 
 mx.out <- rbind(mx.out,x.sp[(x.level),c(1:x.m)]) 
 } 
} 
else { 
     x.level <- x.level+1 
     } 
} 
} 
if (x.level==x.m) {x.done <- TRUE} 
levelss <- c(levelss,x.level) 
} 
mx.out 
} 
# Constructing the table containing the distribution of FAP 
the.out <- array(0,dim=c((a.ub-a.lb+1),(n.ub-n.lb+1),(m.ub-m.lb+1))) 
attr(the.out, "dimnames")<-list(c((a.lb-1):(a.ub-1)),c(n.lb:n.ub),c(m.lb:m.ub)) 
names(attr(the.out, "dimnames")) <- c("a","n","m") 
start.time <- Sys.time() 
m.pos <- 0 
# Constructing the table 
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for (g.m in c(m.lb:m.ub)) { 
  m.pos <- m.pos+1 
  n.pos <- 0 
  for (g.n in c(n.lb:n.ub)) { 
    n.pos <- n.pos+1 
    a.pos <- 0 
    g.uT <- trunc((g.m*g.n)/2) 
    for (g.a in c(a.lb:a.ub)) { 
      a.pos <- a.pos+1 
      if (g.a>trunc(g.n/2)) {the.sums <- (NA)} 
      else { 
        g.b <- g.n-g.a 
        dom <- mx(isp(g.m, g.uT, g.a, g.b)) 
        vals <- cbind(apply(dom,1,erhs),apply(dom,1,foo)) 
        the.sums<as.numeric(((t(vals[,1])%*%vals[,2])/choose(g.n*g.m,g.uT))) 
      } 
      the.out[a.pos,n.pos,m.pos] <- (1-the.sums) 
    } 
  } 
} 
 
time.taken <- Sys.time()-start.time 
 
# Build the FAP table from the table with the distribution of FAP 
the.outt <- the.out 
d <- dim(the.outt) 
b <- 0 
 
# Initialize and name the matrices that will store the data 
FAP010a <- matrix(0,d[2],d[3]) 
rownames(FAP010a) <- attr(the.outt, "dimnames")$n 
colnames(FAP010a) <- attr(the.outt, "dimnames")$m 
names(attr(FAP010a, "dimnames")) <- c("n","m") 
FAP010prob <- FAP010a 
attr(FAP010prob, "dimnames") <- attr(FAP010a, "dimnames") 
 
FAP005a <- FAP010a 
attr(FAP005a, "dimnames") <- attr(FAP010a, "dimnames") 
FAP005prob <- FAP010a 
attr(FAP005prob, "dimnames") <- attr(FAP010a, "dimnames") 
 
FAP001a <- FAP010a 
attr(FAP001a, "dimnames") <- attr(FAP010a, "dimnames") 
FAP001prob <- FAP010a 
attr(FAP001prob, "dimnames") <- attr(FAP010a, "dimnames") 
 
# Build the actual FAP tables 
for (mm in c(1:d[3])) { 
 for (nn in c(1:d[2])) { 
  done <- FALSE 
  done01 <- FALSE 
  done005 <- FALSE 
  done001 <- FALSE 
  aa <- 0 
  while (done == FALSE) {  
   aa <- aa+1 
   if ((the.outt[aa,nn,mm]>0.1)&&(done01==FALSE)) { 
    FAP010a[nn,mm] <- max(0,aa-2) 
    FAP010prob[nn,mm] <- the.outt[max(aa-1,1),nn,mm] 
    done01 <- TRUE 
  } 
  if ((the.outt[aa,nn,mm]>0.05)&&(done005==FALSE)) { 
     FAP005a[nn,mm] <- max(0,aa-2) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

93 

 

 

   FAP005prob[nn,mm] <- the.outt[max(aa-1,1),nn,mm] 
     done005 <- TRUE 

} 
  if ((the.outt[aa,nn,mm]>0.01)&&(done001==FALSE)) { 
     FAP001a[nn,mm] <- max(0,aa-2) 

   FAP001prob[nn,mm] <- the.outt[max(aa-1,1),nn,mm] 
     done001 <- TRUE 
  } 
  if ((done01 == TRUE) && 
   (done005 == TRUE) && 
   (done001 == TRUE)) {done <- TRUE} 
  if (aa == d[1]) {done <- TRUE} 
  } 
 } 
} 
 
FAP010a 
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Chapter 3 

 

Phase II control charts – parameters known 

 

3.1 Introduction 

 

 When the underlying parameters of the process distribution are known or specified it is 

referred to as the ‘standard(s) known’ case and is denoted Case K. This will happen in high volume 

manufacturing processes where ample reliable information is available so that it is possible to 

specify values for the parameters (see e.g. Human (2009) page 127). Studying Case K sets the stage 

for the situation when the parameters are unknown, i.e. the ‘standard(s) unknown’ which is denoted 

Case U. Studying Case K also helps us understand the operation and the performance of the charts 

in the simplest of cases. 

 

 Recall that the number of charting statistics to be plotted on a control chart before the first 

signal is called the run-length of a chart. The discrete random variable defining the run-length is 

called the run-length random variable and is denoted by N. The distribution of N is called the run-

length distribution. For Case K the run-length distribution follows a Geometric distribution with 

probability of success 1 − � so that we write, symbolically, N ~ GEO(1 − �). This follows by 

assuming the subgroups are independent and that the probability of a signal is the same for all 

samples. The run-length distribution is given by 

 ��� = �	 = �
���1 − �	 for  � = 1,2,… (3.1) 

 

where � denotes the probability of no signal. From the properties of the Geometric distribution the 

ARL is the expected value of N so that  

 

�� = ���	 = 11 − �. (3.2) 

 

 Other characteristics of the run-length distribution are also of interest. For example, in 

addition to the mean we should also look at the standard deviation of the run-length distribution to 

get an idea about the variation or spread. From the properties of the Geometric distribution, the 

standard deviation of the run-length distribution, denoted by SDRL, is given by 
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���� = �������	 = ��1 − �. (3.3) 

 

 Since the Geometric distribution is skewed to the right the mean and the standard deviation 

become questionable measures of central tendency and spread so that additional descriptive 

measures are useful. The percentiles, along with the mean and the standard deviation, provide a 

clearer picture of the run-length distribution (see e.g. Radson and Boyd (2005) and Chakraborti 

(2007)). The 100��� percentile (0 < � < 1) is defined as the smallest integer � such that the 

cumulative probability is at least �, i.e. ��� ≤ �	 ≥ �. Focusing on the median, since it is a robust 

measure of performance, from the properties of the Geometric distribution, the median of the run-

length distribution, denoted by MRL, is given by  

 

��� = −1��� ��	. (3.4) 

 

These properties of the Geometric distribution will be used later on.  

 

 Next, to set the stage, a brief literature overview of nonparametric control charts for Case K 

is given. For a more thorough overview on the area of nonparametric control charts the reader is 

referred to Chakraborti et al. (2001), Chakraborti and Graham (2007) and Chakraborti et al. (2011).

  

 In Section 1.9 the three main classes of control charts are discussed: namely the Shewhart 

chart, the cumulative sum (CUSUM) chart and the exponentially weighted moving average 

(EWMA) chart. For monitoring the known location (Case K) of a process several nonparametric 

Shewhart, CUSUM and EWMA control charts have been developed and we mention some of the 

important and interesting contributions here. 

 

Nonparametric Shewhart control charts: 

 

i. Amin et al. (1995) and Bakir (2004) proposed nonparametric Shewhart-type control charts 

based on the well-known sign (SN) and Wilcoxon signed-rank (WSR) statistics, 

respectively. It should be noted that Amin et al. (1995) also incorporated warning limits 

into their Shewhart-type sign chart in order to improve the performance of the chart. 
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ii. Chakraborti and Eryilmaz (2007) improved Bakir (2004)’s Shewhart-type signed-rank 

chart by incorporating runs-rules and, more recently, Human et al. (2010a) improved Amin 

et al. (1995)’s Shewhart-type sign chart by incorporating runs-rules. The rules considered 

include the following:  

 

a. A single charting statistic plots on or outside the control limits (the 1-of-1 rule). 

 

b. ! consecutive charting statistics plot on or outside the control limits                       

(the !-of-! rule). 

 

c. ! of the last " (! ≤ ")
 
charting statistics plot on or outside the control limits        

(the !-of-" rule).  

 

Runs-rules are implemented in order to improve the performance of the charts. 

 

iii. Amin and Widmaier (1999) studied the Shewhart-type sign chart with variable sampling 

intervals. A variable sampling interval (VSI) control chart allows the sampling intervals to 

vary according to what is being observed in the current sample. For more details on VSI 

schemes, the reader is referred to Reynolds et al. (1990), Saccucci et al. (1992) and 

Reynolds (1996). 

 

Nonparametric CUSUM (denoted NPCUSUM) control charts: 

 

i. McGilchrist and Woodyer (1975) developed a distribution-free CUSUM test and applied it 

to the problem of detecting a change in the median of a rainfall distribution (note that 

although they did not construct a control chart, their proposed test can be used for 

constructing a distribution-free control chart). 

 

ii. Amin et al. (1995) and Bakir and Reynolds (1979) proposed NPCUSUM charts based on 

the well-known sign and signed-rank statistics, respectively.  
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Nonparametric EWMA (denoted NPEWMA) control charts:  

 

i. Amin and Searcy (1991) proposed a NPEWMA chart based on the signed-rank statistic. 

 

 From the literature overview, it is clear that the NPEWMA chart based on the well-known 

sign test statistic is missing from the list and in this dissertation this gap is filled. Thus, in the next 

section (Section 3.2) we propose a NPEWMA chart based on the SN test statistic; this new chart is 

labeled the NPEWMA-SN chart. Following this, in Section 3.3 we thoroughly investigate the 

NPEWMA chart based on the WSR test statistic; this chart is labeled NPEWMA-SR chart. 

 

 A number of research outputs related to and based on this thesis have seen the light. In 

Chapter 5 we provide a list with the details of the technical reports and the peer-reviewed articles 

that have been published, the articles that have been accepted for publication, the local and 

international conferences where papers have been presented and draft articles that have been 

submitted and are currently under review. Here, we solely mention the peer-reviewed articles that 

have been published based on Sections 3.2 and 3.3, respectively: 

 

i. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “A nonparametric EWMA sign 

chart for location based on individual measurements.” Quality Engineering, 23 (3), 227-241. 

 

ii. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “A nonparametric exponentially 

weighted moving average signed-rank chart for monitoring location.” Computational 

Statistics and Data Analysis, 55 (8), 2490-2503. 
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3.2 Nonparametric EWMA control chart based on the sign statistic 

 

3.2.1 Introduction 

 

 In typical applications of the EWMA chart it is usually assumed that the underlying process 

distribution is distributed normally (or, at least, approximately so) and, what is more, is that this 

assumption is typically taken for granted even in cases where there is individuals data or not much 

is known about the process distribution. Against this backdrop, Human et al. (2011) showed that the 

typical parametric EWMA control chart (denoted EWMA-#) based on the assumption of normality 

lacks IC robustness for some non-normal distributions (such as the symmetric bi-modal and the 

contaminated normal distribution) and therefore recommended using a NPEWMA chart when 

normality is a concern. A major advantage of a nonparametric control chart (see e.g. Chakraborti et 

al. (2001)) is that it has exactly the same IC run-length distribution for all continuous process 

distributions and is therefore naturally robust; this implies that the IC performance of a 

nonparametric control chart stays unchanged for all continuous processes, which provides the 

practitioner more flexibility in its application. So, in a NPEWMA chart one can combine the 

advantages of nonparametric charts (e.g. IC robustness) and that of EWMA-type charts (e.g. better 

small shift detection capability). To this end, Amin and Searcy (1991) proposed a NPEWMA chart 

based on the well-known Wilcoxon signed-rank (WSR) test statistic (see Section 3.3), which is a 

nonparametric test for the median of a symmetric continuous distribution, and investigated its 

properties using computer simulation. Their simulation results showed that although their proposed 

chart is less efficient than the EWMA-# chart when the underlying process distribution is normal, it 

is considerably more efficient for heavy-tailed distributions. This is typically the story with 

nonparametric tests and control charts. With this motivation, in this chapter, we consider some 

NPEWMA charts. First we propose a NPEWMA chart based on the well-known sign statistic for 

monitoring the location of a continuous process; the NPEWMA-SN chart. The sign test is one of the 

simplest nonparametric tests for any percentile of any continuous distribution and is thus more 

generally applicable than the WSR test which requires the distribution to be symmetric. Another 

practical advantage to using the sign statistic is that one does not require the exact numerical values 

of the observations in order to apply the sign test; the only information that is needed is whether the 

observation is larger or smaller than the specified parameter of interest. Moreover, it is known (see 

Gibbons and Chakraborti (2010) page 218) that the simpler sign has higher asymptotic relative 

efficiency than the WSR test in certain situations. The sign test statistic is defined in the next 

section. 
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 It should be noted at this point that NPCUSUM charts also combine the advantages of 

nonparametric charts (e.g. IC robustness) and that of CUSUM-type charts (e.g. better small shift 

detection capability). However, the CUSUM charts based on the SN and WSR statistics have 

already been proposed and studied in depth, by Amin et al. (1995) and Bakir and Reynolds (1979), 

respectively, and will not be discussed any further here. Nonetheless, a new NPCUSUM chart is 

proposed in Chapter 4 and it is important to note that all NPCUSUM charts enjoy the same 

advantages as listed above for NPEWMA charts.  

 

3.2.2 The sign test statistic 

 

Let #$�, #$ , … , #$' denote the i
th

 (i = 1,2,... ) sample or subgroup of independent 

observations of size ( ≥ 1  from a process with an unknown continuous distribution function ). Let *+ denote the known or specified value of the median of F when the process is IC, then *+ is called 

the target value. Let ($, (($�) denote the number of obsered values -$
 	with values greater (less) than 

*+ in the i
th

 sample. Provided there are no ties, i.e. none of the values are equal to *+, we have that ($, + ($� = (. Define 

 

��$ =0 12�(3-$
 − *+4'

5�  (3.5) 

 

for 	2	 = 	1,2,3, … where the sign function is defined by 

 

12�(�-	 = 8 1 if - > 0		0 if - = 0		−1 if - < 0.  
 

 Then it can be seen that ��$ = (>, − ($� i.e. ��$ is the difference between the number of 

observations with values greater than *+ and the number of observations with values less than *+ in 

the i
th

 sample. From ��$ = ($, − ($�, it follows that ��$ + ( = 2($, assuming no ties, so that  

 

($, = ��$ + (2 . (3.6) 

 

 The random variable ($, denotes that number of observations greater than *+ in the i
th

 

sample. To be more consistent with the literature, we denote, from this point on,  
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($, =	�$ =	0 Ψ3#$
 − *+4,'

5�  (3.7) 

 

where Ψ�	 = ?0 if  ≤ 0	1 if  > 0.  By substituting ($, =	�$ into Equation (3.6) and re-writing the 

equation, we obtain 

 ��$ = 2	�$ − (. (3.8) 

 

The advantage to using the sign test based on ��$ is the fact that its expected value in the IC 

case is 0 (this is proven later on). However, in the (nonparametric) literature the statistic �$ is the 

more well-known version, on which the sign test is based, and is referred to as the sign test statistic 

(see e.g. Gibbons and Chakraborti (2010) page 168). For the purpose of this study, however, we use ��$ and refer to it as the sign test statistic. 

 

The Shewhart-type sign control chart 

 

 It should be noted at this point that the statistic, ��$, is the charting statistic used when 

constructing the Shewhart-type sign chart by Amin et al. (1995). The control limits for the 

Shewhart-type sign chart are given by UCL/LCL = ±	A where A is an integer value between 0 and ( 

(including () and the center line equals zero, i.e. CL = 0. The charting constant A is found such that 

the attained FAR is close to some nominal FAR (the industry value of 0.0027 is typically used) 

value. It is worth noting the similarities between the control limits for the sign chart and those for 

the fraction nonconforming (B) chart. The latter are given by B̂ ± D	EFGHI���HI	'  where B̂ = J' is the 

sample proportion of successes and D	EF  is the 100�1 − K 2L 	th percentile of the standard normal 

distribution; these control limits are based on the Wald confidence interval (Brown et al. (2001)); 

the latter and other articles (see, for example, Ghosh (1979), Blyth and Still (1983) and Vollset 

(1993)) pointed out that the coverage properties of the Wald interval can be erratically poor for 

many combinations of ( and B. However, alternative intervals have been proposed; see for example 

Agresti-Coull (1998) who proposed an interval that lowered the discrepancy between the actual and 

nominal coverage probability. This issue has implications in relation with the false alarm rate of 

sign control chart and in general for control charts for attributes data and can be a topic of further 

research in the SPC context. 
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Zero differences 

 

For a continuous random variable, #, the probability of any particular value is zero; thus, ��# = M	 = 0 for any M ∈ Ɍ. Since the distribution of the observations is assumed to be continuous 

we have that �3#$
 − *+ = 04 = 0. Theoretically, the case where 12�(3-$
 − *+4 = 0 should thus 

occur with zero probability, but in practice zero differences do occur as a result of, for example, 

truncation or rounding of the observed values. A common practice (see e.g. Gibbons and 

Chakraborti (2010) page 171) in such cases is to discard all the observations leading to zero 

differences and to redefine ( as the number of nonzero differences. 

 

Distributional properties of SNi 

 

The random variable �$ has a binomial distribution with parameters ( and B = �3#$
 > *+4, 
i.e. �$ ~ BIN((, B). The properties of the binomial distribution are well-known and they are given in 

the second column of Table 3.1. We can find the distribution of ��$ via the linear relationship given 

in Equation (3.8) and this is given in the last column of Table 3.1. 
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Table 3.1. Moments and the pmf of the �$ and ��$ statistics, respectively 

 Ti SNi 

Expected value ���$	 = (B  

 ����$	  = ��2�$ − (	  = (�2B − 1	  
 

Variance ����$	 = (B�1 − B	  
 �����$	  = ���2�$ − (	  = 4(B�1 − B	  
 

Standard deviation �������$	 = �(B�1 − B	   ��������$	 = 2�(B�1 − B	  
 

Probability mass  

function (pmf) 

Q�R	  = ���$ = R	  = S(RT B��1 − B	'��  
 R = 0,1,2,… , (  

 Q�1	  = ����$ = 1	  = ��2�$ − ( = 1	  = � S�$ = ',U T  

 1 = −(,−( + 1,… , ( − 1, (  
 

 

The probability distributions of �$ and ��$ are both symmetric
i
 in the IC case, when the median 

is equal to  *+. Hence, when the process is IC we have that: 

 

• the probability distributions, given by the pmf’s, are referred to as the in-control probability 

distributions; 

 

• B = �3#$
 > *+|IC4 = 0.5; and 

 

• since the IC distribution of the charting statistic ��$ is symmetric about 0, the control limits 

will be equal distances away from 0, assuming the importance of detecting an upward and 

downward shift is the same. 

  

 Figure 3.1 illustrates the IC probability distributions of �$ and ��$ for ( = 10. It is seen that 

the discrete distributions are symmetric about their means, that is, �$ is symmetric around its mean 

of (B = 10×0.5 = 5 and ��$ is symmetric around its mean of (�2B − 1	 = 10(2×0.5−1) = 0. We 

continue to work with ��$ to propose our control chart. 

                                                 
i
 �$  and ��$ are symmetric about (B and zero, respectively, as long as the median remains at *+. 
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Figure 3.1. The IC probability distribution of �$ and ��$ for 10=n  

 

3.2.3 The NPEWMA-SN control chart 

 

3.2.3.1 Design of the chart 

 

 The proposed NPEWMA-SN chart is an analog of the parametric EWMA chart given in 

Section 1.9.3 with ��$ substituted for Z$ in Equation (1.6). The charting statistic of the proposed 

NPEWMA-SN chart is obtained by sequentially accumulating the statistics ���, �� , ��[, …,  and is 

defined as  

 \$ = ]��$ + �1 − ]	\$�� for 2 = 1,2,3… (3.9) 

 

where 0 < ] ≤ 1 is a design parameter called the smoothing constant. The starting value, \+, which 

is required with the first sample at 2 = 1, is set equal to the target value or the expected value of \$ 
when the process is IC i.e. \+ = 0 (see Result 3.1 below).  

  

 The CL and the control limits of the NPEWMA-SN chart are functions of the IC mean and 

the IC standard deviation of the charting statistic, \$, which are given in the following result.  
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Result 3.1 

 

��\$|IC	 = 0 and  ^_`|ab = G c �c �1 − �1 − ]	 $	(, respectively.  

 

Proof 

  

 By the definition of the charting statistic (see Equation (3.9)) and using recursive 

substitution (see Appendix 1A) we obtain the following result: 

 

��\$|IC	 = ��]��$ + �1 − ]	\$��|IC	 = � d]0 �1 − ]	
$��

5+ ��$�
 + �1 − ]	$\+|ICe. 

 

Using the fact that �3��$�
|IC4 = 0 (see Table 3.1) and \+ = 0 we have that 

 

��\$|IC	 = ]0 �1 − ]	
$��

5+ �3��$�
|IC4 + �1 − ]	$\+ = 0. 

 

 In order to obtain the variance similar steps are followed, i.e. we once again use the 

definition of the charting statistic (see Equation (3.9)) and recursive substitution (see Appendix 1A). 

However, we also use the result for the sum of a finite geometric series (see Equation (A1.4) in 

Appendix 1A) and the fact that ��3��$�
|IC4 = ( (see Table 3.1 with B = 0.5). Consequently, we 

have that 

  

���\$|IC	 = ��3]∑ �1 − ]	
$��
5+ ��$�
 + �1 − ]	$\+|IC4 
= ] 0 �1− ]	 
$��


5+ ��3��$�
|IC4 
= (] 0 �1− ]	 
$��


5+  

= (] d1 − �1 − ]	 $1 − �1 − ]	 e 

= (] d1 − �1 − ]	 $2 − ] e. 
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Therefore, ������\$|IC	 = ^_`|ab = G c' �c �1 − �1 − ]	 $	.  
 �  

  

 In analogy with the parametric EWMA, the exact control limits and the CL of the 

NPEWMA-SN control chart are thus given by 

 

gh� = 	��\$|IC	 + �^_`|ab = +�i ](2 − ] �1 − �1 − ]	 $	 
 h� = ��\$|IC	 = 0 (3.10) 

 

�h� = 	��\$|IC	 − �^_`|ab = −�i ](2 − ] �1 − �1 − ]	 $	 
 

where L > 0 is a charting constant. The steady-state control limits (which are typically used when 

the NPEWMA-SN chart has been running for several time periods so that the term 31 − �1 − ]	 $4 
in (3.10) approaches unity) are given by 

 

gh� = 	+�i ](2 − ] 

 

and (3.11) 

 

�h� = 	−�i ](2 − ]. 
 

 

The NPEWMA-SN chart is a plot of the \$’s (together with the CL and the control limits) on 

the vertical axis versus the sample number or time, i, on the horizontal axis. If any \$ plots on or 

outside either of the two control limits the process is declared to be OOC and a search for 

assignable causes is started. Otherwise, the process is considered IC and the charting procedure 

continues. Note that, in the developments that follow, we: 
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i. Consider monitoring the 50
th

 percentile (or median) of the process so that *+ actually 

denotes the known or specified value of the process median. Because the IC probability 

distribution of the charting statistic is symmetric when monitoring the median it makes 

sense to use symmetric control limits which results in a visually appealing control chart. 

However, it should be pointed out that our methodology is flexible enough and can be used 

to monitor any percentile of interest and can be used with asymmetric control limits (e.g. 

when detecting an upward and a downward shift is not equally important). 

 

ii. Study two-sided charts only. In applications where a one-sided chart is more meaningful or 

practical the methodology can be easily modified (this is illustrated in Section 1.9.3). 

 

iii. Use the steady-state control limits; this significantly simplifies the calculation of the run-

length distribution via the Markov chain approach and will be discussed in more detail 

below. However, it should be noted that using the exact control limits with say, simulation, 

will give more accurate results. 

 

iv. We assume that ( = 1, which means that we deal with individual observations and then we 

simply assign a value of 1 to the statistic ��$ if the observation is greater than *+, zero if it 

equals *+ and -1 if it is less than *+. We focus on the special case of ( = 1 because the usual 

EWMA-# control chart is typically used with individual observations (see e.g. Montgomery 

(2009) page 419) and simplifies the performance comparison of the various charts 

considered in the performance comparison.   

 

 Also, note that, the two design parameters of the chart i.e. λ and L, directly influences the 

NPEWMA chart’s performance and suitable combinations should be used. The choice of λ and L is 

discussed in more detail later. 

 

Run-length distribution 

 

 We use a Markov chain approach (see Section 1.10.1) to evaluate / approximate the run-

length distribution of the NPEWMA-SN chart. The approach will be discussed in more detail 

below. We then calculate and evaluate some associated chart performance characteristics (such as 

the mean (ARL), the standard deviation (SDRL), the median (MRL) and some lower and higher 

order percentiles etc.). The percentiles, along with the mean and the standard deviation, provide a 
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clearer picture of the run-length distribution (see e.g. Radson and Boyd (2005) and Chakraborti 

(2007)).  

 

For an EWMA statistic, we have a continuous state Markov chain (with an infinite state 

transition probability matrix) and its values are discretized into a finite state Markov chain so that 

(approximate) results can be obtained relatively easily. Recall that the state space consists of two 

types of states:  

 

i. one absorbing state (i.e. this state is entered when the chart signals, that is when the 

EWMA statistic is greater than or equal to the UCL or less than or equal to the LCL) and  

 

ii. j transient or non-absorbing states, so that there are j + 1 states in total.  

 

 The j transient states correspond to j equal length subintervals of width 2k obtained by 

dividing the interval between the upper and lower control limits. For convenience, j is taken to be 

an odd positive integer, equal to 21 + 1 with 1 ≥ 1 so that there is a unique middle  subinterval 

between the upper and lower control limits. In this dissertation j	 = 1001 is used unless otherwise 

stated (see Appendix 3B for a motivation on the choice of the number of subintervals between the 

control limits). From Section 1.10.1 recall that we are interested in calculating the one-step 

transition probabilities; � = lB$
m for 2, � = −1,−1 + 1,… , 1 − 1, 1. In order to calculate these 

probabilities we assume that the charting statistic is equal to �$ whenever it is in state 2. For � non-

absorbing we obtain  

 

B$
 = �3�
 − k < \n ≤ �
 + k	|	in	�$4		∀�		�� ≠ 1	 
and (3.12) 

B$
 = �3�
 − k < \n < �
 + k	|	in	�$4  for 	� = 1. 

  

 Note that the subscript ! does not indicate that the charting statistic is time dependent; it 

simply refers to the charting statistic under consideration. For � absorbing we use the fact that the 

rows of a � must add to one and therefore the probabilities of going from a transient state to the 

absorbent state are found by subtraction. Finding the essential probability sub-matrix, Q (see 

Equation (1.11)), involves finding the transition probabilities of going from one transient state to 

another. In order to calculate the transition probabilities for the NPEWMA-SN control chart we use 

the charting statistic given in Equation (3.9) and substitute this into (3.12) to obtain  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



108 

 

 B$
 = � SqS�rs�t	����c	r`c T + 1u 2L < �n ≤ qS�rs,t	����c	r`c T + 1u 2L T 	∀�		�� ≠ 1	 
and (3.13) 

B$
 = � SqS�rs�t	����c	r`c T + 1u 2L < �n < qS�rs,t	����c	r`c T + 1u 2L T for � = 1. 

 

 Since the values k, λ, �$ and �
  are known constants, (λ is chosen by the practitioner and k, 

�$ and �
  are calculated), the binomial probabilities in Expression (3.13) can easily be calculated. 

The proof of Equation (3.13) and an illustrative example follows. 

 

Proof 

 

 For � non-absorbing, i.e. � = −1,−1 + 1,… , 1 − 1, we obtain the one-step transition 

probabilities B$
 = �3�
 − k < \n ≤ �
 + k	|	in	�$4. This is the probability that \n is within state �, 
conditioned on \n�� being equal to the midpoint of state 2. By using the definition of the charting 

statistic given in Equation (3.9) and the fact that ��n = 2�n − ( with ( = 1 and where �n is 

binomially distributed with parameters ( and B = �3#$
 > *+4,  this transition probability can be 

written as 

 B$
 = �3�
 − k < ]��n+�1 − ]	\n�� ≤ �
 + k|\n�� = �$4 = �3�
 − k < ]��n+�1 − ]	�$ ≤ �
 + k4 
= � d3�
 − k4 − �1 − ]	�$] < ��n ≤ 3�
 + k4 − �1 − ]	�$] e 

= � d3�
 − k4 − �1 − ]	�$] < 2�n − 1	 ≤ 3�
 + k4 − �1 − ]	�$] e 

= � dd3�
 − k4 − �1 − ]	�$] + 1e 2L < �n 	≤ d3�
 + k4 − �1 − ]	�$] + 1e 2L e. 
�  
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Example 3.1 

  

 Numerical results for the NPEWMA-SN chart with design parameters λ = 0.05, L = 2 and w = 21 + 1 = 9 (so that 1 = 4, that is we divide the interval between the control limits into nine 

subintervals (see Figure 3.2) resulting in a ‘small’ transition probability matrix with only ten rows 

and ten columns, respectively) are given. The steady-state control limits are given by LCL = −0.320 

and UCL = 0.320 which are obtained by substituting λ = 0.05, L = 2 and ( = 1 into Equation (3.11).  

 

 
Figure 3.2. Partitioning of the interval between the LCL and the UCL into j = 9 subintervals  

for λ = 0.05 and L = 2 
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Using nine IC states, the transition probability matrix is given by  

 

��+×�+ = xyz×z−0′�×z			
|−| 			

Bz×�−1�×�	| 

 

=

}
~~
~~
~~
~�
B���	���	B��[	���	B�� 	���	B���	���	B+���	B����	B ���	B[���	B����	−B����	

			

B���	��[	B��[	��[	B�� 	��[	B���	��[	B+��[	B���[	B ��[	B[��[	B���[	−B���[	

			

B���	�� 	B��[	�� 	B�� 	�� 	B���	�� 	B+�� 	B��� 	B �� 	B[�� 	B��� 	−B��� 	

			

B���	���	B��[	���	B�� 	���	B���	���	B+���	B����	B ���	B[���	B����	−B����	

			

B���	+B��[	+B�� 	+B���	+B++B�+B +B[+B�+−B�+

		

B���	�B��[	�B�� 	�B���	�B+�B��B �B[�B��−B��

		

B���	 B��[	 B�� 	 B���	 B+ B� B  B[ B� −B� 

		

B���	[B��[	[B�� 	[B���	[B+[B�[B [B[[B�[−B�[

		

B���	�B��[	�B�� 	�B���	�B+�B��B �B[�B��−B��

			

||||||||
|

			

B���	�B��[	�B�� 	�B���	�B+�B��B �B[�B��−B��

	

�
��
��
��
��

  

 

= � 

}
~~
~~
~~
~�
010000000−0

			

101000000−0

			

010100000−0

			

001010000−0

			

000101000−0

		

000010100−0

		

000001010−0

		

000000101−0

		

000000010−0

			

||||||||
|

			

100000001−2

	

�
��
��
��
��

  

 

where the transition probabilities are calculated using Equation (3.13). The calculation of B+� is 

given below for illustration purposes. 

 B+�  

= � SqS�r��t	����c	r�c T + 1u 2L < �n ≤ qS�r�,t	����c	r�c T + 1u 2L T  

= � SqS�+.+���+.+[�	����+.+�	++.+� T + 1u 2L < �n ≤ qS�+.+��,+.+[�	����+.+�	++.+� T + 1u 2L T  

= ��0.856 < �n ≤ 1.568	  
= ���n = 1	 = � . 
 

 The second last equality follows from the fact that the random variable, �n, having a    

BIN(( = 1, B = 0.5) distribution, takes on only nonnegative integer values ��n ∈ {0,1}	. 
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 Once the one-step transition probabilities are calculated and the essential transition 

probability sub-matrix Q is found, the IC run-length characteristics are obtained using equations 

(1.13), (1.14) and (1.15). This yields ARL0 = 25.00 and SDRL0 = 20.00 with the IC 5
th

, 25
th

, 50
th

, 

75
th

 and 95
th

 percentiles being equal to 5, 11, 19, 33 and 65, respectively. The ARL0 indicates that, 

when the process is IC, the first signal would be observed, on average, at every 25
th

 plotted point. 

The first quartile is 11, so we know that a false alarm will not occur within the first 11 plotted 

points, with a probability of at most 75%.  As another example, the MRL0 = 19, which indicates that 

the first false alarm will be observed, within the first 19 plotted points, at least 50% of the time. 

 

3.2.3.2 Implementation of the chart 

 

The reader is referred to Section 1.9.3 for a detailed discussion on the choice of the design 

parameters, λ and L. Here we simply state that three values of λ, corresponding to small (roughly 

0.5 standard deviations or less), moderate (roughly between 0.5 and 1.5 standard deviations) and 

large shifts (roughly 1.5 standard deviations or more), were used along with values of L ranging 

from 2 to 3 in increments of 0.1. Note that, the first row of each cell in Table 3.2 shows the ARL0 

and SDRL0 values, respectively, whereas the second row shows the in-control 5
th

, 25
th

, 50
th

, 75
th

 and 

95
th

 percentiles (in this order); these descriptive statistics help summarize the IC run-length 

distribution, in terms of its shape, typical value (location) and spread.  

 

From Table 3.2 we observe that for a specified / fixed value of λ, the ARL0 and other 

characteristics of the IC run-length distribution all increase as L increases. Also, the IC run-length 

distribution is positively skewed (as is expected) since ARL0 > MRL0 for all combinations of (λ, L). 

 

This table is useful for a practical implementation of the control chart. For example, from 

Table 3.2 we observe that for (] = 0.05, L = 2.5) the ARL0 = 396.36 and for (] = 0.05, L = 2.6) the 

ARL0 = 514.42, which implies that the value of L that leads to an ARL0 of 500 is between 2.5 and 

2.6. Refining the search algorithm leads to (] = 0.05, L = 2.583) with an ARL0 of 497.75 (see Table 

3.3); more details are given below. 
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Table 3.2. The characteristics
ii
 of the IC run-length distribution for the NPEWMA-SN chart 

L 
Small shifts Moderate shifts Large shifts 

λλλλ = 0.05 λλλλ = 0.10 λλλλ = 0.20 

2.0 
123.00 (113.05) 72.74 (67.34) 52.92 (49.69) 

15, 43, 88, 167, 349 9, 25, 52, 99, 207 5, 17, 38, 72, 152 

2.1 
151.82 (141.14) 93.78 (86.78) 73.84 (69.03) 

18, 51, 109, 206, 433 11, 32, 67, 127, 267 8, 25, 53, 100, 212 

2.2 
192.64 (180.74) 118.77 (111.94) 104.63 (100.29) 

21, 64, 137, 262, 553 13, 39, 84, 162, 342 9, 33, 74, 143, 305 

2.3 
243.29 (230.53) 156.91 (148.70) 157.08 (151.13) 

24, 79, 173, 332, 703 16, 51, 111, 214, 454 14, 49, 111, 215, 459 

2.4 
310.64 (296.68) 208.58 (200.28) 254.90 (247.71) 

29, 99, 220, 425, 903 19, 66, 147, 286, 608 20, 78, 179, 351,  749 

2.5 
396.36 (381.58) 281.06 (271.63) 444.74 (436.71) 

34, 125, 279, 544, 1158 23, 88, 198, 386, 823 30, 134, 311, 613, 1316 

2.6 
514.42 (498.32) 376.57 (366.84) 883.01 (873.93) 

42, 160, 362, 707, 1509 29, 115, 264, 518, 1109 54, 260, 615, 1221, 2627 

2.7 
688.49 (671.00) 544.25 (533.21) 2143.60 (2133.50) 

52, 211, 483, 948, 2028 38, 164, 381, 750, 1608 120, 624, 1489, 2968, 6401 

2.8 
914.52 (896.17) 798.32 (787.09) 

*** 
64, 276, 640, 1261, 2703 52, 238, 557, 1102, 2369 

2.9 
1262.27 (1242.56) 1170.49 (1158.06) 

*** 
83, 377, 881, 1742, 3742 72, 346, 815, 1618, 3482 

3.0 
1722.6 (1701.96) 1820.61 (1807.21) 

*** 
108, 510, 1200, 2380, 5119 106, 533, 1266, 2519, 5427 

 

*** For the NPEWMA-SN chart to signal one must have that  

 

� q ]2 − ]u ≤ 1. (3.14) 

 

The reader is referred to Appendix 3A for the derivation of this limitation. Also note that, the closer 

� S c �cT gets to one, the larger the ARL0 (and the other characteristics of the IC run-length 

distribution) get. Hence, if the expression in (3.14) isn’t satisfied or the IC run-length characteristics 

become unreasonably large, these values are omitted as they are not considered useful in practice. 

 

With regard to the implementation of the NPEWMA-SN chart, the first step is to choose λ. 

The recommendation (see Section 1.9.3) is to choose a small λ, say equal to 0.05, when small shifts 

are of interest, if moderate shifts are of greater concern, choose λ = 0.10, whereas choose λ = 0.20 if 

larger shifts are of interest. Note that these recommendations are consistent with those for the 

EWMA-# chart (see e.g. Montgomery (2009) page 423)). After λ is chosen, the second step 

involves choosing L, so that a desired ARL0 is attained.  

 

                                                 
ii
 The first row of each cell shows the ARL0 and SDRL0 values, respectively, whereas the second row shows the values 

of the in-control 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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In order to aid the practitioner in the design of the NPEWMA-SN chart, Table 3.3 lists some 

(λ, L)-combinations for popular nominal ARL0 values of 370 and 500, respectively. In each case, the 

ARL0 values, obtained using the Markov chain approach, called the attained ARL0 values, are also 

provided. Note that because of the discreteness of the sign statistic, the nominal ARL values are not 

attained exactly, however, it is remarkable that the NPEWMA-SN chart can attain ARL0 values 

pretty close to the nominal values which make these charts useful in practice. 

 

Table 3.3.  (λ, L)-combinations for the NPEWMA-SN chart for nominal ARL0 = 370 and 500 

Nominal ARL0 = 370 Nominal ARL0 =	500 

Shift to be 

detected 
(λ, L) Attained ARL0 (λ, L) Attained ARL0 

Small (0.05, 2.472) 369.49 (0.05, 2.583) 497.75 

Moderate (0.10, 2.585) 370.74 (0.10, 2.667) 500.15 

Large (0.20, 2.471) 364.61 (0.20, 2.521) 497.61 

 

So, for example, in order to detect a small shift in the median with the NPEWMA-SN chart 

with an ARL0 of approximately 500, one can use the (λ, L)-combination: (0.05, 2.583). Table 3.3 

should be useful for implementing the NPEWMA-SN chart in practice. A SAS® program is 

provided (see Appendix 3C) if the practitioner wishes to obtain some other (λ, L)-combinations for 

other nominal ARL0 values. 

 

3.2.3.3 Performance comparison with other charts 

 

In-control robustness 

  

 The IC performance of a chart is typically used to assess its robustness (i.e. the sensitivity of 

or, the change in, the properties of the run-length distribution) to different distributional 

assumptions whereas the OOC performance of the chart is examined to assess its efficacy in 

detecting a shift in the underlying process.  

  

This study includes a wide collection of non-normal distributions and considers light tailed 

and heavy-tailed, symmetric and asymmetric, uni-modal and bi-modal, positively skewed as well as 

the Contaminated Normal (CN) distributions, which are particularly useful to study the effects of 

outliers. Note that, wherever necessary, all distributions have been shifted and scaled such that the 

mean / median equals 0 and the standard deviation equals 1, so that the results are easily 

comparable across the distributions. The details for these steps are shown in Appendix 1B. 

Specifically, the distributions considered in the study are: 
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i.  The Standard Normal distribution, N(0,1). 

 

ii.  The Student’s t-distribution, t(v), with degrees of freedom v = 4 and 8, respectively, 

which is symmetric but with heavier tails than the Normal.  

 

iii. The Gamma distribution, GAM(K, �), with parameters �K, �	 = (0.5,1), (1,1) and (3,1), 

respectively, which is positively skewed.  

 

iv. The Laplace (or Double Exponential) distribution, DE(0,1/√2), with location parameter 

0 and the scale parameter set equal to 1/√2.  

 

v. The Logistic distribution with location parameter 0 and the scale parameter set equal to 

√3/�.  

 

vi. The Contaminated Normal (CN) distribution, which is a linear combination of two 

Normal random variables with the same location but different variance:  

0.95� S0, ��.��T + 0.05� S0, ��.��T  

where the $̂’s are chosen so that the standard deviation of the distribution equals 1, that 

is, 0.95 �̂ + 0.05  ̂ = 1. We consider the case where  ̂ �̂⁄ = 2. The contaminated 

normal distribution is often used to study the effects of outliers.  

 

The NPEWMA-SN chart is compared
iii

 to the parametric EWMA-# chart. The results are 

shown in Table 3.4. Because the proposed NPEWMA-SN chart is nonparametric, the IC run-length 

distribution and the associated characteristics remain the same for all continuous distributions. 

However, this is not true for the EWMA-# chart. Note that, the values of L were chosen such that 

the ARL0 ≈ 500 for each chart and that, in case of the EWMA-# chart, the values of L were chosen 

(using a search algorithm) such that the ��+ ≈ 500 when the underlying distribution is N(0,1). 

 

  

                                                 
iii

 Comparison studies have been done in the literature on Phase II control charts (see e.g. Das (2009)). 
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Table 3.4. The IC performance characteristics
iv

 of the run-length distribution for the NPEWMA-SN 

and the EWMA- X  charts for selected (λ, L)-combinations 

 
NPEWMA-SN 

(λ, L) = (0.05, 2.583) (λ, L) = (0.10, 2.667) (λ, L) = (0.20, 2.521) 

For all  

distributions 

497.75 (481.72) 

41, 155, 350, 684, 1459 

500.15 (489.29) 

36, 152, 350, 689, 1477 

497.61 (489.44) 

33, 149, 347, 687, 1474 

 EWMA-� 

Distribution (λ, L) = (0.05, 2.613) (λ, L) = (0.10, 2.820) (λ, L) = (0.20, 2.962) 

N(0,1) 
496.80 (481.23) 500.84 (496.97) 497.21 (491.12) 

39, 154, 349, 683, 1456 34, 151, 352, 698, 1507 30, 147, 346, 689, 1473 

t(4) 
439.19 (428.37) 336.80 (332.23) 219.01 (217.18) 

32, 133, 308, 605, 1298 22, 100, 234, 465, 1000 13, 64, 153, 303, 651 

t(8) 
471.89 (457.49) 428.78 (420.63) 325.68 (323.01) 

37, 146, 332, 649, 1383 28, 128, 301, 593, 1265 20, 96, 228, 451, 969 

Laplace 
443.87 (432.60) 360.35 (353.91) 236.91 (234.55) 

34, 136, 311, 609, 1305 24, 108, 251, 496, 1071 15, 70, 164, 327, 706 

Logistic 
477.10 (464.89) 432.79 (424.59) 331.57 (328.54) 

37, 146, 335, 655, 1411 29, 130, 305, 597, 1276 21, 98, 231, 457, 987 

GAM(0.5,1) 
429.69 (425.65) 266.00 (263.73) 146.25 (146.08) 

27, 127, 298, 594, 1273 16, 78, 185, 367, 793 8, 42, 101, 202, 439 

GAM(1,1) 
464.97 (457.19) 325.51 (323.16) 185.76 (184.71) 

31, 139, 324, 643, 1376 19, 95, 226, 449, 970 11, 54, 130, 256, 555 

GAM(3,1) 
487.45 (473.27) 419.24 (415.31) 282.46 (279.81) 

36, 149, 343, 673, 1430 26, 124, 292, 580, 1244 17, 83, 195, 391, 842 

CN 
450.23 (467.54) 434.59 (442.18) 357.60 (355.41) 

9, 116, 305, 632, 1385 15, 120, 300, 605, 1311 16, 101, 247, 497, 1078 

 

  

  

                                                 
iv
 The first row of each cell shows the ARL0 and SDRL0 values, respectively, whereas the second row shows the values 

of the in-control 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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 For a better understanding of the values presented in Table 3.4, let us consider the first cell. 

The value of ARL0 = 497.75 in the first row indicates that, for the NPEWMA-SN chart with design 

parameters λ = 0.05 and L = 2.583, when the process is IC, the first false alarm would be observed, 

on average, at every 498
th

 plotted point. The first quartile is 155, so we know that a false alarm will 

not occur within the first 155 plotted points, with a probability of at most 75%. As another example, 

the MRL0 = 350, which indicates that the first false alarm will be observed, within the first 350 

plotted points, at least 50% of the time.  

 

 For a visual representation of the IC run-length distributions, the values given in Table 3.4 

are displayed in some boxplot-like graphs (see Radson and Boyd (2005)) and shown in Figure 3.3. 

Each boxplot shows the mean of the distribution as a square and the median as a circle inside the 

box. The ‘whiskers’ are extended to the 5
th

 and the 95
th

 percentiles instead of the usual minimum 

and maximum. Note that only one boxplot is shown for the NPEWMA-SN chart (the first boxplot 

on the left), since its IC run-length characteristics are the same for all continuous distributions and 

that a reference line was inserted on the vertical axis at 500, which is the desired nominal ARL0 

value in this case. 
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Figure 3.3.  Boxplot-like graphs of the IC run-length distributions of the NPEWMA-SN chart (first 

boxplot on the left) and the EWMA-# chart (remaining 9 boxplots on the right) 
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 From Figure 3.3 several observations can be made. As expected, the run-length distributions 

are all skewed right. The EWMA-# chart does not have the IC robustness property of the 

NPEWMA-SN chart, given that its ARL0 values vary (as the underlying distribution changes) and 

sometimes vary quite dramatically. For example, for λ = 0.20 (see panel (c) of Figure 3.3 together 

with the values in Table 3.4) the ARL0 of the EWMA-# chart varies from 497.21 (when the 

underlying distribution is N(0,1)) to 146.25 (when the underlying distribution is GAM(0.5,1)). In 

addition, for some of the distributions, the ARL0 values of the EWMA-# chart are significantly 

smaller than 500, which is clearly problematic since they indicate more false alarms. For example, 

from Table 3.4 it can be seen that for the GAM(0.5,1) distribution, the ARL0 = 146.25 for the 

EWMA-# chart when λ = 0.20. This is roughly a third of the nominal ARL0 value of 500. Although 

it is possible to tune the EWMA-# chart for each distribution by using a grid search algorithm to 

find the design parameter L such that the nominal ARL0 ≈ 500, in general, it raises reasons for 

concern regarding false alarms while using it in situations where the underlying distribution is not 

sufficiently known or is (markedly) non-normal. The NPEWMA-SN chart does not suffer from this 

potential shortcoming. 

 

Out-of-control chart performance  

  

 While the IC performance raises excessive false alarm concerns for the EWMA-# chart, it is 

important to also examine the OOC performance for a more complete comparison. This is presented 

now. In analogy with the parametric charts, the OOC properties depend on the underlying process 

distribution and on some information about the noncentrality parameter. For the NPEWMA-SN 

chart all OOC properties depend on the underlying process distribution through the probability that 

an observation exceeds the median, i.e. ��#$ > *+), where #$ denotes the i
th

 (2 = 1,2,…) 

observation. In order to compare the traditional and nonparametric EWMA charts:  

 

i. It is straight forward to show using Equations (3.2) and (3.3) that the SDRL is always less 

than the ARL, i.e. SDRL < ARL, and holds whether the process is IC or OOC and this is also 

what we observe from Tables 3.4 (for the IC case) and Tables 3.5, 3.6 and 3.7 (for the OOC 

case). 

 

ii. The ARL0 values of all the charts are fixed at or close to 500 (for the NPEWMA-SN chart 

we use the same value for L over all distributions, whereas for the EWMA-# chart we had to 

use different values for L over the different distributions).  
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iii. We compare the NPEWMA-SN chart to the EWMA-# chart with known parameters (see 

Roberts (1959) and Steiner (1999)). The shift considered by Roberts (1959; page 242) for 

the EWMA-# chart is given by ∆= ��� with ^J = ^ √(L . The shift considered by Steiner 

(1999; page 78) for the EWMA-# chart is given by 
���� with ^J = ^ √(L . Thus, in order to 

have a fair comparison between the proposed NPEWMA-SN chart and the EWMA-# chart, 

a shift of � = � ^ √(L  where −∞ < � < ∞, � ≠ 0 is used for all charts. Note, however, that 

since individuals data is considered we have that ( = 1 and the population standard 

deviation also equals one, i.e. ^ = 1, in our case, so that � = � and can be used 

interchangeably. 

 

iv. Both positive and negative shifts were considered for the Gamma distribution; for 

symmetric distributions the direction of the shift does not seem to affect the detection 

capability of the charts, whereas for the right-skewed Gamma distribution, it does. The 

reader is referred to Figures 2.10, 2.11 and 2.12 in Chapter 2 for an illustration of this.  

 

 Tables 3.5 and 3.6 give the OOC characteristics of the run-length distribution, for the 

EWMA-# chart and the NPEWMA-SN chart, respectively, for positive shifts (� is taken to be 0.5 

to 2.0 in increments of 0.5). The largest value of � under consideration is � = 2.0, since, for larger 

shifts, the run-length characteristics of the charts tend to converge; this convergence is illustrated in 

the technical report by Graham et al. (2009) where larger shifts, i.e. larger than � = 2.0 were 

considered. Also, taking the largest value of � equal to 2.0 is consistent with the shifts considered in 

Chapter 1 and the rest of the dissertation. Table 3.7 gives the OOC characteristics of the run-length 

distribution, for the EWMA-# chart and the NPEWMA-SN chart, respectively, for the Gamma 

distribution for negative shifts (� is taken to be −2.0 to −0.5 in increments of 0.5).  

 

 Note that in order to allow for a signal after one observation, the maximum allowable UCL 

for the NPEWMA-SN chart is ] and, in general, in order to allow for a signal after the i
th

 

observation, the maximum allowable UCL is �1 − �1 − ]	$	. This can be easily shown by 

substituting the maximum value of ��$ (which equals 1) into Equation (3.9) and rewriting the 

charting statistic as \$ = ]∑ �1 − ]	
��$�
$��
5+ + �1 − ]	$\+. Thus, the first time the chart can 

signal is on the first observation number 2 such that  
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 2 ≥ �(�1 − gh�	 /�(	�1 − ]	. (3.15)  

  

 The proof of this result is given in Appendix 3A. The other point to keep in mind when 

examining the OOC performance of EWMA charts, is the problem of inertia. The term ‘inertia’ 

refers to a measure of the resistance of a chart to signaling a particular process shift. For example, if 

the EWMA charting statistic happens to be close to the LCL at the time when an upward shift 

occurs, the time required to reach the UCL will be longer than if the EWMA statistic was close to 

the CL. It has been shown (Woodall and Mahmoud (2005)) that the EWMA charts have more of an 

inertia problem than the CUSUM charts; particularly when we are interested in both upward and 

downward shifts (i.e. two-sided control charts) as the EWMA is implemented by means of a single 

charting statistic as opposed to a CUSUM procedure that use two separate (upper and lower) 

charting statistics. Therefore, although the EWMA is easier to implement in practice, its ‘worst-

case’ OOC performance is worse than that of a CUSUM, in which one of the schemes will detect a 

shift, since the value of the upper one-sided CUSUM never drops below zero and the value of the 

lower one-sided CUSUM never rises above zero. Many authors have discussed possible solutions to 

the inertia problem: Spliid (2010) proposed a one-sided EWMA procedure with resetting, Woodall 

and Mahmoud (2005) recommended that EWMA charts always be used in conjunction with 

Shewhart limits and Capizzi and Masarotto (2003) proposed an adaptive EWMA (AEWMA) 

approach that combined the EWMA and the Shewhart approaches in a smoother way than using an 

EWMA chart in conjunction with Shewhart limits. Similar adaptations of the nonparametric 

EWMA chart are possible and will be considered in the future. However, note that there are some 

authors who do not think that the inertia is a big concern (see e.g. Yashchin (1993, page 56) and 

Ryan (2000, page 247)).  
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Table 3.5. OOC characteristics
v
 of the run-length distribution for the EWMA- X  control chart for positive shifts 

Distribution 

Shift 

(�) 
0.5 1.0 1.5 2.0 

Shift 

(�) 
0.5 1.0 1.5 2.0 

L  λ = 0.05 L  λ = 0.10 

N(0,1) 2.613 
28.68 (16.62) 11.37 (4.23) 7.10 (2.05) 5.22 (1.28) 

2.820 
31.44 (22.59) 10.37 (4.77) 6.12 (2.13) 4.37 (1.25) 

10, 17, 25, 36, 61 6, 8, 11, 14, 19 4, 6, 7, 8, 11 3, 4, 5, 6, 7 8, 16, 25, 41, 76 5, 7, 9, 13, 19 3, 5, 6, 7, 10 3, 3, 4, 5, 7 

t(4) 2.682 
30.94 (17.73) 11.76 (4.21) 7.29 (2.01) 5.34 (1.25) 

3.039 
41.89 (31.94) 11.86 (5.32) 6.69 (2.16) 4.72 (1.29) 

11, 18, 27, 39, 65 6, 9, 11, 14, 20 5, 6, 7, 8, 11 4, 5, 5, 6, 8 10, 20, 33, 54, 105 5, 8, 11, 15, 22 4, 5, 6, 8, 11 3, 4, 5, 5, 7 

t(8) 2.640 
29.53 (16.99) 11.50 (4.22) 7.18 (2.05) 5.27 (1.27) 

2.883 
34.16 (24.53) 10.77 (4.92) 6.28 (2.17) 4.47 (1.25) 

10, 18, 25, 37, 62 6, 9, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 9, 17, 27, 44, 83 5, 7, 10, 13, 20 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

Laplace 2.666 
30.48 (17.58) 11.68 (4.27) 7.24 (2.05) 5.32 (1.27) 

2.965 
38.30 (28.66) 11.27 (5.13) 6.46 (2.11) 4.60 (1.27) 

11, 18, 26, 38, 65 6, 9, 11, 14, 20 4, 6, 7, 8, 11 4, 4, 5, 6, 8 9, 18, 30, 50, 95 5, 8, 10, 14, 21 4, 5, 6, 8, 10 3, 4, 4, 5, 7 

Logistic 2.635 
29.46 (17.00) 11.47 (4.22) 7.17 (2.05) 5.26 (1.27) 

2.885 
34.08 (25.08) 10.84 (4.90) 6.29 (8.14) 4.46 (1.25) 

10, 17, 25, 37, 62 6, 8, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 8, 17, 27, 44, 83 5, 7, 10, 13, 20 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

GAM(0.5,1) 2.721 
33.75 (20.97) 12.57 (4.56) 7.52 (1.97) 5.45 (1.19) 

3.323 
51.54 (42.48) 14.84 (7.55) 7.81 (2.51) 5.28 (1.30) 

9, 19, 29, 43, 74 6, 9, 12, 15, 21 4, 6, 8, 9, 11 3, 5, 6, 6, 7 9, 22, 40, 68, 136 5, 9, 13, 19, 29 4, 6, 8, 9, 12 3, 4, 5, 6, 7 

GAM(1,1) 2.652 
31.29 (19.13) 12.03 (4.45) 7.31 (2.01) 5.31 (1.21) 

3.112 
42.24 (33.56) 12.81 (6.25) 7.16 (2.38) 4.90 (1.28) 

9, 18, 27, 40, 68 6, 9, 12, 15, 20 4, 6, 7, 9, 11 3, 5, 5, 6, 7 8, 19, 33, 55, 109 5, 8, 12, 16, 25 4, 6, 7, 9, 11 3, 4, 5, 6, 7 

GAM(3,1) 2.623 
29.78 (17.73) 11.66 (4.35) 7.21 (2.05) 5.26 (1.24) 

2.901 
34.27 (25.92) 11.13 (5.29) 6.44 (2.21) 4.52 (1.25) 

10, 17, 26, 38, 64 6, 9, 11, 14, 20 4, 6, 7, 8, 11 3, 4, 5, 6, 7 8, 16, 27, 45, 85 5, 7, 10, 14, 21 3, 5, 6, 8, 10 3, 4, 5, 7 

CN 2.656 
24.49 (18.26) 7.42 (4.73) 3.82 (2.20) 2.45 (1.28) 

2.856 
32.86 (23.70) 10.60 (4.84) 6.22 (2.15) 4.44 (128) 

3, 11, 20, 33, 59 2, 4, 6, 10, 16 1, 2, 3, 5, 8 1, 2, 2, 3, 5 8, 16, 26, 43, 80 5, 7, 10, 13, 20 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

  L  λ = 0.20  

N(0,1) 2.962 
41.68 (36.20) 10.56 (6.43) 5.50 (2.43) 3.75 (1.34)      

7, 16, 31, 56, 114 4, 6, 9, 13, 23 3, 4, 5, 7, 10 2, 3, 4, 4, 6  

t(4) 3.550 
110.57 (104.97) 18.36 (12.36) 7.49 (3.34) 4.69 (1.58)      

11, 35, 78, 152, 318 5, 10, 15, 23, 43 3, 5, 7, 9, 14 3, 4, 4, 5, 8      

t(8) 3.154 
57.16 (50.91) 12.48 (7.74) 6.11 (2.72) 4.02 (1.39)  

8, 21, 42, 77, 160 4, 7, 10, 16, 27 3, 4, 6, 7, 11 2, 3, 4, 5, 7      

Laplace 3.351 
75.92 (68.83) 15.11 (9.95) 6.71 (2.95) 4.36 (1.49)      

9, 26, 55, 105, 217 5, 8, 12, 19, 35 3, 5, 6, 8, 12 2, 3, 4, 5, 7  

Logistic 3.135 
55.38 (49.05) 12.17 (7.48) 5.98 (2.65) 4.01 (1.43)      

8, 21, 41, 74, 156 4, 7, 10, 15, 27 3, 4, 5, 7, 11 2, 3, 4, 5, 7      

GAM(0.5,1) 4.093 
103.00 (97.97) 28.56 (23.20) 11.55 (6.64) 6.29 (2.25)      

9, 33, 73, 140, 301 5, 12, 22, 37, 75 4, 7, 10, 15, 24 3, 5, 6, 8, 10  

GAM(1,1) 3.708 
77.04 (72.19) 20.03 (14.82) 8.79 (4.50) 5.24 (1.84)  

8, 26, 55, 104, 221 5, 10, 16, 26, 49 3, 6, 8, 11, 17 3, 4, 5, 6, 8  

GAM(3,1) 3.295 
54.90 (49.59) 14.20 (9.52) 6.80 (3.24) 4.40 (1.55)  

7, 20, 40, 74, 154 4, 8, 12, 18, 33 3, 5, 6, 8, 13 2, 3, 4, 5, 7  

CN 3.098 
52.32 (46.36) 11.86 (7.30) 5.90 (2.62) 3.95 (1.38)  

8, 19, 38, 71, 144 4, 7, 10, 15, 26 3, 4, 5, 7, 11 2, 3, 4, 5, 7  

  

                                                 
v
 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5

th
, 25

th
, 50

th
, 75

th
 and 95

th
 percentiles (in this order). 
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Table 3.6. OOC characteristics
vi

 of the run-length distribution for the NPEWMA-SN control chart for positive shifts 
Shift (�) 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

Distribution  λ = 0.05 and L = 2.583  λ = 0.10 and L = 2.667 

N(0,1) 
42.19 (26.46) 18.03 (6.38) 13.16 (2.73) 11.65 (1.35) 48.35 (36.61) 17.53 (7.79) 12.17 (3.05) 10.64 (1.45) 

14, 23, 35, 53, 94 11, 13, 16, 21, 30 11, 11, 13, 14, 19 11, 11, 11, 11, 14 12, 22, 38, 63, 121 10, 12, 15, 21, 33 10, 10, 10, 13, 18 10, 10, 10, 10, 14 

t(4) 
29.70 (15.61) 15.34 (4.38) 12.56 (2.23) 11.68 (1.38) 31.07 (20.70) 13.75 (5.31) 10.69 (2.65) 9.73 (1.64) 

13, 19, 26, 37, 60 11, 11, 14, 17, 24 11, 11, 11, 14, 17 11, 11, 11, 11, 14 9, 16, 25, 39, 72 9, 9, 12, 16, 24 9, 9, 9, 12, 16 9, 9, 9, 9, 13 

t(8) 
36.53 (21.45) 16.82 (5.48) 12.93 (2.54) 11.72 (1.42) 39.82 (28.98) 15.43 (6.72) 11.09 (3.02) 9.77 (1.69) 

13, 21, 31, 46, 79 11, 13, 16, 19, 27 11, 11, 11, 14, 18 11, 11, 11, 11, 14 11, 19, 31, 51, 97 9, 9, 14, 18, 29 9, 9, 9, 12, 17 9, 9, 9, 9, 13 

Laplace 
27.52 (13.81) 15.68 (4.64) 12.90 (2.52) 11.86 (1.58) 28.32 (18.15) 14.14 (5.63) 11.06 (3.00) 9.93 (1.88) 

13, 18, 24, 34, 54 11, 13, 14, 18, 25 11, 11, 11, 14, 18 11, 11, 11, 13, 15 9, 16, 23, 36, 64 9, 9, 13, 17, 25 9, 9, 9, 12, 17 9, 9, 9, 9, 13 

Logistic 
35.79 (20.80) 16.80 (5.47) 12.97 (2.57) 11.75 (1.46) 38.87 (28.06) 15.41 (6.70) 11.13 (3.06) 9.81 (1.74) 

13, 21, 30, 45, 77 11, 13, 16, 19, 27 11, 11, 13, 14, 18 11, 11, 11, 13, 14 11, 19, 31, 50, 95 9, 9, 14, 18, 29 9, 9, 9, 13, 17 9, 9, 9, 9, 13 

GAM(0.5,1) 
11.00 (0.00) 11.00 (0.00) 11.00 (0.00) 11.00 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 

11, 11, 11, 11, 11 11, 11, 11, 11, 11 11, 11, 11, 11, 11 11, 11, 11, 11, 11 9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

GAM(1,1) 
19.46 (7.45) 11.00 (0.00) 11.00 (0.00) 11.00 (0.00) 18.49 (9.34) 9.00 (0.00) 9.00 (0.00) 9.00 (0.00) 

11, 14, 18, 23, 34 11, 11, 11, 11, 11 11, 11, 11, 11, 11 11, 11, 11, 11, 11 9, 12, 16, 22, 37 9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

GAM(3,1) 
32.43 (17.91) 13.31 (2.84) 11.00 (11.07) 11.00 (0.00) 34.54 (23.96) 11.50 (3.39) 9.00 (0.08) 9.00 (0.00) 

13, 20, 28, 40, 67 11, 11, 13, 14, 19 11, 11, 11, 11, 11 11, 11, 11, 11, 11 9, 18, 28, 44, 82 9, 9, 9, 13, 18 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

CN 
39.43 (24.00) 17.39 (5.90) 12.98 (2.57) 11.63 (1.33) 43.60 (32.59) 16.08 (7.27) 11.14 (3.07) 9.68 (1.58) 

14, 22, 33, 49, 87 11, 13, 16, 20, 29 11, 11, 13, 14, 18 11, 11, 11, 11, 14 12, 21, 34, 56, 108 9, 11, 14, 19, 30 9, 9, 9, 13, 17 9, 9, 9, 9, 13 

   λ = 0.20 and L = 2.521 

N(0,1) 
61.48 (52.97) 18.65 (10.88) 11.66 (4.05) 9.76 (1.88) 

11, 24, 45, 82, 167 9, 11, 15, 23, 40 9, 9, 9, 13, 20 9, 9, 9, 9, 14 

t(4) 
38.55 (30.28) 14.63 (7.00) 10.89 (3.23) 9.80 (1.92) 

9, 17, 29, 50, 99 9, 9, 12, 17, 29 9, 9, 9, 12, 18 9, 9, 9, 9, 14 

t(8) 
51.03 (42.60) 16.80 (9.10) 11.43 (3.82) 9.84 (1.98) 

11, 21, 38, 68, 136 9, 9, 14, 20, 35 9, 9, 9, 13, 19 9, 9, 9, 9, 14 

Laplace 
34.64 (26.44) 15.13 (7.48) 11.33 (3.70) 10.02 (3.70) 

9, 16, 27, 45, 87 9, 9, 13, 18, 30 9, 9, 9, 13, 19 9, 9, 13, 18, 30 

Logistic 
49.67 (41.25) 16.78 (9.07) 11.41 (3.79) 9.89 (2.04) 

11, 20, 37, 66, 132 9, 9, 14, 20, 35 9, 9, 9, 13, 19 9, 9, 9, 9, 14 

GAM(0.5,1) 
9.00 (0.09) 9.00 (0.09) 9.00 (0.09) 9.00 (0.09) 

9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

GAM(1,1) 
20.90 (13.05) 9.00 (0.09) 9.00 (0.09) 9.00 (0.09) 

9, 12, 17, 26, 47 9, 9, 9, 9, 9 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

GAM(3,1) 
43.51 (35.16) 11.85 (4.25) 9.00 (0.09) 9.00 (0.00) 

9, 19, 33, 57, 114 9, 9, 9, 13, 20 9, 9, 9, 9, 9 9, 9, 9, 9, 9 

CN 
56.38 (47.91) 17.66 (9.92) 11.42 (3.80) 9.74 (1.85) 

11, 22, 42, 75, 152 9, 11, 15, 21, 37 9, 9, 9, 13, 19 9, 9, 9, 9, 14 

 

                                                 
vi
 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5

th
, 25

th
, 50

th
, 75

th
 and 95

th
 percentiles (in this order). 
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Table 3.7. OOC characteristics
vii

 of the run-length distribution for the EWMA- X  and the EWMA-SN control charts for negative shifts 
 EWMA-� NPEWMA-SN 

Distribution L 

Shift (�) Shift (�) 

-0.5 -1.0 -1.5 -2.0 -0.5 -1.0 -1.5 -2.0 

 λ = 0.05   λ = 0.05 and L = 2.583 

GAM(0.5,1) 2.721 
29.99 (15.87) 11.56 (4.01) 7.27 (2.05) 5.35 (1.31) 34.29 (19.51) 19.05 (7.14) 15.03 (4.15) 13. 31 (2.84) 

13, 19, 26, 37, 61 7, 9, 11, 13, 19 5, 6, 7, 8, 11 4, 4, 5, 6, 8 13, 20, 29, 43, 73 11, 14, 17, 22, 33 11, 11, 14, 17, 23 11, 11, 13,14, 19 

GAM(1,1) 2.652 
28.67 (15.53) 11.30 (4.05) 7.12 (2.04) 5.26 (1.28) 40.37 (24.83) 19.99 (7.86) 15.13 (4.23) 13.19 (2.74) 

12, 18, 25, 35, 59 7, 8, 10, 13, 19 5, 6, 7, 8, 11 4, 4, 5, 6, 8 14, 23, 34, 51, 89 11, 14, 18, 24, 35 11, 11, 14, 17, 23 11, 11, 13, 14, 19 

GAM(3,1) 2.623 
28.30 (15.78) 11.26 (4.12) 7.07 (2.05) 5.22 (1.28) 43.90 (28.00) 20.10 (7.94) 14.74 (3.94) 12.74 (2.38) 

11, 17, 24, 35, 59 6, 8, 10, 13, 19 5, 6, 7, 8, 11 4, 4, 5, 6, 8 15, 24, 36, 55, 99 11, 14, 18, 24, 35 11, 11, 14, 16, 22 11, 11, 11, 14, 17 

  λ = 0.10  λ = 0.10 and L = 2.820 

GAM(0.5,1) 3.323 
70.14 (52.72) 12.92 (5.35) 7.23 (2.29) 5.10 (1.34) 45.12 (33.26) 20.61 (10.39) 15.07 (5.62) 12.82 (3.76) 

18, 33, 55, 91, 175 7, 9, 12, 15, 24 5, 6, 7, 8, 12 4, 4, 5, 6, 8 12, 22, 36, 58, 111 10, 13, 18, 25, 41 10, 10, 14, 18, 26 10, 10, 12, 14, 20 

GAM(1,1) 3.112 
45.80 (33.30) 11.60 (4.98) 6.69 (2.18) 4.95 (1.31) 56.28 (43.66) 22.16 (11.72) 15.31 (5.76) 12.76 (3.72) 

13, 22, 36, 59, 113 6, 8, 10, 14, 21 4, 5, 6, 8, 11 3, 4, 4, 5, 7 13, 25, 43, 74, 140 10, 14, 19, 27, 45 10, 10, 14, 18, 26 10, 10, 12, 14, 20 

GAM(3,1) 2.901 
34.52 (24.32) 10.55 (4.72) 6.24 (2.13) 4.44 (1.27) 62.51 (49.29) 22.06 (11.39) 14.74 (5.30) 12.19 (3.21) 

10, 17, 28, 44, 83 5, 7, 9, 13, 20 4, 5, 6, 7, 10 3, 4, 4, 5, 7 14, 28, 47, 82, 160 10, 14, 19, 27, 44 10, 10, 13, 17, 25 10, 10, 10, 14, 19 

  λ = 0.20  λ = 0.20 and L = 2.962 

GAM(0.5,1) 4.093 
2782.84 (2841.79) 43.63 (32.99) 9.35 (3.90) 5.56 (1.76) 1760.70 (1760.84) 172.07 (155.59) 62.86 (46.37) 39.22 (22.72) 

126, 788, 1898, 3855, 8381 12, 20, 34, 57, 107 5, 7, 8, 11, 17 4, 4, 5, 6, 9 106, 512, 1220, 2424, 5175 25, 61, 125, 234, 478 20, 30, 49, 80, 154 20, 22, 32, 48, 85 

GAM(1,1) 3.708 
3229.53 (3230.87) 20.54 (13.33) 7.66 (3.22) 4.84 (1.62) 3160.12 (3136.82) 213.42 (195.78) 65.60 (48.80) 38.33 (22.17) 

171, 2274, 4473, 9574 7, 11, 17, 26, 47 4, 5, 7, 9, 14 3, 4, 4, 6, 8 179, 928, 2197, 4423, 9489 28, 74, 154, 288, 617 20, 31, 50, 85, 162 20, 22, 31, 47, 83 

GAM(3,1) 3.295 
123.38 (114.96) 13.24 (7.88) 6.28 (2.68) 4.18 (1.45) 4103.70 (4141.72) 212.03 (189.25) 58.80 (42.31) 33.69 (17.41) 

15, 42, 89, 173, 358 5, 8, 11, 17, 29 3, 4, 6, 7, 11 3, 3, 4, 5, 7 228, 1190, 2849, 5611, 12412 28, 75, 153, 288, 591 20, 29, 46, 74, 144 20, 20, 28, 40, 68 

                                                 
vii

 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 

(f) GAM(0.5,1) 

 
(g) GAM(1,1) 

 

(h) GAM(3,1) 

 
(i) CN 

 

Legend:  
 

 

Figure 3.4. OOC ARL values for the EWMA- X  control chart and the NPEWMA-SN control chart 

for λ = 0.05 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 

(f) GAM(0.5,1) 

 
(g) GAM(1,1) 

 

(h) GAM(3,1) 

 
(i) CN 

 

Legend:  
 

 

Figure 3.5. OOC ARL values for the EWMA- X  control chart and the NPEWMA-SN control chart 

for λ = 0.10 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 
 

(f) GAM(0.5,1) 

 

(g) GAM(1,1) 

 

(h) GAM(3,1) 

 
(i) CN 

 
 

Legend: 

 

  

Figure 3.6. OOC ARL values for the EWMA- X  control chart and the NPEWMA-SN control chart 

for λ = 0.20 
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 It may be noted that there is some bias in the ARL (the ARLδ  is bigger than the ARL0) of the 

charts for the Gamma distribution when the shift is small (see Figures 3.6 (f), (g) and (h)). This 

could be due to many extreme long run-lengths observed in the simulation of the ARL, which could 

be a result of the right-skewness of the Gamma distribution coupled with the fact that the run-length 

distribution is itself highly right-skewed with a long right tail. The bias could also be a result of 

simulation error because these ARLδ values are very close to the ARL0 values. Some authors have 

considered ARL-unbiased parametric charts and this would be a topic of further research in the 

context of nonparametric charts. On the other hand, Steiner and Jones (2010), among others, have 

recommended examining the median run-length instead “which is easier to simulate and gives 

arguably a better summary.”  This approach is considered in Chapter 4. 

 

A summary of our observations from the OOC comparisons is as follows:  

 

• When the underlying process distribution is N(0,1), we find that for all λ and for all 

magnitudes of shifts the EWMA-# chart outperforms the NPEWMA-SN chart, which is not 

surprising, since traditional normal theory methods typically outperform their nonparametric 

counterparts when the assumption of normality is satisfied. The same conclusion can be 

drawn for the CN distribution. This could be attributed to the fact that we have a small level 

of contamination and, consequently, the EWMA-# chart performs best overall. 

 

• For the t(8) and the Logistic distributions, the EWMA-# chart outperforms the NPEWMA-

SN chart for all λ and for all magnitudes of shifts, except for λ = 0.20 and � = 0.50 where the 

NPEWMA-SN is performing slightly better. 

 

• For the heavier tailed t(4) distribution, for λ = 0.05 and 0.10, the NPEWMA-SN chart 

performs best for small shifts (� = 0.50), whereas the EWMA-# chart performs best for all 

other shifts under consideration. For λ = 0.20, the NPEWMA-SN chart performs best for 

small to moderate shifts (� = 0.50 and 1.00), whereas the EWMA-# chart performs best for 

all other shifts under consideration. 

 

• For the heavy-tailed Laplace distribution, we find that for all λ the NPEWMA-SN chart 

performs best for small shifts (� = 0.50), whereas the EWMA-# chart performs best for all 

other shifts under consideration. 
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• For the Gamma distribution, both positive and negative shifts were considered; for 

symmetric distributions the direction of the shift does not seem to affect the detection 

capability of the charts, whereas for the right-skewed Gamma distribution, it does. 

 

o Positive shifts: For the GAM(3,1) distribution and for all λ, the performances of the 

two charts are very similar. For the more highly skewed GAM(1,1) and GAM(0.5,1) 

distributions and for all λ, the NPEWMA-SN chart performs best for small to 

moderate shifts (� = 0.50 and 1.00), whereas the EWMA-# chart performs best for 

all other shifts under consideration. 

 

o Negative shifts: The EWMA-# chart performs best, except for (i) a small shift of      � = -0.50 for the GAM(0.5,1) distribution for λ = 0.10 and 0.20 where the 

NPEWMA-SN chart performs best and (ii) and for a small shift of � = -0.50 for the 

GAM(1,1) distribution for λ = 0.20 where the charts perform similarly. 

 

• For moderate to large shifts (� = 1.5 and 2.00), the run-length characteristics of the 

NPEWMA-SN chart tend to 11 as the shift increases, this is due to the restriction shown in 

Equation (3.15), whereas those of the EWMA-# chart can (and do) get smaller. Similar 

conclusions can be drawn for λ = 0.10 and 0.20 where the run-length characteristics of the 

NPEWMA-SN chart tend to 10 and 9, respectively, as the shift increases.  

 

3.2.3.4 Illustrative examples 

 

Example 3.2 

 

 We illustrate the NPEWMA-SN chart using a set of data from Montgomery (2005; Table 

8.1). The first 20 of these observations were drawn from a normal distribution with mean and 

standard deviation equal to 10 and 1, respectively, whereas the last 10 observations were drawn 

from a normal distribution with mean and standard deviation equal to 11 and 1, respectively. 

Consequently, we can think of these last 10 observations as having been drawn from the process 

when it was OOC. Montgomery (2005) applied the EWMA-# chart with λ = 0.10 and L = 2.7 to 

these data (this choice of design parameters results in an ARL0 ≈ 370). It should be noted that 

although Montgomery (2005) used exact control limits in his example, here we calculated steady-

state control limits for a fair comparison (recall that we use steady-state control limits for the 
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NPEWMA-SN chart since this significantly simplifies the calculation of the run-length distribution 

via the Markov chain approach). For the NPEWMA-SN chart we set the design parameters λ = 0.10 

and L = 2.585 and use w = 1001 to obtain an ARL0 = 370.74. The steady-state control limits were 

calculated using Equation (3.11) and they equal ±0.593, respectively, with CL = 0. The NPEWMA-

SN charting statistics were calculated using Equation (3.9) and are given in Table 3.8 along with the 

original individual observations. 

 

Table 3.8. The individual observations and the NPEWMA-SN charting statistics for  

Example 3.2 

Observation  

number (i) 

 

xi NPEWMA-SN 

Observation  

number (i) 

 

xi NPEWMA-SN 

1 9.45 -0.100 16 9.37 0.024 

2 7.99 -0.190 17 10.62 0.121 

3 9.29 -0.271 18 10.31 0.209 

4 11.66 -0.144 19 8.52 0.088 

5 12.16 -0.030 20 10.84 0.179 

6 10.18  0.073 21 10.90 0.261 

7 8.04 -0.034 22 9.33 0.135 

8 11.46  0.069 23 12.29 0.222 

9 9.20 -0.037 24 11.50 0.300 

10 10.34  0.066 25 10.60 0.370 

11 9.03 -0.040 26 11.08 0.433 

12 11.47  0.064 27 10.38 0.489 

13 10.51  0.157 28 11.62 0.540 

14 9.40  0.042 29 11.31 0.586 

15 10.08  0.137 30 10.52 0.628 

 

 From Figures 3.7 and 3.8 we see that the NPEWMA-SN control chart signals at observation 

30, whereas the EWMA-# chart signaled earlier at sample number 29, indicating that the latter 

chart may be performing better. While this is not surprising, since traditional normal theory 

methods typically outperform their nonparametric counterparts when the assumption of normality is 

satisfied, it is encouraging to see the NPEWMA-SN chart performing comparably against the 

EWMA-# chart. 

 

 It is interesting to note it seems that the charting statistics are alternating up and down for 

the NPEWMA-SN chart. Although there is a set of decision rules for detecting non-random patterns 

on control charts (see the Western Electronic Handbook (1956)), these rules are typically 

implemented with the Shewhart-type charts in order to increase their sensitivity for detecting small 

shifts and will not apply here (with an EWMA-type chart). 
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Figure 3.7. The EWMA- X control chart for Example 3.2 
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Figure 3.8. The NPEWMA-SN control chart for Example 3.2 

 

 For our first example, the data did not reject a goodness of fit test for normality. 

Nonparametric charts are useful for all continuous distributions and asymmetric and heavier tailed 

distributions are of particular interest in practice as they can give rise to more outliers which do not 
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necessarily indicate an OOC process. So we illustrate the NPEWMA-SN chart when the data follow 

a right skewed distribution with a heavy tail. 

 

Example 3.3 

 

 To illustrate the utility and the application of the proposed nonparametric chart, we consider 

data from a right skewed distribution with a heavy tail. The first 20 data points were generated from 

a Pareto 32/√3, 34 distribution. This distribution has a median equal to 32/√343√2� 4 � 1.455 and a 

variance equal to 1. Then each of these data points was transformed (shifted) by subtracting the 

median so that the transformed observations have a median of zero and a standard deviation of 1. 

Similarly, the last 10 observations were generated by transforming the observations from a Pareto 

32/√3, 34 distribution so that the resulting observations have a median of 0.5 and a standard 

deviation equal to 1. Consequently, these last 10 observations can be thought of as having been 

drawn from a process that is out-of-control in the median. The two Pareto probability density 

functions (pdf’s) in use are shown in Figure 3.9.   

 

 
Figure 3.9. The in- and out-of-control Pareto pdf’s used in Example 3.3 

 

 For the NPEWMA-SN chart, we use λ = 0.10 and L = 2.585 from Table 3.3 for an         

ARL0 = 370.74. The values of the NPEWMA-SN charting statistics were calculated using Equation 

(3.9) and are shown in Table 3.9 along with the original simulated observations. For the EWMA-# 

chart we use λ = 0.10 and L = 2.703 for ARL0 � 370 (see Montgomery (2005) page 412). The 

EWMA-# and the NPEWMA-SN control charts are shown in Figures 3.10 and 3.11, respectively. 
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Table 3.9. The individual observations and the NPEWMA-SN charting statistics for  

Example 3.3 

Observation  

number (i) 

 

xi NPEWMA-SN 

Observation  

number (i) 

 

xi NPEWMA-SN 

1 -0.184 -0.100 16 -0.129 -0.083 

2  0.453   0.010 17 -0.278 -0.175 

3 -0.234 -0.091 18  1.320 -0.058 

4  0.152   0.018 19 -0.117 -0.152 

5 -0.287 -0.084 20  0.116 -0.037 

6  0.578   0.025 21  0.310   0.067 

7 -0.300 -0.078 22  0.472   0.160 

8  3.948   0.030 23  0.201   0.244 

9 -0.111 -0.073 24  0.523   0.320 

10 -0.228 -0.166 25  0.871   0.388 

11 -0.177 -0.249 26  0.475   0.449 

12  0.626 -0.124 27  0.933   0.504 

13 -0.154 -0.212 28  2.614   0.554 

14  0.112 -0.091 29  0.323   0.598 

15  1.349   0.018 30  0.589   0.639 

 

 From Figures 3.10 and 3.11 we see that the NPEWMA-SN control chart signals at 

observation 29, whereas the EWMA-# chart does not signal at all. In fact, the charting statistics in 

both charts start to develop an upward trend from time point 20, but the trend in the nonparametric 

chart is far more pronounced and steeper. In addition, the NPEWMA-SN chart has the practical 

advantage that it does not require normality or any other specific parametric model assumption 

about the underlying process distribution. Thus a nonparametric chart is in-control robust by 

definition. However, although, in principle, the EWMA-# chart can be designed for a specific 

application to be fairly robust to the violation of the underlying distributional assumptions (see 

Borror et al. (1999)), this is bound to be cumbersome and, consequently, not expected to be 

satisfactory in all applications in practice (see Human et al. (2011)). Note that, although this is an 

example using simulated data, it clearly shows that there are situations in practice where the 

NPEWMA-SN chart can offer a viable alternative to the EWMA-# chart. 
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Figure 3.10. The EWMA-# control chart for Example 3.3 
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Figure 3.11. The NPEWMA-SN control chart for Example 3.3 
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3.2.4 Summary 

 

 EWMA charts are among the most popular control charts used in practice; they take 

advantage of the sequential accumulation of evidence arising in a typical SPC environment and are 

known to be more efficient than the Shewhart charts in detecting smaller shifts. However, the 

traditional parametric EWMA charts suffer from a lack of IC robustness and as a result the 

possibility of varying, inflated and unknown false alarm rates is a serious practical concern. These 

concerns are amplified for individuals data, where the central limit theorem does not offer any 

protection. NPEWMA charts offer an attractive alternative in such situations as they combine the 

inherent advantages of nonparametric charts (IC robustness) with the better small shift detection 

capability of EWMA-type charts. We propose a NPEWMA control chart for i.i.d. individuals data 

based on the sign statistic and study its properties via the IC and OOC run-length distribution using 

a Markov chain approach. It is seen that although the NPEWMA-SN chart is perfectly IC robust, it 

generally has somewhat of an inferior OOC performance relative to the EWMA-# chart for some 

light-tailed symmetric distributions such as the Normal, Logistic and Contaminated Normal 

distributions. However, when the underlying process distribution is more heavy-tailed like the 

Laplace distribution or highly right-skewed like the Gamma distribution the NPEWMA-SN chart 

has superior performance in some cases. Moreover, the nonparametric chart is expected to be less 

sensitive to outliers and a knowledge or specification of the process variance is not necessary. Next, 

we consider a NPEWMA control chart based on the signed-rank statistic. 

 

3.3 Nonparametric EWMA control chart based on the signed-rank statistic 

 

3.3.1 Introduction 

 

Amin and Searcy (1991) considered a NPEWMA chart based on the Wilcoxon signed-rank 

(SR) statistic for monitoring the known or the specified or the target value of the median of a 

process; we label this the NPEWMA-SR chart. However, much work remained to be done.  

Chakraborti and Graham (2007), noted that “…more work is necessary on the practical 

implementation of the (NPEWMA-SR) charts…”. Given the potential practical benefits of this 

control chart, in this thesis we perform an in-depth study to gain insight into its design, 

implementation and performance.  More precisely: 

 

i. We use a Markov-chain approach to calculate the IC run-length distribution and the 

associated performance characteristics. 
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ii. We examine the ARL as a performance measure and, for a more thorough assessment of 

the chart’s performance, we also calculate and study the SDRL, the MRL, the 1
st
 and 3

rd
 

quartiles as well as the 5
th

 and 95
th

 percentiles for an overall assessment of the run-length 

distribution. 

 

iii. We provide easy to use tables for the chart’s design parameters to aid practical 

implementation. 

 

iv. We do an extensive simulation-based performance study comparison with competing 

traditional and nonparametric charts. 

 

Next, some statistical background information is given and the NPEWMA-SR chart is 

defined. Following this, the computational aspects of the run-length distribution plus the design and 

implementation of the chart are discussed. Then the IC and OOC chart performance are compared 

to those of the EWMA-# chart and the NPEWMA-SN chart. We conclude with an illustrative 

example and a summary. 

 

3.3.2 The signed-rank test statistic 

 

 The Wilcoxon signed-rank (SR) test is a popular nonparametric alternative to the one-

sample t-test for testing hypotheses (or setting-up confidence intervals) about the location parameter 

(mean / median) of a symmetric continuous distribution. Note that for a t-test to be valid the 

assumption of normality is needed, but that is not necessary for the SR test. The SR test is quite 

efficient, the asymptotic relative efficiency (ARE) of the SR test relative to the t-test is 0.955, 1, 

1.097 and 1.5 for the Normal, Uniform, Logistic and Laplace distribution, respectively (see e.g. 

Gibbons and Chakraborti (2010) page 218). This indicates that the SR test is more powerful for 

some heavier tailed distributions. In fact, it can be shown that the ARE of the SR test to the t-test is 

at least 0.864 for any symmetric continuous distribution. So, very little seems to be lost and much to 

be gained in terms of efficiency when the SR test is used instead of the t-test. In Section 3.2 we 

proposed a NPEWMA chart based on the sign (SN) statistic, the so-called NPEWMA-SN chart. 

Although both the sign and the signed-rank charts are nonparametric, the SR chart is expected to be 

more efficient since the SR test is more efficient than the SN test for a number of light to 

moderately heavy-tailed normal-like distributions (see e.g. Gibbons and Chakraborti (2010) page 

218). Thus the NPEWMA-SR chart is an exceptionally viable alternative to the traditional EWMA 

and the NPEWMA-SN charts. 
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 Let #$�, #$ , … , #$' denote the i
th

 (2 = 1,2,…) sample or subgroup of independent 

observations of size ( > 1 from a process with an unknown symmetric continuous distribution 

function F. Let *+ denote the known or specified value of the median when the process is IC, then 

*+ is the target value. Let �$
,  denote the rank of the absolute deviations, �#$
 − *+�, within the 

subgroup �|#$� − *+|, |#$ − *+|, … , |#$' − *+|	 for 2 = 1,2,3… . Then �$
,  is referred to as the 

within-group absolute rank of the deviations. Define 

 

��$ =012�(3#$
 − *+4�$
,
'


5�
 (3.16) 

 

for  2 = 1,2,3… where the sign function is defiend by 

 

12�(�-	 = 8 1 if - > 0	0 if - = 0	−1 if - < 0. 
 

The ��$ statistic is linearly related to the well-known Wilcoxon signed-rank statistic �',  

through the formula (see Bakir (2003), page 424) 

 

��$ = 2�', − (�( + 1	2  (3.17) 

 

where �', = ∑ Ψ3#$
 − *+4�$
,'
5�  and Ψ�	 = ?0 if  ≤ 0	1 if  > 0.   
 

 Clearly, �', is the sum of the ranks of the absolute values of the deviations corresponding to 

the positive deviations. By using the null distribution of the Wilcoxon signed-rank statistic (which 

is well documentated, see e.g. Gibbons and Charakraborti (2010) page 195) we can easily compute 

probabilities associated with ��$ through the use of the linear relationship given in Equation (3.17). 

The advantage to using the ��$ statistic is the fact that its expected value in the IC case is 0 (this is 

proven later on). However, in the (nonparametric) literature the statistic �', is the more well-known 

version, on which the signed-rank test is based, and is referred to as the Wilcoxon signed-rank 

statistic. 
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Zero differences 

 

For a continuous random variable, #, the probability of any particular value is zero; thus, ��# = M	 = 0 for any M ∈ Ɍ. Since the distribution of the observations is assumed to be continuous 

we have that �3#$
 − *+ = 04 = 0. Theoretically, the case where 12�(3-$
 − *+4 = 0 should thus 

occur with zero probability, but in practice zero differences do occur as a result of, for example, 

truncation or rounding of the observed values. A common practice (see e.g. Gibbons and 

Chakraborti (2010) page 202) in such cases is to discard all the observations leading to zero 

differences and to redefine ( as the number of nonzero differences. 

 

Distributional properties of SRi 

 

The properties of the �', are well-known (see e.g. Gibbons and Chakraborti (2010) page 

195) and they are given in the second column of Table 3.10. We can find the distribution of ��$ via 

the linear relationship given in Equation (3.17) and this is given in the last column of Table 3.10. 

 

The probability distributions of �', and ��$ are both symmetric
viii

 in the IC case, when the 

median is equal to *+. Hence, when the process is IC we have that: 

 

• the probability distributions, given by the pmf’s, are referred to as the in-control probability 

distributions; and 

 

• since the IC distribution of the charting statistic ��$ is symmetric about 0, the control limits 

will be equal distances away from 0, assuming the importance of detecting an upward and 

downward shift is the same. 

 

  

                                                 
viii

 �', and ��$ are symmetric about (�( + 1	/4 and zero, respectively, as long as the median remains at *+. 
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Table 3.10. Moments and the pmf of the �', and ��$ statistics, respectively 

 � , SRi 

Expected  

value 
���',	 = '�',�	�   

 ����$	  = � S2�', − '�',�	 T  = 0  
 

Variance ����',	 = '�',�	� ',�	 �   

 �����$	  = �� S2�', − '�',�	 T  = '�',�	� ',�	�   

 

Standard  

deviation 

�������',	  = G'�',�	� ',�	 �   

 ��������$	  = G'�',�	� ',�	�   

 

Probability  

mass  

function  

(pmf) 

 Q�R	  = ���', = R	  = ¡¢��		 ¢   

 R = 0,1, … , '�',�	   

 

where £'�R	 is the number 

of possible ways to assign 

signs so that the sum of the 

positive integers equals R 
 

Q�1	  = ����$ = 1	   = � S2�', − '�',�	 = 1T  = � S�', = U + '�',�	� T  

 1 = −	'�',�	 , −	'�',�	 + 1,… , '�',�	    

 

 

 Figure 3.12 illustrates the IC probability distributions of �', and ��$ for ( = 5. It is seen that 

the discrete distributions are symmetric about their means, that is, �', is symmetric around its mean 

of  
'�',�	� = ��	��	�  = 7.5 and ��$ is symmetric around its mean of 0. We continue to work with ��$ 

to propose our control chart. 
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Figure 3.12. The IC probability distribution of �', and ��$ for ( = 5  

 

3.3.3 The NPEWMA-SR control chart 

 

3.3.3.1 Design of the chart 

 

 The proposed NPEWMA-SR chart is an analog of the parametric EWMA chart given in 

Section 1.9.3 with ��$ substituted for Z$ in Equation (1.6). The charting statistic of the proposed 

NPEWMA-SR chart is obtained by sequentially accumulating the statistics ���, �� , ��[, …,  and is 

defined as  

 

 \$ = ]	��$ + �1 − ]	\$��    for    2 = 1,2,3, … (3.18)  

 

where 0 < ] ≤ 1 is a design parameter called the smoothing constant. The starting value, \+, which 

is required with the first sample at i = 1, is set equal to the target value or the expected value of \$ 
when the process is IC i.e. \+ = 0 (see Result 3.2 below). Note that λ = 1 yields the Shewhart-type 

signed-rank chart of Bakir (2004). 

 

 The CL and the control limits of the NPEWMA-SR chart are functions of the IC mean and 

the IC standard deviation of the charting statistic, \$, which are given in the following result.  
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Result 3.2 

 

��\$|IC	 = 0 and  ^_`|ab = GS'�',�	� ',�	� T S c �cT �1 − �1 − ]	 $	, respectively.  

 

Proof 

 

These values are obtained as follows. By the definition of the charting statistic (see Equation (3.18)) 

and using recursive substitution (see Appendix 1A) we obtain the following result: 

 

��\$|IC	 = ��]��$ + �1 − ]	\$��|IC	 = � d]0 �1 − ]	
$��

5+ ��$�
 + �1 − ]	$\+|ICe 

 

Using the fact that �3��$�
|IC4 = 0 (see Table 3.10) and \+ = 0 we have that 

 

��\$|IC	 = ]0 �1 − ]	
$��

5+ �3��$�
|IC4 + �1 − ]	$\+ = 0. 

 

 In order to obtain the variance similar steps are followed, i.e. we once again use the 

definition of the charting statistic (see Equation (3.18)) and recursive substitution (see Appendix 

1A). However, we also use the result for the sum of a finite geometric series (see Equation (A1.4) in 

Appendix 1A) and the fact that �����$|IC	 = '�',�	� ',�	�  (see Table 3.10). Consequently, we 

have that 

 

���\$|IC	 = �� d]0 �1 − ]	
$��

5+ ��$�
 + �1 − ]	$\+|ICe 

= ] 0 �1− ]	 
$��

5+ ��3��$�
|IC4 

= d(�( + 1	�2( + 1	6 e] 0 �1− ]	 
$��

5+  

= d(�( + 1	�2( + 1	6 e] d1 − �1 − ]	 $1 − �1 − ]	 e 

 

Therefore,  STDEV�\$|IC	 = GS'�',�	� ',�	� T S c �cT �1 − �1 − ]	 $	. 
�  
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 In analogy with the parametric EWMA, the exact control limits and the CL of the 

NPEWMA-SR control chart are thus given by 

 

gh� = 	��\$|IC	 + �^_`|ab = +�id(�( + 1	�2( + 1	6 e q ]2 − ]u �1 − �1 − ]	 $	 
 h� = ��\$|IC	 = 0 (3.19) 

 

�h� = 	��\$|IC	 − �^_`|ab = −�id(�( + 1	�2( + 1	6 e q ]2 − ]u �1 − �1 − ]	 $	 
 

where L > 0 is a charting constant. The steady-state control limits (which are typically used when 

the NPEWMA-SR chart has been running for several time periods so that the term 31 − �1 − ]	 $4 
in (3.19) approaches unity) are given by 

 

gh� = 	+�id(�( + 1	�2( + 1	6 e q ]2 − ]u 

 

and (3.20) 

 

�h� = 	−�id(�( + 1	�2( + 1	6 e q ]2 − ]u. 
 

 The NPEWMA-SR chart is a plot of the \$’s (together with the CL and the control limits) on 

the vertical axis versus the sample number or time, i, on the horizontal axis. If any \$ plots on or 

outside either of the two control limits the process is declared to be OOC and a search for 

assignable causes is started. Otherwise, the process is considered IC and the charting procedure 

continues. It should be noted that because �', is known to be distribution-free for all symmetric 

continuous distributions (see e.g. Gibbons and Chakraborti (2010) page 195) so is the statistic �� 

and hence the NPEWMA-SR chart. In the developments that follow: 

 

i. We study two-sided charts with symmetrically placed control limits i.e. equidistant from 

the CL. This is the typical application of the EWMA-# chart. The methodology can be 

easily modified where a one-sided chart is more meaningful (this is illustrated in Section 

1.9.3). 
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ii. Use the steady-state control limits; this significantly simplifies the calculation of the run-

length distribution via the Markov chain approach and will be discussed in more detail 

below. However, it should be noted that using the exact control limits with say, simulation, 

will give more accurate results. 

 

iii. We investigate the entire run-length distribution in terms of the mean (ARL), the standard 

deviation (SDRL), the median run-length (MRL), the 1
st
 and the 3

rd
 quartiles as well as the 

5
th

 and the 95
th

 percentiles (Amin and Searcy (1991) only evaluated the ARL). It’s a well-

known fact that important information about the performance of a control chart may be 

missed by focusing only on the ARL, because the run-length distribution is highly right-

skewed (see e.g. Radson and Boyd (2005) and Chakraborti (2007)). 

 

Run-length distribution 

 

We use a Markov chain approach (see Section 1.10.1) to evaluate / approximate the run-

length distribution of the NPEWMA-SR chart. The Markov chain approach is discussed in detail in 

Section 1.10.1 (in general) and in Section 3.2.3 (for the NPEWMA-SN chart). Accordingly, the 

reader is referred to those sections and we simply derive the one-step transition probabilities here. 

By substituting the charting statistic given in Equation (3.18) into the general formulae for one-step   

transition probabilities given in Equation (3.12) we obtain 

 

�3�
 − k < ]��n+�1 − ]	\n�� ≤ �
 + k	|	\n�� = �$4 = �3�
 − k < ]��n+�1 − ]	�$ ≤ �
 + k4 

= � d3�
 − k4 − �1 − ]	�$] < ��n ≤ 3�
 + k4 − �1 − ]	�$] e 

= � SS3rs�t4����c	r`c + '�',�	 T 2L < �', 	≤ S3rs,t4����c	r`c + '�',�	 T 2L T.  
 

 Since the values k, λ, �$ and �
  are known constants, (λ is chosen by the practitioner and k, 

�$ and �
  are calculated), the probability above can easily be calculated. 

 

3.3.3.2 Implementation of the chart 

 

The reader is referred to Section 1.9.3 for a detailed discussion on the choice of the design 

parameters, λ and L. Here we simply state that three values of λ, corresponding to small (roughly 
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0.5 standard deviations or less), moderate (roughly between 0.5 and 1.5 standard deviations) and 

large shifts (roughly 1.5 standard deviations or more), were used along with values of L ranging 

from 2 to 3 in increments of 0.1 for subgroup sizes ( = 5 and 10 (for a detailed discussion on the 

choice of ( see Bakir and Reynolds (1979) wherein they concluded that the best subgroup size is 

somewhere between 5 and 10 depending on the desired ARL0 and the size of the shift to be 

detected). 

 

Tables 3.11 and 3.12 give the IC run-length characteristics for the NPEWMA-SR chart for  ( = 5 and 10, respectively, and we observe that for a specified / fixed value of λ, the ARL0 and other 

characteristics of the IC run-length distribution all increase as L increases. Also, the IC run-length 

distribution is positively skewed (as is expected) since ARL0 > MRL0 for all combinations of (λ, L). 

These tables are useful for a practical implementation of the control chart. For example, from   

Table 3.11 for ( = 5, we observe that for (] = 0.05, L = 2.6) the ARL0 = 496.96 and for (] = 0.05,   

L = 2.7) the ARL0 = 640.44, which implies that the value of L that leads to an ARL0 of 500 is 

between 2.6 and 2.7 and close to 2.6. Refining the search algorithm leads to (] = 0.05, L = 2.602) 

with an ARL0 of 499.83 (see Table 3.13); more details are given below.  

 

Table 3.11. Performance characteristics
ix

 of the IC run-length distribution for the NPEWMA-SR 

chart with n = 5 

L 
Small shifts Moderate shifts Large shifts 

λλλλ = 0.05 λλλλ = 0.10 λλλλ = 0.20 

2.0 
127.18 (117.83) 73.72 (68.60) 46.05 (43.21) 

15, 43, 91, 173, 362 9, 25, 53, 100, 211 5, 15, 33, 63, 132 

2.1 
156.62 (146.42) 91.51 (85.95) 58.07 (54.94) 

17, 52, 112, 213, 449 10, 30, 65, 125, 263 6, 19, 41, 79, 168 

2.2 
194.21 (183.14) 114.41 (108.39) 73.92 (70.50) 

20, 64, 138, 265, 560 12, 37, 81, 156, 331 7, 24, 52, 101, 215 

2.3 
242.64 (230.66) 144.31 (137.82) 95.16 (91.52) 

24, 78, 172, 332, 703 14, 46, 102, 198, 419 8, 30, 67, 131, 278 

2.4 
305.68 (292.78) 183.97 (177.00) 123.83 (119.93) 

28, 97, 216, 419, 890 16, 58, 130, 252, 537 10, 38, 87, 170, 363 

2.5 
386.96 (373.15) 236.12 (228.68) 163.43 (159.27) 

33, 121, 273, 531, 1132 19, 73, 166, 324, 692 12, 50, 115, 225, 481 

2.6 
496.96 (481.21) 307.15 (299.22) 220.15 (215.72) 

39, 153, 348, 682, 1456 23, 94, 215, 423, 904 16, 66, 154, 303, 651 

2.7 
640.44 (624.75) 404.57 (396.15) 300.03 (295.35) 

48, 195, 449, 882, 1887 29, 122, 283, 558, 1195 20, 90, 209, 414, 889 

2.8 
838.61 (821.99) 541.06 (532.15) 417.77 (412.83) 

59, 253, 586, 1156, 2479 36, 162, 378, 747, 1603 26, 124, 291, 577, 1242 

2.9 
1108.26 (1090.69) 730.87 (721.46) 590.31 (585.08) 

74, 331, 774, 1530, 3285 46, 217, 510, 1010, 2171 35, 174, 411, 816, 1758 

3.0 
1471.46 (1452.99) 997.49 (987.60) 856.39 (850.86) 

93, 437, 1026, 2033, 4371 61, 294, 694, 1379, 2968 49, 250, 595, 1185, 2554 

 

                                                 
ix

 The first row of each cell shows the ARL0 and SDRL0 values, respectively, whereas the second row shows the values 

of the in-control 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 3.12. Performance characteristics
x
 of the IC run-length distribution for the NPEWMA-SR 

chart with n = 10 

L 
Small shifts Moderate shifts Large shifts 

λλλλ = 0.05 λλλλ = 0.10 λλλλ = 0.20 

2.0 
526.24 (484.78) 230.19 (212.76) 127.34 (118.12) 

64, 182, 378, 714, 1493 28, 79, 165, 312, 655 15, 43, 91, 173, 363 

2.1 
643.37 (597.91) 282.21 (263.15) 156.79 (146.74) 

74, 218, 461, 875, 1836 32, 95, 202, 384, 807 17, 52, 112, 214, 450 

2.2 
790.58 (740.97) 347.75 (327.01) 193.83 (182.93) 

86, 264, 564, 1077, 2269 37, 115, 248, 474, 1000 20, 64, 138, 265, 559 

2.3 
976.99 (923.11) 431.42 (408.95) 241.48 (229.70) 

100, 320, 694, 1334, 2819 43, 140, 306, 590, 1247 23, 78, 171, 330, 700 

2.4 
1211.01 (1152.78) 538.45 (514.21) 302.73 (290.07) 

117, 391, 858, 1657, 3511 50, 172, 381, 737, 1565 27, 96, 214, 415, 882 

2.5 
1520.23 (1457.55) 676.74 (650.72) 383.02 (369.46) 

137, 483, 1073, 2083, 4429 59, 213, 477, 928, 1975 33, 120, 270, 526, 1120 

2.6 
1916.65 (1849.51) 857.99 (830.16) 488.46 (473.99) 

162, 600, 1350, 2631, 5607 70, 267, 603, 1179, 2515 39, 151, 343, 672, 1434 

2.7 
2438.25 (2366.61) 1096.87 (1067.23) 630.57 (615.18) 

193, 753, 1712, 3353, 7161 84, 337, 770, 1509, 3227 47, 192, 442, 868, 1858 

2.8 
3131.18 (3055.01) 1415.89 (1384.45) 817.76 (801.47) 

233, 955, 2194, 4311, 9228 103, 430, 991, 1951, 4179 57, 247, 572, 1127, 2417 

2.9 
4056.22 (3975.58) 1853.14 (1819.89) 1076.12 (1058.94) 

285, 1225, 2837, 5592, 11990 127, 557, 1295, 2556, 5485 72, 322, 751, 1485, 3189 

3.0 
5298.98 (5213.92) 2430.95 (2395.95) 1427.59 (1409.53) 

353, 1585, 3699, 7313, 15704 158, 724, 1696, 3357, 7213 90, 424, 995, 1972, 4241 

 

 

With regard to the implementation of the NPEWMA-SR chart, the first step is to choose λ. 

The recommendation (see Section 1.9.3) is to choose a small λ, say equal to 0.05, when small shifts 

are of interest, if moderate shifts are of greater concern, choose λ = 0.10, whereas choose λ = 0.20 if 

larger shifts are of interest. Note that these recommendations are consistent with those for the 

EWMA-# chart (see e.g. Montgomery (2009) page 423)). After λ is chosen, the second step 

involves choosing L, so that a desired ARL0 is attained.  

 

In order to aid the practitioner in the design of the NPEWMA-SR chart, Table 3.13 lists 

some (λ, L)-combinations for popular nominal ARL0 values of 370 and 500 and ( = 5 and 10. In 

each case, the ARL0 values, obtained using the Markov chain approach, called the attained ARL0 

values, are also provided. Note that because of the discreteness of the sign statistic, the nominal 

ARL values are not attained exactly, however, it is remarkable that the NPEWMA-SR chart can 

attain ARL0 values pretty close to the nominal values which make these charts useful in practice. 

 

  

                                                 
x
 The first row of each cell shows the ARL0 and SDRL0 values, respectively, whereas the second row shows the values 

of the in-control 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 3.13.  (λ, L)-combinations for the NPEWMA-SR chart
1
 for nominal ARL0 = 370 and 500

 

Nominal ARL0 = 370 Nominal ARL0 = 500 

Shift to be 

detected 

(λ, L) Attained ARL0  (λ, L) Attained ARL0  

n = 5 

Small (0.05, 2.481) 370.29 (0.05, 2.602) 499.83 

Moderate (0.10, 2.668) 370.13 (0.10, 2.775) 500.11 

Large (0.20, 2.764) 369.91 (0.20, 2.852) 499.27 

n = 10 

Small (0.05, 2.486) 370.49 (0.05, 2.610) 500.67 

Moderate (0.10, 2.684) 370.09 (0.10, 2.794) 500.13 

Large (0.20, 2.810) 370.19 (0.20, 2.905) 498.92 
1 

Table 3.13 is more extensive and unlike in Amin and Searcy (1991) who give some  

(λ, UCL)-values. 

  

So, for example, suppose ( = 5 and one is interested in detecting a small shift in the location 

with a NPEWMA-SR with an ARL0 of 370. Then one can use the (λ, L)-combination: (0.05, 2.481) 

which yields an attained ARL0 of 370.29. Table 3.13 should be very useful for implementing the 

NPEWMA-SR chart in practice. A SAS® program is provided (see Appendix 3C) if the practitioner 

wishes to obtain some other (λ, L)-combinations for other nominal ARL0 values. 

 

3.3.3.3 Performance comparison with other charts 

 

In-control robustness 

  

 The IC performance of a chart is typically used to assess its robustness (i.e. the sensitivity of 

or, the change in, the properties of the run-length distribution) to different distributional 

assumptions whereas the OOC performance of the chart is examined to assess its efficacy in 

detecting a shift in the underlying process.  

 

This study includes only symmetric distributions, since the assumption of symmetry is 

needed for WSR and signed-rank test statistics. Note that, wherever necessary, all distributions have 

been shifted and scaled such that the mean / median equals 0 and the standard deviation equals 1, so 

that the results are easily comparable across the distributions. The details for these steps are shown 

in Appendix 1B. Specifically, the distributions considered in the study are: 
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i. The Standard Normal distribution, N(0,1).  

 

ii. The Student’s t-distribution, t(v), with degrees of freedom v = 4 and 8, respectively, which 

is symmetric but with heavier tails than the Normal.  

 

iii. The Laplace (or Double Exponential) distribution, DE(0,1/√2).  

 

iv. The Logistic distribution, LG(0,√3/�).  

 

v. The Contaminated Normal (CN) distribution, which is a linear combination of two Normal 

random variables with the same location but different variance:  

0.95� S0, ��.��T + 0.05� S0, ��.��T  

where the $̂’s are chosen so that the standard deviation of the distribution equals 1, that 

is, 0.95 �̂ + 0.05  ̂ = 1. We consider the case where  ̂ �̂⁄ = 2. The contaminated 

normal distribution is often used to study the effects of outliers.  

 

The NPEWMA-SR chart is compared to the parametric EWMA-# chart and the 

nonparametric EWMA-SN chart. Because the NPEWMA-SR and the NPEWMA-SN charts are 

nonparametric, the IC run-length distribution and the associated characteristics should remain the 

same for all symmetric continuous distributions. A Markov chain approach was used in the 

calculations for the two NPEWMA charts whereas for the EWMA-# chart, the values of the IC run-

length characteristics were estimated using 100 000 simulations as the exact closed-form 

expressions for the run-length distribution is not available for all the distributions considered in the 

study; the main stumbling block being the exact distribution of the mean (i.e #) for small subgroup 

sizes. The results are shown in Table 3.14 for λ = 0.05, 0.10 and 0.20, respectively, and ( = 10. 

Note that, the values of L were chosen such that in each case ARL0 ≈ 500 and, in case of the 

EWMA-# chart, the values of L were chosen (using a search algorithm) such that the ARL0 ≈ 500 

when the underlying distribution is N(0,1). The first row of each cell in Table 3.14 shows the ARL0 

and SDRL0 values, respectively, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 

and 95
th

 percentiles (in this order).  
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Table 3.14. The IC performance characteristics of the run-length distribution for the NPEWMA-

SR, the NPEWMA-SN and the EWMA- X  charts for selected (λ, L)-combinations  

and n = 10 
NPEWMA-SR 

(λ, L) (0.05, 2.610) (0.10, 2.794) (0.20, 2.905) 

For all symmetric  

continuous 

distributions 

500.67 (486.10) 

40, 154, 352, 688, 1471 

500.13 (491.61) 

34, 150, 349, 690, 1481 

498.92 (494.15) 

30, 147, 347, 690, 1485 

NPEWMA-SN 

(λ, L) (0.05, 2.612) (0.10, 2.797) (0.20, 2.933) 

For all continuous 

distributions 

501.04 (486.58) 

39, 155, 352, 689, 1472 

500.25 (491.88) 

34, 150, 349, 690, 1482 

499.64 (495.00) 

30, 147, 348, 691, 1488 

EWMA-� 

Dist (λ, L) (0.05, 2.613) (0.10, 2.815) (0.20, 2.962) 

N(0,1) 
496.37 (482.62) 498.96 (490.01) 497.31 (492.20) 

39, 152, 350, 681, 1462  34, 149, 349, 689, 1475 30, 147, 346, 688, 1479 

t(4) 
480.84 (470.36) 441.57 (436.35) 367.65 (365.04) 

38, 148, 337, 661, 1421 29, 131, 308, 608, 1309 22, 108, 255, 509, 1094 

t(8) 
494.13 (478.31) 490.80 (479.81) 471.10 (466.43) 

39, 153, 349, 682, 1445 33, 147, 344, 678, 1445 28, 137, 329, 653, 1407 

Laplace 
491.87 (479.56) 477.52 (473.51) 438.70 (434.15) 

39, 150, 345, 675, 1450 32, 142, 331, 657, 1423 26, 129, 305, 607, 1300 

Logistic 
491.81 (479.10) 491.58 (485.19) 473.63 (471.09) 

39, 152, 345, 677, 1452 33, 147, 342, 676, 1462 28, 138, 328, 654, 1416 

CN 
494.67 (479.24) 487.51 (477.50) 476.14 (473.16) 

39, 152, 349, 683, 1448 33, 148, 343, 671, 1438 29 ,140, 331, 662, 1411 

 

 

 For a better understanding of the way the values are presented in Table 3.14, let us consider 

the first cell. The value of ARL0 = 500.67 in the first row indicates that, for the NPEWMA-SR chart 

with design parameters λ = 0.05 and L = 2.610, when the process is IC, the first false alarm would 

be observed, on average, at every 501
st
 plotted point. The first quartile is 154, so we know that a 

false alarm will not occur within the first 154 plotted points, with a probability of at most 75%. As 

another example, the MRL0 = 352, which indicates that the first false alarm will be observed, within 

the first 352 plotted points, at least 50% of the time.  

 

 For a visual presentation of the IC run-length distributions, the values of Table 3.14 were 

used to construct boxplot-like graphs (see Radson and Boyd (2005)) shown in Figure 3.13. Each 

boxplot shows the mean of the run-length distribution as a square and the median as a circle inside 

the box and the ‘whiskers’ are extended to the 5
th

 and the 95
th

 percentiles instead of the usual 

minimum and maximum. Note that only one boxplot is shown for each of the two NPEWMA charts 

(the first two boxplots on the left), because their IC run-length characteristics are the same for all 

symmetric continuous distributions and that a reference line was inserted on the vertical axis at 500, 

which is the desired nominal ARL0 value in this case. 
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Figure 3.13

xi
. Boxplot-like graphs of the IC run-length distributions of the NPEWMA-SR chart 

(first boxplot on the left), the NPEWMA-SN chart (second boxplot to the left) and the EWMA- X  

chart (remaining 6 boxplots on the right) 

  

                                                 
xi

Panel (a): NPEWMA-SR (λ=0.05, L=2.610); NPEWMA-SN (λ=0.05, L=2.612); EWMA- X  (λ=0.05, L=2.613) 

Panel (b): NPEWMA-SR (λ=0.10, L=2.794); NPEWMA-SN (λ=0.10, L=2.797); EWMA- X  (λ=0.10, L=2.815) 

Panel (c): NPEWMA-SR (λ=0.20, L=2.905); NPEWMA-SN (λ=0.20, L=2.933); EWMA- X  (λ=0.20, L=2.962) 
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Several interesting observations can be made from Table 3.14 and Figure 3.13: 

 

i. As expected, both NPEWMA charts are IC robust for all λ and for all distributions under 

consideration, including the CN distribution, indicating that the nonparametric charts are 

more resistant to outliers. Also, the IC run-length distributions of the NPEWMA-SN and the 

NPEWMA-SR charts look almost identical.  

 

ii. The EWMA-# chart is not IC robust and its run-length distribution has a higher variance as 

seen from the interquartile ranges. Its IC characteristics vary (sometimes dramatically) as 

the underlying distribution changes. For example, focusing on the ARL0 as a measure of 

location, for λ = 0.20 (see Figure 3.13 (c) and Table 3.14) the ARL0 of the EWMA-# chart 

varies from 497.31 (when the underlying distribution is N(0,1)) to 367.65 (when the 

underlying distribution is t(4)). In addition, for λ = 0.20, the ARL0 values of the EWMA-# 

chart are much smaller than 500 (farther below the reference line) for all distributions other 

than the normal. This is problematic as there will be many more false alarms than what is 

nominally expected.  

 

iii. The EWMA-# chart appears to be less IC robust for larger values of λ, especially for the CN 

distribution. Thus, this chart may be problematic when outliers are likely to be present. 

 

Out-of-control chart performance 

 

 For the OOC chart performance comparison it is customary to ensure that the ARL0 values 

of the competing charts are fixed at (or very close to) an acceptably high value, such as 500 in this 

case, and then compare their out-of-control ARL’s (denoted ARLδ) values, for specific values of the 

shift δ; the chart with the smaller ARLδ value is generally preferred. We compare the NPEWMA-SR 

chart to the NPEWMA-SN chart and the EWMA-# chart with known parameters (see Roberts 

(1959) and Steiner (1999)).  
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 Tables 3.15, 3.16 and 3.17 give the OOC characteristics of the run-length distribution for the 

EWMA-# chart, the NPEWMA-SN chart and the NPEWMA-SR chart, respectively, for ( = 10 and 

� = 0.5(0.5)2.0. Note that negative shifts are not considered in this section since, for symmetric 

distributions, the direction of the shift does not seem to affect the detection capability of the charts 

(see Section 3.2.3 for a detailed discussion on this point). 

 

 It may be noted that in order for the NPEWMA-SR chart to be able to signal after one 

subgroup (i.e. to obtain an ARLδ of 1), the maximum allowable value for the UCL is ](�( + 1	/2 

and, in general, in order for the chart to be able to signal after the i
th

 subgroup, the maximum 

allowable UCL is �1 − �1 − ]	$	(�( + 1	/2. This result can be established by substituting the 

maximum value of ��$ (which equals (�( + 1	/2) into Equation (3.18) and rewriting the charting 

statistic as \$ = ]∑ �1 − ]	
��$�
$��
5+ + �1 − ]	$\+. Thus, the first time the chart can signal is on 

the subgroup number 2 such that 

 

 2 ≥ ¤'	��� ¥¦§/�'�',�		¤'	���c	  . (3.21) 

  

 The proof to the restriction is given in Appendix 3A. For example, for ( = 10, ] = 0.05 and 

L = 2.610 (this (], L)-combination can be used for a desired ARL0 of 500 (see Table 3.13)) we get 

UCL = 8.200 from Equation (3.20) and then the right-hand side of (3.21) equals 3.148. Thus the 

NPEWMA-SR chart can only signal for the first time on or beyond subgroup number 4 when          ( = 10 and ] = 0.05, which is confirmed from Table 3.17. A similar restriction applies to the 

performance of the NPEWMA-SN chart (see Equation (3.15)). 

   

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



151 

 

Table 3.15. OOC characteristics
xii

 of the run-length distribution for the EWMA- X  control chart for n = 10 

Distribution 

Shift 

(�) 
0.5 1.0 1.5 2.0 

Shift 

(�) 
0.5 1.0 1.5 2.0 

L  λ = 0.05 L  λ = 0.10 

N(0,1) 2.613 
28.35 (15.45) 11.32 (4.26) 7.14 (2.06) 5.22 (1.26) 

2.815 
31.58 (4.80) 10.39 (4.850) 6.08 (2.12) 4.37 (1.24) 

11, 17, 25, 35, 58 6, 8, 11, 13, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 8, 15, 25, 40, 77 5, 7, 9, 13, 19 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

t(4) 2.682 
30.94 (17.73) 11.76 (4.21) 7.31 (1.94) 5.44 (1.01) 

2.865 
33.23 (24.24) 10.64 (4.88) 6.21 (2.13) 4.76 (1.20) 

11, 18, 27, 39, 65 6, 9, 11, 14, 20 5, 6, 7, 8, 11 4, 5, 5, 6, 7 8, 16, 27, 43, 81 5, 7, 10, 13, 20 3, 5, 6, 7, 10 3, 4, 5, 5, 7 

t(8) 2.640 
29.53 (16.99) 11.50 (4.22) 7.18 (2.05) 5.27 (1.27) 

2.824 
31.71 (22.69) 10.43 (4.80) 6.10 (2.14) 4.38 (1.25) 

10, 18, 25, 37, 62 6, 9, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 8, 16, 25, 41, 76 5, 7, 9, 13, 20 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

Laplace 2.666 
30.48 (17.58) 11.68 (4.27) 7.24 (2.05) 5.61 (1.27) 

2.830 
32.12 (23.25) 10.40 (4.71) 6.13 (2.09) 4.68 (1.27) 

11, 18, 26, 38, 65 6, 9, 11, 14, 20 4, 6, 7, 8, 11 4, 4, 5, 6, 8 8, 16, 26, 42, 78 5, 7, 9, 13, 19 3, 5, 6, 7, 10 3, 3, 4, 5, 7 

Logistic 2.635 
29.46 (17.00) 11.47 (4.22) 7.17 (2.05) 5.26 (1.27) 

2.820 
31.51 (22.84) 10.39 (4.79) 6.09 (2.11) 4.39 (1.25) 

10, 17, 25, 37, 62 6, 8, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 8, 15, 25, 41, 77 5, 7, 9, 13, 20 3, 5, 6, 7, 10 3, 4, 4, 5, 7 

CN 2.656 
24.49 (18.26) 7.42 (4.73) 3.82 (2.20) 2.45 (1.28) 

2.825 
31.68 (23.33) 10.38 (4.77) 6.11 (2.13) 4.36 (1.24) 

3, 11, 20, 33, 59 2, 4, 6, 10, 16 1, 2, 3, 5, 8 1, 2, 2, 3, 5 8, 16, 25, 41, 77 5, 7, 9, 13, 19 3, 5, 6, 7, 10 3, 3, 4, 5, 7 

  L  λ = 0.20  

N(0,1) 2.962 
41.46 (35.53) 10.53 (6.31) 5.55 (2.57) 3.75 (1.34)      

7, 17, 31, 54, 112 4, 6, 9, 13, 23 3, 4, 5, 7, 10 2, 3, 4, 4, 6  

t(4) 3.100 
52.40 (46.45) 11.89 (7.29) 5.91 (2.69) 4.08 (1.36)      

8, 19, 39, 70, 146 4, 7, 10, 15, 26 3, 4, 5, 7, 11 2, 3, 4, 5, 7      

t(8) 2.983 
43.30 (37.35) 10.63 (6.49) 5.54 (2.42) 3.79 (1.32)  

7, 17, 32, 57, 120 4, 6, 9, 13, 23 3, 4, 5, 7, 10 2, 5, 4, 4, 6      

Laplace 3.005 
45.07 (39.71) 11.02 (6.76) 5.62 (2.48) 3.95 (1.36)      

7, 17, 33, 60, 124 4, 6, 9, 14, 25 3, 4, 5, 7, 10 2, 3, 4, 4, 6  

Logistic 2.980 
42.98 (37.49) 10.69 (6.48) 5.56 (2.43) 3.77 (1.35)      

7, 16, 31, 57, 120 4, 6, 9, 13, 24 3, 4, 5, 7, 10 2, 3, 4, 4, 6      

CN 2.981 
42.92 (37.08) 10.73 (6.64) 5.53 (2.44) 3.78 (1.33)  

7, 17, 32, 57, 117 4, 6, 9, 13, 24 3, 4, 5, 7, 10 2, 3, 4, 4, 6  

  

                                                 
xii

 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 3.16. OOC characteristics
xiii

 of the run-length distribution for the NPEWMA-SN control chart for n = 10  
Shift (�) 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

Distribution  λ = 0.05 and L = 2.612  λ = 0.10 and L = 2.797 

N(0,1) 
41.33 (26.47) 15.48 (6.60) 9.43 (3.15) 7.10 (1.85) 46.29 (35.01) 14.87 (7.64) 8.37 (3.18) 6.11 (1.99) 

13, 22, 34, 54, 93 7, 11, 14, 19, 28 5, 7, 9, 11, 15 5, 6, 7, 8, 11 10, 21, 37, 60, 118 6, 9, 13, 19, 30 4, 6, 8, 10, 14 4, 5, 6, 7, 10 

t(4) 
26.62 (14.77) 11.08 (3.81) 7.29 (2.01) 5.34 (1.25) 28.70 (19.95) 9.98 (4.30) 6.20 (1.96) 4.50 (0.98) 

10, 16, 23, 33, 55 6, 8, 10, 13, 18 5, 6, 7, 8, 11 3, 4, 5, 5, 7 8, 15, 23, 37, 67 5, 7, 9, 12, 18 4, 5, 6, 7, 10 3, 4, 4, 5, 6 

t(8) 
34.35 (20.70) 13.41 (5.31) 8.49 (2.53) 6.47 (1.55) 38.43 (29.33) 12.58 (6.25) 7.42 (2.71) 5.45 (1.55) 

12, 20, 29, 43, 74 7, 10, 12, 16, 24 5, 7, 8, 10, 13 4, 5, 6, 7, 9 9, 18, 30, 50, 97 5, 8, 11, 15, 25 4, 5, 7, 9, 12 4, 4, 5, 6, 8 

Laplace 
20.42 (10.15) 9.71 (3.12) 6.82 (1.71) 5.56 (1.14) 20.96 (12.98) 8.55 (3.43) 5.82 (1.76) 4.64 (1.13) 

8, 13, 18, 25, 40 6, 7, 9, 11, 15 5, 6, 7, 8, 10 4, 5, 5, 6, 8 7, 12, 18, 26, 46 4, 6, 8, 10, 15 4, 5, 6, 7, 9 3, 4, 4, 5, 7 

Logistic 
33.52 (20.62) 13.31 (5.15) 8.39 (2.417) 6.40 (1.52) 37.27 (27.87) 12.24 (5.88) 7.31 (2.61) 5.39 (1.55) 

11, 19, 28, 43, 75 7, 10, 12, 16, 23 5, 7, 8, 10, 13 4, 5, 6, 7, 9 9, 18, 29, 49, 93 5, 8, 11, 15, 24 4, 5, 7, 9, 12 4, 4, 5, 6, 8 

CN 
37.76 (23.62) 14.59 (5.95) 9.13 (2.81) 6.82 (1.70) 43.12 (33.37) 13.75 (7.12) 7.92 (3.00) 5.75 (1.70) 

12, 21, 32, 47, 83 7, 10, 14, 18, 26 5, 7, 9, 11, 14 5, 6, 7, 8, 10 10, 19, 34, 57, 109 6, 9, 12, 17, 28 4, 6, 7, 9, 14 4, 5, 5, 7, 9 

   λ = 0.20 and L = 2.933 

N(0,1) 
68.76 (65.55) 16.67 (11.72) 8.01 (4.19) 5.35 (2.18)     

10, 24, 49, 91, 199 4, 8, 13, 22, 39 3, 5, 7, 10, 16 3, 4, 5, 6, 10 

t(4) 
37.68 (31.72) 10.07 (5.84) 5.64 (2.35) 4.07 (1.31)     

7, 15, 28, 50, 102 4, 6, 9, 13, 21 3, 4, 5, 7, 10 2, 3, 4, 5, 6     

t(8) 
53.04 (47.57) 13.37 (8.54) 6.97 (3.32) 4.80 (1.75) 

8, 20, 39, 71, 146 4, 7, 11, 17, 30 3, 5, 6, 9, 13 3, 4, 4, 6, 8     

Laplace 
25.10 (19.47) 8.30 (4.39) 5.14 (1.99) 3.94 (1.24)     

6, 11, 19, 33, 64 3, 5, 7, 10, 17 3, 4, 5, 6, 9 2, 3, 4, 5, 6 

Logistic 
51.53 (45.87) 13.17 (8.48) 6.84 (3.22) 4.76 (1.76)     

8, 20, 38, 69, 145 4, 7, 11, 17, 30 3, 5, 6, 8, 13 3, 4, 4, 6, 8     

CN 
60.25 (52.82) 14.92 (10.06) 7.60 (3.74) 5.12 (1.92) 

8, 22, 45, 82, 164 5, 8, 12, 19, 35 3, 5, 7, 9, 15 3, 4, 5, 6, 9 

 
  

                                                 
xiii

 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 3.17. OOC characteristics
xiv

 of the run-length distribution for the NPEWMA-SR control chart for n = 10  
Shift (�) 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

Distribution  λ = 0.05 and L = 2.610  λ = 0.10 and L = 2.794 

N(0,1) 
31.14 (18.12) 12.55 (4.66) 8.06 (2.14) 8.18 (1.29) 34.28 (25.41) 11.50 (5.32) 6.91 (2.29) 5.17 (1.31) 

11, 18, 26, 39, 66 7, 9, 12, 15, 22 5, 7, 8, 9, 12 4, 5, 6, 7, 8 9, 17, 27, 44, 85 5, 8, 10, 14, 22 4, 5, 6, 8, 11 4, 4, 5, 6, 8 

t(4) 
23.27 (11.96) 10.13 (3.35) 6.82 (1.59) 4.75 (1.19) 24.75 (16.36) 8.92 (3.52) 5.77 (1.65) 4.46 (1.27) 

9, 15, 20, 29, 46 6, 8, 10, 12, 16 5, 6, 7, 8, 10 3, 4, 5, 5, 7 7, 13, 20, 32, 57 5, 6, 8, 11, 16 4, 5, 5, 7, 9 3, 4, 4, 5, 7 

t(8) 
28.42 (15.41) 11.51 (4.05) 7.65 (1.94) 5.87 (1.17) 30.36 (21.21) 10.43 (4.50) 6.49 (2.03) 4.92 (1.17) 

11, 18, 25, 35, 57 6, 9, 11, 14, 19 5, 6, 7, 9, 11 4, 5, 6, 7, 8 8, 15, 25, 39, 72 5, 7, 9, 13, 19 4, 5, 6, 8, 10 3, 4, 5, 6, 7 

Laplace 
21.84 (10.66) 9.83 (3.11) 6.87 (1.66) 5.53 (1.05) 22.59 (14.45) 8.67 (3.36) 5.79 (1.66) 4.55 (1.04) 

9, 14, 20, 27, 42 6, 8, 9, 12, 16 5, 6, 7, 8, 10 4, 5, 5, 6, 7 7, 12, 19, 28, 51 5, 6, 8, 10, 15 4, 5, 6, 7, 9 3, 4, 4, 5, 6 

Logistic 
28.11 (15.53) 11.43 (3.99) 7.57 (1.96) 5.90 (1.19) 30.26 (21.34) 10.41 (4.48) 6.46 (2.00) 4.92 (1.19) 

11, 17, 25, 35, 57 6, 8, 11, 13, 19 5, 6, 7, 9, 11 4, 5, 6, 7, 8 8, 15, 24, 39, 72 5, 7, 10, 13, 19 4, 5, 6, 7, 10 3, 4, 5, 6, 7 

CN 
30.01 (17.78) 12.06 (4.33) 7.82 (2.09) 6.03 (1.24) 33.30 (24.10) 10.87 (4.77) 6.72 (2.13) 5.05 (1.24) 

11, 17, 25, 37, 65 7, 9, 11, 14, 20 5, 6, 7, 9, 12 4, 5, 6, 7, 8 9, 16, 26, 42, 83 5, 7, 10, 13, 20 4, 5, 6, 8, 11 3, 4, 5, 6, 7 

   λ = 0.20 and L = 2.905 

N(0,1) 
46.99 (40.84) 11.86 (7.27) 6.36 (2.77) 4.49 (1.42)     

8, 18, 35, 63, 128 4, 7, 10, 15, 26 3, 4, 6, 8, 12 3, 3, 4, 5, 7 

t(4) 
30.54 (24.73) 8.60 (4.54) 5.06 (1.81) 3.83 (1.03)     

6, 13, 23, 40, 80 4, 5, 7, 11, 17 3, 4, 5, 6, 9 3, 3, 4, 4, 6     

t(8) 
40.39 (34.24) 10.68 (6.13) 5.83 (2.41) 4.21 (1.27) 

7, 16, 30, 54, 109 4, 6, 9, 13, 23 3, 4, 5, 7, 10 3, 3, 4, 5, 7     

Laplace 
27.59 (22.23) 8.34 (4.35) 5.04 (1.87) 3.88 (1.11)     

6, 12, 21, 36, 71 4, 5, 7, 10, 17 3, 4, 5, 6, 9 3, 3, 4, 4, 6 

Logistic 
39.66 (33.39) 10.53 (6.03) 5.83 (2.36) 4.19 (1.29)     

7, 16, 29, 53, 106 4, 6, 9, 13, 22 3, 4, 5, 7, 10 3, 3, 4, 5, 7     

CN 
44.30 (37.44) 11.08 (6.43) 6.06 (2.57) 4.33 (1.36) 

8, 17, 33, 60, 117 4, 7, 9, 14, 24 3, 4, 5, 7, 11 3, 3, 4, 5, 7 

 
  

                                                 
xiv

 The first row of each cell shows the ARL and SDRL values, respectively, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 

(f) CN 

 

Legend: 

   

 
   

Figure 3.14. OOC ARL values for the EWMA- X  chart, the NPEWMA-SN chart and the 

NPEWMA-SR chart for λ = 0.05 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 

(f) CN 

 

Legend: 

   

 
   

Figure 3.15. OOC ARL values for the EWMA- X  chart, the NPEWMA-SN chart and the 

NPEWMA-SR chart for λ = 0.10 
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(a) N(0,1) 

 

(b) t(4) 

 
(c) t(8) 

 

(d) Laplace 

 
(e) Logistic 

 

(f) CN 

 

Legend: 

   

 
   

Figure 3.16. OOC ARL values for the EWMA- X  chart, the NPEWMA-SN chart and the 

NPEWMA-SR chart for λ = 0.20 
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 A summary of our observations from the OOC performance characteristics is as follows:  

 

i. When the underlying process distribution is N(0,1), the EWMA-# chart outperforms both 

nonparametric charts. This is not surprising, as it is typical for parametric methods to 

outperform their nonparametric counterparts when all assumptions are met. The NPEWMA-

SR performs second best, whereas the NPEWMA-SN chart performs the worst. We obtain 

the same results for the CN distribution. This could be attributed to the fact that we have a 

small level of contamination and, consequently, the EWMA-# chart outperforms both 

nonparametric charts. 

 

ii. When the underlying process distribution is t(4), the NPEWMA-SR chart performs best 

followed by the NPEWMA-SN chart. The EWMA-# chart performs the worst, which is 

expected. 

 

iii. It is well-known that as the degrees of freedom for the t-distribution increases, the t-

distribution tends to the normal distribution. When we consider the t(8) distribution, we find 

that the performance of the EWMA-# chart and the NPEWMA-SR chart is very similar. 

This is not surprising, since the t(8) distribution is more normal-like than the t(4) 

distribution. The NPEWMA-SN chart performs the worst, although it seems that, for larger 

shifts (� ≥ 1.50) the performance of all three charts is very similar. 

 

iv. The NPEWMA-SR chart outperforms the NPEWMA-SN chart for all distributions under 

consideration except for the Laplace distribution, for which the performances of the charts 

are very similar. The EWMA-# chart performs the worst when the underlying process 

distribution is Laplace. 

 

v. When the underlying process distribution is Logistic, the NPEWMA-SR chart performs the 

best for small shifts (� = 0.50). For all other shifts the performance of the EWMA-# chart 

and the NPEWMA-SR chart is very similar. The NPEWMA-SN chart performs the worst. 
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3.3.3.4 Illustrative examples 

 

Example 3.4 

 

We first illustrate the NPEWMA-SR chart using a well-known dataset from Montgomery 

(2001; Table 5.2) on the inside diameters of piston rings manufactured by a forging process. Table 

5.2 contains fifteen prospective samples each of five observations (( = 5). We assume that the 

underlying process distribution is symmetric (since a goodness of fit test for normality is not 

rejected for these data) with a known median of 74mm. For the three EWMA charts we choose the 

design parameters (λ, L) so that ARL0 � 370. More specifically, we set λ = 0.05 and L equal to 

2.488, 2.484 and 2.481 for the EWMA-#, NPEWMA-SN and NPEWMA-SR charts, respectively. 

The values of the ��$ statistics and the NPEWMA-SR charting statistics were calculated using 

Equations (3.16) and (3.18), respectively, and are presented in Table 3.18.  

 

Table 3.18. The SRi statistics and the NPEWMA-SR charting statistics, Zi 

Subgroup number SRi Zi 

1 8 0.400 

2 4 0.580 

3 -14 -0.149 

4 7 0.208 

5 -3 0.048 

6 9 0.496 

7 10 0.971 

8 -6 0.622 

9 12 1.191 

10 14 1.832 

11 4 1.940 

12 15 2.593 

13 15 3.213 

14 15 3.803 

15 14 4.313 

 

 From Figures 3.17, 3.18 and 3.19 we see that the EWMA-# control chart is the first to 

signal at subgroup number 12, whereas the NPEWMA-SN and the NPEWMA-SR charts both 

signal later at subgroup number 13. This is not surprising, as normal theory counterparts 

typically outperform nonparametric methods when the assumptions are met and a goodness-of-

fit test does not reject normality for these data. In this example the EWMA-# slightly 

outperformed the nonparametric charts, but it should be noted that the assumptions necessary 

for the parametric chart seemed to be met. Typically in practice, however, normality can be in 
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doubt or may not be justified for lack of information or data and a nonparametric method may 

be more desirable. The next example illustrates this.  

 

Sample number

151413121110987654321

74.005

74.004

74.003

74.002

74.001

74.000

73.999

73.998

UCL = 74.002

CL = 74

LCL = 73.998

 
Figure 3.17. The EWMA- X control chart for the Montgomery piston ring data 

 

Sample number

151413121110987654321

1.5

1.0

0.5

0.0

-0.5

-1.0

UCL = 0.889

CL = 0

LCL = - 0.889

 
Figure 3.18. The NPEWMA-SN control chart for the Montgomery piston ring data 
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Sample number

151413121110987654321

5

4

3

2

1

0

-1

-2

-3

UCL = 2.946

LCL = - 2.946

CL = 0

 
Figure 3.19. The NPEWMA-SR control chart for the Montgomery piston ring data 

 

 

Example 3.5 

 

 The second example is to illustrate the effectiveness and the application of the 

nonparametric chart when normality is in doubt using some simulated data from a Logistic 

distribution with location parameter 0 and scale parameter √3/�: LG(0,	√3/�), so that the 

observations come from a symmetric distribution with a median of zero and a standard deviation of 

1. Suppose that the median increases or has sustained an upward step shift of 0.5. Accordingly, 

subgroups each of size 5 (( = 5) were generated from the Logistic distribution with the same scale 

parameter but with the location parameter equal to 0.5, resulting in observations that have a median 

of 0.5 and a standard deviation of 1. For the three EWMA charts we choose the design parameters 

(λ, L) so that ARL0 � 500. More specifically, we set λ = 0.10 and L equal to 2.701, 2.682 and 2.668 

for the EWMA-#, NPEWMA-SN and NPEWMA-SR charts, respectively. 

 

 The control charts are shown Figures 3.20, 3.21 and 3.22 and we observe that the 

nonparametric EWMA control charts are the first to signal at sample number 7, whereas the 

EWMA-# chart signals later at sample number 9.  
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Sample number

10987654321

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

UCL = 0.277

CL = 0

LCL =- 0.277

 
Figure 3.20. The EWMA- X control chart for the simulated data 

 

Sample number

10987654321

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

UCL = 1.376

LCL = - 1.376

CL= 0

 
Figure 3.21. The NPEWMA-SN control chart for the simulated data 
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Sample number

10987654321

7.5

5.0

2.5

0.0

-2.5

-5.0

UCL = 4.539

LCL = - 4.539

CL = 0

 
Figure 3.22. The NPEWMA-SR control chart for the simulated data 

 

3.3.4 Summary 

 

 We studied the NPEWMA-SR chart and its properties via the IC and OOC run-length 

distribution using a Markov chain approach and simulation, respectively. A performance 

comparison of the NPEWMA-SR chart is done with its competitors: the EWMA-# chart and the 

NPEWMA-SN chart, and it is seen that the NPEWMA-SR chart performs as well as and, in many 

cases, better than its competitors.  

 

3.4 Concluding remarks 

 

 EWMA charts take advantage of the sequentially (time ordered) accumulating nature of the 

data arising in a typical SPC environment and are known to be more efficient in detecting smaller 

shifts. The parametric EWMA-# chart can lack IC robustness and as such the corresponding false 

alarm rates can be a practical concern. NPEWMA charts offer an attractive alternative in such 

situations as they combine the inherent advantages of nonparametric charts (IC robustness) with the 

better small shift detection capability of EWMA-type charts. In Chapter 3 we proposed two 

NPEWMA charts based on the sign and signed-rank statistics and showed that on the basis of 

minimal required assumptions, robustness of the IC run-length distribution and OOC performance, 

the NPEWMA-SN and NPEWMA-SR charts are strong contenders in practical SPC applications. 
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3.5 Appendices 

 

3.5.1 Appendix 3A: Some mathematical results 

 

 Note that although the proofs and derivations below are done using the steady-state UCL, 

they can also be derived in a similar manner using the steady-state LCL. 

 

Proof to Equation (3.14) 

 

 Note that this proof is given in general for any sample size (. However, in order to get to the 

expression given in (3.14) substitute ( = 1 into the derivations below.  

 

 In order for the NPEWMA-SN chart to signal one must have that the maximum value, that 

the charting statistic can take on, must be less than or equal to the upper control limit, i.e. 

max	���$	 ≤ gh�.  

 

 Since the max���$	 = ( and the steady-state gh� = �G c'
 �c, we find that ( ≤ �G c'

 �c which 

simplifies to � S c
 �cT ≤ 1. 

�  
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Proof to Equation (3.15) 

 

 Note that this proof is given in general for any sample size (. However, in order to get to the 

expression given in (3.15) substitute ( = 1 into the derivations below.  

 

 

The chart will signal for the first i such that \$ ≥ gh� 

 ]∑ �1 − ]	
$��
5+ ��$�
 + �1 − ]	$D+ ≥ gh� from recursive substitution  

 ]∑ �1 − ]	
$��
5+ ��$�
 ≥ gh� since D+ = 0 

 ]∑ �1 − ]	
$��
5+ �2�$�
 − (	 ≥ gh�  

 ]∑ �1 − ]	
$��
5+ �2( − (	 ≥ gh� since ( is the max value that �$�
 can take on 

 (] ∑ �1 − ]	
$��
5+ ≥ gh�  

 ] S�����c	`�����c	T ≥ ¥¦§'  by using a geometric series 

 �1 − ]	$ ≤ 1 − ¥¦§'   

 2�(�1 − ]	 	≤ �( S1 − ¥¦§' T  

 

2 ≥ ¤'S��«¬¢ T¤'���c	   since �(�1 − ]	 < 0  

�  
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Proof to Equation (3.21) 

 

 

The chart will signal for the first i such that \$ ≥ gh� 

 ]∑ �1 − ]	
$��
5+ ��$�
 + �1 − ]	$D+ ≥ gh�  from recursive substitution  

 ]∑ �1 − ]	
$��
5+ ��$�
 ≥ gh� since D+ = 0 

 ]∑ �1 − ]	
$��
5+ S2�',$�
, − '�',�	 T ≥ gh�  

 ]∑ �1 − ]	
$��
5+ S2 '�',�	 − '�',�	 T ≥ gh� since 
'�',�	  is the max value that �$�
 can take on 

 '�',�	 ] ∑ �1 − ]	
$��
5+ ≥ gh�  

 ] S�����c	`�����c	T ≥  ¥¦§'�',�	 by using a geometric series 

 �1 − ]	$ ≤ 1 −  ¥¦§'�',�	  
 2�(�1 − ]	 	≤ �( S1 −  ¥¦§'�',�	T  

 

2 ≥ ¤'S�� F«¬¢�¢®�	T¤'���c	   since �(�1 − ]	 < 0  

����  
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3.5.2 Appendix 3B: A note on the number of subintervals between the control limits 

 

 For the Markov chain approach, when the number of subintervals j is sufficiently large, the 

finite approach provides an effective method that allows the run-length properties of the EWMA 

control scheme to be accurately approximated. In practice, values of j around 100 yield satisfactory 

approximations (see Yu (2007); page 20). Verification of the Markov chain approach using Monte 

Carlo simulation suggests that the discrepancies are within 2% of the simulated values when           j = 1001 (see Table B3.1). Taking larger values of j would result in more accurate answers, but in 

doing so, some run-length characteristics could not be computed within a practical period of time. 

Therefore, in this body of work, we obtained the run-length characteristics using the Interactive 

Matric Language (IML) procedure of SAS


 using j = 1001. 

 

Table B3.1. ARL0 values and the absolute percentage difference between the simulated values
xv

 and 

the values obtained using the Markov chain approach for the NPEWMA-SN chart for various 

values of j 

   λ = 0.05 

L = 2.472 

λ = 0.10 

L = 2.588 

M
a

rk
o

v
 c

h
a

in
 a

p
p

ro
a

ch
 

¯ 

 

51 439.07 (18.62%) 384.92 (4.06%) 

59 386.23 (4.34%) 420.36 (13.64%) 

67 379.34 (2.48%) 337.55 (8.75%) 

75 410.76 (10.97%) 360.21 (2.62%) 

83 410.48 (10.90%) 423.25 (14.42%) 

101 396.12 (7.02%) 357.42 (3.38%) 

151 380.61 (2.83%) 358.61 (3.05%) 

201 391.25 (5.70%) 330.66 (10.61%) 

251 368.50 (0.45%) 354.17 (4.26%) 

301 369.42 (0.20%) 379.63 (2.63%) 

401 365.71 (1.20%) 370.68 (0.21%) 

501 377.47 (1.98%) 377.33 (2.01%) 

1001 369.49 (0.18%) 373.80 (1.05%) 

100 000  

simulations 

370.15 

 

 369.91 

 

 

  

 From Table B3.1 we can see that the larger the value of j, the smaller the percentage 

difference between the simulated values and the values obtained using the Markov chain approach, 

for example, when the design parameters are taken to be λ = 0.05 and L = 2.472, we have a large 

percentage difference of 18.62% when j is taken to be small (j = 51) as opposed to a small 

percentage difference of 0.18% when j is taken to be large (j = 1001). 

 

                                                 
xv

 Note that steady state control limits were used in both the simulations and the Markov chain approach in order to 

make the comparisons fair. 
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3.5.3 Appendix 3C: SAS® programs 

 

3.5.3.1 SAS® program using Monte Carlo simulation to compute the run-length 

characteristics of the EWMA-� chart when the underlying process distribution is 

normal 

 

quit; 

proc iml; 

* Number of simulations; 

sim = 100000; 

runl = j(sim,1,.); 

* Design parameters of the EWMA-Xbar control chart; 

lambda = 0.2; 

L = 2.962; 

* Sample size; 

n = 10; 

*Shift; 

gamma = 2; 

stdev = 1;   

mean  = gamma * (stdev/sqrt(n)); 

* Steady state control limits; 

UCL = 0 + L*(1/sqrt(n))*sqrt((lambda/(2-lambda))); 

LCL = 0 - L*(1/sqrt(n))*sqrt((lambda/(2-lambda))); 

do k = 1 to sim; 

 * Initializing values; 

  indicator = 0; 

 count = 0; 

 zi_1 = 0; 

    do i = 1 to 1000000000000000 until (indicator = 1); 

    count = count + 1; 

 * Generating observations from the Normal distribution; 

 xi = j(n,1,.); 

 call randgen(xi,'NORMAL',mean,1); 

 x_bar = xi[+,]/n; 

 * Charting statistic; 

    zi = lambda*x_bar + (1 - lambda) * zi_1; 

 * Comparing charting statistic to the steady state control limits; 

   if (zi<UCL) & (zi>LCL) then do; indicator = 0; end; 

    if (zi>UCL) | (zi<LCL) then do; indicator = 1; end; 

 zi_1 = zi; 

 end; 

    runl[k,1] = count; 

end; 

create EWMA from runl[colname={RL}]; 

append from runl; 

proc univariate data = EWMA noprint; 

histogram; 

inset mean std p5 q1 median q3 p95 / format=10.2; 

run; 
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3.5.3.2 SAS® program using Monte Carlo simulation to compute the run-length 

characteristics of the NPEWMA-SN chart when the underlying process distribution is 

normal 

 

quit; 

proc iml; 

* Number of simulations; 

sim = 100000; 

runlength = j(sim,1,.); 

* Design parameters of EWMA control chart; 

lambda = 0.2; 

L = 2.933; 

* Sample size; 

n = 10; 

gamma = 2; 

stdev = 1; 

mean = gamma * stdev/sqrt(n); 

xi = j(n,1,.); 

ti_vec = j(n,1,.); 

* Steady state control limits; 

UCL_steady = 0 + L*sqrt(n)*sqrt((lambda/(2-lambda))); 

LCL_steady = 0 - L*sqrt(n)*sqrt((lambda/(2-lambda))); 

do j = 1 to sim; 

*initializing values; 

indicator = 0; 

count = 0; 

zi_1 = 0; 

do i = 1 to 1000000000000000 until (indicator = 1); 

count = count + 1; 

* Generating observations from the Normal distribution; 

call randgen(xi,'normal', mean,1); 

do o = 1 to nrow(xi); 

if xi[o,]>=0 then ti_vec[o,]=1;  

else ti_vec[o,]=0; 

end; 

ti = ti_vec[+,]; 

sni = 2*ti - n; 

* Charting statistic; 

zi = lambda*sni + (1 - lambda) * zi_1; 

* Comparing the charting statistic to the steady state control limits; 

if (zi<UCL_steady) & (zi>LCL_steady) then do; indicator = 0; end; 

if (zi>UCL_steady) | (zi<LCL_steady) then do; indicator = 1; end; 

zi_1 = zi; 

end; 

runlength[j,1] = count; 

end; 

create EWMA from runlength[colname={RL}]; 

append from runlength; 

proc univariate data = EWMA noprint; 

histogram; 

inset mean std p5 q1 median q3 p95 / format=10.2; 

run; 
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3.5.3.3 SAS® program using Monte Carlo simulation to compute the run-length 

characteristics of the NPEWMA-SR chart when the underlying process distribution is 

normal 

 
proc iml; 

* Number of simulations; 

sim = 100000; 

runl = j(sim,1,.); 

* Design parameters of EWMA control chart; 

lambda = 0.2; 

L = 2.905; 

* Sample size; 

n = 10; 

* Shift; 

gamma = 2; 

stdev = 1; 

mean = gamma * stdev / sqrt(n); 

* Steady state control limits; 

UCL = L * sqrt( (lambda / (2-lambda) )) * sqrt ( (n*(n+1)*(2*n+1))/6 );  

LCL = -UCL; 

do k = 1 to sim; 

 indicator = 0; 

 count = 0; 

 zi_1 = 0; 

 do i = 1 to 10000000000 until (indicator=1); 

 count = count + 1; 

 * Generating observations from the Normal distribution; 

 tv = 0; * Median of the normal distribution; 

 xi = j(n,1,.); 

 sign = j(n,1,.); 

 abs_diff = j(n,1,.); 

 sri = j(n,1,.); 

 call randgen (xi, 'normal', mean, 1); 

 do j = 1 to n; 

  if xi[j,1] > tv then sign[j,1] = 1; 

  if xi[j,1] < tv then sign[j,1] = -1; 

  if xi[j,1] = tv then sign[j,1] = 0; 

 end; 

 do j = 1 to n; 

  abs_diff[j,1] = abs(xi[j,1]-tv); 

 end; 

 rank_abs_diff = rank(abs_diff); 

 do j = 1 to n; 

  sri[j,1] = sign[j,1] # rank_abs_diff[j,1]; 

 end; 

 signed_rank = sum(sri); 

 *Charting statistic; 

 zi = lambda*signed_rank + (1-lambda)*zi_1; 

 * Comparing the charting statistic to the control limits; 

 if (zi<UCL) & (zi>LCL) then do; indicator = 0; end; 

 if (zi>UCL) | (zi<LCL) then do; indicator = 1; end; 

 zi_1=zi; 

end; 

runl[k,1] = count; 

end; 

create EWMA from runl[colname={RL}]; 

append from runl; 

proc univariate data = EWMA noprint; 

histogram; 

inset mean std p5 q1 median q3 p95 / format = 10.2; 

run; 
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3.5.3.4 Necessary amendments to the SAS® programs given in Sections 3.5.3.1, 3.5.3.2 and 

3.5.3.3 when the underlying process is non-normal 

 

D
is

t 

Necessary amendments 

t(
w ) * Generating values from the t distribution with mean=0 and variance=1; 

df = 4;  *Or df = 8; 

call randgen(xi,"t", df); 

xi=xi*sqrt( (df-2)/df ) + gamma*(stdev/sqrt(n)); 

L
ap

la
ce

 

stdev = sqrt(2); 

* Generating values from the Laplace distribution with mean=0 and    

  variance=1; 

uni=j(n,1,.); 

xi=j(n,1,.);   

call randgen(uni,'UNIFORM'); 

xi = quantile('laplace',uni,gamma*(stdev/sqrt(n)),1); 

xi = (1/sqrt(2))*xi; 

L
o

g
is

ti
c 

* Generating values from the logistic distribution with mean=0 and  

  variance=1; 

y=j(n,1,.); 

xi=j(n,1,.); 

* Based on the Probability Integral Transformation (PIT); 

call randgen (y, 'UNIFORM'); 

xi=log(y/(1-y))#j(n,1,sqrt(3)/(constant('PI')))+j(n,1,gamma*stdev/sqrt(n)); 

G
A

M
(K,�

) * Generating values from the logistic distribution with mean=0 and  

  variance=1; 

shape = 0.5;  * Or = 1 or = 3 

call randgen(xi,'gamma',shape); 

xi = (xi - shape)/sqrt(shape) + gamma*stdev/sqrt(n); 

C
N

 

* Generating values from the contaminated normal distribution with mean=0  

  and variance=1; 

ep = 0.05;     

y = ranuni(0); 

sig1 = SQRT(1/1.15); 

sig2 = SQRT(4/1.15); 

mu1 = 0; 

mu2 = 0; 

if y > ep then xi = RAND('NORMAL',mu1,sig1);  

else xi = RAND('NORMAL',mu2,sig2); 

mean = (1-ep)*mu1 + ep*mu2;  

var  = ((1-ep)*(mu1*mu1+sig1*sig1)+ep*(mu2*mu2+sig2*sig2))-(mean**2); 

stdev = sqrt(var);  

xi = xi + gamma*stdev/sqrt(n); 
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3.5.3.5 SAS® program using the Markov chain approach to compute the run-length 

characteristics of the NPEWMA-SN chart when the underlying process distribution is 

normal 

 

proc iml; 

* Number of subintervals between UCL and LCL; 

r=1001;   

* Sample size;  

n=1; 

* Design parameters of the EWMA control chart; 

L=2;    

lambda=0.05;  

* Shift; 

gamma=0;   

* Parameter of the Binomial distribution; 

p=0.5;   

* Calculating the steady-state control limits;      

UCL = L * sqrt(n) * sqrt(lambda/(2-lambda)); 

LCL = -UCL; 

* Interval between LCL and UCL divided into subintervals of width 2*tau; 

S=j(r,1,0); 

tau = ((UCL-LCL)/r)/2; 

S[1,1] = UCL - tau; 

do i = 2 to r; 

 S[i,1]=S[i-1,1]-2*tau; 

end; 

Q_a=j(r,r,0); 

Q_b=j(r,r,0); 

Q=j(r,r,0); 

do i = 1 to r; 

 do j = 1 to r; 

 Q_a[i,j]=floor(((((S[j,]-tau) - (1-lambda)*S[i,])/lambda) + n)/2); 

 end; 

end; 

do i = 1 to r; 

 do j = 1 to r; 

 Q_b[i,j]=floor(((((S[j,]+tau) - (1-lambda)*S[i,])/lambda) + n)/2); 

 end; 

end; 

do i = 1 to r; 

 do j = 1 to r; 

 Q[i,j]=cdf('BINOMIAL',(Q_b[i,j]),p,n)-cdf('BINOMIAL',(Q_a[i,j]),p,n); 

 end; 

end; 

* Defining the eta row vector; 

eta=j(1,r,0); 

eta[1,((1+r)/2)]=1; 

* Defining the vector ‘one’ used in Equations (1.12) to (1.15); 

one=j(r,1,1); 

* Defining the identity matrix used in Equations (1.12) to (1.15); 

identity = I(r); 

* Calculation of moments; 

indicator0 = 0; 

survival  = 0; 

Qh = I(r); 

do i = 1 to 10000000000 until (indicator0=1); 

Qc = Qh*Q; 

survival0 = eta * Qc * one; 

survival = survival // survival0; 

Qh = Qc;  
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if survival[i+1,] < 0.04 then indicator0=1; 

end; 

cdf1 = 1 - survival; 

cdf = cdf1; 

index=j(nrow(cdf),1,1); 

do i = 2 to nrow(cdf); 

 index[i,]=index[i-1,]+1; 

end;  

* Calculating the average run length (ARL); 

ARL = eta*ginv(identity-Q)*one; 

* Calculating the second moment; 

N2 = eta * (identity + Q) * (ginv((identity-Q)**2)) * one; 

* Calculating the standard deviation; 

SDRL = sqrt (N2 - ((ARL)**2) ); 

* Printing the output; 

print_cdf=index||cdf; 

* Calculations of the percentiles; 

p_5th=0; 

p_25th=0; 

p_50th=0; 

p_75th=0; 

p_95th=0; 

do i = 1 to nrow(cdf); 

 if print_cdf[i,2]<0.05 then p_5th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.25 then p_25th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.50 then p_50th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.75 then p_75th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.95 then p_95th=print_cdf[i,1]; 

end; 

print  n [label='Sample size'], 

  L [label = 'Multiplier'], 

  lambda [label = 'lambda'], 

  p [label='probability'], 

  r [label = 'Number of subintervals between UCL and LCL'], 

  UCL [label='Upper control limit'], 

       LCL [label='Lower control limit'], 

  S [label='midpoints'], 

  Q [label='Transition probability matrix'], 

       ARL [label = 'Average run length' format=.2], 

  SDRL [label = 'Standard deviation of the run length' format=.2], 

  p_5th p_25th p_50th p_75th p_95th; 
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3.5.3.6 SAS® program using the Markov chain approach to compute the run-length 

characteristics of the NPEWMA-SR chart when the underlying process distribution is 

normal 

 

proc iml; 

* Number of subintervals between UCL and LCL; 

r = 1001; 

* Sample size;  

n = 5;  

* Design parameters of the EWMA chart;  

L = 2.668;  

lambda = 0.1; 

* The IC standard deviation of the signed-rank statistic; 

stdev = sqrt (n*(n+1)*(2*n+1)/6); 

* Wilcoxon singed-rank probabilities for a sample size of 4; 

if n = 4 then do; 

 T4 = j((n*(n+1)/2)+1,1,1); 

 T4[1:3,]=1; 

 T4[4:8,]=2; 

 T4[9:11,]=1; 

 T = T4/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 5; 

if n = 5 then do; 

 T5 = j((n*(n+1)/2)+1,1,1); 

 T5[1:3,]=1; 

 T5[4:5,]=2; 

 T5[6:11,]=3; 

 T5[12:13,]=2; 

 T5[14:16,]=1; 

 T = T5/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 6; 

if n = 6 then do; 

 T6 = j((n*(n+1)/2)+1,1,1); 

 T6[1:3,]=1; 

 T6[4:5,]=2; 

 T6[6,]=3; 

 T6[7:9,]=4; 

 T6[10:13,]=5; 

 T6[14:16,]=4; 

 T6[17,]=3; 

 T6[18:19,]=2; 

 T6[20:22,]=1; 

 T = T6/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 7; 

if n = 7 then do; 

 T7 = j((n*(n+1)/2)+1,1,1); 

 T7[1:3,]=1; 

 T7[4:5,]=2; 

 T7[6,]=3; 

 T7[7,]=4; 

 T7[8:9,]=5; 

 T7[10,]=6; 

 T7[11:12,]=7; 

 T7[13:17,]=8; 

 T7[18:19,]=7; 

 T7[20,]=6; 

 T7[21:22,]=5; 
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 T7[23,]=4; 

 T7[24,]=3; 

 T7[25:26,]=2; 

 T7[27:29,]=1; 

 T = T7/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 8; 

if n = 8 then do; 

 T8 = j((n*(n+1)/2)+1,1,1); 

 T8[1:3,]=1; 

 T8[4:5,]=2; 

 T8[6,]=3; 

 T8[7,]=4; 

 T8[8,]=5; 

 T8[9,]=6; 

 T8[10,]=7; 

 T8[11,]=8; 

 T8[12,]=9; 

 T8[13,]=10; 

 T8[14,]=11; 

 T8[15,]=12; 

 T8[16:18,]=13; 

 T8[19,]=14; 

 T8[20:22,]=13; 

 T8[23,]=12; 

 T8[24,]=11; 

 T8[25,]=10; 

 T8[26,]=9; 

 T8[27,]=8; 

 T8[28,]=7; 

 T8[29,]=6; 

 T8[30,]=5; 

 T8[31,]=4; 

 T8[32,]=3; 

 T8[33:34,]=2; 

 T8[35:37,]=1; 

 T = T8/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 9; 

if n = 9 then do; 

 T9 = j((n*(n+1)/2)+1,1,1); 

 T9[1:3,]=1; 

 T9[4:5,]=2; 

 T9[6,]=3; 

 T9[7,]=4; 

 T9[8,]=5; 

 T9[9,]=6; 

 T9[10,]=8; 

 T9[11,]=9; 

 T9[12,]=10; 

 T9[13,]=12; 

 T9[14,]=13; 

 T9[15,]=15; 

 T9[16,]=17; 

 T9[17,]=18; 

 T9[18,]=19; 

 T9[19:20,]=21; 

 T9[21,]=22; 

 T9[22:25,]=23; 

 T9[26,]=22; 

 T9[27:28,]=21; 

 T9[29,]=19; 

 T9[30,]=18; 
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 T9[31,]=17; 

 T9[32,]=15; 

 T9[33,]=13; 

 T9[34,]=12; 

 T9[35,]=10; 

 T9[36,]=9; 

 T9[37,]=8; 

 T9[38,]=6; 

 T9[39,]=5; 

 T9[40,]=4; 

 T9[41,]=3; 

 T9[42:43,]=2; 

 T9[44:46,]=1; 

 T = T9/(2**n); 

end; 

* Wilcoxon singed-rank probabilities for a sample size of 10; 

if n = 10 then do; 

 T10 = j((n*(n+1)/2)+1,1,1); 

 T10[1:3,]=1; 

 T10[4:5,]=2; 

 T10[6,]=3; 

 T10[7,]=4; 

 T10[8,]=5; 

 T10[9,]=6; 

 T10[10,]=8; 

 T10[11,]=10; 

 T10[12,]=11; 

 T10[13,]=13; 

 T10[14,]=15; 

 T10[15,]=17; 

 T10[16,]=20; 

 T10[17,]=22; 

 T10[18,]=24; 

 T10[19,]=27; 

 T10[20,]=29; 

 T10[21,]=31; 

 T10[22,]=33; 

 T10[23,]=35; 

 T10[24,]=36; 

 T10[25,]=38; 

 T10[26:27,]=39; 

 T10[28:29,]=40; 

 T10[30:31,]=39; 

 T10[32,]=38; 

 T10[33,]=36; 

 T10[34,]=35; 

 T10[35,]=33; 

 T10[36,]=31; 

 T10[37,]=29; 

 T10[38,]=27; 

 T10[39,]=24; 

 T10[40,]=22; 

 T10[41,]=20; 

 T10[42,]=17; 

 T10[43,]=15; 

 T10[44,]=13; 

 T10[45,]=11; 

 T10[46,]=10; 

 T10[47,]=8; 

 T10[48,]=6; 

 T10[49,]=5; 

 T10[50,]=4; 

 T10[51,]=3; 
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 T10[52:53,]=2; 

 T10[54:56,]=1; 

 T = T10/(2**n); 

end; 

* Calculating the control limits; 

UCL = L * stdev * sqrt(lambda/(2-lambda)); 

LCL = -UCL; 

* Calculating the midpoints; 

S=j(r,1,0); 

* The interval between the UCL and LCL are divided into subintervals; 

tau = ((UCL-LCL)/r)/2; 

S[1,1] = UCL - tau; 

do i = 2 to r; 

 S[i,1]=S[i-1,1]-2*tau; 

end; 

Q_a=j(r,r,0); 

Q_b=j(r,r,0); 

Q=j(r,r,0); 

do i = 1 to r; 

 do j = 1 to r; 

 Q_a[i,j]=floor(((((S[j,]-tau) - (1-lambda)*S[i,])/lambda) +      

      n*(n+1)/2)/2); 

 end; 

end; 

do i = 1 to r; 

 do j = 1 to r; 

 Q_b[i,j]=floor(((((S[j,]+tau) - (1-lambda)*S[i,])/lambda) +  

      n*(n+1)/2)/2); 

 end; 

end; 

do i = 1 to r; 

 do j = 1 to r; 

 lower = Q_a[i,j]; 

 upper = Q_b[i,j]; 

 if lower < 0 then if lower*upper > 0 then Q[i,j]=0; 

 if lower > n*(n+1)/2 then lower_term = 1; 

 else if lower < 0 then lower_term = 0; 

 else lower_term = sum(T[1:(lower+1),]); 

 if upper > n*(n+1)/2 then upper_term = 1; 

 else if upper < 0 then upper_term = 0; 

 else upper_term = sum(T[1:(upper+1),]); 

 Q[i,j] = upper_term - lower_term; 

 end; 

end; 

* Defining the eta row vector; 

eta=j(1,r,0); 

eta[1,((1+r)/2)]=1; 

* Defining the column vector filled with one; 

one=j(r,1,1); 

* Defining the identity matrix; 

identity = I(r); 

* Calculation of moments; 

indicator0 = 0; 

 survival  = 0; 

        Qh = I(r); 

do i = 1 to 1000000 until (indicator0=1); 

        Qc = Qh*Q; 

    survival0 = eta * Qc * one; 

  survival = survival // survival0; 

        Qh = Qc;  

 if survival[i+1,] < 0.04 then indicator0=1; 

end; 

cdf1 = 1 - survival; 
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cdf = cdf1; 

index=j(nrow(cdf),1,1); 

do i = 2 to nrow(cdf); 

 index[i,]=index[i-1,]+1; 

end;  

* Calculating the average run length (ARL); 

ARL = eta*ginv(identity-Q)*one; 

* Calculating the second moment; 

N2 = eta * (identity + Q) * (ginv((identity-Q)**2)) * one; 

* Calculating the standard deviation; 

SDRL = sqrt (N2 - ((ARL)**2) ); 

* Printing the output; 

print_cdf=index||cdf; 

* Calculations of the percentiles; 

p_5th=0; 

p_25th=0; 

p_50th=0; 

p_75th=0; 

p_95th=0; 

do i = 1 to nrow(cdf); 

 if print_cdf[i,2]<0.05 then p_5th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.25 then p_25th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.50 then p_50th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.75 then p_75th=print_cdf[i,1]; 

 if print_cdf[i,2]<0.95 then p_95th=print_cdf[i,1]; 

end; 

 

print  n [label='Sample size'], 

  L [label = 'Multiplier'], 

  lambda [label = 'lambda'], 

  r [label = 'Number of subintervals between UCL and LCL'], 

  UCL [label='Upper control limit'], 

       LCL [label='Lower control limit'], 

       ARL [label = 'Average run length' format=.2], 

  SDRL [label = 'Standard deviation of the run length' format=.2], 

            p_5th p_25th p_50th p_75th p_95th; 
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3.5.3.7 Necessary amendments to the SAS® programs in Sections 3.5.3.5 and 3.5.3.6 when 

the underlying process distribution is non-normal 

 

 Because the NPEWMA-SN and the NPEWMA-SR charts are nonparametric, the IC run-

length distribution and the associated characteristics should remain the same for all symmetric 

continuous distributions. A Markov chain approach was used in the calculations of the run-length 

characteristics for the two NPEWMA charts when the process is IC using the SAS® programs 

given in Sections 3.5.3.5 and 3.5.3.6, respectively. However, for the OOC chart performance 

comparison, 100 000 Monte Carlo simulations
xvi

 were used since matrix inversion is often 

troublesome and we have shown (see Appendix 3B) that the percentage difference between the 

simulated values and the values obtained using the Markov chain approach are very small when  

100 000 simulations are used. 

 

                                                 
xvi

 See Sections 3.5.3.2 and 3.5.3.3 for the SAS® programs using Monte Carlo simulations for the NPEWMA-SN and 

NPEWMA-SR charts, respectively 
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Chapter 4 

 

Phase II control charts – parameters unknown 

 

4.1 Introduction 

 

 In Chapter 3 two nonparametric EWMA charts were proposed based on the sign and signed-

rank statistics for the situation when the IC process median is specified or known. In many practical 

situations, the process median may not be known and would have to be estimated using a Phase I 

reference sample. This situation is referred to as the ‘standard(s) unknown’ case and is denoted 

Case U.  It is well-known that ignoring the effects of estimation of parameters can be costly as the 

run-length properties of the chart are greatly impacted which can lead to, for example, many more 

false alarms than nominally expected (see e.g. Jensen et al. (2006)).  

 

 In Section 1.9 the three main classes of control charts are discussed: namely the Shewhart 

chart, the cumulative sum (CUSUM) chart and the exponentially weighted moving average 

(EWMA) chart. For Case U several Shewhart, CUSUM and EWMA control charts have been 

developed and we mention some of the important and interesting contributions here. 

 

Nonparametric Shewhart control charts: 

 

i. Janacek and Meikle (1997) proposed a nonparametric Shewhart-type chart where the 

charting statistic is the median of each Phase II sample and the control limits are given by 

two order statistics obtained from a reference sample. Chakraborti et al. (2004) generalized 

the work of Janacek and Meikle (1997) by using  the j
th

 order statistic �(�:�),  j = 1,2,...,�, 

of a Phase II sample as the charting statistic; these charts are referred to as Shewhart-type 

precedence charts. 

 

ii. Chakraborti et al. (2009) considered enhancing the Shewhart-type precedence charts of 

Chakraborti et al. (2004) by incorporating the 2-of-2 DR and the 2-of-2 KL runs-rules. The 

reader is referred to Derman and Ross (1997) and Klein (2000) for details on the DR and 

KL runs-rules schemes, respectively. 
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iii. Balakrishnan et al. (2010) noted a potential drawback of the Shewhart-type precedence 

charts proposed by Chakraborti et al. (2004): The fact that these charts are based on a 

single order statistic �(�:�) of each Phase II sample could be a drawback since even if the 

bulk of the Phase II sample observations lie outside the control limits, the Shewhart-type 

precedence chart will not signal (when it should) if the �(�:�) plots between the control 

limits. Consequently, Balakrishnan et al. (2010) proposed a nonparametric Phase II chart 

using �(�:�) and R where R denotes the number of Phase II sample observations that lie 

between the control limits. This procedure can be viewed as running two charts 

simultaneously, a Shewhart-type precedence chart plotting �(�:�) and a chart plotting R. 

 

iv. The same authors, i.e. Balakrishnan, Triantafyllou and Koutras, also proposed three 

relatively flexible nonparametric Phase II charts in the year 2009 (see Balakrishnan et al. 

(2009)). These charts, like the charts by Chakraborti et al. (2004, 2009) and Balakrishnan 

et al. (2010), monitor an order statistic of the Phase II sample using two order statistics 

from a Phase I reference sample as control limits along with a chart based on a run or rank-

based charting statistic defined on the Phase II sample observations that lie between the 

Phase I control limits.  

 

v. Bakir (2006) considered signed-rank like statistics in Case U and used these to construct 

nonparametric Shewhart-type charts for the median. 

 

vi. Chakraborti and Van de Wiel (2008) proposed a nonparametric Shewhart-type chart based 

on the well-known Mann-Whitney test statistic for monitoring the location of a process. 

 

Nonparametric CUSUM (denoted NPCUSUM) control charts: 

 

i. McDonald (1990) considered a CUSUM procedure for individual observations based on 

the statistics called ‘sequential ranks’. 

 

ii. Bakir (2006) considered signed-rank like statistics in Case U and used these to construct 

NPCUSUM-type charts for the median. 

 

iii. Chatterjee and Qiu (2009) proposed NPCUSUM control charts using bootstrap control 

limits. 
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iv. Li et al. (2010) proposed a NPCUSUM-type chart based on the well-known Mann-

Whitney test statistic for monitoring the location of a process. 

 

v. Yang and Cheng (2011) proposed a NPCUSUM chart for variables data to monitor the 

process mean. 

 

Nonparametric EWMA (denoted NPEWMA) control charts:  

 

i. Bakir (2006) considered signed-rank like statistics in Case U and used these to construct 

NPEWMA-type charts for the median. 

 

ii. Li et al. (2010) proposed a NEWMA-type chart based on the well-known Mann-Whitney 

test statistic for monitoring the location of a process. 

 

Hawkins et al. (2003) brought a new perspective to the standards unknown case by the 

introduction of the change-point model. Although they considered normally distributed data, there 

have been recent developments in the nonparametric change-point area for monitoring the location 

of a process by Zhou et al. (2009) and Hawkins and Deng (2010), respectively. More recently, Ross 

and Adams (2012) considered two nonparametric control charts for detecting arbitrary distribution 

changes. 

 

 In this chapter we consider a nonparametric CUSUM chart and a nonparametric EWMA 

chart for monitoring the unknown median based on a reference sample. The proposed charts are 

based on what are known as precedence or exceedance test statistics (see e.g. Fligner and Wolfe 

(1976) and Balakrishnan and Ng (2006)).  

 

 Firstly, the precedence / exceedance statistics are defined in Section 4.2. Following this, the 

NPCUSUM control chart based on the exceedance statistics (denoted NPCUSUM-EX) is proposed 

in Section 4.3. Thereafter, the NPEWMA control chart based on the exceedance statistics (denoted 

NPEWMA-EX) is proposed in Section 4.4. A summary and concluding remarks are given in 

Section 4.5. 

  

 A number of research outputs related to and based on this thesis have seen the light. In 

Chapter 5 we provide a list with the details of the technical reports and the peer-reviewed articles 
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that have been published, the articles that have been accepted for publication, the local and 

international conferences where papers have been presented and draft articles that have been 

submitted and are currently under review. Here, we solely mention the peer-reviewed articles that 

have been published based on Sections 4.3 and 4.4, respectively: 

 

i. Mukherjee, A., Graham, M.A. and Chakraborti, S. (2013). “Distribution-free exceedance 

CUSUM control charts for location.” Communications in Statistics - Simulation and 

Computation, 42 (5), 1153-1187. 

 

ii. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Distribution-free exponentially 

weighted moving average control charts for monitoring unknown location.” Computational 

Statistics and Data Analysis, 56 (8), 2539–2561. 

 

4.2 The exceedance statistic 

 

 The precedence test is a two-sample nonparametric test based on the number of observations 

from one of the samples that precedes a specified (say the r
th

) order statistic of the second sample. 

The precedence statistic is linearly related to the exceedance statistic, which is the number of 

observations from one of the samples that exceed the r
th

 order statistic of the other sample, so that 

precedence and exceedance tests are equivalent (the reader is referred to Fligner and Wolfe (1976) 

where the distributional properties of the exceedance statistics have been discussed in detail). 

Precedence / exceedance tests have been found to be useful in a number of applications including 

quality control and reliability studies with lifetime data. The reader is referred to Balakrishnan and 

Ng (2006) for the vast literature on precedence / exceedance tests. In particular, they note that (see 

page 51 of their textbook) “Wilcoxon’s rank-sum test performs better than the precedence tests if 

the underlying distributions are close to symmetry, such as the normal distribution, gamma 

distribution with large values of shape parameter, and lognormal distribution with small values of 

shape parameter. However, under some right-skewed distributions such as the exponential 

distribution, gamma distribution with shape parameter 2.0, and lognormal distribution with shape 

parameter 0.5, the precedence tests have higher power values than the Wilcoxon’s rank-sum test for 

small values of r. It is evident that the more right-skewed the underlying distribution is, the more 

powerful the precedence test is.” Some statistical background on precedence / exceedance statistics 

follows. 
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 Assume that a Phase I reference sample �	, ��, … , � (� > 1) is available from an IC 

process with a cdf �(�). Let	��	, ���, … , ���, (� ≥ 1) � = 1,2, …, denote the ��� test Phase II sample 

of size	�	from a cdf �(�). Both � and � are unknown continuous distribution functions and the 

process is IC when � = �. For detecting a change in the location, we use the location 

model	��(�) = �(� − �) where � (−∞,∞) is the location parameter. Let "�,# denote the number 

of exceedances, that is, the number of � observations in the ��� Phase II sample that exceeds 	�(#), 
the $�� ordered observation in the Phase I reference sample. The statistic "�,# is called an 

exceedance statistic and the probability %# = 	&'� > �(#)|	�(#)) is called an exceedance 

probability. Note that this exceedance probability is a conditional probability given (conditionally) 

on 	�(#). More detail on the exceedance probability is given in Result 4.1 below. The number of � 

observations in the ��� Phase II sample that precede 	�(#) is called a precedence statistic and this 

statistic was used by Chakraborti et al. (2004) to study the Shewhart-type precedence charts; this 

paper has been the starting point for a number of follow-up papers in this area.  

 

 Shewhart-type charts are popular in practice because of their simplicity and ease of 

application. While it is known (see e.g. Montgomery (2009) page 400) that these charts are effective 

in detecting larger process shifts (of roughly 2 standard deviations and greater) they are less able to 

detect smaller process shifts quickly enough. Consequently, control charts that use accumulated 

data up to and including the most recent time point, such as the EWMA and CUSUM charts, are 

preferred. Using this motivation, next, we propose the NPCUSUM control chart based on the 

exceedance statistics. It can be shown that the unconditional joint distribution of exceedance 

statistics is distribution-free (see Result 4B.2 in Appendix 4B) and hence the proposed NPEWMA-

EX and NPCUSUM-EX charts are unconditionally distribution-free. 

 

4.3 Nonparametric CUSUM control chart based on the exceedance statistic 

 

4.3.1 Statistical background 

 

For a detailed discussion on the CUSUM-� chart the reader is referred to Section 1.9.2. 

Here, a NPCUSUM chart based on the exceedance statistic is proposed. Given 	�(#) = �(#) from the 

Phase I reference sample, it can be shown (see Result 4B.1 in Appendix 4B) that each "�,# follows a 

binomial distribution with parameters	(�, %#) and thus, conditionally on �(#), we can construct a 

binomial-type CUSUM chart based on the "�,#’s to monitor the process location (via the exceedance 
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probabilities). Since "�,#|�(#)~BIN(�, %#) we have, from the properties of the binomial distribution, 

that +'"�,#,�(#)) = �%# for any � = 1,2,3,… . However, since the conditional probability %# is 

unknown we suggest replacing it by its unconditional IC value. The effect of this substitution, 

although motivated by the need for a practical solution, can be investigated further. For the interim, 

we motivate this substitution by noting that the conditional probability focusses on a specific 

observed value of some statistic or random variable whereas the unconditional probability can be 

viewed as a weighted average across all possible values that could have been observed for that 

statistic / variable on which was conditioned. Hence, the unconditional probability is a better 

measure than the conditional probability. In addition, the conditional probability %# converges in 

probability to the unconditional IC value.  

 

Result 4.1 

 

The unconditional exceedance probability &'� > �(#)) equals (� − 	$ + 1)	/	(� + 1) when the 

process is IC. 

 

Proof 

 

Note that &'� > �(#)) = + /&'� > �(#),�(#))0 = +(%#). When the process is IC, � = � and then 

%# = 1 − �'�(#)) = 1 − 1# (say). Since �(#) is the $�� order statistic in a random sample of size � 

from �, using the probability integral transform, it can be shown (see e.g. Gibbons and Chakraborti 

(2010) page 39) that 1#	follows the distribution of the $��
 order statistic in a random sample of size � from the uniform ("(0,1)) distribution as long as � is continuous. This latter distribution is 

known to be a beta distribution with parameters $ and � − $ + 1, respectively. Moreover, when the 

process is IC, %# follows a beta distribution with parameters � − $ + 1 and $. Thus  

 

+(%#) = &'� > �(#)) = 1 − #2	 = 3#2	2	 , 

 

when the process is IC using the expectation formula for a beta distribution.   

�  

  

 Thus, from Result 4.1 the unconditional exceedance probability &'� > �(#)) equals 
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4 = �	 − 	$	 + 	1�	 + 	1	  
(4.1) 

 

when the process is IC. Hence, once �(#) is observed, one can construct the NPCUSUM-EX, in 

analogy with the CUSUM-� (see Equations (1.3) and (1.4) in Section 1.9.2 with the pivot statistic 

56 replaced by �6 (for individual data) or �6 (for subgroup data)). Consequently, for the upper one-

sided NPCUSUM-EX we use 

 

7�2 = �8�	[0, 7�3	2 + '"�,# − �4) − ;]  for  � = 1,2,3... (4.2) 

 

and for the lower one-sided NPCUSUM-EX we use 

 

7�3 = �=�	[0, 7�3	3 + '"�,# − �4) + ;]  for  � = 1,2,3... (4.3) 

 

with starting values 7>2 = 7>3 = 0	 and where ; ≥ 0 is the so-called reference value. For the two-

sided NPCUSUM-EX both 7�3 and 7�2 are plotted simultaneously and the chart signals a possible 

OOC situation for the first � at which either 7�3 ≤ −@ or 7�2 ≥ @,	where @ > 0 is the so-called 

decision interval. Otherwise, the process is considered IC and process monitoring continues without 

interruption. Recall that (see Section 1.9.2) for the CUSUM-� chart the quantities (counters) A2 

and A3 indicate the number of consecutive periods that the CUSUM’s 7�2 and 7�3  have been non-

zero which helps in identifying at what point in time the shift may have taken place. In NPCUSUM 

charts these counters can be used in a similar manner. This is illustrated later on.  

 

In this section, and as used in Chakraborti et al. (2004), �(#) is taken to be the median of the 

reference sample. The reasons for focusing on the median are clear; it is robust and a better 

representative of the central reference value. The performance of the NPCUSUM-EX median chart 

is compared both a parametric and a nonparametric CUSUM chart, respectively, namely the 

parametric CUSUM-� chart and the NPCUSUM-Rank chart. For more details on the NPCUSUM-

Rank chart, the reader is referred to Li et al. (2010). These charts are candidates to monitor small 

shifts in the location. The comparisons are based on the ARLδ  with a given ARL0. In addition, the 

use of winsorization is illustrated in this section for the ARL-based method. Winsorization is used in 

the performance comparison, since the ARL isn’t a robust measure, i.e. it is dramatically impacted 

by the presence of outliers. Since �(#) is taken to be the median of the reference sample we find that 
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4 = 0.5 (see Equation (4.1)). By replacing 4 = 0.5 into Equation (4.2), the upper one-sided 

NPCUSUM-EX chart based on the reference sample median, is given by the charting statistic 

 

7�2 = max	[0, 7�3	2 + '"�,# − �/2) − ;]  for  � = 1,2,3... (4.4) 

 

with a starting value 7>2 = 0. Note that an upper one-sided chart is considered in this section, since 

the two-sided NPCUSUM-EX chart will be considered in the Section 4.3.5. In addition, this is done 

in order to illustrate to the practitioner how a one-sided CUSUM chart is implemented.  

 

4.3.2 Implementation of the chart 

 

 The design parameters (;,@) are chosen so that the chart has a specified nominal ARL0 and 

is capable of detecting a shift, specially a small shift, as soon as possible. For a detailed discussion 

on the choice of  ; and @ the reader is referred to Section 1.9.2 and, in that section, the choice of ; 

for the CUSUM-� chart is discussed in detail. It was found that when there is little or no a-priori 

information regarding the size of the shift, a smaller value of ; is the safest choice (to protect 

against any unnecessary delays in detection). Note that although we are considering an unknown 

shift, we are primarily interested in detecting a smaller and moderate shift with a CUSUM chart. 

Therefore, we recommend using ; = 0 (or letting E tend to 0). First, we consider ; = 0. 

 

This study includes a collection of non-normal distributions that are heavy-tailed, symmetric 

and skewed. Note that, wherever necessary, the distributions in the study have been shifted and 

scaled such that the mean / median equals 0 and the standard deviation equals 1, so that the results 

are easily comparable across the distributions. The details for these steps are shown in Appendix 

1B.  Specifically, the distributions considered in the study are:  

 

i. The Standard Normal distribution, N(0,1). 

 

ii. The Gamma distribution, GAM(F, G), with parameters (F, G) = (1,1)
i
 and (3,1), respectively, 

which is positively skewed.  

 

                                                 
i
 Note that the GAM(1,1) distribution is the standard exponential distribution with mean 1, EXP(1). 
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iii. The Student’s t-distribution, t(H), with degrees of freedom (df) H = 3, which is symmetric 

about 0 but with heavier tails than the N(0,1). 

 

iv. The Laplace (or Double Exponential DE(0,1)) distribution with mean 0 and variance 2, 

which is also symmetric but highly leptokurtic and has heavier tails. 

 

 Tables 4.1 and 4.2 list different values of @ with ; = 0 for the industry standard ARL0 

values of 370 and 500 and for � = 500 and 1000, respectively. These tables should be useful for 

implementing the NPCUSUM-EX median chart in practice.  
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Table 4.1. The IC characteristics
ii
 of the run-length distribution of the NPCUSUM-EX median 

chart for different � with � = 500, 4 = 0.5 and ; = 0 

 Nominal ARL0  =  370 Nominal ARL0  =  500 

Distribution n = 5, H = 13.0 n = 5, H = 13.5 

N(0,1) 
394.06 (2279.96) 

29, 63, 126, 294, 1266 

480.12 (3542.63) 

31, 67, 134, 321, 1494 

EXP(1) 
406.99 (2707.59) 

29, 63, 125, 293, 1278 

467.90 (2669.46) 

31, 67, 135, 319, 1483 

GAM(3,1) 
343.78 (2025.18) 

28, 59, 117, 269, 1104 

453.43 (2129.83) 

31, 67, 136, 324, 1489 

t(3) 
409.22 (3368.77) 

29, 63, 126, 294, 1290 

488.18 (5288.29) 

31, 67, 134, 320, 1496 

DE(0,1) 
404.24 (3566.87) 

29, 62, 124, 291, 1280 

486.71 (3590.93) 

31, 67, 135, 322, 1501 

Distribution n = 11, H = 14.5 n = 11, H = 15.5 

N(0,1) 
361.20 (3476.82) 

17, 37, 76, 191, 1050 

544.91 (8365.88) 

19, 40, 85, 223, 1387 

EXP(1) 
365.10 (3824.06) 

17, 36, 75, 189, 1047 

538.40 (6505.87) 

19, 40, 84, 222, 1203 

GAM(3,1) 
370.11 (3638.60) 

17, 36, 75, 176, 931 

520.73 (4004.53) 

19, 40, 84, 207, 1221 

 t(3) 
370.71 (4236.95) 

17, 37, 75, 191, 1071 

463.24 (6987.13) 

18, 38, 79, 206, 1213 

DE(0,1) 
347.59 (2205.70) 

17, 36, 75, 192, 1081 

533.52 (8816.49) 

19, 41, 85, 226, 1378 

Distribution n = 25, H = 15.5 n = 25, H = 16.5 

N(0,1) 
335.38 (4094.52) 

9, 19, 41, 115, 815 

555.66 (11960.87) 

10, 21, 46, 138, 1059 

EXP(1) 
319.67 (4547.30) 

9, 19, 41, 114, 801 

450.18 (8130.46) 

9, 20, 44, 123, 938 

GAM(3,1) 
375.91 (4185.58) 

9, 19, 39, 105, 696 

460.32 (15327.72) 

9, 20, 44, 123, 928 

t(3) 
350.98 (4977.05) 

9, 20, 42, 114, 827 

452.32 (13780.67) 

9, 21, 44, 122, 911 

DE(0,1) 
341.56 (4254.38) 

9, 20, 41, 115, 809 

550.84 (14802.36) 

10, 21, 46, 133, 1067 

 

 Firstly, it is seen that the IC run-length characteristics of the proposed chart are 

approximately the same for all continuous distributions for fixed � and � which confirms its 

nonparametric characteristics. Secondly, the proposed chart can attain the industry standard ARL0 

values of 370 and 500 almost exactly.   

                                                 
ii
 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5

th
, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). Also note that these values were obtained via simulation and not the 

Markov chain approach; see Appendix4A for the motivation behind this. 
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Table 4.2. The IC characteristics
iii

 of the run-length distribution of the NPCUSUM-EX median 

chart for different � with � =1000, 4 = 0.5 and ; = 0 

 Nominal ARL0  =  370 Nominal ARL0  =  500 

Distribution n = 5, H = 15.5 n = 5, H = 16.5 

N(0,1) 
394.68 (911.58) 

42, 91, 173, 366, 1361 

487.10 (1548.10) 

46, 102, 198, 439, 1690 

EXP(1) 
384.42 (972.02) 

42, 89, 173, 372, 1291 

474.69 (1668.50) 

46, 99, 195, 426, 1585 

GAM(3,1) 
383.33 (1048.65) 

42, 89, 172, 370, 1273 

470.56 (1395.70) 

46, 99, 194, 427, 1571 

t(3) 
389.89 (1084.26) 

42, 89, 174, 373, 1289 

470.19 (1277.29) 

46, 99, 195, 428, 1586 

DE(0,1) 
385.70 (918.64) 

42, 90, 173, 371, 1300 

475.51 (1628.32) 

47, 99, 194, 422, 1590 

Distribution n = 11, H = 18.5 n = 11, H = 20.0 

N(0,1) 
371.10 (1810.85) 

27, 58, 116, 272, 1204 

516.43 (3079.99) 

30, 65, 133, 326, 1631 

EXP(1) 
355.46 (1428.46) 

26, 56, 114, 260, 1174 

505.77 (3121.91) 

30, 66, 135, 331, 1591 

GAM(3,1) 
381.93 (2315.71) 

27, 58, 117, 273, 1203 

552.18 (5437.10) 

30, 66, 133, 328, 1613 

t(3) 
372.83 (2008.43) 

27, 58, 116, 273, 1202 

536.60 (4091.31) 

31, 66, 134, 325, 1602 

DE(0,1) 
368.17 (2172.19) 

27, 58, 116, 272, 1190 

528.42 (4412.10) 

31, 66, 133, 322, 1611 

Distribution n = 25, H = 21.5 n = 25, H = 22.5 

N(0,1) 
369.96 (2451.44) 

16, 34, 73, 190, 1104 

486.27 (11749.40) 

17, 36, 75, 203, 1409 

EXP(1) 
370.80 (2219.84) 

16, 36, 76, 192, 1211 

493.66 (7470.19) 

17, 38, 79, 218, 1504 

GAM(3,1) 
416.70 (4703.45) 

16, 35, 72, 188, 1136 

555.21 (10451.15) 

17, 37, 78, 213, 1405 

t(3) 
375.78 (4808.40) 

15, 33, 69, 181, 1047 

510.02 (9028.25) 

17, 36, 75, 200, 1286 

DE(0,1) 
425.33 (6523.23) 

16, 35, 72, 190, 1140 

539.45 (5942.58) 

17, 37, 79, 214, 1428 

 

 Note that the ARL0 values in Tables 4.1 and 4.2 were obtained for relatively large reference 

samples � (= 500 and 1000, respectively). While these � values seem large, note that � = 500 

means 100 samples each of size 5 from Phase I, which is reasonable. Several authors have discussed 

and made recommendations about the size of the reference sample and the consensus seems to be 

around 300 to 500. For smaller reference sample sizes, the calculations are rather difficult and need 

special care. A modified approach based on winsorization is discussed in Appendix 4C for this case.  

                                                 
iii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). Also note that these values were obtained via simulation and not the 

Markov chain approach; see Appendix4A for the motivation behind this. 
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Effect of the Phase II test sample size 

 

 In order to examine the effect of the Phase II test sample size, Tables 4.3 to 4.7 show the 

shift detection capability of the NPCUSUM-EX median chart as � increases.  

 

Table 4.3. The OOC
iv

 characteristics
v
 of the run-length distribution for different � with � = 1000,  4 = 0.5 and ; = 0 for the N(0,1) distribution 

 Nominal ARL0 = 370 Nominal ARL0 = 500 I J = K, L = MK. K J = K, L = MN. K 

0.25 
70.60 (53.31) 

24, 39, 56, 84, 164 

74.57 (55.70) 

26, 42, 60, 89, 173 

0.50 
36.38 (16.08) 

18, 25, 33, 44, 67 

38.52 (16.78) 

19, 27, 35, 46, 70 

0.75 
24.72 (8.53) 

14, 19, 23, 29, 41 

26.35 (8.82) 

15, 20, 25, 31, 43 

1.00 
19.07 (5.51) 

12, 15, 18, 22, 29 

20.72 (5.60) 

13, 16, 19, 23, 30 

1.50 
13.40 (2.94) 

10, 11, 13, 15, 19 

14.13 (2.96) 

10, 12, 16, 18,  20 

2.00 
10.64 (1.84) 

8, 9, 10, 12, 14 

11.30 (1.92) 

8, 10, 11, 12, 15 I J = MM, L = MO. K J = MM, L = PQ. Q 

0.25 
61.83 (79.05) 

17, 29, 43, 69, 158 

67.94 (80.43) 

19, 31, 47, 75, 181 

0.50 
30.25 (17.84) 

13, 19, 26, 36, 62 

32.41 (19.15) 

14, 21, 28, 38, 65 

0.75 
20.30 (8.48) 

10, 14, 18, 24, 36 

21.59 (8.56) 

11, 16, 20, 26, 38 

1.00 
15.22 (5.13) 

9, 12, 14, 18, 25 

16.53 (5.47) 

10, 13, 15, 19, 27 

1.50 
10.54 (2.74) 

7, 9, 10, 12, 16 

11.33 (2.84) 

7, 9, 11, 13, 17 

2.00 
8.20 (1.76) 

6, 7, 8, 9, 12 

8.82 (1.84) 

6, 7, 9, 10, 12 I J = PK, L = PM. K J = PK, L = PP. K 

0.25 
59.22 (120.60) 

11, 20, 32, 57, 174 

61.74 (123.92) 

12, 21, 33, 58, 183 

0.50 
25.32 (25.05) 

9, 14, 19, 29, 59 

26.58 (26.16) 

9, 14, 20, 30, 62 

0.75 
17.27 (9.24) 

7, 10, 14, 19, 32 

16.83 (9.76) 

8, 11, 15, 20, 33 

1.00 
12.08 (5.16) 

6, 9, 11, 14, 22 

12.67 (5.38) 

6, 9, 12, 15, 23 

1.50 
8.23 (2.60) 

5, 6, 8, 10, 13 

8.56 (2.66) 

5, 7, 8, 10, 14 

2.00 
6.31 (1.65) 

4, 5, 6, 7, 9 

6.55 (1.66) 

4, 5, 6, 8, 10 

                                                 
iv
 Shifts: E = R S √�U   are considered; a detailed motivation regarding the choice of shift is given in the next section. 

v
 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5

th
, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.4. The OOC characteristics
vi

 of the run-length distribution for different � with � = 1000,  4 = 0.5 and ; = 0 for the EXP(1) distribution 
 Nominal ARL0 = 370 Nominal ARL0 = 500 I J = K, L = MK. K J = K, L = MN. K 

0.25 
54.58 (36.53) 

21, 33, 45, 65, 118 

58.15 (38.03) 

23, 35, 49, 70, 124 

0.50 
26.24 (9.98) 

14, 20, 24, 31, 45 

27.60 (10.23) 

15, 20, 26, 32, 46 

0.75 
16.67 (4.54) 

11, 14, 16, 19, 25 

17.70 (4.72) 

12, 14, 17, 20, 26 

1.00 
11.92 (2.53) 

8, 10, 12, 13, 16 

12.60 (2.62) 

9, 11, 12, 14, 18 

1.50 
7.30 (0.56) 

7, 7, 7, 8, 8 

7.56 (0.70) 

7, 7, 7, 8, 9 

2.00 
7.00 (0.00) 

7, 7, 7, 7, 7 

7.00 (0.00) 

7, 7, 7, 7 7 I J = MM, L = MO. K J = MM, L = PQ. Q 

0.25 
47.78 (47.76) 

16, 25, 36, 55, 114 

52.88 (56.47) 

17, 27, 39, 60, 129 

0.50 
22.75 (11.01)  

11, 16, 20, 27, 43 

24.17 (11.35) 

12, 17, 22, 29, 45 

0.75 
14.49 (5.04) 

8, 11, 14, 17, 24 

15.59 (5.29) 

9, 12, 15, 18, 25 

1.00 
10.41 (2.88) 

7, 8, 10, 12, 16 

11.29 (3.07) 

7, 9, 11, 13, 17 

1.50 
6.60 (1.27) 

5, 6, 6, 7, 9 

7.08 (1.34) 

5, 6, 7, 8, 9 

2.00 
4.59 (0.66) 

4, 4, 4, 5, 6 

5.01 (0.60) 

4, 5, 5, 5, 6 I J = PK, L = PM. K J = PK, L = PP. K 

0.25 
44.17 (85.33) 

10, 17, 26, 44, 122 

47.50 (96.67) 

11, 18, 28, 46, 126 

0.50 
19.13 (20.13) 

8, 11, 16, 22, 40 

19.92 (16.39) 

8, 12, 16, 23, 42 

0.75 
12.01 (5.43) 

6, 8, 11,14, 22 

12.61 (5.85) 

6, 9, 11, 15, 23 

1.00 
8.85 (3.30) 

5, 7, 8, 10, 15 

9.18 (3.28) 

5, 7, 8, 11, 15 

1.50 
5.69 (1.48) 

4, 5, 6, 6, 8 

5.91 (1.52) 

4, 5, 6, 7, 9 

2.00 
4.14 (0.83) 

3, 4, 4, 5, 6 

4.30 (0.86) 

3, 4, 4, 5, 6 
 

  

                                                 
vi
 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5

th
, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.5. The OOC characteristics
vii

 of the run-length distribution for different � with � = 1000,  4 = 0.5 and ; = 0 for the GAM(3,1) distribution 
 Nominal ARL0 = 370 Nominal ARL0 = 500 I J = K, L = MK. K J = K, L = MN. K 

0.25 
64.43 (46.09) 

24, 37, 52, 77, 147 

70.35 (51.39) 

25, 40, 57, 84, 159 

0.50 
32.53 (13.68) 

16, 23, 30, 39, 59 

34.01 (14.21) 

18, 24, 32, 41, 61 

0.75 
21.68 (6.96) 

13, 17, 20, 25, 34 

22.98 (7.20) 

14, 18, 22, 27, 36 

1.00 
16.28 (4.34) 

10, 13, 16, 18, 24 

17.20 (4.35) 

12, 14, 16, 20, 25 

1.50 
10.96 (2.01) 

8, 10, 11, 12, 14 

11.62 (2.09) 

9, 10, 11, 13, 16 

2.00 
8.56 (1.07) 

7, 8, 8, 9, 10 

9.04 (1.12) 

8, 8, 9, 10, 11 I J = MM, L = MO. K J = MM, L = PQ. Q 

0.25 
57.66 (66.31) 

17, 28, 41, 65, 142 

63.10 (75.50) 

19, 30, 45, 71, 159 

0.50 
27.42 (15.10) 

12, 18, 24, 33, 55 

29.74 (16.19) 

13, 19, 26, 35, 69 

0.75 
17.98 (7.04) 

10, 13, 16, 21, 31 

19.43 (7.58) 

11, 14, 18, 23, 33 

1.00 
13.56 (4.35) 

8, 10, 13, 16, 22 

14.51 (4.53) 

9, 11, 14, 17, 23 

1.50 
8.98 (2.15) 

6, 8, 9, 10, 13 

9.68 (2.22) 

7, 8, 9, 11, 14 

2.00 
6.83 (1.28) 

5, 6, 7, 8, 9 

7.30 (1.31) 

5, 6, 7, 8, 10 I J = PK, L = PM. K J = PK, L = PP. K 

0.25 
53.57 (107.16) 

11, 19, 30, 52, 154 

58.41 (110.50) 

12, 20, 32, 56, 177 

0.50 
23.00 (19.17) 

8, 13, 18, 26, 53 

24.25 (23.68) 

9, 14, 19, 28, 54 

0.75 
14.87 (8.03) 

7, 10, 13, 18, 29 

15.43 (8.20) 

7, 10, 14, 18, 30 

1.00 
10.90 (4.45) 

6, 8, 10, 13, 19 

11.45 (4.80) 

6, 8, 10, 14, 20 

1.50 
7.22 (2.14) 

4, 6, 7, 8, 11 

7.54 (2.23) 

5, 6, 7, 9, 12 

2.00 
5.44 (1.32) 

4, 4, 5, 6, 8 

5.69 (1.34) 

4, 5, 6, 6, 8 
 

 

 

 

  

                                                 
vii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.6. The OOC characteristics
viii

 of the run-length distribution for different � with � = 1000,  4 = 0.5 and ; = 0 for the t(3) distribution 
 Nominal ARL0 = 370 Nominal ARL0 = 500 I J = K, L = MK. K J = K, L = MN. K 

0.25 
45.20 (23.68) 

20, 30, 40, 54, 89 

47.84 (24.83) 

21, 31, 42, 57, 94 

0.50 
23.59 (7.81) 

14, 18, 22, 28, 38 

25.13 (8.23) 

14, 19, 24, 29, 40 

0.75 
16.52 (4.24) 

11, 14, 16, 19, 24 

17.64 (4.42) 

12, 14, 17, 20, 26 

1.00 
13.20 (2.75) 

9, 11, 13, 15, 18 

13.96 (2.88) 

10, 12, 14, 16, 19 

1.50 
10.02 (1.58) 

8, 9, 10, 11, 13 

10.58 (1.61) 

8, 10, 10, 12, 14 

2.00 
8.64 (1.06) 

7, 8, 8, 9, 10 

9.14 (1.12) 

8, 8, 9, 10, 11 I J = MM, L = MO. K J = MM, L = PQ. Q 

0.25 
38.08 (29.33) 

14, 22, 31, 45, 84 

41.26 (29.24) 

16, 24, 34, 49, 90 

0.50 
18.97 (7.55) 

10, 14, 18, 22, 33 

20.52 (7.94) 

11, 15, 19, 24, 35 

0.75 
13.13 (3.97) 

8, 10, 12, 15, 20 

14.16 (4.21) 

9, 11, 13, 16, 22 

1.00 
10.17 (2.56) 

7, 8, 10, 12, 15 

10.93 (2.70) 

7, 9, 11, 12, 16 

1.50 
7.31 (1.40) 

5, 6, 7, 8, 10 

7.84 (1.46) 

6, 7, 8, 9, 11 

2.00 
6.00 (0.93) 

5, 5, 6, 6, 8 

6.46 (1.02) 

5, 6, 6, 7, 8 I J = PK, L = PM. K J = PK, L = PP. K 

0.25 
33.20 (47.53) 

10, 16, 23, 36, 81 

35.23 (48.64) 

10, 16, 24, 38, 90 

0.50 
15.19 (7.99) 

7, 10, 13, 18, 29 

16.04 (8.44) 

8, 11, 14, 19, 31 

0.75 
10.24 (3.85) 

6, 8, 9, 12, 18 

10.75 (4.01) 

6, 8, 10, 13, 18 

1.00 
7.79 (2.35) 

5, 6, 7, 9, 12 

8.15 (2.43) 

5, 6, 8, 9, 13 

1.50 
5.45 (1.28) 

4, 5, 5, 6, 8 

5.70 (1.33) 

4, 5, 6, 6, 8 

2.00 
4.34 (0.84) 

3, 4, 4, 5, 6 

4.53 (0.86) 

3, 4, 4, 5, 6 
 

  

                                                 
viii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



193 

 

 

Table 4.7. The OOC characteristics
ix

 of the run-length distribution for different � with � = 1000,  4 = 0.5 and ; = 0 for the DE(0,1) distribution 
 Nominal ARL0 = 370 Nominal ARL0 = 500 I J = K, L = MK. K J = K, L = MN. K 

0.25 
43.10 (21.54) 

19, 28, 38, 52, 83 

46.10 (21.90) 

21, 31, 41, 55, 86 

0.50 
23.99 (7.89) 

14, 18, 23, 28, 39 

25.50 (8.27) 

15, 20, 24, 30, 41 

0.75 
17.45 (4.56) 

11, 14, 17, 20, 26 

18.45 (4.77) 

12, 15, 18, 21, 27 

1.00 
14.07 (3.11) 

10, 12, 14, 16, 20 

15.05 (3.26) 

10, 13, 15, 17, 21 

1.50 
10.90 (1.90) 

8, 10, 11, 12, 14 

11.59 (1.96) 

9, 10, 11, 13, 15 

2.00 
9.35 (1.36) 

8, 8, 9, 10, 12 

9.89 (1.38) 

8, 9, 10, 11, 12 I J = MM, L = MO. K J = MM, L = PQ. Q 

0.25 
35.20 (23.20) 

14, 21, 29, 42, 76 

38.60 (25.82) 

15, 23, 32, 46, 82 

0.50 
18.73 (7.23) 

10, 14, 17, 22, 32 

20.30 (7.55) 

11, 15, 19, 24, 34 

0.75 
13.32 (3.98) 

8, 10, 13, 16, 21 

14.26 (4.14) 

9, 11, 14, 17, 22 

1.00 
10.58 (2.72) 

7, 9, 10, 12, 16 

11.33 (2.77) 

7, 9, 11, 13, 16 

1.50 
7.89 (1.60) 

6, 7, 8, 9, 11 

8.45 (1.65) 

6, 7, 8, 9, 11 

2.00 
6.55 (1.10) 

5, 6, 6, 7, 8 

7.00 (1.15) 

5, 6, 7, 8, 9 I J = PK, L = PM. K J = PK, L = PP. K 

0.25 
30.07 (42.88) 

9, 15, 22, 34, 71 

32.05 (42.75) 

10, 16, 23, 55, 78 

0.50 
14.37 (6.93) 

7, 10, 13, 17, 26 

15.06 (6.90) 

7, 10, 14, 18, 28 

0.75 
10.09 (3.58) 

6, 8, 10, 12, 17 

10.52 (3.66) 

6, 8, 10, 12, 17 

1.00 
7.83 (2.31) 

5, 6, 8, 9, 12 

8.18 (2.40) 

5, 6, 8, 10, 13 

1.50 
5.67 (1.33) 

4, 5, 6, 6, 8 

5.92 (1.37) 

4, 5, 6, 7, 8 

2.00 
4.61 (0.92) 

3, 4, 4, 5, 6 

4.81 (0.95) 

4, 4, 5, 5, 6 

                                                 
ix

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 

25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



194 

 

 

 In order to examine the effect of the Phase II test sample size, Figures 4.1 and 4.2 show the 

shift detection capability of the NPCUSUM-EX median chart as � increases for a nominal        

ARL0 = 370 and 500, respectively. 

 

N(0,1) 

 

EXP(1) 

 
GAM(1) 

 

t(3) 

 
DE(0,1) 

 

 

Legend 

 

 

Figure 4.1. OOC performance comparison of the NPCUSUM-EX median chart for different values 

of n and various distributions for nominal ARL0 = 370, � = 1000, 4 = 0.5 and ; = 0 
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N(0,1) 

 

EXP(1) 

 
GAM(1) 

 

t(3) 

 
DE(0,1) 

 

 

Legend 

 

 

Figure 4.2. OOC performance comparison of the NPCUSUM-EX median chart for different values 

of n and various distributions for nominal ARL0 = 500, � = 1000, 4 = 0.5 and ; = 0 
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the opposite to control charting with attributes data, where typically the subgroup size � is taken to 

be much larger than the number of subgroups �. 

 

4.3.3 Performance comparison with other charts 

 

 We compare the NPCUSUM-EX chart to the adjusted
x
 CUSUM-� chart (see Jones et al. 

(2004)) and the NPEWMA-Rank chart (see Li et al. (2010)). The shift considered by Jones (2004; 

page 97) for the adjusted CUSUM-� chart is given by E = V3VWX √�U . The shift considered by Li et al. 

(2010; page 215) for the NPCUSUM-Rank chart is measured by the subgroup standard deviation S √�U . Thus, in order to have a fair comparison between the proposed NPCUSUM-EX chart and its 

competitors, a shift of E = R S √�U  where −∞ < R < ∞, R ≠ 0 is used for all charts. In this chapter 

the values of R under consideration are R = 0.25(0.25)1.00, 1.50 and 2.00. The largest value of R 

under consideration is R = 2.0, since, for larger shifts, the run-length characteristics of the charts 

tend to converge to some small values, i.e if the shift is large enough the any of the charts will 

signal (almost) immediately (see Tables 4.8 to 4.12). 

 

 The results are shown in Tables 4.8 to 4.12 and also graphically represented in Figures 4.3 

and 4.4 for � = 100 and � = 5 for each distribution under consideration. In Tables 4.8 to 4.12 the 

first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 

5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). It should be noted that: 

 

i. The ARL0 values of all the charts under comparison are fixed at or close to 500 and the chart 

with the smallest ARLδ  performs the best. 

 

ii. For the CUSUM-� chart the standards (parameters) are estimated from a Phase I reference 

sample duly taking care of the issues related to estimation. 

 

iii. Two values of the reference value ; are considered, namely, ; = 0 with 4∗ = 0.5 and 

; = �(4∗ − 4) with 4∗ = 0.5]�(2�2	)^(2�) .  

 

                                                 
x
 Adjusted: Case U; the parameters have to be estimated using a Phase I reference sample. 
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Table 4.8. The IC and OOC characteristics
xi

 of the run-length distribution for � = 100 and � = 5 for the N(0,1) distribution with nominal   

ARL0 = 500 and winsorization at the 5000
th

 step 

 
Chart Type 

 

Parametric CUSUM-�  chart with 

parameters estimated from a Phase I 

sample 

NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level 
WL = 95.4 WL = 96.6 WL = 95.6 WL = 97.7 WL = 95.9 WL = 97.3 

Control 

limits 
@ = 8.50 @ = 5.17 @ = 563.0 @ = 225 @ = 9.55 @ = 5.18 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 ; = �(4∗ − 4) 
4∗ 
 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2)  

≈ 0.57 

0.00 
507.44 (1177.56) 

14, 31, 72, 256, 4449 

493.51 (1070.55) 

11, 32, 99, 337, 3139 

503.52 (1171.43) 

16,33, 74, 264, 4236 

505.53 (972.27) 

12, 48, 144, 444, 2499 
503.24 (1137.31) 

14, 31, 70, 252, 3880 

502.27 (1023.94) 

10, 37, 113, 404, 2844 

0.25 
92.00 (380.94) 

10, 17, 27, 51, 240 

97.55 (307.37) 

7, 14, 29, 68, 346 

93.33 (343.36) 

12, 19, 29, 56, 255 

137.73 (351.71) 

8, 19, 44, 114, 521 
122.89 (464.30) 

11, 19, 32, 65, 380 

146.06 (430.42) 

8, 17, 39, 105, 547 

0.50 
24.81 (61.19) 

7, 11, 16, 25, 56 

26.74 (69.05) 

5, 9, 14, 25, 76 

26.98 (72.05) 

10, 14, 19, 27, 59 

41.09 (114.10) 

6, 11, 19, 40, 129 
35.97 (143.89) 

9, 13, 20, 31, 83 

49.78 (180.86) 

6, 11, 19, 40, 153 

0.75 
13.52 (8.15) 

6, 9, 12, 16, 27 

12.93 (16.50) 

4, 6, 10, 15, 31 

16.15 (9.80) 

8, 11, 14,18, 30 

18.11 (26.46) 

5, 8, 12, 19, 48 
18.21 (22.74) 

7, 10, 14, 20, 39 

20.22 (30.90) 

5, 8, 12, 21, 58 

1.00 
9.93 (4.28) 

5, 7, 9, 12, 18 

8.22 (5.12) 

3, 5, 7, 10, 17 

12.43 (4.73) 

7, 9, 11, 14, 21 

11.35 (13.77) 

5, 6, 9, 13, 26 
12.97 (7.39) 

6, 9, 11, 15, 24 

12.17 (11.72) 

4, 6, 9, 14, 29 

1.50 
6.62 (2.08) 

4, 5, 6, 8, 10 

5.00 (2.01) 

3, 4, 5, 6, 9 

8.96 (2.08) 

6, 8, 9,10, 13 

6.77 (2.67) 

4, 5, 6, 8, 12 
8.76 (2.82) 

6, 7, 8, 10, 14 

6.77 (3.37) 

3, 4, 6, 8, 13 

2.00 
5.01 (1.29) 

3, 4, 5, 6, 7 

3.67 (1.19) 

2, 3, 3, 4, 6 

7.41 (1.23) 

6, 7, 7, 8, 10 

5.31 (1.38) 

4, 5, 6, 8, 20 
6.95 (1.69) 

5, 6, 6, 8, 10 

4.99 (1.87) 

3, 4, 5, 6, 8 

 

 

 

  

                                                 
xi

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.9. The IC and OOC characteristics
xii

 of the run-length distribution for � = 100 and � = 5 for the EXP(1) distribution with nominal   

ARL0 = 500 and winsorization at the 5000
th

 step 

 
Chart Type 

 

Parametric CUSUM-�  chart with 

parameters estimated from a Phase I 

sample 

NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level 
WL = 95.7 WL = 96.6 WL = 95.6 WL = 97.9 WL = 95.5 WL = 97.2 

Control 

limits 
@ = 8.00 @ = 5.25 @ = 563.0 @ = 225.0 @ = 9.55 @ = 5.18 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 ; = �(4∗ − 4) 
4∗ 
 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2) 	 
≈ 0.57 

0.00 
497.99 (1151.67) 

11, 28, 69, 262, 3990 

494.40 (1080.71) 

9, 29, 89, 332, 3220 

502.40 (1155.50) 

16, 33, 74,  257, 4067 

500.02 (953.54) 

 12, 47, 141, 448, 2464 

501.01 (1158.61) 

14, 31, 72, 264, 4223 

491.60 (1021.17) 

10, 37, 110, 383, 2763 

0.25 
112.39 (475.83) 

8, 15, 25, 51, 329 

171.68 (584.54) 

6, 14, 30, 87, 636 

49.89 (216.36) 

11, 15, 22, 34, 107 

108.92 (338.02) 

 7, 14, 30, 75, 401 

97.27 (400.71) 

10, 16, 26, 51, 248 

123.30 (399.82) 

7, 14, 30, 81, 440 

0.50 
28.47 (91.94) 

6, 10, 16, 26, 68 

51.78 (247.44) 

4, 9, 15, 30, 149 

15.84 (16.01) 

9, 11, 13, 17, 29 

25.24 (73.72) 

 6, 8, 12, 21, 73 

27.69 (142.54) 

7, 10, 15, 23, 58 

30.71 (110.29) 

4, 8, 13, 24, 92 

0.75 
14.06 (15.56) 

5, 8, 11, 16, 30 

17.64 (56.61) 

4, 6, 10, 17, 44 

11.19  (3.48) 

7, 9, 10, 13, 17 

10.52 (17.21) 

 5, 6, 8, 11, 21 

12.26 (12.33) 

6, 8, 10, 14, 25 

11.54 (22.89) 

3, 5, 8, 12, 29 

1.00 
9.99 (6.25) 

4, 6, 9, 12, 19 

10.12 (31.63) 

3, 5, 7, 11, 22 

9.05  (1.95) 

7, 8, 9, 10, 13 

7.14 (3.10) 

 5, 5, 6, 8, 12 

8.25 (3.95) 

5, 6, 7, 9, 15 

6.60 (7.87) 

3, 4, 5, 8, 15 

1.50 
6.45 (2.44) 

3, 5, 6, 8, 11 

5.32 (2.62) 

2, 4, 5, 6, 10 

7.24 (1.00) 

6, 7, 7, 8, 9 

5.18 (0.98) 

 4, 5, 5, 6, 7 

4.79 (1.28) 

4, 4, 4, 5, 7 

3.39 (1.01) 

3, 3, 3, 3, 5 

2.00 
4.82 (1.48) 

3, 4, 5, 6, 7 

3.82 (1.45) 

2, 3, 4, 4, 6 

6.37 (0.61) 

6, 6, 6, 7, 7   

4.50 (0.62) 

 4, 4, 4, 5, 5 

4.02 (0.20) 

4, 4, 4, 4, 4 

3.01 (0.08) 

3, 3, 3, 3, 3 

 

  

                                                 
xii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.10. The IC and OOC characteristics
xiii

 of the run-length distribution for � = 100 and � = 5 for the GAM(3,1) distribution with nominal   

ARL0 = 500 and winsorization at the 5000
th

 step 

 
Chart Type 

 
Parametric CUSUM-�  chart with 

parameters estimated from a Phase I sample 
NPCUSUM-Rank chart NPCUSUM-EX median chart 

Windsorization 

level 
WL = 95.6 WL = 96.5 WL = 95.7 WL = 97.9 WL = 95.3 WL = 97.2 

Control 

limits 
@ = 8.50 @ = 5.20 @ = 563.0 @ = 225.0 @ = 9.55 @ = 5.18 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 ; = �(4∗ − 4)  
	4∗ 

 

 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2)  

	≈ 0.57 

0.00 
494.98 (1152.81) 

12, 29, 70, 255, 4117 

504.68 (1085.77) 

10, 30, 90, 352, 3226 

496.82 (1138.20) 

16, 33, 74, 262, 3752 

494.35 (945.50) 

 11, 45, 140, 450, 2393 

509.83 (1186.24) 

14, 31, 74, 269, 4546 

493.35 (1013.53) 

11, 38, 108, 364, 2739 

0.25 
109.26 (443.83) 

9, 16, 27, 55, 303 

139.34 (477.73) 

6, 14, 29, 79, 505 

90.09 (371.13) 

12, 18,  27,  49, 222  

143.62 (391.30) 

 8, 18, 41, 108, 555 

126.09 (494.92) 

10, 18, 29, 61, 356 

143.49 (435.83) 

7, 16, 36, 100, 534 

0.50 
27.76 (101.83) 

7, 11, 16, 25, 61 

37.35 (137.94) 

5, 9, 15, 29, 109 

23.54 (39.17) 

10, 13, 17, 24, 49 

39.89 (101.63) 

 6, 10, 18, 35, 131 

34.02 (142.31) 

8, 12, 18, 28, 76 

45.05 (142.86) 

5, 9, 17, 36, 145 

0.75 
14.13 (17.18) 

6, 8, 11, 16, 30 

15.82 (72.91) 

4, 6, 10, 16, 38 

14.45 (7.44)  

8, 10, 13, 16, 26  

17.15 (55.18) 

 5, 8, 11, 17, 43 

16.60 (53.03) 

7, 9, 12, 18, 34 

17.70 (36.70) 

4, 7, 10, 18, 49 

1.00 
10.03 (5.87) 

5, 7, 9, 12, 19 

8.88 (8.02) 

3, 5, 7, 10, 20 

11.25  (3.51)  

7, 9, 10, 13, 17 

9.65 (6.38) 

 5, 6, 8, 11, 20 

11.23 (6.82) 

6, 8, 10, 13, 21 

9.91 (14.59) 

3, 5, 8, 11, 23 

1.50 
6.54 (2.27) 

4, 5, 6, 8, 11 

5.19 (2.38) 

3, 4, 5, 6, 10 

8.24 (1.54)   

6, 7, 8, 9, 11 

6.14 (1.88) 

 4, 5, 6, 7, 9 

7.29 (2.18) 

5, 6, 7, 8, 11 

5.34 (2.52) 

3, 4, 5, 6, 10 

2.00 
4.92 (1.40) 

3, 4, 5, 6, 7 

3.75 (1.31) 

2, 3, 4, 4, 6 

6.97 (0.94)    

6, 6, 7, 7, 9   

4.97 (0.95) 

 4, 4, 5, 5, 7 

5.60 (1.16) 

4, 5, 5, 6, 8 

3.79 (1.16) 

3, 3, 3, 4, 6 

 

 

 

 

  

                                                 
xiii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.11. The IC and OOC characteristics
xiv

 of the run-length distribution for � = 100 and � = 5 for the t(3) distribution with nominal   

ARL0 = 500 and winsorization at the 5000
th

 step 

 
Chart Type 

 

Parametric CUSUM-�  chart with 

parameters estimated from a Phase I 

sample 

NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level 
WL = 95.2 WL = 96.6 WL = 95.6 WL = 98.0 WL = 95.7 WL = 97.4 

Control 

limits 
@ = 8.02 @ = 5.05 @ = 563.0 @ = 225.0 @ = 9.55 @ = 5.18 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 ; = �(4∗ − 4) 
4∗ 
 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2) 	 
≈ 0.57 

0.00 
496.93 (1179.16) 

13, 28, 64, 230, 4539 

501.25 (1104.27) 

9, 31, 90, 319, 3331 

501.88 (1142.80) 

16, 32, 71, 256, 3931 

492.11 (944.01) 

 12, 47, 138, 435, 2434 

498.96 (1139.02) 

14, 31, 71, 258, 3933 

494.62 (1010.80) 

10, 37, 111, 375, 2748 

0.25 
111.54 (514.50) 

8, 15, 24, 45, 237 

169.39 (655.76) 

6, 13, 26, 66, 519 

49.81 (189.48) 

 11, 16,  24, 39,  114 

83.73 (221.83) 

 7, 15, 30, 71, 303 

62.42 (267.48) 

10, 15, 24, 40, 148 

78.14 (242.04) 

6, 13, 25, 60, 273 

0.50 
34.96 (247.14) 

6, 10, 15, 22, 52 

56.46 (366.38) 

5, 8, 13, 24, 89 

16.97 (10.60) 

 9, 11, 15,19, 33 

21.22 (37.98) 

5, 8, 13, 22, 60 

16.69 (12.84) 

7, 10, 14, 19, 34 

18.09 (29.15) 

4, 8, 12, 20, 49 

0.75 
15.00 (95.56) 

5, 8, 10, 14, 26 

29.29 (293.97) 

4, 6, 9, 13, 31 

11.78 (4.01) 

  7, 9, 11, 13, 19 

10.24 (7.67) 

 5, 6, 8,12, 22 

11.05 (4.55) 

6, 8, 10, 13, 19 

9.46 (6.84) 

4, 6, 8, 11, 21 

1.00 
10.37 (75.34) 

4, 6, 8, 10, 17 

17.23 (202.69) 

3, 5, 6, 9, 17 

9.50 (2.37) 

 7, 8, 9, 11, 14 

7.33 (3.13) 

 4, 5, 6, 8, 13 

8.57 (2.68) 

6, 7, 8, 10, 14 

6.60 (3.08) 

3, 4, 6, 8, 12 

1.50 
6.71 (53.64) 

3, 5, 6, 7, 10 

6.88 (100.17) 

2, 3, 4, 5, 9 

7.31 (1.22) 

 6, 6, 7, 8, 10 

5.23 (1.28) 

 4, 4, 5, 6, 8 

6.48 (1.36) 

5, 6, 6, 7, 9 

4.53 (1.47) 

3, 3, 4, 5, 8 

2.00 
5.13 (50.05) 

3, 4, 4, 5, 7 

5.47 (99.93) 

2, 3, 3, 4, 6 

6.31 (0.79) 

5, 6, 6, 7, 8 

4.42 (0.92) 

 4, 4, 4, 5, 6 

5.56 (0.92) 

4, 5, 6, 6, 7 

3.73 (0.91) 

3, 3, 4, 4, 5 

 

  

                                                 
xiv

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4.12. The IC and OOC characteristics
xv

 of the run-length distribution for � = 100 and � = 5 for the DE(0,1) distribution with nominal  

ARL0 = 500 and winsorization at the 5000
th

 step 

 
Chart Type 

 
Parametric CUSUM-�  chart with 

parameters estimated from a Phase I sample 
NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level 
WL = 95.5 WL = 96.7 WL = 95.5 WL = 97.6 WL = 95.7 WL = 97.0 

Control 

limits 
@ = 8.25 @ = 5.15 @ = 563.0 @ = 225 @ = 9.55 @ = 5.18 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 NA 

4∗ 
 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2)  

	≈ 0.57 

0.00 
492.36 (1164.91) 

13, 29, 68, 241, 4367 

505.43 (1085.83) 

10, 32, 93, 341, 3169 

508.74 (1160.94) 

 16, 33, 73, 269, 4103 

507.43 (987.93) 

12, 46, 143, 450, 2661 

493.02 (1138.46) 

14, 31, 72, 270, 3953 

507.55 (1051.32) 

10, 37, 112, 384, 3043 

0.25 
94.44 (388.64) 

9, 16, 26, 51, 247 

123.21 (442.64) 

7, 14, 29, 72, 383 

64.02 (259.88) 

 11, 17, 26, 43, 144 

110.76 (313.85) 

 7, 16, 35, 87, 390 

58.15 (249.72) 

10, 15, 23, 38, 132 

71.41 (238.15) 

6, 13, 25, 54, 221 

0.50 
22.44 (58.34) 

7, 11, 16, 23, 52 

27.55 (72.73) 

5, 9, 14, 25, 77 

19.48 (17.22) 

 9, 12, 16, 22, 39 

26.73 (54.03) 

 6, 9, 14, 26, 77 

16.94 (17.05) 

8, 10, 14, 19, 33 

17.82 (27.62) 

5, 8, 12, 20, 46 

0.75 
13.17 (8.19) 

6, 8, 11, 15, 26 

12.64 (14.38) 

4, 6, 9, 14, 31 

13.16 (5.32) 

 8, 10, 12, 15, 22 

12.55 (11.21) 

 5, 7,  9, 14, 30 

11.48 (4.76) 

6, 8, 10, 13, 20 

9.83 (6.80) 

4, 6, 8, 11, 22 

1.00 
9.68 (4.42) 

5, 7, 9, 11, 18 

8.31 (6.16) 

3, 5, 7, 10, 17 

10.44 (3.06)      

7, 8, 10, 12, 16 

8.46 (4.62) 

 4, 6, 7, 10, 16 

9.17 (2.88) 

6, 7, 9, 10, 14 

7.22 (3.51) 

3, 5, 7, 8, 14 

1.50 
6.40 (2.06) 

4, 5, 6, 7, 10 

4.95 (2.07) 

3, 4, 5, 6, 9 

7.95 (1.54) 

6, 7, 8, 9, 11 

5.81 (1.67) 

 4, 5, 5, 6, 9 

7.06 (1.63) 

5, 6, 7, 8, 10 

5.08 (1.81) 

3, 4, 5, 6, 8 

2.00 
4.88 (1.32) 

3, 4, 5, 6, 7 

3.66 (1.24) 

2, 3, 3, 4, 6 

6.78 (0.99) 

 6, 6, 7, 7, 9 

4.82 (1.04) 

 4, 4, 5, 5, 7 

6.03 (1.12) 

4, 5, 6, 6, 8 

4.16 (1.19) 

3, 3, 4, 5, 6 

 

                                                 
xv

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) N(0,1) 

 

(b) EXP(1) 

 
(c) GAM(3,1) 

 

(d) t(3) 

 
(e) DE(0,1) 

 

Legend 

 

 

Figure 4.3. ARL performance comparison of the competing charts for various distributions with � = 100, � = 5, nominal  ARL0 = 500 and k = 0 
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(a) N(0,1) 

 

(b) EXP(1) 

 
(c) GAM(3,1) 

 

(d) t(3) 

 
(e) DE(0,1) 

 

Legend 

 

 

Figure 4.4. ARL performance comparison of the competing charts for various distributions with � = 100, � = 5, nominal  ARL0 = 500 and k > 0 
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 From Figures 4.3(a) and 4.4(a) we see that for all ; and when the underlying process 

distribution is N(0,1), the CUSUM-� chart outperforms the other charts, which is not surprising, 

since it is natural for parametric methods to outperform their nonparametric counterparts when all 

assumptions are satisfied. We also find that the NPCUSUM-EX chart outperforms the NPCUSUM-

Rank chart for larger (R > 1.5) magnitudes of shifts. 

 

 From Figures 4.3(b) and 4.4(b) we see that when the underlying process distribution is 

EXP(1), although the proposed chart and the CUSUM-� chart have a very similar performance for 

; = 0, the proposed chart outperforms the CUSUM-� chart for ; > 0. In addition, for all k and for 

shifts of moderately larger (R > 0.75) magnitudes, the NPCUSUM-EX chart outperforms the 

NPCUSUM-Rank chart. 

 

 From Figures 4.3(c) and 4.4(c) we see that for all ; and when the underlying process 

distribution is GAM(3,1), the proposed chart and the CUSUM-� chart have a very similar 

performance. In addition, for all k and for shifts of moderately larger (R > 0.75) magnitudes, the 

NPCUSUM-EX chart outperforms the NPCUSUM-Rank chart. 

 

 From Figures 4.3(d) and 4.4(d) we see that when the underlying process distribution is t(3), 

the NPCUSUM-EX chart outperforms the competing charts for shifts of moderate                     

(0.25 < R < 2.00)  magnitudes for ; = 0 and the superiority is even more visible for ; > 0. The 

NPCUSUM-EX chart is the best for the DE(0,1) distribution. It outperforms the competing charts 

for all ; and for shifts all magnitudes for the DE(0,1) distribution and this can be observed from 

Figures 4.3(e) and 4.4(e).  

 

 In summary, it is seen that in comparison with the CUSUM-� chart, the NPCUSUM-EX 

median chart is outperformed only when the underlying distribution is Normal. In all other cases the 

performances of the two charts are either similar or the NPCUSUM-EX median chart has superior 

performance. Finally, the NPCUSUM-EX median chart outperforms the NPCUSUM-Rank chart in 

all instances.  
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 It is important to note that, in Tables 4.8 – 4.12, � was taken to be even from a practical 

point of view and, in this case, the median (and the other quantiles) may not be uniquely defined. 

However, note that the computations were done in SAS which uses the empirical distribution 

function and calculates sample percentiles as follows: arrange the data in ascending order and 

calculate an index = = /de#	>>0� where %f$ denotes the percentile of interest. If = is an integer, the 

percentile of interest is the average of the values in positions = and = + 1. If = is not an integer, then 

round up, and the percentile of interest is the value in that position. We recommend this scheme in 

practice for calculation of percentiles. Our calculations for some odd values of � close to the even 

values used here show that the results are fairly close. For example, the run-length characteristics 

for � = 100 and � = 99 are seen to be not very far apart. One will obviously use the particular 

value of � one has at hand, in practice, odd or even. 

 

4.3.4 Illustrative examples 

 

Example 4.1 

 

 We illustrate the NPCUSUM-EX median chart using a well-known dataset from 

Montgomery (2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a 

forging process. The data given in Table 5.1 contains twenty-five retrospective or Phase I samples, 

each of size five, that were collected when the process was thought to be IC, i.e. � = 125. These 

data are considered to be the Phase I reference data for which a goodness of fit test for normality is 

not rejected. The reference sample has a median equal to 74.001, i.e. �(#) = 74.001.  

  

 Table 5.2 of Montgomery (2001) contains fifteen prospective (Phase II) samples each of five 

observations (n = 5). For the NPCUSUM-EX median chart we use ; = 0 and set @ = 7.5 for an 

ARL0 ≈ 370. The values of the exceedance and the NPCUSUM-EX statistics are shown for 

illustration in Table 4.13. For the CUSUM-� and NPCUSUM-Rank charts we also use ; = 0 and 

set @ = 18 and @ = 580, respectively, for an ARL0 ≈ 370. It should be noted that these values of @ 

was found using a grid search algorithm. The CUSUM-�, the NPCUSUM-Rank and the 

NPCUSUM-EX median charts are shown in Figures 4.5, 4.6 and 4.7, respectively. 
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Table 4.13. The exceedance and the NPCUSUM-EX median statistics 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 gh,i 3 2 0 4 1 4 4 1 3 4 2 5 5 5 4 jh2 0.5 0 0 1.5 0 1.5 3 1.5 2 3.5 3 5.5 8 10.5 12 

 

Sample number

151413121110987654321

20

15

10

5

0

H = 18H = 18

 
Figure 4.5. The CUSUM-� chart for the Montgomery (2001) piston ring data 
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Sample number

151413121110987654321
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Figure 4.6. The NPCUSUM-Rank chart for the Montgomery (2001) piston ring data 

 

 

Sample number

151413121110987654321

12

10

8

6

4

2

0

H = 7.5H = 7.5

 
Figure 4.7. The NPCUSUM-EX chart for the Montgomery (2001) piston ring data 
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 From Figures 4.5, 4.6 and 4.7 we can see that the performances of the charts are very 

similar. The NPCUSUM-EX median and NPCUSUM-Rank charts signal at sample 13, whereas the 

CUSUM-� chart signals at the very next sample, 14. However, recall that the NPCUSUM charts 

don’t require normality or any distributional assumption other than continuity to guarantee the  

ARL0 ≈ 370 but the same couldn’t be said about the CUSUM-� chart unless the underlying 

distribution was normal or close to it. 

  

 As we have mentioned before, in practice the normality assumption can be in doubt or can’t 

be justified for lack of enough information or data and a nonparametric method may be more 

desirable.  

 

4.3.5 Nonparametric CUSUM control chart based on other percentiles 

  

 Up to this point the properties of the NPCUSUM-EX chart using the median of the reference 

(Phase I) sample has been proposed and investigated. Here the choice of the order statistic from the 

reference (Phase I) sample that defines the exceedance statistic in this chart is investigated. The 

choice of the design parameter	; of the NPCUSUM-EX chart is studied. Furthermore, observing 

certain shortcomings of the ARL, we use the median run-length (MRL) as the performance metric. 

Median run-length (MRL) as performance metric 

 

The most widely used chart performance metric is the ARL and determining the charting 

constants typically involves specifying a nominal IC ARL value, such as 500. This is how the 

control charts have been constructed in this body of work so far. However, since the run-length 

distribution is significantly right-skewed, researchers have advocated using other, more 

representative, measures for the assessment of a chart’s performance. These include the standard 

deviation of the run-length (SDRL) and other percentiles of the run-length, more specifically, the 

median run-length (MRL), which provides more insightful information about the IC and OOC 

performances of control charts, not given by the ARL. The idea of looking at percentiles, in SPC, 

goes back to Barnard (1959) and more recently researchers such as Gan (1994), Chakraborti (2007) 

and Khoo et al. (2011) have advocated the use of percentiles, such as the median, for assessment of 

chart performance. The disadvantages of using the ARL as a performance measure are summarized 

as follows: 
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i. The run-length distribution of a chart is typically highly skewed and thus conclusions 

based on the ARL can be misleading.  

 

ii. Difficulty of interpretation. As pointed out by Gan (1994), a chart having an ARL0 of 500 

(say) will have about 63% of all the run-lengths lower than 500 but 50% of all the run-

lengths will be lower than 348, since the IC MRL (denoted MRL0) is 348. 

 

iii. There may be problems with the existence of the ARL0 for some charts; see, for example, 

Chakraborti et al. (2004) and Graham et al. (2012), where the ARL0 can be infinite and the 

authors emphasize that charts with an infinite ARL0 are not useful in practice as this will 

often produce infinite or very large ARL’s under a shift as well. 

 

iv. High standard deviation. Even if the ARL0 exists it is, in most cases, associated with a high 

SDRL0 which is undesirable. Extremely large values, for any of the run-length 

characteristics, means that those run-length characteristics can’t be computed within a 

practical time, i.e. using the ARL as performance measure can be time-consuming. 

 

v. Lack of robustness. As is well-known, the ARL isn’t a robust measure, i.e. it is dramatically 

impacted by the presence of outliers and, consequently, using winsorization or a trimmed 

mean is often necessary for practical applications. When using winsorization or a trimmed 

mean this further complicates the interpretation.  

 

Thus the use of the MRL as a measure of typical chart performance is recommended. For 

example, if the MRL0 = 250 it means that there is at least a 50% chance that the first signal will be 

observed by the 250
th

sample although the process is actually IC. Stated differently, 50% of the IC 

run-lengths will be greater than or equal to 250 and 50% will be less. The ARL0 simply does not 

have such an easily understood interpretation. Like the practical convention followed for the ARL0, 

for an efficient control chart, the MRL0 should be ‘large’ enough and the OOC MRL (denoted MRLδ) 

should be ‘small’. Also, when comparing the performance of two or more charts the MRL0 of the 

charts should be fixed at an acceptably ‘high’ level such as 350 and the chart with the smaller MRLδ  

is preferred. To this end, note that the run-length distribution of a Shewhart chart follows a 

Geometric distribution, i.e. N ~ GEO(%) where N denotes the run-length variable and % is the 

probability of a success, that is, the probability of a signal. Since N ~ GEO(%) it follows that its 

expected value, +(N), which is the ARL, equals 
	d (by properties of the Geometric distribution (see 
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Section 3.1)), i.e. ARL = 
	d so that the success probability is given by % = 	lmn. For industry standard 

values for ARL0 such as 500, it follows % = 	o>> = 0.002 and, consequently, the MRL0 is equal to 

3	pqrs(	3d) (by properties of the Geometric distribution), which, in our case equals          

3	pqrs(	3>.>>�) = 346.2. Therefore, keeping parity with the long practice of computing standards 

based on the traditional Shewhart-type chart in SPC, the IC target MRL0 is recommended to be 

equal to 346. However, for simplicity, we take the nominal MRL0  to be equal to 350 in this chapter. 

 

Implementation of the chart 

 

Practical implementation of the proposed NPCUSUM-EX chart requires specifying the 

following quantities:  

 

i. The size of the IC Phase I reference sample (�). 

 

ii. The order of the reference sample order statistic ($) and, following this, the value of �(#). 
 

iii. The size of each Phase II test sample (�). 

iv. A nominal value for a desired performance metric such as the ARL0 or the MRL0. 

 

v. The reference value (;). 

 

vi. The decision interval (@). 

 

 It is up to the practitioner to specify values of the chart parameters �, � and $ and the 

nominal value for the desired performance metric in a given situation. The choice of $ will be 

discussed later. The design parameters ; and @ are chosen so that the chart has a specified nominal 

ARL0 or MRL0 (the latter performance metric is used in this section) and is capable of detecting a 

specified shift, specially a small shift, as soon as possible (see Section 1.9.2 for a detailed 

discussion on the choice of the design parameters ; and @).  

 

 In order to investigate the impact of the reference value on the performance of the chart 

more thoroughly, we consider a number of reference values, ;p = vpwxy+1("�,#) for z = 1,2,3,4, 
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respectively, where vp = {pE, {p is a positive constant and E = RS √�⁄  is the size of the shift to be 

detected with R = 0.00(0.25)1.00, 1.50 and 2.00. The constant {p ranges from small to medium to 

large, namely, 0.25, 0.50, 1.00 and 2.00. Note that although shifts as large as R = 2.00 were 

considered in this study, the largest value of R reported here is R = 1.00, since, for larger shifts we 

have the following considerations: 

 

i. The run-length characteristics of the charts tend to converge and  

 

ii. later on it is shown that for moderate to large shifts the practitioner should use the 

exceedance chart based on higher order percentiles, such as the 60
th

 or the 75
th

 percentiles, 

since they signal very quickly for all ; under consideration.  

 

After choosing ;, the next step is to find the decision interval @, in conjunction with the 

chosen ;, so that a desired nominal MRL0 is attained. However, for a discrete random variable the 

chances are that @ cannot always be found such that the desired nominal MRL0 is attained exactly 

and hence using a conservative approach, H is found so that the attained MRL0 is less than or equal 

to the desired nominal MRL0. The decision interval, @, is found using a grid search algorithm using 

100 000 Monte Carlo simulations. SAS
® 

v 9.3 is used for the simulations and the results are verified 

using R.2.15.0.  

 

In-control robustness 

 

 Because the NPCUSUM-EX chart is a nonparametric chart, the IC run-length distribution 

and the associated characteristics should be the same for all continuous distributions. In other 

words, the IC run-length distribution is the same by definition and thus all IC characteristics such as 

the MRL must remain the same for all continuous distributions. Next, the OOC chart performance 

comparison is given. The same distributions are considered as with the NPCUSUM-EX median 

chart. 
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Out-of-control chart performance comparison 

 

Tables 4.14 to 4.17 give the OOC run-length characteristics for R = 0.25, 0.50, 0.75 and 

1.00, respectively. The first row of each cell shows the MRL followed by the corresponding 

interquartile range (IQR) in parentheses, whereas the second row shows the values of the 5
th

, 25
th

, 

75
th

 and 95
th

 percentiles (in this order).  

 

 Several observations can be made from an examination of Tables 4.14 to 4.17. The decision 

interval, @, for the NPCUSUM-EX chart is the same for the 25
th

 and 75
th

 percentiles and for the 

40
th

 and 60
th

 percentiles, respectively. Note that, since the wxy+1("�,#) is the same for the pair of 

percentiles (} − ∆	, } + ∆	) where } denotes the median and ∆	 is an integer between 1 and 49, 

the reference value ; would be the same (since ; is a function of wxy+1("�,#)) and, consequently, 

the decision interval @ would be the same (the reader is referred to Section 1.9.2 where the choice 

of the design parameters ; and @ are explained in detail). 

  

 As expected, the MRLδ  values as well as all the run-length distribution percentiles decrease 

sharply with increasing shift, which is expected, indicating that NPCUSUM charts are reasonably 

effective in detecting shifts in location. However, the effectiveness (speed of detection) of the charts 

varies depending on the magnitude of the shift, the underlying process distribution and the type of 

the reference percentile being considered in forming the exceedance statistic. 
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Table 4.14. OOC run-length characteristics
xvi

 (target MRL0 = 350, � = 100, � = 5, and R = 0.25) 
   r = 25th percentile r = 40th percentile r = 50th percentile r = 60th percentile r = 75th percentile 

� � = 
2
 

Dist / H H=5.710 H=6.500 H=6.550 H=6.500 H=5.710 

N(0,1) 
396 (954) 

26, 122, 1076, 3185 

269 (705) 

21, 84, 789, 2571 

236 (614) 

18, 72, 686, 2359 

206 (580) 

16, 63, 643, 2267 

170 (502) 

13, 53, 555, 2142 

EXP(1) 
73 (273) 

12, 27, 300, 1756 

126 (415) 

14, 42, 457, 2034 

161 (501) 

14, 48, 549, 2105 

174 (521) 

14, 52, 573, 2120 

207 (595) 

14, 60, 655, 2336 

GAM(3,1) 
272 (781) 

21, 79, 860, 2832 

218 (612) 

18, 66, 678, 2420 

203 (550) 

16, 64, 614, 2150 

205 (576) 

16, 61, 637, 2215 

189 (571) 

14, 57, 628, 2254 

t(3) 
348 (846) 

27, 111, 958, 3009 

157 (464) 

16, 54, 518, 2154 

123 (386) 

14, 43, 429, 1759 

107 (326) 

12, 36, 362, 1761 

108 (355) 

10, 35, 390, 1817 

DE(0,1) 
410 (1003) 

29, 131, 1134, 3394 

208 (567) 

19, 67, 634, 2190 

120 (333) 

14, 42, 375, 1610 

106 (342) 

12, 36, 378, 1752 

144 (459) 

12, 43, 502, 1966 

� � = 
1
 

Dist / H H=11.700 H=13.500 H=14.000 H=13.500 H=11.700 

N(0,1) 
248 (896) 

31, 82, 978, 4457 

214 (807) 

30, 74, 881, 4412 

203 (773) 

28, 71, 844, 4684 

194 (779) 

26, 66, 845, 4285 

196 (752) 

23, 65, 817, 3816 

EXP(1) 
52 (115) 

18, 29, 144, 1655 

87 (287) 

21, 40, 327, 2827 

129 (520) 

23, 50, 570, 3777 

166 (658) 

24, 57, 715, 4065 

217 (776) 

24, 67, 843, 4016 

GAM(3,1) 
140 (528) 

27,57, 585, 3519 

156 (579) 

26, 58, 637, 3954 

180 (764) 

26, 62, 826, 4506 

181 (699) 

25, 64, 763, 3976 

214 (764) 

26, 68, 832, 4018 

t(3) 
182 (651) 

30, 71, 722, 3678 

116 (392) 

25, 50, 442, 3110 

101 (333) 

23, 46, 379, 3120 

96 (334) 

21, 43, 377, 3010 

113 (441) 

19, 44, 485, 3046 

DE(0,1) 
245 (889) 

33, 86, 975, 4321 

146 (493) 

27, 59, 552, 3577 

98 (352) 

20, 41, 393, 3035 

94 (275) 

23, 46, 321, 2721 

153 (577) 

21, 53, 630, 3360 

� � = 
0
.5

 

Dist / H H=24.500 H=28.000 H=28.000 H=28.000 H=24.500 

N(0,1) 
244 (853) 

61, 114, 967, 8994 

230 (896) 

55, 105, 1001, 9507 

218 (721) 

52, 100, 821, 8127 

218 (826) 

50, 99, 925, 9066  

222 (895) 

47, 97, 992, 9420 

EXP(1) 
77 (98) 

34, 50, 148, 1844 

117 (265) 

39, 66, 331, 5363 

148 (438) 

42, 76, 514, 6088 

198 (684) 

46, 90, 774, 8496 

249 (1019) 

49, 106, 1125, 9458 

GAM(3,1) 
156 (408) 

49, 83, 491, 6723 

175 (556) 

49, 88, 644, 7928 

190 (662) 

47, 90, 752, 8271 

218 (778) 

49, 100, 878, 9277 

246 (950) 

49, 106, 1056, 8757 

t(3) 
187 (537) 

57, 98, 635, 7431 

136 (304) 

46, 78, 382, 3569 

129 (268) 

43, 73, 341, 5108 

127 (296) 

40, 70, 366, 5523 

150 (494) 

38, 74, 568, 7224 

DE(0,1) 
250 (930) 

63, 118, 1048, 9347 

163 (394) 

50, 87, 481, 6543 

126 (337) 

39, 68, 405, 5705 

119 (213) 

43, 70, 283, 3885 

186 (659) 

42, 86, 745, 9918 

� � = 
0
.2

5
 

Dist / H H=38.000 H=43.000 H=45.000 H=43.000 H=38.000 

N(0,1) 
263 (550) 

85, 146, 696, 5913 

243 (528) 

77, 133, 661, 5448 

245 (525) 

77, 133, 658, 6390 

241 (523) 

72, 128, 651, 5818 

250 (575) 

69, 130, 705, 6156 

EXP(1) 
101 (106) 

50, 70, 176, 1123 

150 (216) 

57, 91, 337, 2906 

186 (346) 

62, 108, 454, 4565 

215 (448) 

65, 117, 565, 5142 

266 (609) 

71, 137, 746, 6250 

GAM(3,1) 
191 (334) 

73, 115, 449, 4237 

206 (405) 

70, 117, 522, 4885 

228 (471) 

72, 127, 598, 5538 

240 (515) 

70, 127, 642, 5643 

270 (622) 

73, 140, 762, 6026 

t(3) 
213 (359) 

80, 128, 487, 4605 

166 (253) 

67, 104, 357, 3147 

160 (256) 

63, 100, 356, 3389 

156 (253) 

58, 95, 348, 3060 

182 (357) 

57, 100, 457, 4080 

DE(0,1) 
258 (524) 

87, 145, 669, 5997 

188 (305) 

72, 117, 422, 4024 

156 (204) 

65, 102, 306, 2688 

154 (273) 

58, 91, 364, 3425 

213 (459) 

62, 113, 572, 5231 

 

  

                                                 
xvi

 Note that, the first row of each of the cells shows the MRL and IQR values whereas the second row shows the 5
th

, 

25
th

, 75
th

 and 95
th

 percentiles (in this order) 
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Table 4.15. OOC run-length characteristics
xvii

 (target MRL0 = 350, � = 100, � = 5, and R = 0.50) 

 

  

                                                 
xvii

 Note that, the first row of each of the cells shows the MRL and IQR values whereas the second row shows the 5
th

, 

25
th

, 75
th

 and 95
th

 percentiles (in this order) 

 
 

r = 25th percentile r = 40th percentile r = 50th percentile r = 60th percentile r = 75th percentile 

� � = 
2
 

Dist / H H=2.710 H=2.809 H=2.900 H=2.730 H=2.710 

N(0,1) 
1658 (3475) 

97, 560, 4035, 10948 

293 (595) 

20, 105, 700, 1917 

129 (288) 

10, 45, 333, 1123 

108 (285) 

8, 38, 323, 1441 

59 (132) 

5, 22, 154, 615 

EXP(1) 
46 (323) 

11, 15, 338, 4139 

60 (160) 

6, 21, 181, 754 

65 (204) 

7, 21, 225, 1007 

76 (190) 

6, 26, 216, 999 

80 (221) 

7, 26, 247, 1100 

GAM(3,1) 
1639 (3626) 

80, 534, 4161, 11675 

189 (449) 

13, 64, 513, 1638 

104 (248) 

8, 36, 284, 1028 

106 (297) 

9, 35, 332, 1571 

74 (178) 

6, 25, 203, 823 

t(3) 
2249 (4103) 

148, 868, 4971, 12720 

129 (290) 

12, 49, 339, 1106 

51 (104) 

6, 20, 124, 459 

38 (80) 

5, 15, 95, 398 

29 (64) 

4, 12, 76, 319 

DE(0,1) 
1847 (3636) 

117, 654, 4320, 11371 

190 (411) 

15, 70, 481, 1422 

54 (102) 

6, 22, 124, 422 

37 (83) 

5, 15, 98, 465 

43 (107) 

4, 15, 122, 563 

� � = 
1
 

Dist / H H=5.75 H=6.500 H=6.600 H=6.500 H=5.750 

N(0,1) 
187 (558) 

20, 61, 619, 2515 

102 (308) 

14, 37, 345, 1666 

79 (235) 

12, 30, 265, 1402 

68 (198) 

10, 26, 224, 1169 

60 (176) 

9, 23, 199, 1144 

EXP(1) 
12 (12) 

8, 9, 21, 85 

23 (45) 

7, 13, 58, 434 

34 (89) 

8, 16, 105, 771 

50 (151) 

9, 19, 170, 1067 

84 (279) 

9, 28, 307, 1671 

GAM(3,1) 
54 (150) 

11, 24, 174, 1175 

57 (157) 

13, 26, 183, 1251 

60 (174) 

11, 24, 198, 1208 

65 (193) 

10, 24, 217, 1271 

81 (267) 

9, 28, 295, 1625 

t(3) 
93 (240) 

17, 39, 279, 1453 

38 (67) 

10, 20, 87, 454 

29 (48) 

9, 16, 64, 283 

27 (59) 

6, 13, 72, 455 

25 (43) 

7, 13, 56, 262 

DE(0,1) 
166 (474) 

50, 58, 532, 2258 

51 (102) 

11, 25, 127, 5701 

29 (45) 

9, 16, 61, 244 

24 (42) 

7, 13, 55, 366 

41 (119) 

7, 17, 136, 993 

� � = 
0
.5

 

Dist / H H=12.000 H=13.500 H=13.500 H=13.500 H=12.000  

N(0,1) 
96 (273) 

37, 49, 322, 2901 

69 (158) 

21, 38, 196, 2027 

64 (147) 

19, 34, 181, 1626 

66 (177) 

16, 33, 210, 2069 

63 (150) 

18, 33, 183, 1808 

EXP(1) 
18 (12) 

13, 14, 26, 58 

28 (30) 

13, 18, 48, 253 

36 (56) 

14, 22, 78, 739 

50 (118) 

15, 27, 145, 1544 

91 (351) 

17, 37, 388, 3306 

GAM(3,1) 
46 (58) 

20, 30, 88, 818 

47 (76) 

17, 28, 104, 1038 

52 (110) 

17, 29, 139, 1343 

62 (161) 

17, 32, 193, 2112 

85 (305) 

18, 37, 342, 2787 

t(3) 
60 (79) 

24, 38, 117, 804 

37 (37) 

17, 25, 62, 240 

31 (30) 

14, 22, 52, 182 

30 (31) 

13, 21, 52, 212 

35 (49) 

12, 21, 70, 617 

DE(0,1) 
88 (191) 

28, 48, 239, 2139 

45 (50) 

18, 30, 80, 329 

32 (28) 

15, 23, 51, 157 

30 (33) 

13, 20, 53, 356 

46 (109) 

13, 24, 133, 1557 

� � = 
0
.2

5
 

Dist / H H=24.000 H=27.500 H=28.500 H=27.500 H=24.000 

N(0,1) 
114 (191) 

45, 71, 262, 3469 

97 (134) 

39, 62, 196, 2414 

92 (132) 

37, 58, 190, 2196 

92 (168) 

32, 55, 223, 3174 

90 (131) 

35, 56, 187, 2750 

EXP(1) 
30 (15) 

22, 25, 40, 72 

45 (37) 

24, 33, 70, 250 

59 (66) 

27, 40, 106, 784 

75 (118) 

29, 47, 165, 2313 

117 (288) 

33, 61, 349, 4724 

GAM(3,1) 
65 (57) 

35, 48, 105, 473 

71 (78) 

33, 48, 126, 977 

79 (107) 

33, 51, 158, 1799 

88 (142) 

32, 54, 196, 2863 

119 (305) 

34, 62, 367, 5062 

t(3) 
79 (67) 

41, 58, 125, 470 

58 (41) 

32, 44, 85, 214 

52 (37) 

29, 39, 76, 187 

50 (38) 

26, 37, 75, 225 

55 (61) 

24, 36, 97, 614 

DE(0,1) 
106 (140) 

46, 70, 210, 1990 

68 (52) 

36, 50, 102, 266 

50 (43) 

26, 37, 80, 372 

49 (40) 

26, 36, 76, 325 

70 (116) 

26, 42, 158, 2179 
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Table 4.16. OOC run-length characteristics
xviii

 (target MRL0 = 350, � = 100, � = 5, and R = 0.75) 
   r = 25th percentile r = 40th percentile r = 50th percentile r = 60th percentile r = 75th percentile 

� � = 
2
 

Dist / H H=1.575 H=1.350 H=1.530 H=1.350 H=1.575 

N(0,1) *** 
1422 (2695) 

80, 491, 3187, 8155 

73 (147) 

6, 28, 175, 493 

42 (82) 

4, 16, 98, 306 

39 (81) 

4, 15, 96, 327 

EXP(1) *** 
76 (308) 

5, 21, 329, 2322 

27 (59) 

3, 10, 69, 257 

28 (58) 

3, 11, 69, 258 

51 (125) 

4, 18, 143, 568 

GAM(3,1) *** 
729 (1771) 

35, 226, 1997, 6288 

53 (109) 

5, 20, 129, 409 

39 (80) 

4, 15, 95, 327 

50 (112) 

4, 18, 130, 518 

t(3) *** 
538 (1212) 

34, 191, 1403 

29 (50) 

3, 12, 62, 166 

16 (27) 

2, 7, 34, 96 

16 (29) 

3, 7, 36, 125 

DE(0,1) *** 
964 (2010) 

60, 350, 2360, 6471 

32 (54) 

4, 14, 68, 174 

16 (27) 

2, 7, 34, 103 

23 (52) 

3, 9, 61, 257 

� � = 
1
 

Dist / H H=3.500 H=4.100 H=4.200 H=4.100  H=3.500 

N(0,1) 
256 (709) 

20, 82, 791, 3107 

62 (146) 

9, 25, 171, 802 

41 (90) 

7, 17, 107, 497 

33 (70) 

6, 14, 84, 364 

23 (45) 

4, 10, 55, 234 

EXP(1) 
8 (0) 

8, 8, 8, 16 

9 (11) 

4, 7, 18, 89 

14 (25) 

4, 18, 33, 167 

21 (46) 

4, 10, 56, 312 

32 (98) 

4, 12, 90, 503 

GAM(3,1) 
45 (108) 

10, 21, 129, 834 

29 (62) 

7, 14, 76, 410 

29 (64) 

6, 13, 77, 383 

31 (68) 

5, 13, 81, 400 

30 (68) 

4, 12, 80, 409 

t(3) 
117 (269) 

16, 46, 315, 1347 

23 (34) 

7, 12, 46, 146 

15 (19) 

5, 9, 28, 78 

12 (15) 

4, 7, 22, 65 

10 (15) 

3, 6, 21, 71 

DE(0,1) 
268 (676) 

22, 91, 767, 2885 

33 (56) 

8, 16, 72, 222 

17 (21) 

5, 10, 31, 83 

12 (15) 

4, 7, 22, 73 

14 (28) 

3, 7, 35, 166 

� � = 
0
.5

 

Dist / H H=7.800 H=8.900  H=8.900 H=8.900  H=7.800 

N(0,1) 
48 (87) 

16, 28, 115, 747 

34 (51) 

12, 20, 71, 405 

30 (44) 

10, 19, 63, 305 

28 (40) 

9, 17, 57, 298 

27 (44) 

8, 15, 59, 369 

EXP(1) 
9 (0) 

9, 9, 9, 14 

11 (8) 

7, 9, 17, 41 

15 (15) 

7, 10, 25, 92 

20 (28) 

8, 13, 41, 252 

36 (92) 

9, 18, 110, 1069 

GAM(3,1) 
22 (19) 

12, 16, 35, 106 

22 (24) 

9, 15, 39, 157 

23 (30) 

9, 15, 45, 220 

26 (42) 

9, 16, 58, 342 

35 (81) 

9, 18, 99, 809 

t(3) 
32 (31) 

14, 22, 53, 144 

19 (13) 

9, 14, 27, 56 

16 (11) 

8, 11, 22, 44 

14 (10) 

7, 10, 20, 44 

14 (14) 

6, 9, 23, 69 

DE(0,1) 
47 (72) 

16, 28, 100, 433 

23 (19) 

11, 16, 35, 75 

17 (12) 

8, 12, 24, 47 

14 (11) 

7, 10, 21, 48 

18 (26) 

6, 11, 37, 216 

� � = 
0
.2

5
 

Dist / H H=16.200 H=18.500 H=18.500 H=18.500 H=16.200 

N(0,1) 
55 (53) 

26, 39, 92, 445 

45 (41) 

22, 32, 73, 259 

41 (36) 

19, 29, 65, 221 

40 (39) 

18, 27, 66, 253 

39 (44) 

16, 26, 70, 354 

EXP(1) 
16 (0) 

16, 16, 16, 22 

19 (11) 

12, 15, 26, 46 

24 (17) 

13, 18, 35, 84 

31 (31) 

14, 22, 53, 219 

49 (88) 

16, 29, 117, 1538 

GAM(3,1) 
31 (18) 

20, 25, 43, 83 

33 (24) 

18, 24, 48, 121 

34 (28) 

17, 24, 52, 174 

38 (38) 

17, 26, 64, 311 

50 (79) 

17, 29, 108, 1225 

t(3) 
42 (24) 

24, 32, 56, 103 

28 (14) 

18, 23, 37, 59 

24 (12) 

15, 19, 31, 50 

23 (12) 

13, 18, 30, 52 

23 (16) 

12, 17, 33. 80 

DE(0,1) 
54 (42) 

27, 40, 82, 255 

34 (18) 

20, 27, 45, 73 

25 (12) 

16, 21, 33, 52 

23 (12) 

14, 18, 30, 54 

29 (29) 

12, 20, 49, 226 

*** Values could not be computed within a reasonable time. This indicates that the values are 

extremely large and the corresponding chart is performing poorly. 
 

  

                                                 
xviii

 Note that, the first row of each of the cells shows the MRL and IQR values whereas the second row shows the 5
th

, 

25
th

, 75
th

 and 95
th

 percentiles (in this order) 
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Table 4.17. OOC run-length characteristics
xix

 (target MRL0 = 350, � = 100, � = 5, and R = 1.00) 
   r = 25th percentile r = 40th percentile r = 50th percentile r = 60th percentile r = 75th percentile 

� � = 
2
 

Dist / H H=0.750 H=0.700 H=0.390 H=0.700 H=0.750 

N(0,1) *** *** 
41 (76) 

4, 17, 93, 264 

11 (18) 

1, 5, 23, 57 

34 (66) 

3, 13, 79, 246 

EXP(1) *** *** 
10 (21) 

2, 4, 25, 92 

7 (13) 

1, 3, 16, 45 

43 (96) 

3, 16, 112, 443 

GAM(3,1) *** *** 
27 (51) 

3, 11, 62, 195 

10 (16) 

1, 4, 20, 53 

44 (95) 

3, 16, 111, 385 

t(3) *** *** 
15 (24) 

2, 7, 31, 73 

5 (8) 

1, 2, 10, 24 

11 (20) 

2, 5, 25, 74 

DE(0,1) *** *** 
18 (30) 

2, 8, 38, 91 

5 (8) 

1, 3, 11, 25 

16 (35) 

2, 6, 41, 160 

� � = 
1
 

Dist / H H=2.715  H=2.701 H=2.925  H=2.701  H=2.715  

N(0,1) 
1396 (3303) 

64, 431, 3734, 10821 

54 (116) 

8, 22, 138, 513 

27 (49) 

4, 12, 61, 213 

17 (29) 

3, 8, 37, 110 

15 (27) 

3, 17, 34, 111 

EXP(1) 
11 (0)  

11, 11, 11, 11 

5 (4) 

4, 4, 8, 25 

7 (10) 

3, 4, 4, 54 

9 (17) 

2, 5, 22, 83 

19 (43) 

38, 51, 218 

GAM(3,1) 
76 (222) 

13, 20, 252, 1976 

21 (39) 

5, 10, 49, 197 

17 (31) 

3, 8, 39, 146 

14 (27) 

2, 7, 34, 113 

19 (42) 

3, 8, 50, 203 

t(3) 
606 (1503) 

42, 207, 1710, 6285 

18 (25) 

5, 10, 35, 89 

10 (11) 

3, 6, 17, 43 

7(8) 

2, 4, 12, 27 

6 (7) 

2, 4, 11, 32 

DE(0,1) 
1698 (3652) 

94, 582, 4234, 11464 

29 (46) 

6, 14, 60, 162 

12 (14) 

3, 7, 21, 49 

7 (8) 

2, 4, 12, 29 

8 (13) 

2, 4, 17, 63 

� � = 
0
.5

 

Dist / H H=5.800 H=6.500 H=6.500 H=6.500 H=5.800 

N(0,1) 
33 (48) 

12, 20, 68, 304 

21 (25) 

8, 13, 38, 126 

18 (21) 

7, 11, 32, 99 

16 (19) 

6, 10, 29, 88 

15 (20) 

5, 9, 29, 96 

EXP(1) 
8 (0) 

8, 8, 8, 8 

6(3) 

5, 5, 8, 15 

8 (7) 

4, 5, 12, 29 

11 (12) 

4, 7, 19, 67 

18 (35) 

5, 10, 45, 313 

GAM(3,1) 
14 (9) 

8, 11, 20, 42 

13 (11) 

6, 9, 20, 51 

13 (13) 

5, 9, 22, 65 

15 (18) 

5, 9, 27, 99 

19 (33) 

5, 10, 43, 233 

t(3) 
23 (20) 

11, 16, 36, 83 

12 (8) 

6, 9, 17, 31 

10 (6) 

5, 7, 13, 23 

8 (5) 

4, 6, 11, 21 

8 (7) 

4, 5, 12, 25 

DE(0,1) 
35 (45) 

12, 21, 66, 204 

15 (11) 

7, 11, 22, 42 

11 (7) 

5, 8, 15, 25 

9 (5) 

4, 7, 12, 21 

9 (10) 

4, 6, 16, 53 

� � = 
0
.2

5
 

Dist / H H=11.750 H=13.511  H=13.905  H=13.511  H=11.750 

N(0,1) 
32 (26) 

17, 23, 49, 117 

26 (18) 

14, 19, 37, 83 

24 (17) 

12, 18, 35, 74 

23 (17) 

11, 16, 33, 74 

21 (18) 

10, 15, 33, 84 

EXP(1) 
12 (0) 

12, 12, 12, 12 

10 (5) 

8, 8, 13, 19 

13 (7) 

8, 10, 17, 32 

16 (12) 

8, 12, 24, 56 

25 (32) 

10, 16, 48, 318 

GAM(3,1) 
18 (8) 

13, 15, 23, 38 

18 (11) 

11, 14, 25, 44 

19 (12) 

11, 15, 27, 55 

20 (15) 

10, 15, 30, 76 

25 (28) 

10, 16, 44, 188 

t(3) 
25 (13) 

16, 20, 33, 54 

17 (7) 

11, 14, 21, 31 

15 (6) 

10, 12, 18, 26 

13 (5) 

8, 11, 16, 24 

12 (7) 

7, 9, 16, 29 

DE(0,1) 
33 (24) 

18, 24, 48, 92 

21 (9) 

13, 17, 26, 39 

16 (8) 

11, 13, 21, 29 

13 (6) 

8, 11, 17, 26 

14 (10) 

7, 11, 21, 51 

*** Values could not be computed within a reasonable time. This indicates that the values are 

extremely large and the corresponding chart is performing poorly. 

 

The observations from Tables 4.14 to 4.17 are summarized in Table 4.18 below along with 

some recommendations. Note that for brevity, a shorthand notation is used to describe the charts. 

For example, the NPCUSUM-EX chart based on the 50
th

 percentile is denoted by EX(50), and if 

two charts perform similarly, for example, if the NPCUSUM-EX chart based on the 50
th

 and 60
th

 

percentiles perform similarly, the notation EX(50,60) is used. 

                                                 
xix

 Note that, the first row of each of the cells shows the MRL and IQR values whereas the second row shows the 5
th

, 

25
th

, 75
th

 and 95
th

 percentiles (in this order) 
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Table 4.18. Summary of the efficacy of different reference sample percentiles for the  

NPCUSUM-EX chart 
 Size of Location Shift 

 Small 

(E ≤ 0.25) 

Small to moderate 

(0.25 < E ≤ 0.50) 

Moderate to large 

(0.50 < E ≤ 0.75) 

Large 

(0.75 < E ≤ 1.00) 

Symmetric distributions 

N
(0

,1
) 

Overall the higher order 

percentile based charts, 

EX(75), EX(60) and 

EX(50), perform best. 

More specifically, for 

each {p, the chart 

performing the best is: {p = 0.25: EX(60) {p = 0.5:  EX(50,60) {p = 1: EX(60,75) {p = 2: EX(75) 

The EX(75) chart 

performs the best for all {p 
The EX(75) chart 

performs the best for 

all {p 
For {p = 2 the EX(60) 

chart performs the best. 

For all other values of {p under consideration 

the EX(75) chart 

performs the best. 

 

t(
3
) 

The EX(60) chart 

performs the best for all {p 
For {p = 1 and 2, the 

EX(75) chart performs 

the best. For {p = 0.25 

and 0.5, the EX(60) 

chart performs the best. 

The EX(60,75) charts 

perform similarly and 

the best. 

Overall the higher order 

percentile based charts, 

EX(75) and EX(60) 

perform best. More 

specifically, for each {p, 
the chart performing 

the best is: {p = 0.25: EX(75) {p = 0.5:  EX(60,75) {p = 1: EX(60,75) {p = 2: EX(60) 

D
E

(0
,1

) The EX(60) chart 

performs the best for all {p 
The EX(60) chart 

performs the best for all {p 
The EX(60) chart 

performs the best for 

all {p 
The EX(60) chart 

performs the best for all {p 
Asymmetric distributions 

E
X

P
(1

) 

The EX(25) chart 

performs the best for all {p 
The EX(25) chart 

performs the best for all {p 
For {p = 2 the 

EX(50,60) charts 

perform similarly and 

the best. For all other 

values of {p the EX(25) 

chart performs the best. 

For {p = 2 the EX(60) 

chart performs the best. 

For all other values of {p the EX(40) chart 

performs the best. 

G
A

M
(3

,1
) For {p = 2 the EX(75) 

chart performs the best. 

For all other values of {p the EX(25) chart 

performs the best. 

For {p = 2 the EX(75) 

chart performs the best. 

For all other values of {p the EX(25) chart 

performs the best. 

{p = 0.25, 0.5: EX(25) {p = 1: EX(40,50) {p = 2: EX(60) 

 

{p = 0.25: EX(25,40) {p = 0.5: EX(40,50) {p = 1 and 2: EX(60) 

 

 From Table 4.18 it is clear that a NPCUSUM-EX chart using reference sample percentiles 

other than the median (to define the precedence statistic in a particular situation) can provide a 

useful nonparametric chart in practice. In fact, it appears that the NPCUSUM-EX chart, using the 

higher order percentiles, such as the 60
th

 and 75
th

 percentiles, respectively, are good overall charts 

for detecting a larger location shift. This finding is an important contribution to the literature on 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



218 

 

 

exceedance / precedence tests and charts. Other reference sample percentiles, such as the 25
th

 or the 

40
th

, can also be used when a smaller shift is expected.  

 

Choice of the reference value 

 

 The reference value ; is an important design parameter of a CUSUM chart and is generally 

chosen based on the size of the expected shift. In the parametric context, given the population 

distribution, one can choose the optimal ; from the notion of a sequential probability ratio test (see 

e.g. Hawkins and Olwell (1998)). Traditionally, for the CUSUM-� chart it is recommended that 

smaller values of the reference value are preferable for detecting smaller shifts and that larger 

values of the reference value are preferable for detecting larger shifts (see Section 1.9.2). In the 

nonparametric setting, however, the choice of such ; is more complicated and we investigate this 

issue more thoroughly, starting with revisiting the CUSUM-� chart. Note that when we suspect that 

the process has gone OOC, the goal is to choose that value of ; which gives the shortest MRLδ. Our 

simulation study suggests that for both parametric and nonparametric charts, when small shifts are 

under consideration, the MRLδ  values initially decrease, as the reference value ; increases from 0, 

reaches a minimum and then sharply increases (see Figure 1.2 in Section 1.9.2 for the CUSUM-� 

chart and Figures 4.8 to 4.12 below for the NPCUSUM). Thus, roughly, the MRLδ  is U-shaped or 

V-shaped. i.e. it is a convex function, as a function of ; (or, equivalently, a function of {p). Since we 

are plotting the OOC MRL values, one would select the {p value for which the value of MRLδ  is the 

lowest, i.e. the turning point of the convex function. The reasoning behind this follows. For an 

‘efficient’ control chart the MRL0 should be ‘large’ and the MRLδ  should be ‘small’. Since the 

MRL0 is fixed at the same value, the ; (or, equivalently, the {p value) with the smallest or lowest 

MRLδ  is selected to be the winner. For the CUSUM-� chart the U-shape (with ARLδ on the vertical 

axis against ; on the horizontal axis) is illustrated graphically in Figure 1.2 in Section 1.9.2. For the 

NPCUSUM-EX chart we illustrate the shape of the MRLδ  profile graphically in Figures 4.8 to 4.12 

for different choices of percentiles of the Phase I reference sample. The line colour of the 

symmetric distributions is in black and the line colour of the asymmetric distributions is in red. To 

summarize, we see that, in the NPCUSUM setting, the choice of such ; is not straightforward, since 

the choice depends on the reference sample order statistic, the magnitude of the shift that one wants 

to detect and the shape of the underlying process distribution. A detailed discussion is given below. 
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(a) Shift R = 0.25 

 

(b) Shift R = 0.50 

 

(c) Shift R = 0.75 

 

(d) Shift R = 1.00 

 

 

Notes on Figures: 

There is no marker for R = 0.75 and 1.00  at  {p = 2, since the run-length characteristics could 

not be computed within a reasonable time, 

indicating that the run-length characteristics are 

extremely large and, consequently, {p = 2 would 

not be chosen. 

 

Legend 

 

 

Figure 4.8. Out-of-control MRL values under different choices of {pxx for the NPCUSUM-EX chart 

based on the 25
th

 percentile of the reference sample 

 

If we consider the MRLδ values under different choices of {p, for the NPCUSUM-EX chart 

based on the 25
th

 percentile of the reference sample, we see that the MRLδ values initially decline as {p increases and reaches a minimum around {p = 1 for small to moderate shifts (R = 0.25 and 0.50) 

(see Figures 4.8a,b) and around {p = 0.5 for moderate to large shifts (R = 0.75 and 1.00) (see 

Figures 4.8c,d). After the minimum is reached the MRLδ  values begin to increase sharply. It is thus 

tempting to conjecture that the NPCUSUM charts have a U-shape function or a convex function 

                                                 
xx
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when the 25
th

 percentile of the reference sample is used. Next, the graphs for the NPCUSUM-EX 

chart based on the 40
th

 percentile of the reference sample are shown.  

 

(a) Shift R = 0.25 

 

(b) Shift R = 0.50 

 

(c) Shift R = 0.75 

 

(d) Shift R = 1.00 

 

 

Notes on Figures: 

There is no marker for R = 1.00  at  {p = 2, since the run-length characteristics could 

not be computed within a reasonable time, 

indicating that the run-length characteristics are 

extremely large and, consequently, {p = 2 would 

not be chosen. 

 

Legend 

 
 

Figure 4.9. Out-of-control MRL values under different choices of {pxxi for the NPCUSUM-EX chart 

based on the 40
th

 percentile of the reference sample 

 

 

 From Figure 4.9 we see that a U-shape is observed in all cases with the minimum at {p = 1 

for R = 0.25, 0.50 and 0.75. However, for R = 1.00 the minimum is reached at {p = 0.5 for all 

                                                 
xxi

 Recall the relationship between the reference value and {p is given by ;p = {pEwxy+1("�,#) 

0

50

100

150

200

250

300

0.25 0.5 1 2

O
O

C
 M

R
L

c_l

0

50

100

150

200

250

300

350

0.25 0.5 1 2

O
O

C
 M

R
L

c_l

0

500

1000

1500

0.25 0.5 1 2

O
O

C
 M

R
L

c_l

0

10

20

30

40

50

60

0.25 0.5 1 2

O
O

C
 M

R
L

c_l

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



221 

 

 

distributions except for the EXP(1) distribution where {p = 1 is preferred. Next, the graphs for the 

NPCUSUM-EX chart based on the median of the reference sample are shown.  

 

(a) Shift R = 0.25 

 

(b) Shift R = 0.50 

 

(c) Shift R = 0.75 

 

(d) Shift R = 1.00 

 

 

Legend 

 
 

Figure 4.10. Out-of-control MRL values under different choices of {pxxii for the NPCUSUM-EX 

chart based on the median of the reference sample 

 

 From Figure 4.10 again a U-shape is evident and one would select the {p value for which the 

value of MRLδ is the lowest. A summary is given in Table 4.19. Next, the graphs for the 

NPCUSUM-EX chart based on the 60
th

 percentile of the reference sample are shown. 
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(a) Shift R = 0.25 

 

(b) Shift R = 0.50 

 

(c) Shift R = 0.75 

 

(d) Shift R = 1.00 

 

 

Legend 

 
 

Figure 4.11. Out-of-control MRL values under different choices of {pxxiii for the NPCUSUM-EX 

chart based on the 60
th

 percentile of the reference sample 

 

 For the NPCUSUM-EX chart based on the 60
th

 percentile of the reference sample the U-

shape isn’t as prominent as with the NPCUSUM-EX chart based on smaller percentiles, as it is only 

clearly seen for when R = 0.50 (see Figure 4.11b). For R = 1.00 it seems that larger values of {p are 

preferred regardless of the size of this shift. Next, the graphs for the NPCUSUM-EX chart based on 

the 75
th

 percentile of the reference sample are shown. 
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(a) Shift R = 0.25 

 

(b) Shift R = 0.50 

 

(c) Shift R = 0.75 

 

(d) Shift R = 1.00 

 

 

Legend 

 
 

Figure 4.12. Out-of-control MRL values under different choices of {pxxiv for the NPCUSUM-EX 

chart based on the 75
th

 percentile of the reference sample 

 

 For the NPCUSUM-EX chart based on the 75
th

 percentile of the reference sample the U-

shape isn’t as prominent as with the NPCUSUM-EX chart based on smaller percentiles, as it is only 

clearly seen when the shift is moderate to large (R = 0.75 and 1.00) (see Figures 4.12c,d). In all 

other cases it seems that larger values of {p are preferred regardless of the size of this shift. The 

results of Figures 4.8 to 4.12 are summarized in Table 4.19 below. 
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Table 4.19. Summary of the different reference sample percentiles and the choices of {p 
If the practitioner has reason to suspect that the underlying process distribution is 

symmetric 

Desired shift  

/ Chart 
EX(25) EX(40) EX(50) EX(60) EX(75) 

0.25 {p = 1.00 {p = 1.00 {p = 1.00 {p = 1.00 
Larger values 

of {p are 

preferred, 

preferably  {p ≥ 1 

0.50 {p = 0.50 

{p = 0.50 

{p = 0.50  

or  {p = 1.00 

{p = 0.50  

or  {p = 1.00 

0.75 

{p = 0.50 

{p = 0.50 {p = 1.00 

1.00 

{p = 0.25 

or {p = 0.50 

Larger values 

of {p are 

preferred, 

preferably  {p ≥ 1 

{p = 0.50 

or {p = 1.00 

If the practitioner has reason to suspect that the underlying process distribution is 

asymmetric 

0.25 

{p = 1.00 {p = 1.00 {p = 1.00 

{p = 1.00 Larger values 

of {p are 

preferred, 

preferably 

 {p ≥ 1 

0.50 

{p = 0.50 

or {p = 1.00 

0.75 

{p = 0.50 

{p = 0.50 

or {p = 1.00 

{p = 0.50 

{p = 0.50 {p = 0.50  

or  {p = 1.00 1.00 

Larger values 

of {p are 

preferred, 

preferably  {p ≥ 1 

 

 When making inferences from Table 4.19, the practitioner should keep in mind that the 

relationship between the reference value (;p) and {p is given by ;p = {pEwxy+1'"�,#). Now, from 

Table 4.19 it is seen that the smallest value of {p under consideration ({p = 0.25) is only listed once 

and, consequently, the practitioner should take caution when assigning small values to {p and also to 

the reference value ;. Table 4.19 should be helpful for the practitioner in implementing the 

NPCUSUM-EX charts. 
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Illustrative examples 

 

Example 4.2 

 

 We illustrate the NPCUSUM-EX chart first using a well-known dataset from Montgomery 

(2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging 

process. The data given in Table 5.1 contains twenty-five retrospective or Phase I samples, each of 

size five, that were collected when the process was thought to be IC, i.e. � = 125. An analysis in 

Montgomery (2001) showed that these data are from an IC process and thus can be considered to be 

Phase I reference data. Note also that for these data, a goodness of fit test for normality is not 

rejected. This does not guarantee that the normality assumption for a traditional or parametric 

CUSUM chart is valid but often the practical implication is as such. We instead apply and contrast 

the proposed nonparametric exceedance charts based on the 25
th

, 40
th

, 50
th

 (median), 60
th

 and the 

75
th

 percentile, respectively, of the reference sample. The values of the respective reference sample 

percentiles are as follows: 25
th

 percentile = 73.995, 40
th

 percentile = 73.998, median = 74.001,    

60
th

 percentile = 74.004 and 75
th

 percentile = 74.008. All of the measurements are in mm. 

  

 In order to calculate the Phase II exceedance control charts, we use the data in Table 5.2 of 

Montgomery (2001) that contains fifteen prospective (Phase II) samples each of five observations 

(� = 5). For each NPCUSUM-EX chart we use {p = 1.00 and, using a search algorithm, we find the 

value of @ such that MRL0 ≈ 350. The desired shift to be detected was taken to be small R = 0.25 

(see Figures 4.13 to 4.17). 
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Table 4.20. Charting statistics and counters for the Montgomery (2001) data with  R = 0.25 

25
th

 percentile 40
th

 percentile 50
th

 percentile 60
th

 percentile 75
th

 percentile jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 

0.0 0 0.0 0 0.0 0 0.7 1 0.0 0 0.2 1 0.0 0 0.7 1 0.0 0 1.5 1 

-0.5 1 0.0 0 0.0 0 0.4 2 -0.2 1 0.0 0 0.0 0 0.4 2 0.0 0 2.0 2 

-2.0 2 0.0 0 -0.7 1 0.0 0 -2.4 2 0.0 0 -1.7 1 0.0 0 -1.0 1 0.4 3 

-1.4 3 0.0 0 0.0 0 0.7 1 -0.6 3 1.2 1 -0.5 2 0.7 1 -1.0 2 0.0 0 

-0.9 4 0.0 0 0.0 0 0.4 2 -1.9 4 0.0 0 -2.2 3 0.0 0 -2.1 3 0.0 0 

-0.4 5 0.1 1 0.0 0 1.1 3 -0.1 5 1.2 1 -2.0 4 0.0 0 -1.1 4 0.5 1 

0.0 0 0.1 2 0.0 0 1.8 4 0.0 0 2.4 2 -0.7 5 0.7 1 -1.1 5 0.0 0 

0.0 0 0.1 3 -0.7 1 0.5 5 -1.2 1 0.6 3 -2.5 6 0.0 0 -2.1 6 0.0 0 

0.0 0 1.1 4 0.0 0 2.2 6 -0.4 2 0.9 4 -1.2 7 0.7 1 -0.2 7 1.5 1 

0.0 0 2.2 5 0.0 0 3.9 7 0.0 0 2.1 5 0.0 0 2.4 2 0.0 0 3.0 2 

-0.5 1 1.2 6 0.0 0 3.7 8 -0.2 1 1.3 6 0.0 0 2.1 3 0.0 0 3.4 3 

0.0 0 2.2 7 0.0 0 5.4 9 0.0 0 3.5 7 0.0 0 4.8 4 0.0 0 5.9 4 

0.0 0 3.2 8 0.0 0 7.1 10 0.0 0 5.7 8 0.0 0 7.5 5 0.0 0 9.4 5 

0.0 0 4.2 9 0.0 0 8.8 11 0.0 0 7.9 9 0.0 0 10.2 6 0.0 0 12.9 6 

0.0 0 5.3 10 0.0 0 10.5 12 0.0 0 9.2 10 0.0 0 11.9 7 0.0 0 14.4 7 
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Figure 4.13. NPCUSUM-EX chart based on the 25
th

 percentile for the Montgomery (2001) data 

with  R = 0.25 
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Figure 4.14. NPCUSUM-EX chart based on the 40
th

 percentile for the Montgomery (2001) data 

with  R = 0.25 
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Figure 4.15. NPCUSUM-EX chart based on the 50
th

 percentile for the Montgomery (2001) data 

with  R = 0.25 
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Figure 4.16. NPCUSUM-EX chart based on the 60
th

 percentile for the Montgomery (2001) data 

with  R = 0.25 
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Figure 4.17. NPCUSUM-EX chart based on the 75
th

 percentile for the Montgomery (2001) data 

with  R = 0.25 

 

 The NPCUSUM-EX based on the 25
th

 percentile performs the worst and doesn’t signal at 

all. The NPCUSUM-EX chart based on the 40
th

, 50
th

 and 60
th

 percentiles, respectively, almost 

signals, whereas the NPCUSUM-EX chart based on the 75
th

 percentile actually does signal at 

sample number 14 with a counter of A2 = 6, meaning that the shift most likely occurred at sample 

number 8. This isn’t surprising, since Table 4.18 suggests that NPCUSUM-EX chart 75
th

 percentile 

performs best when the underlying process distribution is normal and we have a small shift            

(R = 0.25) and {p = 1.00. In conclusion, the NPCUSUM-EX chart based on the 75
th

 percentile 

performs better than its competitors, all of which are tuned at to detect a small shift of 0.25.  

 

 

 For our first example, the data did not reject a goodness of fit test for normality. 

Nonparametric charts are useful for all continuous distributions and heavier tailed distributions are 

of particular interest in practice as they can give rise to more outliers which do not necessarily 

indicate an OOC process. So we illustrate the NPCUSUM-EX chart when the data follow a 

symmetric yet heavier tailed distribution (than the normal) with some simulated data from the 

Double Exponential distribution. 
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Example 4.3 
 

 

 The second example is to illustrate the effectiveness and the application of the 

nonparametric chart when normality is in doubt. We simulate some data from the Double 

Exponential distribution; DE(0,1) which is known to have a median of zero and a standard deviation 

equal to √2. An IC reference sample of size 100 (� = 100) was generated from this distribution and 

each data point was scaled so that the transformed observations have a mean / median of 0 and a 

standard deviation of 1. Next the Phase II samples, each of size 5 (� = 5), were independently and 

sequentially generated by transforming the observations from a DE(0,1) distribution so that the 

resulting observations have a mean / median of R √�⁄ = 0.25 √5⁄ = 0.112 and a standard deviation 

of 1. Consequently, the Phase II samples can be thought of as having been drawn from a process 

that is known to be OOC in the location parameter. Again, we use {p = 1.00. 
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Table 4.21. Charting statistics and counters for the simulated data with  R = 0.25 

25
th

 percentile 40
th

 percentile 50
th

 percentile 60
th

 percentile 75
th

 percentile jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 jh3 �3 jh2 �2 

0.0 0 0.0 0 0.0 0 0.7 1 0.0 0 0.2 1 0.0 0 0.7 1 0.0 0 0.0 0 

0.0 0 0.0 0 -0.7 1 0.0 0 -1.2 1 0.0 0 -0.7 1 0.0 0 -1.1 1 0.0 0 

0.0 0 0.0 0 -1.5 2 0.0 0 -1.5 2 0.0 0 -1.5 2 0.0 0 -1.1 2 0.0 0 

0.0 0 0.0 0 -2.2 3 0.0 0 -1.7 3 0.0 0 -1.2 3 0.0 0 -1.2 3 0.0 0 

0.0 0 0.0 0 -2.0 4 0.0 0 -2.0 4 0.0 0 -1.0 4 0.0 0 -2.2 4 0.0 0 

0.0 0 0.0 0 -0.7 5 0.7 1 -0.2 5 1.2 1 0.0 0 1.7 1 -0.2 5 1.5 1 

-0.5 1 0.0 0 -0.4 6 0.4 2 -0.4 6 0.4 2 0.0 0 1.4 2 -0.3 6 0.9 2 

0.0 0 1.0 1 0.0 0 2.1 3 0.0 0 1.6 3 0.0 0 3.1 3 -1.3 7 0.0 0 

-0.5 1 0.0 0 -0.7 1 0.8 4 -0.2 1 0.8 4 0.0 0 2.8 4 -0.3 8 0.5 1 

-1.0 2 0.0 0 -0.5 2 0.5 5 -0.5 2 0.0 0 0.0 0 2.5 5 -0.4 9 0.0 0 

-0.5 3 0.0 0 0.0 0 1.2 6 0.0 0 1.2 1 0.0 0 4.1 6 -0.4 10 0.0 0 

-0.1 4 0.0 0 0.0 0 0.9 7 0.0 0 1.4 2 0.0 0 4.8 7 0.0 0 0.5 1 

0.0 0 1.0 1 0.0 0 0.6 8 0.0 0 1.6 3 0.0 0 5.5 8 0.0 0 0.0 0 

0.0 0 2.0 2 0.0 0 1.3 9 0.0 0 2.8 4 0.0 0 5.2 9 0.0 0 0.5 1 

0.0 0 2.0 3 0.0 0 1.0 10 0.0 0 3.0 5 0.0 0 5.9 10 0.0 0 1.9 2 
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Figure 4.18. NPCUSUM-EX chart based on the 25

th
 percentile for the simulated data with  R = 0.25 
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Figure 4.19. NPCUSUM-EX chart based on the 40

th
 percentile for the simulated data with  R = 0.25 
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Figure 4.20. NPCUSUM-EX chart based on the 50

th
 percentile for the simulated data with  R = 0.25 
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Figure 4.21. NPCUSUM-EX chart based on the 60

th
 percentile for the simulated data with  R = 0.25 
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Figure 4.22. NPCUSUM-EX chart based on the 75
th

 percentile for the simulated data with  R = 0.25 

 

 From Figures 4.18 to 4.22 we see that none of the charts signal. This is not surprizing, as the 

magnitude of the shift is very small (R √�⁄ = 0.25 √5⁄ = 0.112) and from Table 4.14 we find 

relatively high MRLδ  values for the DE(0,1) distribution when R = 0.25 and {p = 1.00. Also, from 

Table 4.14, we see that the lowest MRLδ  (= 94) is associated with the NPCUSUM-EX chart based 

on the 60
th

 percentile for the DE(0,1) distribution when R = 0.25 and {p = 1.00. This is confirmed 

from Figure 4.21 where the NPCUSUM-EX chart based on the 60
th

 percentile has the steepest 

incline compared to the other charts. The other MRLδ  values are 245, 146, 98 and 153 for the 

NPCUSUM-EX chart based on the 25
th

, 40
th

, 50
th

 and 75
th

 percentiles, respectively. So, for 

example, MRLδ  = 245 indicates that the first signal will be observed within the first 245 plotted 

points at least 50% of the time.  

 

 The findings above are very interesting, because the small shift (R = 0.25) goes undetected. 

Also, for the same data, the CUSUM-� chart, with design parameters equal to ℎ = 4 and ; = 0.5 

(the same reasoning holds for the choice of design parameters for the CUSUM-� chart as before) 

also doesn’t signal.  
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4.3.6 Summary 

 

 NPCUSUM charts offer an attractive alternative in practice as they combine the inherent 

advantages of nonparametric charts with the better small shift detection capability of CUSUM-type 

charts. We have examined a class of NPCUSUM charts based on the exceedance statistic by 

investigating which order statistic (percentile), from the reference sample, should be used for good 

overall performance. We also examine the impact of the reference value, ;, on the performance of 

the chart. We conclude that the NPCUSUM-EX chart, using the 3
rd

 quartile of the reference sample, 

is a good overall chart for detecting a larger location shift. Other reference sample percentiles, such 

as the 25
th

 or the 40
th

, can also be used when a smaller shift in location is expected. Overall, it is 

seen that the NPCUSUM-EX chart based on higher percentiles performs better than its competitors 

in many cases for a number of distributions. More specifically, for moderate to large shifts there is 

little doubt that the practitioner should use the exceedance chart based on the 60
th

 or 75
th

 

percentiles, respectively, which signals quickly for all reference values under consideration. This is 

an interesting result in the literature on nonparametric exceedance / precedence tests and control 

charts.  Next a class of NPEWMA charts based on the exceedance statistic is examined. 

 

4.4 Nonparametric EWMA control chart based on the exceedance statistic 

 

4.4.1 Statistical background 

 

 Constructing the NPEWMA-EX chart is straight forward. From Result 4B.1 in Appendix 4B 

we have that for a given value of the order statistic 	�(#) = �(#), the variable "�,# follows a 

BIN(�, %#) distribution, conditionally on �(#)	, we can construct a binomial-type EWMA chart using 

the "�,#’s to monitor the process location. Hence, once �(#) is observed, one can construct the 

NPEWMA-EX, in analogy with the parametric EWMA-� (see Equation (1.6) in Section 1.9.3 with 

the pivot statistic 56 replaced by �6 (for individual data) or �6 (for subgroup data)). Accordingly, 

the charting statistic of the chart is given by 

 �� = �	"�,# + (1 − �)��3	 for   	� = 1,2,3, … (4.5) 

 

where the starting value is taken as �> = +'"�3�,#|�(#)) = �%# and 0 < � ≤ 1 is the smoothing 

constant. Note that we get the Shewhart-type precedence chart of Chakraborti et al. (2004) when � = 1. 
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 To calculate the control limits of the NPEWMA-EX chart the IC mean and IC standard 

deviation of �� are necessary. It can be shown that the unconditional IC mean and the unconditional 

IC standard deviation of �� are given by  

 

+'��|	IC) = �(1 − 8)'1 − (1 − �)�) 

 

and (4.6) 

 

wxy+1'��|	IC) = ]/��(	3�)2� 0 ��(1 − (1 − �)�)� + �(2	)�3� (1 − (1 − �)��)�, 
 

respectively, where 8 = $/(� + 1) (see Result 4B.4 in Appendix 4B for the derivation of these 

formulae). Hence, the NPEWMA-EX chart has a charting statistic �� given in Equation (4.5) with 

�> = �(1 − 8) and the exact time-varying control limits and CL of the chart are given by  

 

 "7� = +'��|	IC) + � × wxy+1'��|	IC) 

= �(1 − 8)'1 − (1 − �)�) + �]/��(	3�)2� 0 ��(1 − (1 − �)�)� + �(2	)�3� (1 − (1 − �)��)�  
 

                  7� = +'��|	IC) = �(1 − 8)'1 − (1 − �)�) (4.7) 

 

 
 

�7� = +'��|	IC) − � × wxy+1'��|	IC) =
�(1 − 8)'1 − (1 − �)�) − �]/��(	3�)2� 0 ��(1 − (1 − �)�)� + �(2	)�3� (1 − (1 − �)��)�.  

 

The corresponding unconditional steady-state control limits and CL are given by  

 

"7� = �(1 − 8) + �`��8(1 − 8)� + 2 � �� + �(� + 1)2 − � � 

 

         7� = �(1 − 8) (4.8) 

 

�7� = �(1 − 8) − �`��8(1 − 8)� + 2 � �� + �(� + 1)2 − � �. 
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 These limits are typically used when the NPEWMA-EX chart has been running for several 

time periods and are obtained from (4.7) as � → ∞ so that '1 − (1 − �)�) and '1 − (1 − �)��) 

approach unity, respectively. If any	�� plots on or outside of either of the control limits, the process 

is declared OOC and a search for assignable causes is started. Otherwise, the process is considered 

IC and the charting procedure continues. The steady-state control limits are used when proposing 

the NPEWMA-EX chart based on the median. However, later on, when proposing the NPEWMA-

EX chart for other percentiles (other than the median), the exact time-varying control limits are 

used. Note that λ and L are the two design parameters of the chart which influence the chart’s 

performance. Choice of λ and L is discussed in more detail in Section 1.9.3. Note also that the 

NPEWMA chart looks and operates very much like the traditional EWMA-�. 

 

 

4.4.2 Implementation of the chart 

 

For implementation of the chart the design parameters (λ, L) are needed. The choice of the 

chart design parameters are discussed in detail in Section 1.9.3. To sum up, the first step is to 

choose λ. If small shifts (roughly 0.5 standard deviations or less) are of primary concern the typical 

recommendation is to choose a small λ, say equal to 0.05, if moderate shifts (roughly between 0.5 

and 1.5 standard deviations) are of greater concern choose λ = 0.10, whereas if larger shifts (roughly 

1.5 standard deviations or more) are of concern choose λ = 0.20. Next we choose L, in conjunction 

with the chosen λ, so that a desired nominal ARL0 is attained.  

 

 Table 4.22 list some (λ, L)-combinations for the popular ARL0 values of 370 and 500 for 

small to moderate reference sample sizes � = 49, 99 and 149 and subgroup sizes � = 5 and 10, 

respectively, when �(#) is taken to be the median. For now we only focus on the median since it is a 

good representative of the central reference value for distributions of all shapes and is by far the 

most popular percentile used in practice. However, in general, the exceedance statistic and hence 

the NPEWMA-EX chart can be based on other percentiles (order statistics) of the reference sample 

and their development would follow along similar lines (this is discussed in Section 4.4.5). It should 

be noted that if �(#) is taken to be the median it is easier to be calculated when � is odd. In each 

case, the run-length characteristics are calculated using simulation and are called the attained 

values. The first row of each cell in Table 4.22 shows the ARL0 followed by the corresponding 

SDRL0 in parentheses, whereas the second row shows the values of the IC 5
th

, 25
th

, 50
th

, 75
th

 and 

95
th

 percentiles (in this order). 
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Table
xxv

 4.22.  (λ, L)-combinations for the NPEWMA-EX chart for nominal ARL0 = 370 and 500, 

respectively
 

 
 

Nominal ARL0 = 370 Nominal ARL0 = 500 

m Shift 
(λ, L) Attained values (λ, L) Attained values J = 5 

49 

Small (0.05, 1.351) 
372.86 (667.30) 

17, 42, 110, 379, 1692 
(0.05, 1.411) 

499.94 (925.83) 
19, 48, 136, 507, 2250 

Moderate (0.10, 1.816) 
369.39 (605.82) 

14, 43, 131, 415, 1522 
(0.10, 1.884) 

501.49 (849.82) 
16, 51, 168, 552, 2174 

Large (0.20, 2.255) 
369.16 (555.17) 

12, 50, 160, 457, 1421 
(0.20, 2.319) 

504.22 (756.62) 
14, 64, 208, 622, 2028 

99 

Small (0.05, 1.669) 
368.29 (546.03) 

22, 61, 160, 442, 1406 
(0.05, 1.743) 

499.61 (804.97) 
24, 70, 188, 560, 2115 

Moderate (0.10, 2.132) 
372.93 (519.76) 

18, 63, 176, 460, 1387 
(0.10, 2.211) 

500.07 (698.94) 
21, 77, 231, 630, 1861 

Large (0.20, 2.499) 
371.69 (474.05) 

16, 73, 199, 483, 1303 
(0.20, 2.577) 

500.06 (648.69) 
19, 92, 263, 650, 1788 

149 

Small (0.05, 1.847) 
379.76 (519.83) 

25, 73, 187, 467, 1411 
(0.05, 1.927) 

501.17 (715.41) 
28, 84, 229, 621, 1884 

Moderate (0.10, 2.289) 
371.18 (471.05) 

21, 75, 200, 481, 1292 
(0.10, 2.375) 

499.46 (649.81) 
24, 95, 256, 648, 1784 

Large (0.20, 2.599) 
369.58 (436.17) 

19, 84, 217, 491, 1240 
(0.20, 2.684) 

500.59 (603.06) 
22, 108, 289, 665, 1693 

m J = 10 

 

49 

Small (0.05, 1.060) 
369.96 (818.33) 

13, 29, 73, 294, 1836 
(0.05, 1.100) 

499.59 (1164.46) 
14, 31, 86, 381, 2516 

Moderate (0.10, 1.466) 
369.85 (737.47) 

10, 27, 86, 346, 1771 
(0.10, 1.516) 

499.08 (1036.26) 
11, 31, 103, 454, 2430 

Large (0.20, 1.930) 
370.80 (656.18) 

9, 33, 114, 396, 1672 
(0.20, 1.991) 

501.73 (904.94) 
9, 37, 144, 540, 2240 

 

99 

Small (0.05, 1.355) 
370.29 (664.74) 

17, 42, 113, 385, 1640 
(0.05, 1.413) 

504.63 (967.66) 
18, 48, 137, 493, 2320 

Moderate (0.10, 1.812) 
373.22 (617.30) 

14, 43, 133, 426, 1553 
(0.10, 1.880) 

503.75 (857.94) 
15, 50, 166, 561, 2164 

Large (0.20, 2.266) 
369.89 (542.58) 

12, 51, 161, 455, 1456 
(0.20, 2.338) 

500.76 (756.93) 
14, 63, 207, 611, 1997 

149 

Small (0.05, 0.541) 
369.08 (585.76) 

19, 52, 138, 424, 1509 
(0.05, 1.604) 

498.30 (850.32) 
21, 58, 167, 549, 2132 

Moderate (0.10, 2.010) 
371.881 (630.48) 

17, 49, 148, 425, 1364 
(0.10, 2.082) 

503.22 (751.75) 
18, 66, 204, 610, 2009 

Large (0.20, 2.434) 
372.19 (494.57) 

14, 64, 184, 479, 1377 
(0.20, 2.508) 

508.27 (691.98) 
17, 83, 241, 644, 1919 

 

So, for example, in order to detect a small shift in the median with the NPEWMA-EX chart 

with an ARL0 of approximately 500 and � = 49 and � = 5, one can use the (λ, L)-combination: 

(0.05, 1.411). A SAS® program is provided (see Appendix 4D) if the practitioner wishes to obtain 

some other (λ, L)-combinations for other nominal ARL0 values. 

 

                                                 
xxv

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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4.4.3 Performance comparison with other charts 

 

 It is of interest to examine the performance of the nonparametric control charts and make 

comparisons with competing charts wherever available. However, since there is no specific model 

assumptions made for these charts, Monte Carlo simulation is used to this end.  

  

 We compare the NPEWMA-EX chart to the adjusted
xxvi

 EWMA-� chart (see Jones (2002)) 

and the NPEWMA-Rank chart (see Li et al. (2010)). For the EWMA-� chart the parameters are 

estimated from a Phase I reference sample, duly taking care of the issues related to estimation. The 

shift considered by Jones (2002; page 286) for the adjusted EWMA-� chart is given by 
V3VWX √�U  and is 

referred to a standardized shift in the mean. The shift considered Li et al. (2010; page 215) for the 

NPEWMA-Rank is measured by the subgroup standard deviation S √�U . Thus, in order to have a 

fair comparison between the proposed NPEWMA-EX chart and its competitors, a shift of            E = R S √�U  where −∞ < R < ∞, R ≠ 0 is used for all charts. 

 

 Our study includes a collection of non-normal distributions and considers heavy-tailed, 

symmetric and skewed distributions. Specifically, the distributions considered in the study are:  

 

i. The Standard Normal distribution, N(0,1).  

 

ii. The Exponential distribution with mean 1, which is GAM(1,1).  

 

iii. The Laplace (or double exponential distribution DE(0,1)) distribution with mean 0 and 

variance 2 which is standard normal like, but has heavier tails.  

 

iv. The Symmetric Mixture Normal distribution (denoted SymmMixN) with parameters 

[0.6N(�	 = 0, S	 = 0.25) + 0.4N(�� = 0, S� = 4)]. 

 

  

                                                 
xxvi

 Adjusted: Case U; the parameters have to be estimated using a Phase I reference sample. 
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v. Two Asymmetric Mixture Normal distributions with parameters  

[0.6N(�	 = 0.25, S	 = 0.25) + 0.4N(�� = 0, S� = 4)] 

and  

[0.6N(�	 = −0.25, S	 = 0.25) + 0.4N(�� = 0, S� = 4)], 

denoted AsymmMixN1 and AsymmMixN2, respectively.  

 

vi. The Log-Logistic (F = 1, G = 2.5) distribution. The Log-Logistic distribution (see e.g. 

Meeker and Escobar (1998) page 89) arises as the distribution of a positive valued random 

variable whose logarithm follows the familiar logistic distribution. Its shape is similar to that 

of a log-normal distribution but with heavier tails. This distribution is used to consider a 

heavy-tailed right-skewed distribution in our simulations. In the quality literature, Kantam 

and Rao (2005) considered CUSUM charts for Log-Logistic data. 

 

Note that, wherever necessary, the distributions in the study have been shifted and scaled 

such that the mean / median equals 0 and the standard deviation equals 1, so that the results are 

easily comparable across the distributions. The details for these steps are shown in Appendix 1B. 

 

Because the NPEWMA-EX chart is nonparametric, the IC run-length distribution and the 

associated characteristics remain the same for all continuous distributions. In other words, the IC 

run-length distribution is robust by definition and thus all IC characteristics such as the ARL would 

remain the same for all continuous distributions.   

 

 For the OOC chart performance comparison it is customary to ensure that the ARL0 values 

of the competing charts are fixed at (or very close to) an acceptably high value, such as 500 in this 

case, and then compare their ARLδ values; the chart with the smaller ARLδ value is generally 

preferred. Tables 4.23 to 4.29 show the IC and OOC performance characteristics of the run-length 

distribution for � = 100, � = 5 and R = 0.00(0.25)1.00, 0.50, 1.50 and 2.00, for the NPEWMA-

EX, EWMA-� and NPEWMA-Rank charts, respectively. Note that the largest value of R under 

consideration is R = 2.00, since, for larger shifts, the run-length characteristics of the charts tend to 

converge. This is consistent with the shifts considered in the previous chapters. The first row of 

each cell in Tables 4.23 to 4.29 shows the ARL followed by the corresponding SDRL in parentheses, 

whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this 

order).  
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Table
xxvii

 4.23. Performance comparison under the N(0,1) distribution for � = 100 and � =	5 

  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits  1.991; 3.058 ± 0.462 234.2; 295.8 

IC 0.00 
508.45 (795.41) 

24, 72, 200, 590, 2106 

512.42 (1009.21) 

22, 64, 177, 534, 2065 

503.99 (874.65) 

23, 68, 189, 551, 2046 

OOC 
Shift 

(I) 

0.25 
398.98 (687.24) 

20, 49, 130, 417, 1738 

312.72 (695.72) 

15, 35, 82, 262, 1367 

326.08 (705.73) 

16, 37, 88, 287, 1453 

0.50 
185.97 (456.32) 

14, 26, 49, 129, 860 

93.36 (305.26) 

10, 18, 31, 62, 307 

98.77 (306.09) 

11, 19, 32, 66, 348 

0.75 
62.22 (189.51) 

10, 17, 27, 48, 176 

26.76 (53.78) 

8, 12, 18, 27, 64 

30.18 (84.12) 

9, 13, 19, 29, 70 

1.00 
24.76 (34.77) 

9, 13, 18, 26, 59 

14.81 (11.84) 

6, 9, 12, 17, 30 

15.90 (14.64) 

7, 10, 13, 18, 32 

1.50 
12.73 (6.13) 

7, 9, 11, 15, 23 

8.40 (3.11) 

5, 6, 8, 10, 14 

9.05 (3.16) 

5, 7, 8, 10, 15 

2.00 
9.20 (2.64) 

6, 7, 9, 10, 14 

6.00 (1.71) 

4, 5, 6, 7, 9 

6.60 (1.68) 

4, 5, 6, 7, 10 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.682 219.5; 310.5 

IC 0.00 
510.77 (748.45) 

21, 78, 226, 624, 1970  

512.30 (947.37) 

19, 68, 198, 554, 1988 

512.69 (851.32) 

19, 73, 215, 593, 1998 

OOC 
Shift 

(I) 

0.25 
418.13 (670.26) 

16, 51, 153, 480, 1766 

324.52 (734.68) 

12, 34, 93, 294, 1389 

335.53 (660.36) 

13, 37, 105, 334, 1434 

0.50 
197.19 (429.69) 

11, 25, 55, 164, 886 

102.24 (325.86) 

8, 16, 31, 72, 375 

112.62 (325.32) 

9, 17, 34, 80, 441 

0.75 
70.73 (205.42) 

8, 15, 26, 54, 238 

28.45 (87.72) 

6, 10, 16, 27, 78 

31.53 (84.31) 

6, 11, 17, 29, 87 

1.00 
28.14 (63.53) 

7, 11, 16, 27, 76 

13.53 (13.12) 

5, 7, 10, 16, 32 

14.83 (19.69) 

5, 8, 11, 17, 34 

1.50 
11.33 (6.90) 

5, 7, 10, 13, 23 

7.02 (3.18) 

4, 5, 6, 8, 13 

7.57 (3.33) 

4, 5, 7, 9, 14 

2.00 
7.69 (2.73) 

5, 6, 7, 9, 13 

4.85 (1.63) 

3, 4, 5, 6, 8 

5.34 (1.62) 

3, 4, 5, 6, 8 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ± 1.010 198.3; 331.7 

IC 0.00 
498.81 (640.47) 

20, 93, 261, 644, 1781 

502.04 (1000.30) 

15, 74, 214, 552, 1869 

512.18 (829.96) 

18, 88, 246, 614, 1850 

OOC 
Shift 

(I) 

0.25 
418.33 (595.99) 

15, 66, 191, 518, 1576 

346.44 (784.34) 

10, 38, 116, 339, 1378 

348.12 (629.52) 

11, 43, 130, 379, 1408 

0.50 
214.28 (405.12) 

9, 27, 72, 212, 910 

124.84 (327.38) 

6, 16, 37, 101, 482 

127.09 (300.01) 

7, 17, 40, 108, 517 

0.75 
88.21 (233.29) 

6, 14, 30, 72, 311 

36.51 (107.51) 

5, 9, 16, 34, 111 

37.80 (85.83) 

5, 10, 17, 35, 123 

1.00 
32.81 (67.88) 

5, 10, 17, 33, 103 

14.81 (21.31) 

4, 6, 10, 16, 40 

15.87 (22.94) 

4, 7, 10, 17, 42 

1.50 
11.30 (11.09) 

4, 6, 9, 13, 27 

6.31 (3.84) 

3, 4, 5, 8, 13 

6.87 (4.05) 

3, 4, 6, 8, 14 

2.00 
6.82 (3.44) 

3, 3, 5, 6, 8, 13 

4.06 (1.72) 

2, 3, 4, 5, 7 

4.49 (1.74) 

3, 3, 4, 5, 8 

 

  

                                                 
xxvii

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.23. OOC ARL values under the N(0,1) distribution for � = 100 and � = 5 

 

 

 A summary of our observations from the OOC comparisons for the standard normal 

distribution using Table 4.23 and Figure 4.23 is as follows. For all shifts under consideration the 

EWMA-� and NPEWMA-Rank charts perform similarly and both charts outperform the 

NPEWMA-EX. It isn’t surprizing that the EWMA-� is superior to the NPEWMA-EX chart in this 

case, since it is typical for parametric methods to outperform their nonparametric counterparts when 

all assumptions are met.  
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Table
xxviii

 4.24. Performance comparison under the EXP(1) distribution for � = 100 and � =	5 

  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits    1.991; 3.058 ± 0.444 234.2; 295.8 

IC 0.00 
503.27(784.58) 

24, 71, 198, 578, 2000 

501.57(1217.83) 

20, 58, 156, 456, 1982 

497.86 (851.89) 

23, 66, 185, 548, 2003 

OOC 
Shift 

(I) 

0.25 
317.06(641.13) 

16, 36, 86, 292, 1405 

588.82 (2131.56) 

12, 30, 76, 292, 2441 

285.71 (1263.33) 

13, 24, 44, 117, 1153 

0.50 
109.14 (320.47) 

10, 17, 28, 64, 434 

240.42 (1440.65) 

8, 16, 29, 67, 639 

48.25 (410.08) 

9, 12, 18, 28, 81 

0.75 
29.89(105.11) 

7, 11, 15, 23, 65 

58.22(578.88) 

7, 11, 17, 28, 90 

14.81 (80.81) 

7, 9, 11, 15, 26 

1.00 
12.74(19.09) 

6, 8, 10, 13, 26 

18.10(141.41) 

5, 8, 12, 18, 36 

9.36 (3.69) 

6, 7, 9, 11, 15 

1.50 
6.06(1.94) 

5, 5, 5, 6, 9 

8.36(4.22) 

4, 6, 7, 10, 15 

6.37 (1.38) 

5, 5, 6, 7, 9 

2.00 
5.02(0.23) 

5, 5, 5, 5, 5 

5.86(2.08) 

3, 4, 5, 7, 10 

5.14 (0.82) 

4, 5, 5, 6, 7 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.640 219.5; 310.5 

IC 0.00 
501.01(713.38) 

21, 78, 230, 630, 1881 

486.29(1536.20) 

14, 50, 145, 422, 1805 

498.52 (817.35) 

19, 71, 206, 584, 1913 

OOC 
Shift 

(I) 

0.25 
341.02 (619.71) 

13, 36, 104, 359, 1476 

510.79 (2293.24) 

8, 25, 69, 257, 1946 

360.68 (1456.22) 

10, 23, 56, 188, 1553 

0.50 
113.82(317.98) 

8, 15, 28, 70, 503 

242.38 (1893.71) 

6, 13, 27, 67, 559 

59.77 (434.05) 

7, 11, 16, 30, 122 

0.75 
28.59(87.85) 

6, 9, 13, 22, 79 

47.76(550.19) 

5, 9, 15, 27, 105 

13.68 (50.90) 

5, 7, 10, 14, 28 

1.00 
11.86(36.27) 

5, 6, 8, 12, 25 

16.08(49.40) 

4,7, 10, 16, 39 

8.14 (14.79) 

4, 6, 7, 9, 15 

1.50 
4.86(1.64) 

4, 4, 4, 5, 8 

6.87(4.27) 

3, 4, 6, 8, 14 

5.15 (1.30) 

4, 4, 5, 6, 8 

2.00 
4.02(0.21) 

4, 4, 4, 4, 4 

4.61(1.88) 

2, 3, 4, 5, 8 

4.08 (0.74) 

3, 4, 4, 4, 5 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ±0.931 198.3; 331.7 

IC 0.00 
498.61 (653.65) 

20, 94, 256, 640, 1807 

518.30 (2265.32) 

10, 46, 136, 403, 1735 

503.07 (786.33) 

17, 81, 235, 592, 1914 

OOC 
Shift 

(I) 

0.25 
351.56 (543.44) 

11, 43, 159, 419, 1449 

468.86 (2742.07) 

6, 22, 63, 220, 1525 

409.95 (1350.67) 

9, 27, 80, 281, 1791 

0.50 
126.23 (287.26) 

6, 15, 33, 102, 564 

195.36 (1921.99) 

4, 11, 26, 70, 473 

116.93 (2322.39) 

5, 10, 19, 43, 231 

0.75 
38.30 (133.30) 

4, 8, 13, 26, 124 

49.42 (774.59) 

3, 7, 13, 28, 125 

17.29 (68.92) 

4, 6, 9, 15, 43 

1.00 
12.14 (35.93) 

3, 5, 7, 11, 30 

17.57 (65.41) 

3, 5, 9, 16, 51 

8.01 (8.16) 

4, 5, 6, 9, 17 

1.50 
3.84 (1.84) 

3, 3, 3, 4, 7 

6.35 (7.35) 

2, 3, 5, 7, 15 

4.36 (1.56) 

3, 3, 4, 5, 7 

2.00 
3.02 (0.18) 

3, 3, 3, 3, 3 

3.87 (2.16) 

2, 3, 3, 5, 7 

3.32 (0.73) 

2, 3, 3, 4, 5 

 

  

                                                 
xxviii

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.24. OOC ARL values under the EXP(1) distribution for � = 100 and � = 5 

 

 A summary of our observations from the OOC comparisons for the EXP(1) distribution 

using Table 4.24 and Figure 4.24 is as follows. For all shifts under consideration the EWMA-� 

chart performs the worst. When comparing the two nonparametric charts, the NPEWMA-EX chart 

performs best for R = 0.25 (λ = 0.10 and 0.20) and for R = 1.50 and 2.00 (for all λ). It may be noted 

that there is some bias in the ARL (the ARLδ  is bigger than the ARL0) of the EWMA-� chart when 

the shift is small. This may be due to many extreme long run-lengths observed in the simulation of 

the ARL, which can be a result of the right-skewness of the EXP(1) distribution coupled with the 

fact that the run-length distribution is itself highly right-skewed with a long right tail. The bias 

could also be a result of simulation error because these ARLδ values are very close to the ARL0 

values. Some authors have considered ARL-unbiased parametric charts and this would be a topic of 

further research in the context of nonparametric charts. On the other hand, Steiner and Jones (2010), 

among others, have recommended examining the MRL instead “which is easier to simulate and 

gives arguably a better summary.” This approach is considered later on in Section 4.4.5. 
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Table
xxix

 4.25. Performance comparison under the DE(0,1) distribution for � = 100 and � =	5 

  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits  1.991; 3.058 ± 0.449 234.2; 295.8 

IC 0.00 
499.65 (784.93) 

24, 70, 197, 586, 2017 

498.47 (1367.32) 

20, 57, 150, 443, 1962 

498.75 (859.89) 

23, 68, 187, 551, 2026 

OOC 
Shift 

(I) 

0.25 
236.07 (500.18) 

16, 34, 70, 192, 1083 

324.82 (1009.33) 

15, 33, 75, 235, 1353 

257.97 (620.30) 

14, 31, 66, 197, 1159 

0.50 
50.72 (155.31) 

11, 17, 25, 43, 126 

96.56 (466.12) 

10, 17, 29, 58, 290 

56.48 (209.38) 

10, 16, 24, 42, 147 

0.75 
20.06 (40.58) 

9, 12, 16, 22, 39 

29.81 (139.13) 

7, 12, 17, 26, 61 

18.68 (49.11) 

7, 11, 14, 20, 39 

1.00 
13.57 (8.86) 

7, 10, 12, 16, 24 

14.26 (11.63) 

6, 9, 12, 16, 29 

11.75 (6.62) 

6, 8, 10, 14, 21 

1.50 
9.34 (2.41) 

6, 8, 9, 11, 14 

8.01 (3.11) 

4, 6, 7, 9, 14 

7.39 (2.15) 

5, 6, 7, 8, 11 

2.00 
7.66 (1.48) 

6, 7, 7, 8, 10 

5.81 (1.74) 

4, 5, 6, 7, 9 

5.70 (1.27) 

4, 5, 5, 6, 8 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.666 219.5; 310.5 

IC 0.00 
500.75 (735.73) 

19, 76, 222, 618, 1937 

499.84 (1655.17) 

16, 58, 159, 448, 1812 

511.47 (829.81) 

20, 73, 215, 593, 2003 

OOC 
Shift 

(I) 

0.25 
257.51 (516.17) 

13, 33, 82, 243, 1117 

327.31 (1053.01) 

12, 31, 82, 260, 1284 

279.22 (614.79) 

12, 30, 76, 245, 1245 

0.50 
53.04 (129.29) 

9, 15, 25, 47, 161 

107.21 (494.73) 

8, 15, 29, 66, 355 

62.42 (218.48) 

7, 13, 23, 45, 196 

0.75 
18.70 (21.53) 

7, 10, 14, 21, 43 

29.36 (89.69) 

6, 10, 15, 27, 81 

18.14 (39.01) 

6, 9, 12, 19, 44 

1.00 
11.94 (6.38) 

6, 8, 10, 14, 23 

13.17 (15.31) 

5, 7, 10, 15, 30 

10.26 (6.70) 

5, 7, 9, 12, 21 

1.50 
7.79 (2.47) 

5, 6, 7, 9, 13 

6.79 (3.21) 

3, 5, 6, 8, 12 

6.07 (2.14) 

4, 5, 6, 7, 10 

2.00 
6.35 (1.53) 

5, 5, 6, 7, 9 

4.65 (1.60) 

3, 4, 4, 5, 8 

4.56 (1.21) 

3, 4, 4, 5, 7 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ± 0.998 198.3; 331.7 

IC 0.00 
497.82 (633.82) 

20, 95, 266, 641, 1815 

495.69 (2425.21) 

13, 60, 177, 469, 1833 

492.57 (737.42) 

18, 84, 258, 594, 1809 

OOC 
Shift 

(I) 

0.25 
274.80 (455.47) 

11, 38, 107, 300, 1138 

340.27 (976.85) 

9, 34, 98, 289, 1352 

293.06 (557.20) 

10, 34, 94, 296, 1236 

0.50 
68.44 (176.94) 

7, 15, 29, 63, 231 

130.85 (417.72) 

6, 15, 36, 96, 497 

76.23 (224.89) 

6, 13, 25, 60, 276 

0.75 
22.41 (33.61) 

5, 9, 14, 25, 60 

39.93 (141.90) 

4, 9,16, 33, 126 

20.03 (31.98) 

4, 7, 12, 21, 58 

1.00 
12.27 (13.29) 

4, 7, 10, 14, 28 

15.57 (43.17) 

3, 6, 9, 16, 42 

10.07 (9.06) 

3, 5, 8, 12, 24 

1.50 
6.91 (3.07) 

4, 5, 6, 8, 13 

6.24 (4.16) 

3,4,5,7,13 

5.17 (2.39) 

3, 4, 5, 6, 10 

2.00 
5.28 (1.75) 

3, 4, 5, 6, 9 

3.97 (1.70) 

2, 3, 4, 5, 7 

3.75 (1.26) 

2, 3, 3, 4, 6 

 

 

 

                                                 
xxix

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.25. OOC ARL values under the DE(0,1) distribution for � = 100 and � = 5 

 

 

 A summary of our observations from the OOC comparisons for DE(0,1) distribution using 

Table 4.25 and Figure 4.25 is as follows. For all shifts under consideration the EWMA-� chart 

performs the worst. When comparing the two nonparametric charts, for R < 0.75 the NPEWMA-EX 

chart performs the best and for all other shifts under consideration the NPEWMA-Rank chart 

performs the best. 
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Table
xxx

 4.26. Performance comparison under the SymmMixN distribution for � = 100 and � =	5 

  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits 1.991; 3.058 ± 0.448 234.2; 295.8 

IC 0.00 
506.89 (790.60) 

25, 71, 198, 597, 2042 

506.34 (1361.96) 

21, 58, 154, 450, 2010 

487.43 (795.70) 

23, 67, 187, 557, 1969 

OOC 
Shift 

(I) 

0.25 
13.20  (5.28) 

7, 10, 12, 15, 22 

336.02 (1217.08) 

14, 32, 75, 234, 1369 

17.41 (55.75) 

7, 10, 14, 19, 34 

0.50 
8.68 (1.71) 

6, 7, 8, 10, 12 

107.08 (736.18) 

10, 17, 29, 58, 299 

8.34 (2.60) 

5, 7, 8,  10, 13 

0.75 
8.13 (1.47) 

6, 7, 8, 9, 11 

28.56 (129.92) 

7, 12, 17, 26, 63 

6.91 (1.87) 

5, 6, 7, 8, 10 

1.00 
7.83 (1.35) 

6, 7, 8,  9, 10 

14.54 (54.85) 

6, 9, 12, 16, 29 

6.32 (1.49) 

4, 5, 6, 7, 9 

1.50 
7.31 (1.13) 

6, 7, 7, 8, 9 

8.08 (3.07) 

4, 6, 7, 9, 14 

5.52 (1.17) 

4, 5, 5, 6, 8 

2.00 
6.93 (0.99) 

6, 6, 7, 7, 9 

5.79 (1.72) 

4, 5, 6, 7, 9 

4.95 (0.95) 

4 ,4, 5, 5, 7 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.656 219.5; 310.5 

IC 0.00 
506.84 (720.55) 

21, 78, 232, 628, 1942 

505.01 (1561.21) 

16, 55, 155, 441, 1913 

513.18 (774.04) 

19, 74, 220, 619, 2005 

OOC 
Shift 

(I) 

0.25 
12.17 (6.74) 

6, 8, 11, 14, 23 

328.51 (1110.10) 

11, 30, 78, 248, 1312 

15.81 (23.33) 

5, 8, 12, 18, 37 

0.50 
7.46 (1.82) 

5, 6, 7, 8, 11 

112.68 (531.66) 

7, 15, 27, 63, 365 

6.94 (2.66) 

4, 5, 6, 8, 12 

0.75 
6.91 (1.54) 

5, 6, 7, 8, 10 

28.98 (136.86) 

5, 9, 15, 25, 73 

5.62 (1.79) 

3, 4, 5, 6, 9 

1.00 
6.62 (1.41) 

5, 6, 6, 7, 9 

13.03 (25.01) 

4, 7, 10, 15, 30 

5.10 (1.48) 

3, 4, 5, 6, 8 

1.50 
6.14 (1.20) 

5, 5, 6, 7, 8 

6.62 (3.08) 

3, 5, 6, 8, 12 

4.41 (1.12) 

3, 4, 4, 5, 6 

2.00 
5.75 (1.04) 

4, 5, 6, 6, 8 

4.62 (1.60) 

3, 4, 4, 5, 8 

3.92 (0.90) 

3, 3, 4, 4, 6 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ± 0.960 198.3; 331.7 

IC 0.00 
503.65 (658.16) 

20, 94, 263, 654, 1807 

502, 84 (1644.98) 

12, 55, 158, 435, 1829 

561.41 (787.78) 

18, 90, 268, 708, 2119 

OOC 
Shift 

(I) 

0.25 
12.66 (9.43) 

5, 7, 10, 15, 29 

323.36 (924.14) 

9, 30, 88, 263, 1287 

17.67 (25.67) 

4, 7, 11, 19, 50 

0.50 
6.67 (2.37) 

4, 5, 6, 8, 11 

132.12 (1098.01) 

5, 13, 29, 77, 427 

6.11 (3.19) 

3, 4, 5, 7, 12 

0.75 
6.01 (1.96) 

4, 5, 6, 7, 10 

32.12 (113.93) 

4, 8, 14, 28, 100 

4.75 (1.95) 

3, 3, 4, 6, 8 

1.00 
5.68 (1.75) 

4, 4, 5, 7, 9 

13.52 (19.81) 

3, 6, 9, 15, 37 

4.22 (1.62) 

2, 3, 4, 5, 7 

1.50 
5.14 (1.45) 

3, 4, 5, 6, 8 

5.88 (4.12) 

2, 4, 5, 7, 12 

3.57 (1.15) 

2, 3, 3, 4, 6 

2.00 
4.71 (1.25) 

3, 4, 5, 5, 7 

3.81 (1.64) 

2, 3, 3, 5, 7 

3.13 (0.90) 

2, 3, 3, 4, 5 

 

  

                                                 
xxx

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.26. OOC ARL values under the SymmMixN distribution for � = 100 and � = 5 

 

 

 A summary of our observations from the OOC comparisons for the SymmMixN distribution 

using Table 4.26 and Figure 4.26 is as follows. For all shifts under consideration the EWMA-� 

chart performs the worst. When comparing the two nonparametric charts, for R = 0.25 the 

NPEWMA-EX chart performs the best and for all other shifts under consideration the NPEWMA-

Rank chart performs the best. 
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Table
xxxi

 4.27. Performance comparison under the AsymmMixN1 distribution for � = 100  

and � =	5 
  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits 1.991; 3.058 ± 0.447 234.2; 295.8 

IC 0.00 
511.42 (803.11) 

25, 71, 199, 593, 2085 

509.61 (1426.34) 

20, 57, 153, 447, 1991 

486.57 (788.21) 

23, 67, 187, 550, 1978 

OOC 
Shift 

(I) 

0.25 
13.59 (8.34) 

8, 10, 12, 16, 23 

325.57 (1104.52) 

14, 32, 74, 232, 1335 

16.52 (13.34) 

7, 10, 14, 19, 34 

0.50 
8.90 (1.74) 

7, 8, 9, 10, 12 

97.51 (456.45) 

10, 17, 28, 56, 294 

8.36 (2.62) 

5, 7, 8, 10, 13 

0.75 
8.32 (1.47) 

6, 7, 8, 9, 11 

28.22 (150.07) 

7, 12, 17, 26, 64 

6.93 (1.81) 

5, 6, 7, 8, 10 

1.00 
8.00 (1.34) 

6, 7, 8, 9, 10 

14.17 (12.71) 

6, 9, 12, 16, 29 

6.32 (1.54) 

4, 5, 6, 7, 9 

1.50 
7.49 (1.17) 

6, 7, 7, 8, 10 

8.04 (3.09) 

4, 6, 7, 9, 14 

5.52 (1.19) 

4, 5, 5, 6, 8 

2.00 
7.08 (1.03) 

6, 6, 7, 8, 9 

5.76 (1.72) 

4, 5, 5, 7, 9 

4.96 (0.95) 

4, 4, 5, 5, 7 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.657 219.5; 310.5 

IC 0.00 
507.79 (723.57) 

21, 80, 234, 628, 1927 

501.96 (1475.70) 

16, 55, 156, 448, 1937 

516.08 (800.09) 

20, 73, 217, 618, 2000 

OOC 
Shift 

(I) 

0.25 
12.15 (6.36) 

6, 8, 11, 14, 23 

333.13 (1214.22) 

11, 30, 78, 249, 1336 

15.71 (18.43) 

5, 8, 12, 18, 37 

0.50 
7.45 (1.83) 

5, 6, 7, 8, 11 

110.22 (548.28) 

7, 14, 27, 63, 364 

6.93 (2.67) 

4, 5, 6, 8, 12 

0.75 
6.91 (1.53) 

5, 6, 7, 8, 10 

29.71 (151.64) 

5, 9, 14, 25, 73 

5.61 (1.78) 

3, 4, 5, 6, 9 

1.00 
6.62 (1.41) 

5, 6, 6, 7, 9 

13.03 (22.89) 

4, 7, 10, 15, 30 

5.10 (1.48) 

3, 4, 5, 6, 8 

1.50 
6.13 (1.20) 

5, 5, 6, 7, 8 

6.64 (3.08) 

3, 5, 6, 8, 12 

4.41 (1.13) 

3, 4, 4, 5, 6 

2.00 
5.75 (1.04) 

4, 5, 6, 6, 8 

4.61 (1.60) 

3, 4, 4, 5, 8 

3.93 (0.89) 

3, 3, 4, 4, 6 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ± 0.963 198.3; 331.7 

IC 0.00 
495.30 (642.25) 

20, 96, 262, 640, 1773 

511.87 (1774.70) 

13, 55, 157, 437, 1837 

565.06 (818.51) 

18, 93, 268, 694, 2128 

OOC 
Shift 

(I) 

0.25 
12.62 (9.89) 

5, 7, 10, 15, 29 

335.03 (1067.76) 

8, 29, 87, 265, 1322 

18.09 (31.14) 

4, 7, 11, 19, 50 

0.50 
6.61 (2.34) 

4, 5, 6, 8, 11 

128.88 (676.65) 

6, 14, 30, 81, 456 

6.16 (3.21) 

3, 4, 5, 7, 12 

0.75 
6.00 (1.93) 

4, 5, 6, 7, 10 

34.76 (132.27) 

4, 8, 14, 28, 104 

4.75 (1.96) 

3, 3, 4, 6, 8 

1.00 
5.66 (1.76) 

3, 4, 5, 7, 9 

13.51 (22.49) 

3, 6, 9, 14, 36 

4.23 (1.57) 

2, 3, 4, 5, 7 

1.50 
5.15 (1.46) 

3, 4, 5, 6, 8 

5.87 (4.01) 

2, 4, 5, 7, 12 

3.58 (1.16) 

2, 3, 3, 4, 6 

2.00 
4.72 (1.23) 

3, 4, 5, 5, 7 

3.81 (1.63) 

2, 3, 3, 5, 7 

3.15 (0.91) 

2, 3, 3, 4, 5 

 

  

                                                 
xxxi

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.27. OOC ARL values under the AsymmMixN1 distribution for � = 100 and � = 5 

 

 

 From Table 4.27 and Figure 4.27 it can be seen that similar conclusions can be drawn for the 

AsymmMixN1 distribution as for the SymmMixN distribution. To recap, for all shifts under 

consideration the EWMA-� chart performs the worst. When comparing the two nonparametric 

charts, for R = 0.25 the NPEWMA-EX chart performs the best and for all other shifts under 

consideration the NPEWMA-Rank chart performs the best. 
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Table
xxxii

 4.28. Performance comparison under the AsymmMixN2 distribution for � = 100  

and � =	5 
  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits 1.991; 3.058 ± 0.446 234.2; 295.8 

IC 0.00 
506.54 (789.23) 

25, 71, 198, 590, 2071 

504.13 (1373.32) 

21, 57, 150, 451, 1999 

490.32 (782.31) 

23, 68, 191, 558, 2006 

OOC 
Shift 

(I) 

0.25 
13.52 (5.33) 

8, 10, 12, 16, 23 

320.87 (1068.66) 

14, 32, 72, 225, 1314 

16.60 (14.00) 

7, 10, 14, 19, 34 

0.50 
8.90 (1.73) 

7, 8, 9, 10, 12 

103.26 (504.63) 

10, 17, 29, 58, 312 

8.35 (2.60) 

5, 7, 8, 10, 13 

0.75 
8.31 (1.46) 

6, 7, 8, 9, 11 

27.65 (100.01) 

7, 12, 17, 26, 63 

6.92 (1.82) 

5, 6, 7, 8, 10 

1.00 
8.00 (1.35) 

6, 7, 8, 9, 10 

14.25 (22.46) 

6, 9, 12, 16, 29 

6.33 (1.54) 

4, 5, 6, 7, 9 

1.50 
7.49 (1.17) 

6, 7, 7, 8, 10 

8.03 (3.07) 

4, 6, 7, 9, 14 

5.53 (1.19) 

4, 5, 5, 6, 8 

2.00 
7.07 (1.03) 

6, 6, 7, 8, 9 

5.77 (1.72) 

4, 5, 6, 7, 9 

4.96 (0.95) 

4, 4, 5, 5, 7 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 ± 0.833 219.5; 310.5 

IC 0.00 
509.83 (732.22) 

21, 79, 231, 634, 1964 

502.99 (1490.60) 

16, 55, 156, 449, 1903 

507.55 (781.94) 

20, 73, 218, 612, 1972 

OOC 
Shift 

(I) 

0.25 
12.17 (6.46) 

6, 8, 11, 14, 23 

331.96 (1083.49) 

11, 30, 78, 249, 1314 

15.69 (22.94) 

5, 8, 12, 17, 36 

0.50 
7.47 (1.84) 

5, 6, 7, 8, 11 

113.37 (703.62) 

7, 14, 27, 63, 364 

6.92 (2.66) 

4, 5, 6, 8, 12 

0.75 
6.91 (1.54) 

5, 6, 7, 8, 10 

30.19 (199.36) 

5, 9, 15, 25, 74 

5.63 (1.78) 

3, 4, 5, 6, 9 

1.00 
6.62 (1.39) 

5, 6, 6, 7, 9 

13.17 (37.73) 

4, 7, 10, 15, 30 

5.11 (1.48) 

3, 4, 5, 6, 8 

1.50 
6.14 (1.20) 

5, 5, 6, 7, 8 

6.64 (3.19) 

3, 5, 6, 8, 12 

4.41 (1.12) 

3, 4, 4, 5, 6 

2.00 
5.75 (1.03) 

4, 5, 6, 6, 8 

4.61 (1.61) 

3, 4, 4, 5, 8 

3.93 (0.90) 

3, 3, 4, 4, 6 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 ± 0.964 198.3; 331.7 

IC 0.00 
499.44 (635.53) 

21, 95, 269, 645, 1779 

497.07 (1428.81) 

13, 56, 158, 449, 2001 

561.41 (787.78) 

19, 90, 268, 708, 2219 

OOC 
Shift 

(I) 

0.25 
12.52 (9.75) 

5, 7, 10, 15, 29 

359.58 (1248.90) 

9, 31, 89, 272, 1385 

18.52 (60.75) 

4, 7, 11, 19, 48 

0.50 
6.60 (2.38) 

4, 5, 6, 8, 11 

133.51 (592.08) 

6, 14, 30, 80, 475 

6.12 (3.12) 

3, 4, 5, 7, 12 

0.75 
6.01 (1.93) 

4, 5,6, 7, 10 

36.42 (163.25) 

4, 8, 14, 28, 105 

4.79 (2.02) 

3, 3, 4, 6, 9 

1.00 
5.66 (1.72) 

3, 4, 5, 7, 9 

13.82 (24.92) 

3, 6, 9, 15, 38 

4.23 (1.56) 

2, 3, 4, 5, 6 

1.50 
5.14 (1.46) 

3, 4, 5, 6, 8 

5.88 (3.75) 

2, 4, 5, 7, 12 

3.58 (1.16) 

2, 3, 3, 4, 6 

2.00 
4.70 (1.22) 

3, 4, 5, 5, 7 

3.83 (1.65) 

2, 3, 3, 5, 7 

3.14 (0.91) 

2, 3, 3, 4, 5 

 

  

                                                 
xxxii

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.28. OOC ARL values under the AsymmMixN2 distribution for � = 100 and � = 5 

 

 

 From Table 4.28 and Figure 4.28 it can be seen that similar conclusions can be drawn for the 

AsymmMixN2 distribution as for the AsymmMixN1 and the SymmMixN distributions. To recap, for 

all shifts under consideration the EWMA-� chart performs the worst. When comparing the two 

nonparametric charts, for R = 0.25 the NPEWMA-EX chart performs the best and for all other shifts 

under consideration the NPEWMA-Rank chart performs the best. 
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Table
xxxiii

 4.29. Performance comparison under the Log-Logistic[F = 1, G = 2.5] distribution for � = 100 and � =	5 
  NPEWMA-EX EWMA-� NPEWMA-Rank 

λλλλ = 0.05 

Control limits 1.991; 3.058 *** 234.2; 295.8 

IC 0.00 
503.26 (788.70) 

25, 71, 196, 585, 2045 
*** 

501.83 (860.25) 

23, 68, 191, 553, 2038 

OOC 
Shift 

(I) 

0.25 
108.91 (326.17) 

11, 18, 31, 66, 424 
*** 

79.30 (511.05) 

10, 15, 23, 41, 174 

0.50 
14.31 (22.17) 

7, 9, 11, 15, 28 
*** 

11.46 (7.31) 

6, 8, 10, 13, 21 

0.75 
7.76 (2.60) 

5, 6, 7, 8, 12 
*** 

7.19 (1.85) 

5, 6, 7, 8, 11 

1.00 
5.91 (0.93) 

5, 5, 6, 6, 8 
*** 

5.60 (1.01) 

4, 5, 5, 6, 7 

1.50 
5.01 (0.08) 

5, 5, 5, 5, 5 
*** 

4.30 (0.50) 

4, 4, 4, 5, 5 

2.00 
5.00 (0.00) 

5, 5, 5, 5, 5 
*** 

3.91 (0.34) 

3, 4, 4, 4, 4 

 
λλλλ = 0.10 

Control limits 1.735; 3.314 *** 219.5; 310.5 

IC 0.00 
506.94 (724.35) 

21, 78, 229, 628, 1939 
*** 

507.54 (830.23) 

20, 73, 215, 590, 1948 

OOC 
Shift 

(I) 

0.25 
117.08 (315.08) 

8, 16, 31, 78, 500 
*** 

105.04 (718.96) 

8, 13, 23, 49, 277 

0.50 
13.20 (26.20) 

5, 7, 9, 14, 29 
*** 

10.31 (9.16) 

5, 7, 9, 12, 21 

0.75 
6.37 (2.30) 

4, 5, 6, 7, 10 
*** 

5.87 (1.84) 

4, 5, 5, 7, 9 

1.00 
4.76 (0.85) 

4, 4, 5, 5, 6 
*** 

4.46 (0.92) 

3, 4, 4, 5, 6 

1.50 
4.01 (0.07) 

4, 4, 4, 4, 4 
*** 

3.35 (0.50) 

3, 3, 3, 4, 4 

2.00 
4.00 (0.00) 

4, 4, 4, 4, 4 
*** 

3.03 (0.16) 

3, 3, 3, 3, 3 

 
λλλλ = 0.20 

Control limits 1.374; 3.675 *** 198.3; 331.7 

IC 0.00 
505.53 (644.15) 

20, 94, 264, 657, 1804 
*** 

495.88 (736.16) 

19, 83, 236, 595, 1823 

OOC 
Shift 

(I) 

0.25 
136.26 (321.66) 

7, 16, 38, 106, 585 
*** 

133.45 (624.10) 

6, 13, 28, 75, 462 

0.50 
14.41 (34.14) 

4, 6, 9, 14, 37 
*** 

11.16 (15.18) 

4, 6, 8, 12, 28 

0.75 
5.44 (3.98) 

3, 4, 5, 6, 10 
*** 

5.13 (2.56) 

3, 4, 5, 6, 9 

1.00 
3.70 (0.93) 

3, 3, 3, 4, 5 
*** 

3.64 (0.97) 

3, 3, 3, 4, 5 

1.50 
3.00 (0.07) 

3, 3, 3, 3, 3 
*** 

2.70 (0.51) 

2, 2, 3, 3, 3 

2.00 
3.00 (0.00) 

3, 3, 3, 3, 3 
*** 

2.19 (0.39) 

2, 2, 2, 2, 3 

*** The run-length characteristics can’t be computed for the EWMA-� chart based on normal 

theory, since the run-length characteristics don’t converge 

                                                 
xxxiii

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the 

second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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(a) λ = 0.05 

 
 

(b) λ = 0.10 

 

(c) λ = 0.20 

 
 

 

Legend 

 

 
 

Figure 4.29. OOC ARL values under the Log-Logistic [F = 1, G = 2.5] distribution for � = 100 

and � = 5 

 

 A summary of our observations from the OOC comparisons for the Log-Logistic 

distribution using Table 4.29 and Figure 4.29 is as follows. The run-length characteristics can’t be 

computed for the EWMA-� chart based on normal theory methods, since the run-length 

characteristics don’t converge. This is a common result for control charts based on normal theory 

methods (see, for example, Chakraborti et al. (2004) page 454 where a similar problem is 

encountered for the uniform distribution when working with the Shewhart-� chart). Although the 

performance for the NPEWMA-Rank chart and the NPEWMA-EX chart is very similar, the 

NPEWMA-Rank outperforms the NPEWMA-EX chart for all shifts under consideration. 

 

 Our overall conclusion is this. In comparison with the EWMA-� chart, when small shifts 

are of interest, the NPEWMA-EX chart is outperformed only when the underlying distribution is 

normal. However, the point to remember is that the EWMA-� chart can be non-robust in case 

normality is not satisfied, whereas the nonparametric charts require no distributional assumption, 
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which is a substantial practical advantage. In comparison with the NPEWMA-Rank chart, the 

NPEWMA-EX chart has either a similar or better performance. These observations coupled with 

the fact that the EWMA charts are generally easier to be used on the job floor and they provide one-

chart monitoring for two-sided (both higher and lower shifts) monitoring make the NPEWMA-EX 

chart a useful tool for the data analyst.  

 

Effect of the reference sample size 

 

 The NPEWMA-EX chart is calibrated to achieve an ARL0 equal to a target, say 500. 

However, this is the unconditional IC average run-length (averaged over all possible IC Phase I 

samples) and users in practice may be interested in the ARL0 depending (conditional) on the Phase I 

sample they have. The attained ARL0 will vary, since the Phase I sample is a random sample, even 

though the chart may have been designed for a nominal ARL0 of 500 and the Phase I sample is from 

an IC process.  

  

 A simulation study was conducted to investigate the effect of the reference sample size on 

the performance of the NPEWMA-EX chart. The reference sample size (�) was chosen to be 20, 

50, 100, 500 and 1000, respectively. The smoothing constant was taken to be 0.05, i.e. λ = 0.05, and 

L was chosen so that ARL0 ≈ 500 for each reference sample size. Table 4.30 shows the IC and OOC 

performance characteristics of the run-length distribution for shifts of size R = 0.00(0.25)1.00, 1.50 

and 2.00 in the median, for the different reference sample sizes and � = 5, for the NPEWMA-EX 

chart under the N(0,1) distribution. In addition, the results are shown for the NPEWMA-SN chart 

(see Section 3.2), since this is the analogue of the NPEWMA-EX chart if the process parameters 

were known or specified. The ARL values are illustrated in Figure 4.30. 

 

 

 From Table 4.30 and Figure 4.30 we find that as it might be expected, the larger the 

reference sample size, the less the uncertainty and the better the performance of the chart. 

Generally, when the reference sample size is not less than 100, the NPEWMA-EX chart performs 

well, that is it performs like what is expected unconditionally. In addition, the values, when the 

parameters are unknown, tend to the values if the parameters were known, which is expected, since 

the uncertainty decreases as the reference sample size increases. Similar conclusions were found for 

other (skewed and heavy-tailed) distributions. 
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Table
hh

 4.30. Effect of reference sample size on the NPEWMA-EX chart under the N(0,1) distribution for λ = 0.05 and � = 5 
m 

20 50 100 500 1000 
Parameters known 

or specified 

Control  

Limits 

2.039; 3.120 

with � = 1.036 

1.996; 3.102 

with � = 1.42 

1.991; 3.058 

with � = 1.75 

2.010; 3.000 

with � = 2.35 

2.019; 2.986 

with � = 2.47 

-0.931, 0.931 

with � = 2.60 

Shift (I) 
0.00 

500.95 (1210.72) 

13, 27, 72, 345, 2574 

504.69 (953.55) 

19, 49, 143, 492, 2277 

508.45 (795.41) 

24, 72, 200, 590, 2106 

498.31 (562.59) 

36, 123, 303, 672, 1616 

500.58 (526.46) 

40, 146, 335, 672, 1554 

500.94 (482.31) 

39, 156, 352, 689, 1467 

0.25 
488.98 (1220.19) 

13, 29, 75, 327, 2516 

458.66 (886.23) 

17, 42, 121, 444, 2127 

398.98 (687.24) 

20, 49, 130, 417, 1738 

222.03 (326.81) 

21, 53, 111, 246, 820 

172.02 (213.16) 

21, 51, 102, 207, 557 

118.99 (101.86) 

20, 47, 89, 158, 322 

0.50 
430.41 (1139.25) 

12, 24, 57, 252, 2266 

300.54 (743.68) 

13, 26, 56, 198, 1545 

185.97 (456.32) 

14, 26, 49, 129, 860 

57.62 (67.32) 

13, 25, 39, 68, 156 

48.23 (38.59) 

13, 23, 37, 60, 120 

40.57 (26.43) 

12, 22, 34, 52, 92 

0.75 
305.57 (938.98) 

10, 18, 36, 127, 1631 

148.49 (524.62) 

11, 18, 30, 70, 596 

62.22 (189.51) 

10, 17, 27, 48, 176 

27.17 (17.90) 

10, 16, 23, 33, 59 

25.07 (14.28) 

10, 15, 22, 31, 52 

22.71 (11.52) 

9, 15, 20, 28, 45 

1.00 
223.61 (840.20) 

9, 14, 24, 65, 1067 

63.25 (271.63) 

9, 14, 20, 34, 165 

24.76 (34.77) 

9, 13, 18, 26, 59 

17.68 (8.43) 

8, 12, 16, 21, 33 

16.73 (7.88) 

8, 12, 15, 20, 31 

15.62 (6.51) 

8, 11, 14, 19, 28 

1.50 
67.81 (440.12) 

7, 10, 14, 22, 113 

16.48 (56.58) 

7, 10, 12, 17, 32 

12.73 (6.13) 

7, 9, 11, 15, 23 

10.84 (3.49) 

7, 8, 10, 13, 17 

10.38 (3.27) 

6, 8, 10, 12, 17 

9.98 (3.05) 

6, 8, 9, 12, 16 

2.00 
16.46 (79.83) 

6, 8, 10, 14, 28 

10.05 (4.10) 

6, 8, 9, 11, 17 

9.20 (2.64) 

6, 7, 9, 10, 14 

8.16 (1.99) 

6, 7, 8, 9, 12 

7.87 (1.89) 

6, 6, 7, 9, 11 

7.50 (1.83) 

5, 6, 7, 9, 11 

 

 

                                                 
hh

 Note that the first row of each cell shows the ARL followed by the corresponding SDRL in parentheses, whereas the second row shows the values of the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in 

this order). 
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Figure 4.30 Comparison of different reference sample sizes for � = 5 and λ = 0.05 

 

 

4.4.4 Illustrative examples 

 

Example 4.4 

  

 First we illustrate the NPEWMA-EX chart using a well-known dataset from Montgomery 

(2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging 

process. The data given in Table 5.1 contain twenty-five retrospective or Phase I samples, each of 

size five, that were collected when the process was thought to be IC, i.e. � = 125. These data are 

considered to be the Phase I reference data for which a goodness of fit test for normality is not 

rejected. The reference sample has a median equal to 74.001, i.e. $ = 63 and �(��) = 74.001. Table 

5.2 of Montgomery (2001) contains fifteen prospective (Phase II) samples each of five observations 

(n = 5). The NPEWMA-EX chart is compared to the EWMA-� chart and the NPEWMA-Rank 

chart, respectively. The design parameters were taken so that ARL0 ≈ 500 for each chart.  
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Figure 4.31. The EWMA-� chart for the Montgomery piston ring data 
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Figure 4.32. The NPEWMA-Rank chart for the Montgomery piston ring data 
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Figure 4.33. The NPEWMA-EX chart for the Montgomery piston ring data 

 

 From Figure 4.31 it can bee seen that the EWMA-� chart signals first at sample number 12, 

whereas the NPEWMA-Rank chart and the NPEWMA-EX chart signals later at sample number 13 

(see Figure 4.32) and sample number 14 (see Figure 4.33), respectively. Thus, the the EWMA-� 

chart performs the best. This is not surprising, as normal theory methods usually outperform 

nonparametric methods when the normality assumption is satisfied. However, it should be noted 

that in practice normality can be in doubt or may not be justifiable for lack of information or data 

and a nonparametric method may be more desirable for the “just in case” scenario. The next 

example illustrates this type of a situation. 

 

Example 4.5 

 

 In practice the underlying process distribution is often unknown or other than the normal 

and this is where the nonparametric charts can be really useful. To illustrate the application of the 

NPEWMA-EX chart when the data follow a symmetric yet heavier tailed distribution (than the 

normal) we use some simulated data from the Laplace (or double exponential) distribution; DE(0,1) 

which is known to have a median of zero and a standard deviation equal to √2. An IC reference 

sample of size 100 (� = 100) was generated from this distribution and each data point was scaled 

so that the transformed observations have a standard deviation of 1. For the reference data we find 
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the median equal to -0.023. Next the Phase II samples, each of size 5 (� = 5), were independently 

and sequentially generated by transforming the observations from a DE(0,1) distribution so that the 

resulting observations have a median of R/√�	(= 0.2236 for R = 0.5 and � = 5) and a standard 

deviation of 1. Consequently, the Phase II samples can be thought of as having been drawn from a 

process that is OOC in the median. For the NPEWMA-EX, EWMA-� and NPEWMA-Rank charts 

we set λ = 0.05 and L was found so that ARL0 ≈ 500 for each chart.  

 

 From Figures 4.35 and 4.36 we see that both the NPEWMA-Rank and the NPEWMA-EX 

charts signal at sample number 24, respectively. This is not surprising, as the performance of the 

NPEWMA-EX and NPEWMA-Rank charts are very similar for the Laplace distribution (see Table 

4.25). Although both charts signal at sample number 24, it should be noted that the NPEWMA-EX 

chart signals at both sample numbers 24 and 25, whereas the NPEWMA-Rank only signals at 

sample number 24. From Figure 4.34 we see that although the EWMA-� chart has a steep incline, it 

doesn’t signal. This example shows that there are situations in practice where the NPEWMA-EX 

chart offers an effective alternative over available parametric and nonparametric control charts. 
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Figure 4.34. The EWMA-� chart for the simulated data 
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Figure 4.35. The NPEWMA-Rank chart for the simulated data 
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Figure 4.36. The NPEWMA-EX chart for the simulated data 
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4.4.5 Nonparametric EWMA control chart based on other percentiles 

 

 Up to this point the properties of the NPEWMA-EX chart using the median of the reference 

(Phase I) sample has been proposed and investigated. Here the choice of the order statistic from the 

reference (Phase I) sample that defines the exceedance statistic in this chart is investigated. 

Furthermore, observing certain shortcomings of the ARL, we use the MRL as the performance 

metric. In addition, we consider exact time-varying control limits as opposed to using steady-state 

control limits like in Sections 4.4.2 to 4.4.4 (for the NPEWMA-EX median chart). Steiner (1999) 

compared the run-length characteristics of the EWMA-� chart with exact time-varying control 

limits to the run-length characteristics of the EWMA-� chart with steady state control limits when 

the process parameters are known. Steiner (1999) used the ARL as performance measure and 

showed that, while the process is IC, the ARL0 values of EWMA control charts with exact time-

varying control limits are nearly identical to those of EWMA control charts with steady-state 

control limits. However, when the initial process level is OOC, i.e. if there are early process shifts, 

the ARLδ values may differ substantially depending on the value of the smoothing constant λ. 

Steiner (1999) concluded that, in general, exact time-varying control limits are useful when λ is 

small, say, less than 0.3.  

 

In-control robustness 

 

Because the NPEWMA-EX chart is nonparametric, the IC run-length distribution and the 

associated characteristics remain the same for all continuous distributions. Table 4.31 shows some 

(λ, L)-combinations for the NPEWMA-EX chart for nominal MRL0 = 350 for � = 100 and � = 5. 

The first row of each cell in the tables below shows the MRL followed by the corresponding 

interquartile range (IQR) in parentheses, whereas the second row shows the values of the 5
th

, 25
th

, 

75
th

 and 95
th

 percentiles (in this order). 
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Table 4.31.  (λ, L)-combinations for the NPEWMA-EX chart for nominal MRL0= 350 for  � = 100 and � = 5
 

 Shift (λ, L) Attained values 

25
th

 

percentile 

Small (0.05, 2.041) 
341 (1702) 

3, 43, 1745, 8289 

Moderate (0.10, 2.347) 
344 (1054) 

4, 80, 1134, 4139 

Large (0.20, 2.608) 
345 (961) 

7, 92, 1053, 3451 

40
th

 

percentile 

Small (0.05, 2.044) 
342 (1710) 

4, 44, 1754, 8294 

Moderate (0.10, 2.380) 
351 (1031) 

5, 81, 1112, 3921 

Large (0.20, 2.653) 
356 (803) 

15, 112, 915, 2540 

50
th

 

percentile 

Small (0.05, 2.091) 
345 (1933) 

1, 30, 1963, 10496 

Moderate (0.10, 2.384) 
352 (1036) 

7, 88, 1124, 3847 

Large (0.20, 2.676) 
353 (791) 

17, 119, 910, 2581 

60
th

 

percentile 

Small (0.05, 2.044) 
342 (1627) 

4, 42, 1669, 8305 

Moderate (0.10, 2.380) 
355 (1053) 

5, 84, 1137, 4028 

Large (0.20, 2.653) 
345 (795) 

13, 109, 904, 2581 

75
th

 

percentile 

Small (0.05, 2.041) 
363 (1739) 

3, 46, 1785, 8910 

Moderate (0.10, 2.347) 
347 (1055) 

4, 78, 1133, 3931 

Large (0.20, 2.608) 
349 (922) 

9, 93, 1015, 3255 

 

  

 From Table 4.31 it is seen that the design parameter, L, is the same for the 25
th

 and 75
th

 

percentiles and for the 40
th

 and 60
th

 percentiles, respectively. This is due to the fact that the wxy+1("�,#) is the same for the pair of percentiles (} − ∆	, } + ∆	) where } denotes the median 

and ∆	 is an integer between 1 and 49. Next, we study the OOC chart performance.   
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Out-of-control chart performance comparison 

 

 For the OOC chart performance comparison it is customary to ensure that the MRL0 values 

of the competing charts are fixed at (or very close to) an acceptably high value, such as 350 in this 

case, and then compare their MRLδ values, for specific values of the shift δ, and the chart with the 

smaller MRLδ value is preferred. In the previous seciton we studied the effect of the reference 

sample size when using the median of the reference (Phase I) sample and concluded that the larger 

the reference sample size, the less the uncertainty and the better the performance of the chart, and 

that, generally, when the reference sample size is not less than 100, the proposed chart performs 

well. Accordingly, in this paper, we take the size of the IC Phase I reference sample to be 100, i.e. � = 100. Tables 4.32 to 4.38 show the OOC performance characteristics of the run-length 

distrribution for � = 100, � = 5 and R = 0.25(0.25)1.00, 1.50 and 2.00. 

 

 The first row of each cell in the tables below shows the MRL followed by the corresponding 

interquartile range (IQR) in parentheses, whereas the second row shows the values of the 5
th

, 25
th

, 

75
th

 and 95
th

 percentiles (in this order). The same distributions are considered as with the 

NPEWMA-EX median chart; they are listed in Section 4.4.3. 
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Table 4.32. Performance comparison under the N(0,1) distribution for � = 100 and � = 5 
Shift 

(I) 

25
th

 percentile 40
th

 percentile 50
th

 percentile 60
th

 percentile 75
th

 percentile 

λλλλ = 0.05 

0.25 
234 (1276) 155 (983) 139 (975) 129 (832) 118 (833) 

3, 34, 1310, 8227 4, 23, 1006, 6054 1, 16, 991, 8595 3, 18, 850, 6247 2, 15, 848, 6616 

0.50 
60 (312) 37 (167) 31 (150) 28 (127) 27 (140) 

3, 15, 327, 3759 3, 10, 177, 2619 1, 8, 158, 2532 2, 8, 135, 2160 2, 7, 147, 2547 

0.75 
22 (57) 15 (33) 12 (30) 11 (28) 10 (25) 

3, 9, 66, 635 3, 7, 40, 291 1, 4, 34, 225 1, 4, 32, 241 1, 4, 29, 262 

1.00 
13 (23) 9 (14) 7 (13) 7 (10) 6 (11) 

3, 6, 29, 112 2, 4, 18, 63 1, 3, 16, 55 1, 4, 14, 49 1, 3, 14, 56 

1.50 
7 (9) 4 (4) 3 (5) 4 (4) 3 (4) 

3, 3, 12, 25 2, 3, 7, 16 1, 2, 7, 14 1, 2, 6, 13 1, 2, 6, 13 

2.00 
5 (5) 4 (3) 2 (3) 2 (2) 2 (2) 

3, 3, 8, 13 2, 2, 5, 9 1, 1, 4, 8 1, 2, 4, 7 1, 1, 3, 7 

Shift 

(I) 
λλλλ = 0.10 

0.25 
312 (1007) 

9, 78, 1085, 4070 

229 (807) 

5, 53, 860, 3295 

188 (690) 

5, 43, 733, 3172 

150 (628) 

2, 33, 661, 3011 

137 (594) 

2, 26, 620, 3204 

0.50 
121 (454) 

8, 35, 489, 2540 

64 (229) 

3, 19, 248, 1728 

52 (185) 

3, 16, 201, 1548 

41 (143) 

2, 12, 155, 1346 

35 (123) 

1, 9, 132, 1255 

0.75 
42 (109) 

6, 17, 126, 826 

24 (54) 

2, 10, 64, 384 

19 (43) 

3, 8, 51, 298 

16 (37) 

2, 6, 43, 256 

13 (33) 

1, 5, 38, 267 

1.00 
22 (37) 

6, 11, 48, 203 

13 (20) 

2, 6, 26, 94 

11 (17) 

2, 5, 22, 76 

9 (15) 

1, 4, 19, 65 

7 (14) 

1, 3, 17, 70 

1.50 
11 (10) 

5, 7, 17, 38 

6 (8) 

2, 3, 11, 22 

5 (6) 

2, 3, 9, 18 

4 (5) 

1, 2, 7, 16 

3 (4) 

1, 2, 6, 15 

2.00 
7 (4) 

5, 6, 10, 18 

4 (4) 

2, 2, 6, 11 

3 (3) 

2, 2, 5, 9 

2 (2) 

1, 2, 4, 8 

2 (3) 

1, 1, 4, 7 

Shift 

(I) 
λλλλ = 0.20 

0.25 
500 (1193) 

20, 158, 1351, 3920 

272 (683) 

13, 85, 768, 2388 

230 (618) 

11, 68, 686, 2344 

169 (481) 

6, 49, 530, 2091 

115 (384) 

3, 31, 415, 2081 

0.50 
337 (901) 

18, 102, 1003, 3357 

111 (323) 

8, 35, 358, 1590 

77 (226) 

6, 26, 252, 1218 

54 (152) 

3, 18, 170, 957 

38 (107) 

2, 12, 119, 755 

0.75 
130 (360) 

12, 44, 404, 1912 

40 (91) 

6, 17, 108, 554 

30 (64) 

4,12, 76, 370 

22 (49) 

2, 9, 58, 266 

16 (37) 

1, 6, 43, 194 

1.00 
54 (117) 

9, 24, 141, 702 

21 (36) 

4, 10, 46, 170 

16 (25) 

3, 8, 33, 115 

12 (19) 

1, 6, 25, 84 

9 (17) 

1, 4, 21, 68 

1.50 
19 (25) 

6, 11, 36, 102 

9 (9) 

3, 6, 15, 35 

7 (8) 

2, 4, 12, 26 

5 (6) 

1, 3, 9, 20 

4 (6) 

1, 2, 8, 19 

2.00 
11 (9) 

6, 8, 17, 33 

6 (4) 

3, 4, 8, 15 

4 (4) 

2, 3, 7, 12 

3 (3) 

1, 2, 5, 10 

3 (3) 

1, 1, 4, 8 
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Figure 4.37a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the N(0,1) distribution with � = 100, � = 5 and λ = 0.05 

 

 

Figure 4.37b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the N(0,1) distribution with � = 100, � = 5 and λ = 0.10 
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Figure 4.37c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the N(0,1) distribution with � = 100, � = 5 and λ = 0.20 

 

 From Table 4.32 it can be seen that when the underlying process distribution is N(0,1), the 

NPEWMA-EX chart based on the 75
th

 percentile performs the best regardless of the size of the shift 

and choice of the smoothing constant λ	. This is illustrated in Figures 4.37a,b,c for λ = 0.05, 0.10 

and 0.20, respectively.  
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Table 4.33. Performance comparison under the EXP(1) distribution for � = 100 and � = 5 when 

target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
23 (96) 49 (322) 68 (534) 98 (686) 134 (985) 

3, 8, 104, 2391 3, 11, 333, 4271 1, 11, 545, 6466 2, 15, 701, 5805 2, 18, 1003, 6998 

0.50 
5 (5) 9 (19) 12 (40) 20 (90) 40 (288) 

3, 3, 8, 32 2, 4, 23, 233 1, 5, 45, 904 2, 6, 96, 1892 2, 8, 296, 4190 

0.75 
3 (0) 4 (4) 5 (10) 7 (15) 14 (52) 

3, 3, 3, 5 2, 3, 7, 23 1, 2, 12, 61 1, 4, 19, 160 1, 5, 57, 1262 

1.00 
3 (0) 2 (2) 3 (4) 4 (7) 7 (17) 

3, 3, 3, 3 2, 2, 4, 7 1, 1, 5, 15 1, 2, 9, 32 1, 3, 20, 206 

1.50 
3 (0) 2 (0) 1 (0) 2 (2) 3 (4) 

3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 3 1, 1, 3, 7 1, 2,6, 21 

2.00 
3 (0) 2 (0) 1 (0) 1 (0) 2 (2) 

3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 2 1, 1, 1, 1 1, 1, 1, 2 

Shift (I) λλλλ = 0.10 

0.25 
43 (170) 85 (370) 114 (491) 134 (576) 156 (658) 

6, 15, 185, 1546 3, 21, 391, 2315 4, 26, 518, 2704 3, 27, 603, 2941 2, 30, 688, 3193 

0.50 
7 (8) 14 (31) 21 (60) 29 (111) 48 (232) 

5, 5, 13, 53 2, 6, 37, 297 2, 8, 68, 718 2, 9, 120, 1206 2, 11, 243, 1974 

0.75 
5 (0) 5 (7) 8 (13) 10 (23) 18 (62) 

5, 5, 5, 7 2, 3, 10, 32 2, 4, 17, 85 1, 4, 27, 213 1, 5, 67, 763 

1.00 
5 (0) 2 (2) 4 (5) 5 (9) 9 (24) 

5, 5, 5, 5 2, 2, 4, 9 2, 2, 7, 20 1, 2, 11, 42 1, 3, 27, 200 

1.50 
5 (0) 2 (0) 2 (0) 2 (2) 3 (5) 

5, 5, 5, 5 2, 2, 2, 4 2, 2, 2, 2 1, 1, 3, 8 1, 2, 7, 26 

2.00 
5 (0) 2 (0) 2 (0) 1 (0) 2 (2) 

5, 5, 5, 5 2, 2, 2, 2 2, 2, 2, 2 1, 1, 1, 3 1, 1, 3, 8 

Shift (I) λλλλ = 0.20 

0.25 
135 (489) 141 (450) 155 (474) 148 (456) 145 (501) 

10, 37, 526, 2668 8, 40, 490, 1911 8, 44, 518, 1994 5, 40, 496, 1975 4, 36, 537, 2398 

0.50 
10 (17) 23 (55) 32 (97) 40 (126) 52 (183) 

6, 6, 23, 156 4, 10, 65, 442 4, 12, 109, 718 3, 13, 139, 869 2, 15, 198, 1345 

0.75 
6 (0) 7 (10) 11 (19) 15 (31) 22 (67) 

6, 6, 6, 11 3, 4, 14, 58 3, 5, 24, 128 1, 6, 37, 218 1, 8, 75, 531 

1.00 
6 (0) 3 (2) 5 (6) 7 (11) 11 (27) 

6, 6, 6, 6 3, 3, 5, 13 2, 3, 9, 29 1, 4, 15, 59 1, 4, 31, 172 

1.50 
6 (0) 3 (0) 2 (1) 3 (3) 4 (7) 

6, 6, 6, 6 3, 3, 3, 3 2, 2, 3, 5 1, 1, 4, 10 1, 2, 9, 30 

2.00 
6 (0) 3 (0) 2 (0) 1 (0) 2 (3) 

6, 6, 6, 6 3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 3 1, 1, 4, 9 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



269 

 

 

 

Figure 4.38a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the EXP(1) distribution with � = 100, � = 5 and λ = 0.05 

 

 
Figure 4.38b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the EXP(1) distribution with � = 100, � = 5 and λ = 0.10 
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Figure 4.38c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the EXP(1) distribution with � = 100, � = 5 and λ = 0.20 

 
 

 From Table 4.33 it can be seen that when the underlying process distribution is EXP(1), the 

choice of the order statistic from the reference sample stays the same regardless of the value of the 

smoothing constant λ. Thus, for all λ, the NPEWMA-EX chart based on the 25
th

 percentile 

performs best for R = 0.25, 0.50 and 0.75, the NPEWMA-EX chart based on the 40
th

 percentile 

performs best for R = 1.00 and the NPEWMA-EX chart based on the median performs best for        R = 1.50. For the largest shift under consideration, i.e. R = 2.00, the NPEWMA-EX chart based on 

the 60
th

 percentile performs best. Since the run-length characteristics seem to converge as the size 

of this shift increases, the recommendation would be to use the NPEWMA-EX chart based on the 

60
th

 percentile when large shifts are of concern. This is illustrated in Figures 4.38a,b,c for λ = 0.05, 

0.10 and 0.20, respectively. 
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Table 4.34. Performance comparison under the DE(0,1) distribution for � = 100 and � = 5 when 

target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
233 (1351) 96 (549) 53 (281) 46 (311) 85 (643) 

3, 36, 1387, 8103 4, 18, 567, 5159 1, 10, 291, 4045 2, 10, 321, 4316 2, 12, 655, 5990 

0.50 
54 (225) 20 (45) 11 (25) 10 (22) 16 (69) 

3, 15, 240, 2679 3, 8, 53, 334 1, 4, 29, 151 2, 4, 26, 281 1, 5, 74, 1770 

0.75 
23 (53) 9 (14) 6 (9) 5 (7) 7 (14) 

3, 9, 62, 364 2, 5, 19, 54 1, 3, 12, 30 1, 3, 10, 26 1, 3, 17, 133 

1.00 
13 (21) 6 (7) 4 (5) 3 (5) 4 (4) 

3, 7, 28, 88 2, 4, 11, 25 1, 2, 7, 15 1, 2, 7, 27 1, 2, 6, 12 

1.50 
8 (8) 4 (3) 3 (3) 2 (2) 2 (2) 

3, 5, 13, 25 2, 3, 6, 11 1, 1, 4, 7 1, 1, 3, 6 1, 1, 3, 7 

2.00 
5 (5) 3 (2) 2 (2) 2 (1) 1 (1) 

3, 3, 8, 15 2, 2, 4, 7 1, 1, 3, 5 1, 1, 2, 4 1, 1, 2, 3 

Shift (I) λλλλ = 0.10 

0.25 
332 (1028) 148 (513) 83 (280) 67 (308) 96 (467) 

9, 84, 1112, 3898 4, 37, 550, 2735 4, 24, 304, 1830 2, 16, 324, 2164 2, 19, 486, 2900 

0.50 
111 (377) 34 (77) 19 (35) 14 (31) 22 (78) 

8, 35, 412, 2329 3, 13, 90, 461 3, 8, 43, 187 1, 5, 36, 265 1, 6, 84, 885 

0.75 
44 (92) 15 (22) 9 (13) 6 (9) 8 (18) 

6, 18, 110, 542 2, 7, 29, 81 2, 4, 17, 41 1, 3, 12, 37 1, 3, 21, 146 

1.00 
23 (35) 9 (11) 6 (7) 4 (5) 4 (7) 

6, 12, 47, 152 2, 5, 16, 34 2, 3, 10, 20 1, 2, 7, 15 1, 2, 9, 33 

1.50 
12 (11) 5 (5) 4 (3) 2 (3) 2 (2) 

5, 8, 19, 38 2, 3, 8, 14 2, 2, 5, 9 1, 1, 4, 7 1, 1, 3, 7 

2.00 
8 (6) 3 (4) 3 (2) 2 (1) 1 (1) 

5, 6, 12, 21 2, 2, 6, 9 2, 2, 4, 6 1, 1, 2, 4 1, 1, 2, 4 

Shift (I) λλλλ = 0.20 

0.25 
564 (1269) 219 (597) 124 (332) 87 (294) 92 (330) 

23, 181, 1450, 4153 12, 67, 644, 2030 8, 40, 372, 1570 4, 25, 319, 1518 3, 24, 354, 1944 

0.50 
346 (894) 60 (129) 29 (55) 19 (41) 26 (79) 

18, 108, 1002, 3288 6, 23, 152, 588 4, 13, 68, 282 1, 8, 49, 297 1, 9, 88, 599 

0.75 
127 (303) 24 (38) 13 (18) 9 (13) 10 (21) 

12, 46, 349, 124 5, 12, 50, 143 3, 7, 25, 63 1, 4, 17, 53 1, 4, 25, 147 

1.00 
61 (116) 13 (16) 8 (8) 5 (6) 5 (8) 

10, 26, 142, 506 4, 8, 24, 55 3, 5, 13, 27 1, 3, 9, 21 1, 2, 10, 38 

1.50 
22 (28) 7 (6) 5 (4) 3 (4) 2 (3) 

6, 13, 41, 98 3, 5, 11, 21 2, 3, 7, 12 1, 1, 5, 8 1, 1, 4, 8 

2.00 
14 (12) 5 (3) 4 (2) 2 (2) 1 (1) 

6, 9, 21, 41 3, 4, 7, 12 2, 3, 5, 8 1, 1, 3, 5 1, 1, 2, 4 
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Figure 4.39a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the DE(0,1) distribution with � = 100, � = 5 and λ = 0.05 

 

 
Figure 4.39b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the DE(0,1) distribution with � = 100, � = 5 and λ = 0.10 
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Figure 4.39c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the DE(0,1) distribution with � = 100, � = 5 and λ = 0.20 

 

 

 From Table 4.34 it can be seen that when the underlying process distribution is DE(0,1), the 

choice of the order statistic from the reference sample stays the same regardless of the value of the 

smoothing constant λ. Thus, for all λ, the NPEWMA-EX chart based on the 60
th

 percentile 

performs best for R ≤ 1.00, whereas the NPEWMA-EX chart based on the 75
th

 percentile performs 

best when large shifts (R = 1.50 and 2.00) are under consideration. Moreover, for the largest shift 

under consideration, i.e. R = 2.00, the NPEWMA-EX chart based on the 75
th

 percentile performs 

best. Since the run-length characteristics seem to converge as the size of this shift increases, the 

recommendation would be to use the NPEWMA-EX chart based on the 75
th

 percentile when large 

shifts are of concern. This is illustrated in Figures 4.39a,b,c for λ = 0.05, 0.10 and 0.20, 

respectively, where it can also clearly be seen that the NPEWMA-EX chart based on the 25
th

 

percentile is performing the worst. 
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Table 4.35. Performance comparison under the SymmMixN distribution for � = 100 and � = 5 

when target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
116 (226) 8 (9) 5 (5) 4 (3) 4 (6) 

7, 40, 266, 778 2, 4, 13, 26 1, 2, 7, 15 1, 2, 5, 12 1, 2, 8, 47 

0.50 
46 (77) 5 (3) 3 (3) 2 (2) 1 (1) 

5, 19, 96, 216 2, 4, 7, 12 1, 1, 4, 6 1, 1, 3, 4 1, 1, 2, 3 

0.75 
29 (43) 4 (3) 3 (2) 2 (1) 1 (0) 

3, 14, 57, 122 2, 4, 7, 11 1, 1, 3, 6 1, 1, 2, 4 1, 1, 1, 2 

1.00 
21 (29) 4 (3) 2 (2) 2 (1) 1 (0) 

3, 10, 39, 78 2, 3, 6, 10 1, 1, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

1.50 
13 (15) 4 (2) 2 (2) 2 (1) 1 (0) 

3, 7, 22, 42 2, 3, 5, 8 1, 1, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

2.00 
9 (9) 4 (2) 2 (2) 2 (1) 1 (0) 

3, 5, 14, 26 2, 2, 4, 7 1, 1, 3, 4 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.10 

0.25 
254 (465) 12 (12) 6 (6) 4 (5) 4 (8) 

19, 102, 567, 1466 2, 7, 19, 39 2, 4, 10, 20 1, 2, 7, 15 1, 2, 10, 78 

0.50 
102 (153) 7 (6) 4 (2) 2 (2) 1 (1) 

12, 45, 198, 444 2, 4, 10, 17 2, 3, 5, 8 1, 1, 3, 5 1, 1, 2, 4 

0.75 
61 (88) 6 (5) 3 (2) 2 (1) 1 (0) 

9, 29, 117, 242 2, 4, 9, 15 2, 2, 4, 7 1, 1, 2, 4 1, 1, 1, 2 

1.00 
39 (52) 6 (5) 3 (2) 2 (1) 1 (0) 

8, 20, 72, 148 2, 3, 8, 13 2, 2, 4, 6 1, 1, 2, 3 1, 1, 1, 2 

1.50 
21 (24) 4 (4) 3 (2) 2 (1) 1 (0) 

6, 12, 36, 69 2, 3, 7, 10 2, 2, 4, 6 1, 1, 2, 3 1, 1, 1, 2 

2.00 
14 (13) 4 (3) 3 (1) 2 (1) 1 (0) 

5, 9, 22, 41 2, 2, 5, 8 2, 2, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.20 

0.25 
1297 (2252) 18 (23) 9 (9) 5 (6) 5 (9) 

95, 522, 2774, 7188 5, 10, 33, 95 3, 5, 14, 29 1, 3, 9, 19 1, 3, 12, 69 

0.50 
489 (792) 10 (8) 5 (4) 3 (3) 1 (2) 

40, 200, 992, 2227 4, 7, 15, 28 2, 3, 7, 10 1, 1, 4, 6 1, 1, 3, 5 

0.75 
254 (396) 9 (7) 4 (3) 3 (2) 1 (0) 

26, 109, 505, 1136 4, 6, 13, 22 2, 3, 6, 9 1, 1, 3, 5 1, 1, 1, 3 

1.00 
144 (219) 8 (6) 4 (2) 2 (2) 1 (0) 

18, 64, 283, 626 3, 5, 11, 19 2, 3, 5, 8 1, 1, 3, 4 1, 1, 1, 2 

1.50 
58 (80) 6 (4) 4 (2) 2 (2) 1 (0) 

11, 29, 109, 237 3, 5, 9, 14 2, 3, 5, 7 1, 1, 3, 4 1, 1, 1, 2 

2.00 
30 (37) 5 (3) 3 (2) 2 (2) 1 (0) 

8, 17, 54, 111 3, 4, 7, 11 2, 2, 4, 6 1, 1, 3, 4 1, 1, 1, 2 
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Figure 4.40a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxv

 of the reference sample under the SymmMixN distribution with � = 100, � = 5  

and λ = 0.05 

 

 
Figure 4.40b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxv

 of the reference sample under the SymmMixN distribution with � = 100, � = 5  

and λ = 0.10 

 

                                                 
xxxv

 Note that the line graph of the 25
th

 percentile is omitted, since it is performing the worst, i.e. it has large OOC MRL 

values. Deleting the 25
th

 percentile makes the graph more visually appealing. 
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Figure 4.40c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxvi

 of the reference sample under the SymmMixN distribution with � = 100, � = 5  

and λ = 0.20 

 

 

 From Table 4.35 it can be seen that when the underlying process distribution is SymmMixN, 

the choice of the order statistic from the reference sample stays the same regardless of the value of 

the smoothing constant λ. Thus, for all λ, the NPEWMA-EX chart based on the 60
th

 percentile 

performs best for R = 0.25, whereas the NPEWMA-EX chart based on the 75
th

 percentile performs 

best for all other shifts under consideration. Again we find that for the largest shift under 

consideration, i.e. R = 2.00, the NPEWMA-EX chart based on the 75
th

 percentile performs best. 

Since the run-length characteristics seem to converge as the size of this shift increases, the 

recommendation would be to use the NPEWMA-EX chart based on the 75
th

 percentile when large 

shifts are of concern. This is illustrated in Figures 4.40a,b,c for λ = 0.05, 0.10 and 0.20, 

respectively, where it can also clearly be seen that the NPEWMA-EX chart based on the 25
th

 

percentile is performing the worst. 
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Table 4.36. Control chart performance comparison under the AsymmMixN1 distribution for  � = 100 and � = 5 when target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
213 (454) 8 (10) 5 (5) 4 (4) 3 (5) 

8, 69, 523, 1581 2, 4, 14, 29 1, 3, 8, 15 1, 2, 6, 12 1, 2, 7, 30 

0.50 
76 (133) 5 (4) 3 (3) 2 (2) 1 (1) 

5, 29, 162, 360 2, 4, 8, 14 1, 1, 4, 7 1, 1, 3, 4 1, 1, 2, 3 

0.75 
41 (65) 5 (3) 3 (2) 2 (1) 1 (0) 

5, 18, 83, 186 2, 4, 7, 12 1, 1, 3, 6 1, 1, 2, 4 1, 1, 1, 2 

1.00 
27 (39) 4 (4) 2 (2) 2(1) 1 (0) 

3, 13, 52, 110 2, 3, 7, 10 1, 1, 3, 6 1, 1, 2, 3 1, 1, 1, 2 

1.50 
15 (18) 4 (2) 2 (2) 2(1) 1 (0) 

3, 8, 26, 52 2, 3, 5, 8 1, 1, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

2.00 
10 (10) 4 (1) 2 (2) 2(1) 1 (0) 

3, 6, 16, 31 2, 3, 4, 7 1, 1, 3, 4 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.10 

0.25 
457 (873) 13 (15) 6 (6) 4 (5) 4 (6) 

30, 174, 1047, 2857 2, 7, 22, 45 2, 4, 10, 21 1, 2, 7, 15 1, 2, 8, 38 

0.50 
169 (274) 8 (7) 4 (2) 2 (2) 1 (1) 

16, 69, 344, 784 2, 5, 12, 19 2, 3, 5, 8 1, 1, 3, 5 1, 1, 2, 4 

0.75 
88 (136) 7 (6) 4 (3) 2 (1) 1 (0) 

11, 40, 176, 389 2, 4, 10, 16 2, 2, 5, 7 1, 1, 2, 4 1, 1, 1, 2 

1.00 
53 (75) 6 (6) 3 (2) 2 (1) 1 (0) 

9, 26, 101, 215 2, 3, 9, 14 2, 2, 4, 7 1, 1, 2, 4 1, 1, 1, 2 

1.50 
26 (31) 5 (4) 3 (2) 2 (1) 1 (0) 

6, 15, 46, 91 2, 3, 7, 11 2, 2, 4, 6 1, 1, 2, 3 1, 1, 1, 2 

2.00 
17 (16) 4 (4) 3 (1) 2 (1) 1 (0) 

6, 10, 26, 49 2, 2, 6, 9 2, 2, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.20 

0.25 
2291 (4167) 21 (28) 9 (9) 6 (6) 5 (7) 

153, 902, 5069, 13072 5, 12, 40, 87 3, 6, 15, 31 1, 3, 9, 20 1, 3, 10, 45 

0.50 
855 (1426) 12 (11) 5 (3) 3 (3) 1 (2) 

64, 346, 1773, 4084 4, 7, 18, 33 2, 4, 7, 11 1, 1, 4, 6 1, 1, 3, 4 

0.75 
408 (670) 10 (9) 5 (3) 3 (2) 1 (1) 

36, 170, 840, 1880 4, 16, 15, 25 2, 3, 6, 10 1, 1, 3, 5 1, 1, 2, 3 

1.00 
216 (334) 9 (7) 4 (3) 2 (2) 1 (0) 

23, 93, 427, 986 4, 6, 13, 22 2, 3, 6, 9 1, 1, 3, 5 1, 1, 1, 2 

1.50 
81 (119) 7 (5) 4 (2) 2 (2) 1 (0) 

13, 38, 157, 334 3, 5, 10, 16 2, 3, 5, 7 1, 1, 3, 4 1, 1, 1, 2 

2.00 
38 (50) 6 (4) 3 (1) 2 (2) 1 (0) 

9, 21, 71, 147 3, 4, 8, 13 2, 3, 4, 6 1, 1, 3, 4 1, 1, 1, 2 
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Figure 4.41a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxvii

 of the reference sample under the AsymmMixN1 distribution with � = 100, � = 5  

and λ = 0.05 

 

 
Figure 4.41b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxvii

 of the reference sample under the AsymmMixN1 distribution with � = 100, � = 5  

and λ = 0.10 

 

                                                 
xxxvii

 Note that the line graph of the 25
th

 percentile is omitted, since it is performing the worst, i.e. it has large OOC MRL 

values. Deleting the 25
th

 percentile makes the graph more visually appealing. 
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Figure 4.41c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxviii

 of the reference sample under the AsymmMixN1 distribution with � = 100, � = 5  

and λ = 0.20 

 

 

 From Table 4.36 it can be seen that when the underlying process distribution is 

AsymmMixN1, we have similar results to when the process distribution is SymmMixN, i.e. for all λ, 

the NPEWMA-EX chart based on the 60
th

 percentile performs best for R = 0.25, whereas the 

NPEWMA-EX chart based on the 75
th

 percentile performs best for all other shifts under 

consideration. This is illustrated in Figures 4.41a,b,c for λ = 0.05, 0.10 and 0.20, respectively, 

where it can also clearly be seen that the NPEWMA-EX chart based on the 25
th

 percentile is 

performing the worst. 

 

  

                                                 
xxxviii

 Note that the line graph of the 25
th

 percentile is omitted, since it is performing the worst, i.e. it has large OOC 

MRL values. Deleting the 25
th

 percentile makes the graph more visually appealing. 
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Table 4.37. Control chart performance comparison under the AsymmMixN2 distribution for  � = 100 and � = 5 when target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
70 (132) 7 (8) 4 (5) 4 (4) 4 (7) 

5, 26, 158, 450 2, 4, 12, 23 1, 2, 7, 15 1, 2, 6, 12 1, 2, 9, 124 

0.50 
33 (48) 4 (3) 3 (2) 2 (2) 1 (1) 

4, 15, 63, 136 2, 4, 7, 11 1, 1, 3, 6 1, 1, 3, 4 1, 1, 2, 4 

0.75 
22 (30) 4 (3) 2 (2) 2 (1) 1 (0) 

3, 11, 41, 84 2, 3, 6, 10 1, 1, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

1.00 
17 (21) 4 (2) 2 (2) 2 (1) 1 (0) 

3, 9, 30, 60 2, 3, 5, 9 1, 1, 3, 5 1, 1, 2, 3 1, 1, 1, 2 

1.50 
11 (12) 4 (1) 2 (2) 2 (1) 1 (0) 

3, 6, 18, 33 2, 3, 4, 7 1, 1, 3, 4 1, 1, 2, 3 1, 1, 1, 2 

2.00 
8 (8) 3 (2) 1 (1) 1 (1) 1 (0) 

3, 5, 13, 22 2, 2, 4, 6 1, 1, 2, 3 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.10 

0.25 
158 (272) 11 (12) 6 (6) 4 (5) 5 (9) 

16, 66, 338, 889 2, 6, 18, 35 2, 4, 10, 19 1, 2, 7, 15 1, 2, 11, 137 

0.50 
66 (95) 7 (5) 4 (3) 2 (2) 1 (1) 

10, 32, 127, 273 2, 4, 9, 15 2, 2, 5, 7 1, 1, 3, 4 1, 1, 2, 5 

0.75 
42 (56) 6 (5) 3 (2) 2 (1) 1 (0) 

8, 22, 78, 165 2, 3, 8, 13 2, 2, 4, 6 1, 1, 2, 3 1, 1, 1, 2 

1.00 
30 (36) 5 (5) 3 (2) 2 (1) 1 (0) 

7, 17, 53, 106 2, 3, 8, 11 2, 2, 4, 6 1, 1, 2, 3 1, 1, 1, 2 

1.50 
18 (18) 4 (3) 3 (2) 2 (1) 1 (0) 

6, 11, 29, 55 2, 3, 6, 9 2, 2, 4, 5 1, 1, 2, 3 1, 1, 1, 2 

2.00 
13 (11) 3 (3) 2 (1) 1 (1) 1 (0) 

5, 8, 19, 33 2, 2, 5, 8 2, 2, 3, 4 1, 1, 2, 3 1, 1, 1, 2 

Shift (I) λλλλ = 0.20 

0.25 
760 (1281) 16 (20) 8 (8) 5 (6) 6 (11) 

58, 306, 1587, 4020 5, 9, 29, 64 3, 5, 13, 27 1, 3, 9, 20 1, 3, 14, 185 

0.50 
291 (462) 9 (8) 4 (3) 3 (3) 1 (2) 

28, 124, 586, 1322 4, 6, 14, 24 2, 3, 6, 10 1, 1, 4, 6 1, 1, 3, 5 

0.75 
164 (252) 8 (6) 4 (3) 2 (2) 1 (0) 

19, 73, 325, 710 3, 5, 11, 19 2, 3,6, 8 1, 1, 3, 4 1, 1, 1, 3 

1.00 
98 (145) 7 (5) 4 (2) 2 (2) 1 (0) 

15, 46, 191, 415 3, 5, 10, 17 2, 3, 5, 8 1, 1, 3, 4 1, 1, 1, 2 

1.50 
44 (58) 6 (4) 3 (1) 2 (2) 1 (0) 

10, 23, 81, 165 3, 4, 8, 13 2, 3, 4, 6 1, 1, 3, 4 1, 1, 1, 2 

2.00 
26 (28) 5 (3) 3 (2) 1 (2) 1 (0) 

8, 15, 43, 85 3, 4, 7, 10 2, 2, 4, 6 1, 1, 3, 3 1, 1, 1, 2 
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Figure 4.42a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxix

 of the reference sample under the AsymmMixN2 distribution with � = 100, � = 5  

and λ = 0.05 

 

 
Figure 4.42b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xxxix

 of the reference sample under the AsymmMixN2 distribution with � = 100, � = 5  

and λ = 0.10 

 

                                                 
xxxix

 Note that the line graph of the 25
th

 percentile is omitted, since it is performing the worst, i.e. it has large OOC MRL 

values. Deleting the 25
th

 percentile makes the graph more visually appealing. 
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Figure 4.42c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles
xl

 of the reference sample under the AsymmMixN2 distribution with � = 100, � = 5  

and λ = 0.20 

 

 

 From Table 4.37 it can be seen that when the underlying process distribution is 

AsymmMixN2, we have similar results to when the process distribution is SymmMixN or 

AsymmMixN1, i.e. for all λ, the NPEWMA-EX chart based on the 60
th

 percentile performs best for R = 0.25, whereas the NPEWMA-EX chart based on the 75
th

 percentile performs best for all other 

shifts under consideration. This is illustrated in Figures 4.42a,b,c for λ = 0.05, 0.10 and 0.20, 

respectively, where it can also clearly be seen that the NPEWMA-EX chart based on the 25
th

 

percentile is performing the worst. 

 

  

                                                 
xl

 Note that the line graph of the 25
th

 percentile is omitted, since it is performing the worst, i.e. it has large OOC MRL 

values. Deleting the 25
th

 percentile makes the graph more visually appealing. 
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Table 4.38. Control chart performance comparison under Log-Logistic(F = 1, G = 2.5) 
distribution for � = 100 and � = 5 when target MRL0 = 350 

Shift (I) 
25

th
 percentile 40

th
 percentile 50

th
 percentile 60

th
 percentile 75

th
 percentile 

λλλλ = 0.05 

0.25 
12 (23) 13 (30) 14 (46) 19 (81) 37 (270) 

3, 6, 29, 187 2, 5, 35, 327 1, 5, 51, 856 2, 6, 87, 1673 2, 8, 278, 4180 

0.50 
3 (3) 4 (3) 3 (6) 4 (7) 7 (20) 

3, 3, 6, 11 2, 3, 6, 13 1, 1, 7, 18 1, 2, 9, 32 1, 3, 23, 304 

0.75 
3 (0) 2 (1) 1 (2) 2 (3) 3 (4) 

3, 3, 3, 5 4, 3, 2, 2 1, 1, 3, 5 1, 1, 4, 7 1, 2, 6, 24 

1.00 
3 (0) 2 (0) 1 (0) 1 (1) 2 (2) 

3, 3, 3, 3 2, 2, 2, 3 1, 1, 1, 3 1, 1, 2, 4 1, 1, 3, 8 

1.50 
3 (0) 2 (0) 1 (0) 1 (0) 1 (0) 

3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 2 

2.00 
3 (0) 2 (0) 1 (0) 1 (0) 1 (0) 

3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 

Shift (I) λλλλ = 0.10 

0.25 
21 (38) 20 (48) 23 (70) 28 (102) 50 (239) 

5, 11, 49, 308 2, 8, 56, 433 3, 9, 79, 763 2, 9, 111, 1086 2, 11, 250, 2028 

0.50 
6 (4) 4 (5) 5 (6) 5 (10) 9 (25) 

5, 5, 9, 15 2, 3, 8, 17 2, 3, 9, 24 1, 2, 12, 42 1, 3, 28, 276 

0.75 
5 (0) 2 (1) 3 (2) 2 (3) 3 (5) 

5, 5, 5, 6 2, 2, 3, 6 2, 2, 4, 7 1, 1, 4, 9 1, 2, 7, 30 

1.00 
5 (0) 2 (0) 2 (0) 1 (1) 2 (2) 

5, 5, 5, 5 2, 2, 2, 3 2, 2, 2, 3 1, 1, 2, 4 1, 1, 3, 9 

1.50 
5 (0) 2 (0) 2 (0) 1 (0) 1 (0) 

5, 5, 5, 5 2, 2, 2, 2 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 2 

2.00 
5 (0) 2 (0) 2 (0) 1 (0) 1 (0) 

5, 5, 5, 5 2, 2, 2, 2 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 1 

Shift (I) λλλλ = 0.20 

0.25 
50 (132) 35 (86) 37 (105) 39 (122) 54 (194) 

8, 21, 153, 887 5, 14, 100, 583 4, 14, 119, 688 3, 13, 135, 797 2, 15, 209, 1443 

0.50 
9 (7) 7 (6) 7 (8) 7 (11) 11 (26) 

6, 6, 13, 27 3, 5, 11, 26 2, 4, 12, 35 1, 4, 15, 57 1, 4, 30, 209 

0.75 
6 (0) 4 (2) 3 (3) 3 (4) 4 (7) 

6, 6, 6, 9 3, 3, 5, 7 2, 2, 5, 8 1, 1, 5, 11 1, 2, 9, 33 

1.00 
6 (0) 3 (0) 2 (1) 1 (2) 2 (3) 

6, 6, 6, 6 3, 3, 3, 4 2, 2, 3, 4 1, 1, 3, 5 1, 1, 4, 10 

1.50 
6 (0) 3 (0) 2 (0) 1 (0) 1 (0) 

6, 6, 6, 6 3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 3 

2.00 
6 (0) 3 (0) 2 (0) 1 (0) 1 (0) 

6, 6, 6, 6 3, 3, 3, 3 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 1 
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Figure 4.43a. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the Log-Logistic distribution with � = 100, � = 5  

and λ = 0.05 

 

 
Figure 4.43b. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the Log-Logistic distribution with � = 100, � = 5  

and λ = 0.10 
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Figure 4.43c. MRL performance comparison of the NPEWMA-EX chart based on various 

percentiles of the reference sample under the Log-Logistic distribution with � = 100, � = 5  

and λ = 0.20 

 

 

 From Table 4.38 it can be seen that for R = 0.25 and 0.50 the NPEWMA-EX charts based on 

lower order percentiles perform best, specifically, for λ = 0.05 the NPEWMA-EX chart based on 

the 1
st
 quartile performs best, whereas for λ = 0.10 and 0.20 the NPEWMA-EX chart based on the 

40
th

 percentile performs best. As the magnitude of the shift increases, we find that the NPEWMA-

EX charts based on higher order percentiles perform best. For example, for R = 1.50 and 2.00 the 

NPEWMA-EX charts based on the 50
th

, 60
th

 and 75
th

 percentiles performs best for λ = 0.05, 

whereas the latter two charts performs best for λ = 0.10 and 0.20, respectively. This is illustrated in 

Figures 4.43a,b,c for λ = 0.05, 0.10 and 0.20, respectively, 

 

The observations from Tables 4.32 to 4.38 are summarized in Table 4.39 below along with 

some recommendations. Note that for brevity, a shorthand notation is used to describe the charts. 

For example, the NPEWMA-EX chart based on the 50
th

 percentile is denoted by EX(50), and if two 

charts perform similarly, for example, if the NEWMA-EX chart based on the 50
th

 and 60
th

 

percentiles perform similarly, the notation EX(50,60) is used. 
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Table 4.39. Summary of the efficiency of different reference sample percentiles for the  

NPEWMA-EX chart 

 R = 0.25 R = 0.50 R = 0.75 R = 1.00 R = 1.50 R = 2.00 

Symmetric distributions 

N
(0

,1
) 

For all λ the EX(75) chart performs best 

D
E

(0
,1

) 

For all λ the EX(60) chart performs best 
For all λ the EX(75) chart 

performs best 

S
ym

m
M

ix
N

 

For all λ the 

EX(60) chart 

performs best 

For all λ the EX(75) chart performs best 

Asymmetric distributions 

E
X

P
(1

) 

For all λ the EX(25) chart performs best 

For all λ the 

EX(40) chart 

performs best 

For all λ the 

EX(50) chart 

performs best 

For all λ the 

EX(60) chart 

performs best 

A
sy

m
m

M
ix

N
1

 

For all λ the 

EX(60) chart 

performs best 

For all λ the EX(75) chart performs best 

A
sy

m
m

M
ix

N
2

 

For all λ the 

EX(60) chart 

performs best 

For all λ the EX(75) chart performs best 

L
o

g
-L

o
g

is
ti

c λ = 0.05: EX(25) 

 

λ = 0.10 

and 

λ = 0.20: EX(40) 

λ = 0.05 

and 

λ = 0.20: 

EX(50) 

 

λ = 0.10: 

EX(40) 

λ = 0.05: 

EX(50) 

 

λ = 0.10 

and 

λ = 0.20: 

EX(60) 

λ = 0.05: EX(50,60,75) 

 

λ = 0.10 

and 

λ = 0.20: EX(60,75) 
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Illustrative examples 

 

Example 4.6 

 

 First we illustrate the NPEWMA-EX chart using a well-known dataset from Montgomery 

(2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging 

process. The data given in Table 5.1 contains twenty-five retrospective or Phase I samples, each of 

size five, that were collected when the process was thought to be IC, i.e. � = 125. An analysis in 

Montgomery (2001) showed that these data are from an IC process and thus can be considered to be 

Phase I reference data. Note also that for these data, a goodness of fit test for normality is not 

rejected. This does not guarantee that the normality assumption for a traditional or parametric 

EWMA chart is valid but often the practical implication is as such. We instead apply and contrast 

the proposed nonparametric exceedance charts based on the 25
th

, 40
th

, 50
th

 (median), 60
th

 and the 

75
th

 percentile, respectively, of the reference sample. The values of the respective reference sample 

percentiles are as follows: 25
th

 percentile = 73.995, 40
th

 percentile = 73.998, median = 74.001, 60
th

 

percentile = 74.004 and 75
th

 percentile = 74.008. All of the measurements are in mm. 

  

 In order to calculate the Phase II exceedance control charts, we use the data in Table 5.2 of 

Montgomery (2001) that contains fifteen prospective (Phase II) samples each of five observations 

(� = 5). The smoothing constant is taken to be  λ = 0.05 and � is found such that MRL0 = 350. 
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Figure 4.44a. The NPEWMA-EX chart based on the 25

th
 percentile for the Montgomery (2001) 

piston ring data 
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Figure 4.44b. The NPEWMA-EX chart based on the 40

th
 percentile for the Montgomery (2001) 

piston ring data 
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Figure 4.44c. The NPEWMA-EX chart based on the median for the Montgomery (2001)  

piston ring data 
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Figure 4.44d. The NPEWMA-EX chart based on the 60

th
 percentile for the Montgomery (2001) 

piston ring data 
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Figure 4.44e. The NPEWMA-EX chart based on the 75

th
 percentile for the Montgomery (2001) 

piston ring data 

 

 From Figures 4.44b,e we see that the NPEWMA-EX chart based on the 40
th

 and 75
th

 

percentiles perform the best and similarly, signaling at sample number 13. Table 4.39 suggests that 

the NPEWMA-EX chart based on 75
th

 percentile performs best when the underlying process 

distribution is normal which can clearly be seen in Figure 4.44e. The NPEWMA-EX chart based on 

the 50
th

 and 60
th

 percentiles signal on samples number 15 and 14, respectively, whereas the 

NPEWMA-EX chart based on the 25
th

 percentile performs worst, since it doesn’t signal at all. 

  

 For our first example, the data did not reject a goodness of fit test for normality. 

Nonparametric charts are useful for all continuous distributions and heavier tailed distributions are 

of particular interest in practice as they can give rise to more outliers which do not necessarily 

indicate an OOC process. So we illustrate the NEWMA-EX chart when the data follow a symmetric 

yet heavier tailed distribution (than the normal) with some simulated data from the Double 

Exponential distribution. 
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Example 4.7 

 

 In practice the underlying process distribution is often unknown or other than the normal 

and this is where the nonparametric charts can be really useful. To illustrate the application of the 

NPEWMA-EX chart when the data follow a symmetric yet heavier tailed distribution (than the 

normal)we use some simulated data from the Laplace (or double exponential) distribution; DE(0,1) 

which is known to have a median of zero and a standard deviation equal to √2. An IC reference 

sample of size 100 (� = 100) was generated from this distribution and each data point was scaled 

so that the transformed observations have a standard deviation of 1. For the reference data we find 

the median equal to -0.052. Next the Phase II samples, each of size 5 (� = 5), were independently 

and sequentially generated by transforming the observations from a DE(0,1) distribution so that the 

resulting observations have a median of R/√�	(= 0.112 for R = 0.25 and � = 5) and a standard 

deviation of 1. Consequently, the Phase II samples can be thought of as having been drawn from a 

process that is OOC in the median.  

 

Sample number

25242322212019181716151413121110987654321

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Variable

CL

UCL

Zj

LCL

 
Figure 4.45a. The NPEWMA-EX chart based on the 25

th
 percentile for the simulated data 
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Figure 4.45b. The NPEWMA-EX chart based on the 40

th
 percentile for the simulated data 
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Figure 4.45c. The NPEWMA-EX chart based on the median for the simulated data 
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Figure 4.45d. The NPEWMA-EX chart based on the 60

th
 percentile for the simulated data 
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Figure 4.45e. The NPEWMA-EX chart based on the 75

th
 percentile for the simulated data 

 

 

 From Figure 4.45d we can see that the NPEWMA-EX chart based on the 60
th

 percentile is 

performing best, since it signals the earliest at sample number 17. Performing second best is the 

NPEWMA-EX chart based on the 75
th

 percentile, signaling on sample number 18. This is consistent 
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with the conclusions drawn in Table 4.39. The NPEWMA-EX charts based on the 25
th

 and 40
th

 

percentiles signal on sample numbers 21 and 23, respectively, and the NPEWMA-EX chart based 

on the median performs the worst, since it doesn’t signal at all. 

 

4.4.6 Summary 

 

 NPEWMA charts offer an attractive alternative in practice as they combine the inherent 

advantages of nonparametric charts with the better small shift detection capability of EWMA-type 

charts. We examine a class of NPEWMA charts based on the exceedance statistic by investigating 

which order statistic (percentile), from the reference sample, should be used for good overall 

performance. We conclude that the NPEWMA -EX chart, based on higher order percentiles, such as 

the 60
th

 or 75
th

 percentiles, are good overall charts for detecting a larger location shift. Other 

reference sample percentiles, such as the 25
th

 or the 40
th

, can also be used when a smaller shift in 

location is expected. Overall, it is seen that the exceedance EWMA chart based on higher 

percentiles performs better than its competitors in many cases for a number of distributions. More 

specifically, for moderate to large shifts there is little doubt that the practitioner should use the 

exceedance chart based on the 75
th

 percentile which signals quickly for all reference values under 

consideration. This is an interesting result in the literature on nonparametric exceedance / 

precedence tests and control charts. Note that our metric of comparison is the MRL, which we 

recommend over the ARL.   

 

4.5 Concluding remarks 

 

 In this chapter we proposed a NPCUSUM chart and a NPEWMA chart for monitoring the 

unknown median based on a reference sample. The proposed charts are based on what are known as 

precedence or exceedance test statistics. CUSUM and EWMA charts take advantage of the 

sequentially (time ordered) accumulating nature of the data arising in a typical SPC environment 

and are known to be more efficient in detecting smaller shifts. The traditional parametric CUSUM-

� and EWMA-� charts can lack IC robustness and as such the corresponding false alarm rates can 

be a practical concern. Nonparametric CUSUM and EWMA charts offer an attractive alternative in 

such situations as they combine the inherent advantages of nonparametric charts (IC robustness) 

with the better small shift detection capability of CUSUM-type and EWMA-type charts. 
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4.6 Appendices 

 

4.6.1 Appendix 4A: Markov chain approach 

 

4.6.1.1 The Markov chain approach for the NPCUSUM-EX control chart 

 

 There are two main approaches to studying the run-length distribution of a CUSUM chart. 

For continuous observations, Page (1954) described an integral equation approach. An alternative 

method based on Markov chain theory was developed by Brook and Evans (1972). Since the 

proposed chart is a binomial CUSUM chart conditionally on �(#), we can use the results of Gan 

(1993) to derive the conditional run-length distribution. Then the unconditional run-length 

distribution is obtained by simply averaging over the distribution of �(#).  
  

 In order to implement the Markov chain approach, we introduce some new notations. Write ; = �;∗ such that (�4 + ;) = �(4 + ;∗) = �4∗, say, so that ; = �(4∗ − 4). Note that when ; = 0, 4∗ = 4. Thus the charting statistic in Equation (4.2) can be expressed as   

 

7� = max	[0, 7�3	 + '"�,# − �4∗)],  for  � = 1,2,3, … 

 

with 7> = 0.  

 

 Note that the charting statistic above is very similar to the one proposed in Gan (1993); the 

latter defined the binomial CUSUM statistic as 7� = max	�0, 7�3	 + �� − ;� for � = 1,2,3, … and 

; = 8/�. Thus, in order to use the results in Gan (1993) we need a similar expression and, 

accordingly, we set �4∗ = 8/� so that 4∗ = 8/��. Now, as in Gan (1993) suppose that @ = {/�� 

and (already defined) 4∗ = 8/�� where 8, � and { are all positive integers. Then, again as in Gan 

(1993), when the process is declared to be IC the possible values of 7� are given by {0, 1/��, 2/
��, . . . , {/��}; these are the transient states of the Markov chain. If 7� > 	{/��, then the process is 

declared to be OOC and 7� 	 is said to be in the absorbing state. Using the simplified notation 

structure of Gan (1993) by labeling the transient states as {1, 2, . . . , {	 + 	1} corresponding to 

�7� 	= 6�¢ ; 	=	 = 	0,1, 2, . . . , {�, respectively, and by denoting the ({ + 2)th 
state as the absorbing 

state, we can write the one-step transition probability matrix in a partitioned form 
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} = �¤ %0′ 1� =
¥
¦§	

%		 %	�%�	 %��		……	……	%	,¨2	 %	,¨2�%�,¨2	 %�,¨2�……												……									……%¨2	,	 %¨2	,>0 0	 …%¨2	,¨2	 %¨2	,¨2�0 1 ©
ª« 

 

where %6� denotes the one-step transition probability from state i to state j; the essential transition 

probability sub-matrix ¤ contains all the probabilities of going from one transient state to another; 

the column vector % contains all the probabilities of going from each transient state to the absorbing 

state; 0′ a row vector of zeros which contains all the probabilities of going from the absorbing state 

to each transient state and the scalar value 1 is the probability of going from the absorbing state to 

the absorbing state. The elements of the essential transition probability sub-matrix ¤ may be 

calculated given �(#) 	= 	 �(#) and it is easy to see that, for = = 	1, 2, . . . , { + 1, 
 %6	 = 	& /7� 	= 	0	 7�3	 	= 	 63	¢ ; 		�(#) 	= 	�(#)0  

 = 	& /max	�0, 7�3	 + '"�,# − �4∗)� 	= 	0	 7�3	 	= 	 63	¢ ; 		�(#) 	= 	 �(#)0   

 

Note that in order for max	�0, 7�3	 + '"�,# − �4∗)� to equal zero, 7�3	 + '"�,# − �4∗) must be less 

than or equal to zero. Therefore, 

 %6	 = 	& /7�3	 + "�,# − �4∗ 	≤ 	0	 7�3	 	= 	 63	¢ ; 		�(#) 	= 	 �(#)0  

 = 	& /	63	¢ + "�,# − � / ��¢0 	≤ 	0	,�(#) 	= 	 �(#)0   since  4∗ = 8/�� 

 = & /"�,# 	≤ 	 �	36	2		¢ ,�(#) 	= 	 �(#)0   with  
�	36	2		¢ ≥ 0  since  "�,#|�(#) ~ BIN(�, %#) 

 

Therefore, 

%6	 = ®& �"�,# 	≤ 	 8	 − =	 + 	1� ,�(#) 	= 	 �(#)� 		if					 8 − =	 + 	1� ≥ 0
0 otherwise 	. 

 

Similarly for = = 	1, 2, . . . , { + 1,  and for  � = 	2, 3, . . . , { + 1, we have that 

 

%6� 	= 	& �7� 	= 	 � − 1� ·7�3	 	= 	 = − 1� ;		�(#) 	= 	 �(#)� 
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= ®& �"�,# 	≤ 	 8	 − =	 + 	�� ,�(#) 	= 	 �(#)� 			if						 8	 − =	 + 	�� = 0,1, … , �
0 otherwise 	. 

 

 Note that the conditional probabilities can be calculated directly using Result 4B.1 in 

Appendix 4B, that is, given	�(#) = �(#), "�,# follows a binomial distribution with parameters	(�, %#) 

where %# = 	&'� > �(#)|	�(#)). For the NPCUSUM-EX median chart based on the reference 

sample median, we may substitute n and 2 for a and b, respectively (so that 4 = 0.5). Note that 

when the process is IC, %# = 	1 − 1(#), where 1(#) = �(�(#)) follows a beta distribution with 

parameters $ and � − $ + 1 whatever the continuous F may be. Now defining A6 as the run-length 

variable with a starting value equal to (= − 1) �⁄ , i.e. 7> = 63	�¢  and �6 = +(A6|	�(#)) as the 

conditional average run-length for = = 	1, 2, . . . , { + 1,	we have, from the properties of Markov 

chains (see Section 1.10.1),  

 

� = (�	, ��	, … , �¨2	)′ = (¸ − ¤)3	1 . (A1) 

 

 

the unconditional ARL is given by averaging this over the probability distribution of �(#).		 Thus, the 

unconditional average run-length is given by 

 

�	∗ = ++	(A	|	�(#)) = ¹+	(A	|	�(#))	4�(�(#)) = 	¹ �	 4�(�(#)) = 	¹�	 41(#). (A2) 

 

 Expressions for the conditional and unconditional run-length distributions can be obtained 

similarly using properties and results of Markov chains from which other run-length distribution 

characteristics such as the standard deviation and the percentiles can be found.  

 

 Note that using Equation (A2), one can approximate the unconditional ARL0, replacing the 

integral in Equation (A2) by a sum, which yields 

 

º»�> = �	∗(IC) = limp→>½(�	|
ς

%# = ς, IC)¹ 1¾($,� − $ + 1) �#3	(1 − �)3#4�,
ς2p�
ς3p�

 (A3) 

 

where ς ranges from 8 − z/2	to	� + z/2 in steps of z; z is a small positive proper fraction; 8 and � 

are such that 0 < 8 < � < 1, satisfying  
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¹ �	¿
> 41(#) ≅ 0		8�4	¹ �		

Á 41(#) ≅ 0. 
 

 The IC conditional mean, (�	|%# = 	ς, IC), can be calculated by using the Markov chain 

formula in (A1). Let us consider an example. Suppose � = 1000, � = 5, @ = 15 and we consider 

exceedance over the median. For even �, the quantity $ is not unique but approximately take          

$ = 500.5. Hence the IC distribution of %# is (approximately) a Beta(500.5, 500.5). Take a value 

of	%#, say 0.35. In the IC case,	&(%# < 0.35|IC) = 3.963355 × 103��.	 Further, using (A1), we find  

(�	|%# = 0.35, IC) = 9.39 × 10Â.	 Since &(%# < 0.35|IC) ≈ 0, the contribution of              

(�	|%# = 0.35, IC)	&�%# ∈ ∆>.�o,Ä� is of the order 103	� and is therefore negligible, where ∆>.�o,Ä is 

an Å-neighbourhood (Å close to zero) containing 0.35.  
 

 Similarly &(� > 0.65 | Beta(500.5, 500.5)) ≈	0. The main point is that for calculating the 

unconditional ARL0 using (A3), it is sufficient to consider values for ς in the interval (0.3, 0.7) as 

other values of ς do not contribute any significant amounts in the sum. This interval, however, will 

vary with � as well as $ and has to be determined with care. For example, for � = 1000, � = 5 and 

@ = 15 we may set 8 = 0.3, z	= 0.0001 and � = 0.7. Thus we find from (A3) 

 

�	∗(¸7) = ½ (�	|
ςÆ>.�ÂÂÂo(>.>>>	)>.Ç>>>o

%# = ς)	¹ È(É)4Éς2>.>>>>o
ς3>.>>>>o , 

 

where È(É) is the pdf of the Beta(500.5, 500.5) distribution. This yields �	∗ = 352.359 (the ARL0). If 

on the other hand, we set z = 0.00005, that is, if we use a smaller partition of the interval, we get a 

slightly better approximation �	∗ = 352.3584. However, these two results are pretty close for all 

practical proposes. Therefore, we use l = 0.0001 and calculate the ARL0 for � = 1000 and � = 5 for         

@ = 15.5 and 16.5, respectively, employing the above technique. The results obtained are 388.7368 

and 474.3201, respectively. Note that these findings are very similar to the results in Table 4.2 

obtained via Monte Carlo simulation, in course of finding @ under a nominal ARL0 of 370 and 500 

for � = 1000 and � = 5. Moreover, matrix inversion is often troublesome when ς is close to 0 or 1 

and hence this process is not very efficient if � is small. In addition, for large matrices, matrix 

inversion, using SAS
® 

v 9.3, can be very time-consuming. Thus in this dissertation we use Monte 

Carlo simulations (see Section 1.10.2) to evaluate the run-length distribution instead of the above 
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method, which requires extreme care and large �, to work efficiently. Although the values of the 

run-length percentiles are found to be very stable under the two methods, slight sampling 

fluctuations were observed. We used 100 000 Monte Carlo simulations to achieve reasonably small 

standard error, that is within the 2% error bands satisfying the modified Mundfrom’s criteria (see 

Schaffer and Kim (2007)), of the estimated values. 
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4.6.1.2 The Markov chain approach for the NPEWMA-EX control chart 

 

 The reader is referred to Section 1.10.1 for a detailed discussion of the Markov chain 

appraoch. Here, only the steps regarding the Markov chain approach for the NPEWMA-EX chart 

are provided. 

 

Step 1:  

 

 Obtain the transition probability matrix } (see Equation (1.11) and Section 1.10.1 for a 

thorough discussion on setting up the transition probability matrix).  

 

Step 2: 

 

 Compute the transition probabilities, %6�’s, where %6� is the conditional probability that the 

charting statistic at time ;, ��, lies within state �, given that the charting statistic at time ; − 1, 

��3	, lies within state = (an approximation to the latter probability is obtained by setting ��3	 equal 

to w6 which denotes the midpoint of state i), that is 

 

%6� = &'��	lies within state �,��3		lies within state =; 	�(#) = 	�(#)) 
 

= &'w� − v < �� ≤ w� + v|��3	 = w6; 	�(#) = 	�(#)) 
 

= & /'ÊË3Ì)3(	3�)ÊÍ� < "�,# ≤ 'ÊË2Ì)3(	3�)ÊÍ� |	�(#) = �(#)0.	
                     

Step 3:  

 

 Using results from Fu and Lou (2003), calculate the conditional ARL the of run-length 

variable A for a given �(#) given by +	(A|	�(#)) using Equation (1.13). For the IC case, the %6�’s are 

calculated assuming the process is IC which yields the conditional IC ARL. 
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Step 4:  

 

 The unconditional ARL of A is given by averaging the conditional ARL over the probability 

distribution of �(#). Thus, the unconditional ARL is given by 

 

�∗ = ++	(A|	�(#)) = Î+	(A|	�(#))	4�(�(#)) = 	Î � 41(#),	 say. 

 

In the IC case, this may be approximated by applying numerical integration using the relation 

 

º»�> = �∗(IC) = limp→>∑ (�|ς %# = ς, IC) Î 	Ð(#,3#2	)�#3	(1 − �)3#4�,ς2Ñs
ς3Ñs      

                     

where ς ranges from 8 − z/2	to	� + z/2 in steps of z, z is a small positive proper fraction, 8 and � 

are such that 0 < 8 < � < 1, satisfying  

 

¹ �¿> 41(#) ≅ 0		and	¹ �	Á 41(#) ≅ 0. 
 

 Expressions for the conditional and unconditional run-length distributions can be obtained 

quite similarly using properties and results of Markov chains (see Equations (1.12) to (1.15)), from 

which other run-length distribution characteristics such as the standard deviation and the percentiles 

can be found. 
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4.6.2 Appendix 4B: Some mathematical results  

 

Result 4B.1 

 

Given (conditionally on) �(#), the "�,#’s are independently binomially distributed with parameters 

(�, %#) for any � = 1,2,3, … , i.e. "�,#|�(#) ~ BIN(�, %#). 
 

Proof 

 

Since "�,# is the number of �-observations in the ��� Phase II sample that exceeds	�(#), given �(#), 
the random variable "�,# follows a binomial distribution with parameters	(�, %#) where               

%# = &[�	 > 	�(#)|	�(#)].  
�  

 

Result 4B.2 

 

The (unconditional) IC distribution of "�,# (∀�), for a fixed �, is distribution-free and is given by the 

pmf 

 

&'"�,# = Õ) = /Ö23#Ö 0/�3Ö2#3	�3Ö 0
/2�� 0  with Õ = 0,1,2, … , �.  

 

Proof 

 

If "�,# = Õ, then Õ of the �-observations in the ��� Phase II sample are greater than �(#) and, 

consequently, � − Õ of the �-observations in the ��� Phase II sample are less than or equal to �(#). 
If we combine the reference sample (containing � �-observations) with the test sample (containing 

�	 �-observations) we obtain a single sample consisting of A = � + � observations. From this 

combined sample, $ �-observations and � − Õ �-observations in the ��� Phase II sample are less 

than or equal to �(#). On the other hand, � − $ �-observations and Õ �-observations in the ��� 

Phase II sample are greater than �(#). There is a total of � − Õ + $ − 1 observations that are less 

than �(#) and Õ +� − $ observations that are greater than �(#). The unconditional IC distribution 

of "�,# can be obtained by using combinatorics which allows one to count the number of 
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experimental outcomes when the experiment involves selecting a number of objects, say É, from a 

larger set of objects, say x. The rule then states that the number of combinations of x objects taken 

É at a time is given by /xÉ0. By using such combinatorial arguments the unconditional IC 

distribution of  "�,# (∀�) is given by 

 

 &'"�,# = Õ) = /Ö23#Ö 0/�3Ö2#3	�3Ö 0
/2�� 0  with Õ = 0,1,2, … , �.  

 

Thus, the unconditional IC distribution of "�,# (∀�) is the negative hypergeometric distribution (see 

Randles and Wolfe (1979) page 373). Note that Result 4B.2 has been obtained by other researchers 

more directly; see, for example, Chakraborti and Van der Laan (2000) Remark 2. 

 

Next we extend Result 4B.2 and show that the (unconditional) joint distribution of "�,# for           

� = 1,2, … , H is distribution-free when the process is IC. This establishes that the NPEWMA-EX 

and NPCUSUM-EX charts are distribution-free. 

�  

 

Result 4B.3 

 

The unconditional IC distribution of "�,# for � = 1,2, … , H where H > 1 is a positive integer, is 

distribution-free. 

 

Proof 

 

Firstly, the probability integral transformation is considered. If " = �×(�) then " has a 

uniform(0,1) distribution and "(#) = �×'�(#)) is the r
th

 order statistic of a random sample from the 

uniform(0,1) distribution function with density function 

 

ÈØ(Ù)(Õ) = 1¾($,� − $ + 1) Õ#3	(1 − Õ)3# , 0 ≤ Õ ≤ 1 (A4.1) 

 

which is the Beta($,� − $ + 1) distribution. Note that ¾($,� − $ + 1) = (#3	)!(3#)!! . 
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Now, suppose that Õ�,# assumes the values 0,1,2, … , � for all � = 1,2, … , H then by noting that 

 

i. from Result 4B.1, given �(#), the "�,#, 	� = 1,2, … , H, are independent BIN(�, %#) variables,  

 

ii. when averaging over the distribution of �(#), we find the unconditional distribution of "�,#, 

i.e.  

 

&'"�,# = Õ) = +�&'"�,# = Õ,�(#))� = /�Õ0¹%#Ö(1 − %#)�3Ö 4�'�(#))
= /�Õ0¹[1 − �(É)]Ö[�(É)]�3Ö 4�×(Ù)(É)

 (A4.2) 

 

and 

 

iii. when the process is in-control we have � = � in point (ii) or, stated differently, the in-

control %# = 1 − �'�(#)). 
 

Then, by using all the above information, the joint distribution of ("	,#, "�,# , … , "Û,#), when the 

process is IC, is given by  
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&'"	,# 	= 	 Õ	, "�,# 	= 	 Õ�, … , "Ü,# 	= 	 ÕÜ)  
 

= +×(Ù) /&'"	,# 	= 	 Õ		, "�,# 	= 	Õ�, … , "Ü,# 	= 	 ÕÜ	|	�(#) = �(#))0  

 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î %#∑ ÖËÝËÞß (1 − %#)�Û3∑ ÖËÝËÞßà3à È×(Ù)'�(#))4�(#)  from Equation (A4.2) 

 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î /1 − &'� ≤ �(#))0∑ ÖËÝËÞß /&'� ≤ �(#))0�Û3∑ ÖËÝËÞßà3à È×(Ù)'�(#))4�(#)  
 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î /1 − �'�(#))0∑ ÖËÝËÞß /�'�(#))0�Û3∑ ÖËÝËÞßà3à È×(Ù)'�(#))4�(#)  since  ��6~ iid � (= = 1,2, … , �	; 	� = 1,2, … )	it follows  

                                                                                                                                                                                          &'� ≤ �(#)) = �'�(#)) 
 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î '1 − �(�3	(É)))∑ ÖËÝËÞß '�(�3	(É)))�Û3∑ ÖËÝËÞß	> ÈØ(Ù)(É)4É  with the pdf of "(#)~ Beta($,� − $ + 1) 
 

If the process is IC if follows that � = � and, consequently, �(�3	(É)) = É. Thus, 

 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î (1 − É)∑ ÖËÝËÞß (É)�Û3∑ ÖËÝËÞß	> �Ùáß(	3�)âáÙ
Ð(#,3#2	) 4É  from Equation (A4.1) 

 

= / �Õ	0 / �Õ�0… / �ÕÜ0 Î �/ãäåÙá∑ æËÝËÞß 0áß(	3�)/∑ æËÝËÞß åâáÙåß0áß
Ð(#,3#2	)	> 4É  
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=		 / �Õ	0 / �Õ�0… / �ÕÜ0 Ð/�Ü2#3∑ ÖË,ÝËÞß 	∑ ÖËÝËÞß 23#2	0
Ð(#,			3#2	)   

 

=		 / �Õ	0 / �Õ�0… / �ÕÜ0 Ð/∑ ÖËÝËÞß 23#2	,			�Ü2#3∑ ÖËÝËÞß 0
Ð(#,			3#2	)    since ¾(8, �) = ¾(�, 8) 

�  

 

                        

Hence the unconditional IC joint distribution of exceedance statistics from any fixed number of independent Phase II samples is distribution-free.  
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Result 4B.4 

 

For exact time-varying control limits, we have 

 

+'��|	IC) = �(1 − 8)'1 − (1 − �)�) 
 

and (4.6) 

 

wxy+1'��|	IC) = ]/��(	3�)2� 0 ��(1 − (1 − �)�)� + �(2	)�3� (1 − (1 − �)��)�. 
 

 

Proof 

 

The conditional IC expected value of the charting statistic (çh = 'ègh,i + (M − è)çh3M): 
 

By using properties of expected values, recursive substitution (see Appendix 1A) and a finite 

geometric series (see Equation (A1.4) in Appendix 1A) together with the fact that  +'"�,#|�(#)) =
�%#	∀� (� = 1,2, … ) and �> = 0 we obtain the following: 

 

+'��|�(#)) 
= +'�"�,# + (1 − �)��3	|�(#)) 
= +'�∑ (1 − �)��3	�Æ> "�3�,# + (1 − �)��>|�(#))  
= �%#'1 − (1 − �)�)  
 

The conditional IC variance and standard deviation of the charting statistic                       

(çh = 'ègh,i + (M − è)çh3M): 
 

By using properties of variance, recursive substitution (see Appendix 1A) and a finite geometric 

series (see Equation (A1.4) in Appendix 1A) along with the fact that                   

1º»'"�,#|�(#)) = �%#(1 − %#) ∀� (� = 1,2, … ) we obtain the following: 
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1º»'��|�(#)) 
= 1º»'�∑ (1 − �)��3	�Æ> "�3�,# + (1 − �)��>|�(#))  
= �%#(1 − %#)�� /	3(	3�)sË	3(	3�)s 0  

 

The last expression simplifies to �%#(1 − %#)� /	3(	3�)sË�3� 0 so that  

 

wxy+1'��|�(#)) = ` �2 − � (1 − (1 − �)��)�%#(1 − %#). 
 

In order to obtain the unconditional properties of the charting statistic, we first have to provide 

some properties of %#. 

 

Properties of éi: 
 

In the IC case �'�(#)) = 1 − %# follows a Beta distribution with parameters $ and � + 1 − $.  

 

Hence,  

 

+(%#) = 2	3#2	   and +(%#�) = s2�2�3�#3�#2#s(2	)(2�)   so that 1º»(%#) = #(2	3#)(2	)s(2�). 
 

The unconditional IC expected value of the charting statistic (çh = 'ègh,i + (M − è)çh3M): 
 

+'��) = +×(Ù)+'�� 	|	�(#)) = +×(Ù) /�%#'1 − (1 − �)�)0 = �'1 − (1 − �)�)+×(Ù)(%#) =
�'1 − (1 − �)�) /2	3#2	 0 = �'1 − (1 − �)�)(1 − 8)   
where  8 = $/(� + 1). 
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The unconditional IC variance and standard deviation of the charting statistic                   

(çh = 'ègh,i + (M − è)çh3M): 
 

H8$(��) = H8$�+'��,�(#))� + +[H8$'��,�(#))] 
 

= H8$��%#'1 − (1 − �)�)� + +[ ��3� '1 − (1 − �)��)�%#(1 − %#)] 
 

=  ��'1 − (1 − �)�)�H8$(%#) +	 ��3� '1 − (1 − �)��)�(+(%#) − +(%#�))  
 

=�� #(3#2	)(2	)s(2�) '1 − (1 − �)�)� + ��3� '1 − (1 − �)��)� #(3#2	)(2	)(2�) 
 

=�� #(3#2	)(2	)(2	)(2�) '1 − (1 − �)�)� + ��3� '1 − (1 − �)��)� #(3#2	)(2	)(2�) 
 

= � �(	3�)(2�) ��'1 − (1 − �)�)� + �(2	)�3� '1 − (1 − �)��)� 
 

where 8 = $/(� + 1). 
 

Therefore, 

 

wxy+1'��|	IC) = `��8(1 − 8)� + 2 � ê�(1 − (1 − �)�)� + �(� + 1)2 − � (1 − (1 − �)��)ë. 
����  
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For steady-state control limits, we have 

 

+'��|	IC) = �(1 − 8) 
 

and (4.6) 

 

wxy+1'��|	IC) = ]/��(	3�)2� 0 �� + �(2	)�3� �. 
 

 

Proof 

 

The conditional IC expected value of the charting statistic (çh = 'ègh,i + (M − è)çh3M): 
 

By using properties of expected values, recursive substitution (see Appendix 1A) and a finite 

geometric series (see Equation (A1.4) in Appendix 1A) together with the fact that  +'"�,#|�(#)) =
�%#	∀� (� = 1,2, … ) and �> = �%# we obtain the following: 

 

+'��|�(#)) 
= +'�"�,# + (1 − �)��3	|�(#)) 
= +'�∑ (1 − �)��3	�Æ> "�3�,# + (1 − �)��>|�(#))  
= �%#'1 − (1 − �)�) + �%#(1 − �)�  = �%#  

 

The conditional IC variance and standard deviation of the charting statistic                        

(çh = 'ègh,i + (M − è)çh3M): 
 

By using properties of variance, recursive substitution (see Appendix 1A) and a finite geometric 

series (see Equation (A1.4) in Appendix 1A) along with the fact that                   

1º»'"�,#|�(#)) = �%#(1 − %#) ∀� (� = 1,2, … ) we obtain the following: 
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1º»'��|�(#)) 
= 1º»'�∑ (1 − �)��3	�Æ> "�3�,# + (1 − �)��>|�(#))  
= �%#(1 − %#)�� /	3(	3�)sË	3(	3�)s 0  

 

The last expression simplifies to �%#(1 − %#)� /	3(	3�)sË�3� 0 so that  

 

wxy+1'��|�(#)) = ` �2 − � (1 − (1 − �)��)�%#(1 − %#). 
 

However, the term '1 − (1 − �)��) approach unity as � → ∞, so that the term can be dropped. 

wxy+1'��|�(#)) = ` �2 − � �%#(1 − %#). 
 

In order to obtain the unconditional properties of the charting statistic, we first have to provide 

some properties of %#. 

 

Properties of éi: 
 

In the IC case �'�(#)) = 1 − %# follows a Beta distribution with parameters $ and � + 1 − $.  

 

Hence,  

 

+(%#) = 2	3#2	   and +(%#�) = s2�2�3�#3�#2#s(2	)(2�)   so that 1º»(%#) = #(2	3#)(2	)s(2�). 
 

The unconditional IC expected value of the charting statistic (çh = 'ègh,i + (M − è)çh3M): 
 

+'��) = +×(Ù)'�� 	|	�(#)) = +×(Ù)(�%#) = �+×(Ù)(%#) = � /2	3#2	 0 = �(1 − 8)   
where  8 = $/(� + 1). 
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The unconditional IC variance and standard deviation of the charting statistic                   

(çh = 'ègh,i + (M − è)çh3M): 
 

H8$(��) = H8$�+'��,�(#))� + +[H8$'��,�(#))] 
 

= H8$[�%#] + +[ ��3��%#(1 − %#)] 
 

=  ��H8$(%#) +	 ��3� �(+(%#) − +(%#�))  
 

=�� #(3#2	)(2	)s(2�)+ ��3�� #(3#2	)(2	)(2�) 
 

=�� #(3#2	)(2	)(2	)(2�)+ ��3�� #(3#2	)(2	)(2�) 
 

= � �(	3�)(2�) �� + �(2	)�3� � 
 

where 8 = $/(� + 1). 
 

 

Therefore, 

 

wxy+1'��|	IC) = `��8(1 − 8)� + 2 � ê� + �(� + 1)2 − � ë. 
�  
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4.6.3 Appendix 4C: Winsorization 

 

 As is well-known, the ARL isn’t a robust measure, i.e. it is dramatically impacted by the 

presence of outliers and, consequently, using winsorization is often necessary for practical 

applications. This further complicates the interpretation. In this section Monte Carlo simulations 

using small reference sample sizes are considered for the NPCUSUM-EX control chart. When       

� < 200, we recommend setting a-priori the maximum allowable length (of monitoring) at a certain 

high level, say, S. This will eliminate the possibility of high extreme runs by induced termination at 

S, which may be 10 to 15 times the nominal ARL0. Therefore, in course of estimation of the run-

length via Monte Carlo studies, if we don’t observe a value of the run-length variable (i.e. if the 

chart does signal) less than or equal to S, we enforce termination of the monitoring process 

(simulation of data) and set the run-length value equal to S. As a result, we obtain a winsorized ARL 

with winsorization at the upper tail of the run-length distribution.  

 

 While Tables 4.8 to 4.12 are based on Monte Carlo simulations with termination enforced at 

S = 5000 simulations, in Tables 4C.1 and 4C.2, we present a case study when a termination is 

enforced at S = 2000 simulations. In all those tables, we record the percentage of simulation 

replicates that naturally terminate before S and refer it as winsorization level (WL). Tables 4C.1 and 

4C.2 show the effect of the choice of a lower value of S. For brevity, only the normal distribution 

and target ARL0 = 370 (for Table 4C.1) and target ARL0 = 500 (for Table 4C.2) are considered. We 

see from Tables 4C.1 and 4C.2 that the control limits are naturally overestimated and as a 

consequence the OOC run-lengths also increase a little when the shift is small. The following points 

are essential to note while working with winsorization: 

 

i. The winsorized ARL with winsorization at the upper tail of the run-length distribution 

slightly underestimates the true ARL.  

 

ii. Winsorization at the upper tail of the run-length distribution stabilizes the variance and, 

consequently, increases the efficiency of the estimate of the ARL0. 

 

iii. @∗ determined on the basis of the winsorized ARL0 overestimates the true @. 
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Table 4C.1. The IC and OOC characteristics
xli

 of the run-length distribution for � = 100 and � = 5 for the N(0,1) distribution with nominal  

ARL0 = 370 and winsorization at the 2000
th

 step 

 
Chart Type 

 

Parametric CUSUM-�  chart with 

parameters estimated from a Phase I 

sample 

NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level (WL) 
WL = 90.6 WL = 92.6 WL = 90.6 WL = 92.7 WL = 90.7 WL = 92.9 

Control 

limits 
@ = 9.00 @ = 5.20 @ = 595.0 @ = 94.1 @ = 10.35 @ = 5.15 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 
; = �(4∗ − 4) = 5 × 0.07 = 0.35 4∗ 

 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2) 	≈ 0.57 

0.00 
367.44 (612.93) 

15, 34, 78, 303, 2000 

365.84 (576.38) 

11, 34, 101, 359, 2000 

369.49 (612.77) 

 15, 33, 80, 309, 2000 

368.60 (543.36) 

 7, 39, 129, 412, 2000 

366.25 (611.08) 

15, 34, 80, 304, 2000 

371.06 (568.33) 

11, 37, 112, 387, 2000 

0.25 
81.82 (224.01) 

10, 18, 29, 55, 258 

98.61 (247.75) 

7, 15, 29, 72, 386 

84.66 (237.11) 

 10, 17, 28, 55, 270 

109.51 (232.28) 

 4, 14, 38, 101, 440 

110.48 (285.48) 

11, 20, 33, 70, 427 

133.13 (284.64) 

8, 18, 42, 104, 547 

0.50 
25.60 (50.31) 

8, 12, 17, 26, 59 

26.99 (62.22) 

5, 9, 14, 25, 78 

26.19 (58.50) 

 8, 12, 17, 26, 61 

36.57 (81.63) 

 3, 8, 16, 36, 124 

37.97 (102.56) 

9, 14, 21, 33, 105 

45.90 (114.99) 

6, 11, 19, 39, 158 

0.75 
14.37 (9.07) 

7, 9, 12, 17, 29 

12.71 (14.03) 

4, 6, 9, 15, 31 

14.75 (9.76) 

 6, 9, 12, 17, 30 

15.52 (24.71) 

 2, 5, 9, 17, 46 

18.93 (17.13) 

8, 11, 15, 21, 41 

20.89 (36.14) 

5, 8, 13, 22, 58 

1.00 
10.51 (4.81) 

5, 8, 10, 12, 19 

8.26 (5.23) 

3, 5, 7, 10, 17 

10.76  (4.94) 

 5, 8, 10, 13, 19 

8.55 (8.27) 

 2, 4, 7, 10, 22 

13.62 (7.38) 

7, 9, 12, 16, 25 

12.13 (11.61) 

4, 7, 9, 14, 30 

1.50 
6.98 (2.16) 

4, 5, 7, 8, 11 

5.07 (2.08) 

3, 4, 5, 6, 9 

7.31 (2.31) 

 4, 6, 7, 9, 11 

4.63 (2.61) 

 2, 3, 4, 6, 9 

9.19 (2.95) 

6, 7, 9, 11, 15 

6.97 (3.60) 

3, 5, 6, 8, 14 

2.00 
5.28 (1.35) 

3, 4, 5, 6, 8 

3.70 (1.23) 

2, 3, 3, 4, 6 

5.70 (1.43) 

 4, 5, 5, 6, 8 

3.34 (1.45) 

 2, 2, 3, 4, 6 

7.22 (1.83) 

5, 6, 7, 8, 11 

5.10 (2.04) 

3, 4, 5, 6, 8 

 

  

                                                 
xli

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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Table 4C.2. The IC and OOC characteristics
xlii

 of the run-length distribution for � = 100 and � = 5 for the  N(0,1) distribution with nominal  

ARL0 = 500 and winsorization at the 2000
th

 step 

 
Chart Type 

 

Parametric CUSUM-�  chart with 

parameters estimated from a Phase I 

sample 

NPCUSUM-Rank chart NPCUSUM-EX median chart 

Winsorization 

level (WL) 
WL = 85.1 WL = 86.7 WL = 84.7 WL = 88.9 WL = 85.2 WL = 89.1 

Control 

limits 
@ = 11.05 @ = 5.95 @ = 725.0 @ = 246 @ = 12.10 @ = 5.85 

; 0 0.5S/√� 0 0.5_��(� + � + 1)/12 0 
; = �(4∗ − 4) = 5 × 0.07 = 0.35 4∗ 

 R 

NA NA NA NA 0.50 0.5`�(� + � + 1)4(� + 2) 	≈ 0.57 

0.00 
498.49 (712.37) 

20, 45, 111, 586, 2000 

505.28 (687.54) 

14, 45, 146, 636, 2000 

505.34 (715.71) 

 20, 44, 118, 606, 2000 

503.9843 (656.38) 

 10,57, 189, 660, 2000 

489.23 (709.53) 

19, 43, 109, 553, 2000 

502.26 (676.35) 

14, 46, 15, 650, 2000 

0.25 
125.02 (323.68) 

13, 23, 36, 73, 488 

134.21 (320.59) 

8, 18, 35, 90, 605 

123.61 (314.23) 

 13, 23, 36, 73, 490 

168.01 (340.48) 

5, 19, 51, 146, 762 

141.68 (341.30) 

6, 14, 24, 40, 88, 636 

178.81 (360.39) 

9, 22, 51, 149, 871 

0.50 
32.09 (69.69) 

10, 15, 21, 32, 71 

34.71 (88.19) 

6, 11, 17, 31, 103 

33.01 (80.32) 

 10, 15, 21, 32, 72 

45.76 (108.06) 

 3, 10, 19, 44, 163 

49.18 (130.78) 

11, 17, 25, 40, 126 

61.53 (152.20) 

6, 13, 23, 51, 220 

0.75 
17.66 (12.21) 

8, 11, 15, 20, 35 

15.00 (20.13) 

5, 7, 11, 17, 36 

17.92 (11.75) 

 8, 12, 15, 21, 35 

18.14 (32.02) 

3, 6, 11, 20, 54 

23.20 (27.99) 

9, 14, 18, 25, 47 

25.09 (56.04) 

6, 9, 14, 24, 70 

1.00 
12.67 (5.28) 

7, 9, 12, 15, 22 

9.36 (5.58) 

4, 6, 8, 11, 19 

12.90  (5.28) 

 7, 9, 12, 15, 23 

9.71 (10.00) 

 2, 5, 7, 12, 24 

16.19 (9.79) 

9, 11, 14, 19, 30 

13.78 (16.79) 

5, 7, 10, 15, 34 

1.50 
8.38 (2.41) 

5, 7, 8, 10, 13 

5.65 (2.23) 

3, 4, 5, 7, 10 

8.79 (2.57) 

 5, 7, 8, 10, 13 

5.18 (2.88) 

 2, 3, 5, 6, 10 

10.92 (3.46) 

7, 9, 10, 13, 17 

7.58 (3.77) 

4, 6, 6, 9, 14 

2.00 
6.32 (1.50) 

4, 5, 6, 7, 9 

4.15 (1.28) 

3, 3, 4, 5, 6 

6.77 (1.57) 

 5, 6, 7, 8, 10 

3.60 (1.55) 

 2, 2, 3, 4, 6 

8.56 (1.96) 

6, 7, 8, 9, 12 

5.63 (1.81) 

3, 4, 5, 6, 9 

                                                 
xlii

 Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles (in this order). 
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4.6.4 Appendix 4D: SAS® programs 

 

4.6.4.1 SAS® program to compute the run-length characteristics of the NPCUSUM-EX 

chart when the underlying process distribution is normal 

 

proc iml; 

m = 100;    *Size of the IC Phase I reference sample; 

sim = 100000;   *Number of simulations;    

runlength = j(sim,1,.); 

n = 5;    *Size of the Phase II test sample; 

percentile_of_interest = 75; *Percentile of interest;  

r = (percentile_of_interest/100)*m;    

gamma = 0.5;   *Shift;    

stdev = 1;       

mean = gamma/sqrt(n);    

d = (m-r+1)/(m+1); 

*Stdev of Uj,r; 

A = r/(m+1); 

var_ujr =n*(n-1)* ((r+1)/(m+2))*A-(n*n)*(A*A)+n*A; 

stdev_ujr = sqrt(var_ujr); 

* Design parameters; 

gamma_for_k = gamma;     

k = (0.5*gamma_for_k)*stdev_ujr; 

H = 12; 

*Obtaining the percentile; 

keep = j(2,1,.); 

*Generating an IC Phase I sample; 

xi = j(m,1,.); 

do j = 1 to sim; 

* Generating observations from the Normal distribution; 

call randgen(xi,'NORMAL',0,1); 

xi_rank = xi || rank(xi); 

do l = 1 to m; 

    if xi_rank[l,2] = r then keep[1,]=xi_rank[l,1]; 

    if xi_rank[l,2] = (r+1) then keep[2,]=xi_rank[l,1]; 

    val_of_percentile = sum(keep)/2; 

end; 

*Calculating the CUSUM; 

count = 0; 

indicator = 0; 

Ci_1_plus = 0; 

Ci_1_minus = 0; 

do i = 1 to 100000000 until (indicator = 1); 

count = count + 1; 

*Generating a Phase II sample; 

yi = j(n,1,.); 

call randgen(yi,'NORMAL',mean,1); 

*Calculating the precedence statistic; 

precedence = j(n,1,0); 

        do i = 1 to n; 

            if yi[i,]>val_of_percentile then precedence[i,]=1; 

        end; 

U = sum(precedence); 

*Charting statistics; 

Ci_plus = max (0, (Ci_1_plus + (U - n*d) - k)); 

Ci_minus = max (0, (Ci_1_minus - (U - n*d) - k)); 

*Comparing the charting statistics to the control limits; 

if ((Ci_plus >= H) | (Ci_minus >= H)) then indicator = 1; 
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 Ci_1_plus = Ci_plus; 

 Ci_1_minus = Ci_minus; 

end; 

runlength[j,1] = count; 

end; 

create CUSUM from runlength [colname = {RL}]; 

append from runlength; 

proc univariate data = CUSUM noprint; 

var RL; 

output out = output_row1 median = median qrange = IQR; 

output out = output_row2 p5 = lower_perc q1 = first_quar q3 = third_quar p95 = 

upper_perc; 

proc print data = output_row1; 

proc print data = output_row2; 

run; 
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4.6.4.2 SAS® program to compute the run-length characteristics of the NPCUSUM-Rank 

chart when the underlying process distribution is normal 

 

quit; 

proc iml; 

m = 100;     *Size of the IC Phase I reference sample; 

sim = 100000;    *Number of simulations;    

runl = j(sim,1,.); 

n = 5;     *Size of the Phase II test sample;   

exp_w = (n*(n+m+1))/2;   *Expected value of W; 

stdev_w = sqrt (n*m*(n+m+1)/12); *Standard deviation of W; 

gamma = 0.25;     *Shift;    

stdev = 1;    

mean  = gamma/sqrt(n);    

gamma_for_k = gamma;      *Design parameters of CUSUM chart; 

k = (gamma_for_k)*stdev_w; 

H = 386; 

do j = 1 to sim; 

count = 0;     * Initializing values; 

indicator = 0; 

Ci_1_plus = 0; 

Ci_1_minus = 0; 

xi = j(m,1,.); 

 zeros = j(m,1,0); 

call randgen(xi,'NORMAL',0,1); * Generating an IC Phase I sample; 

xii = zeros||xi; 

do i = 1 to 10000000 until (indicator = 1);    

 count = count + 1; 

 yi = j(n,1,.); 

 call randgen(yi,'NORMAL',mean,1); * Generating a Phase II sample; 

      *Obtaining the rank-sum statistics; 

 ones = j(n,1,1); 

      yii = ones||yi; 

 comb = xii // yii; 

 rank = ranktie(comb[,2]); 

 comb_rank = comb || rank; 

 call sort (comb_rank, {2 3}, {3}); 

 W_vec = comb_rank[,1]#comb_rank[,3]; 

 W = sum(W_vec); 

      *Charting statistics; 

 Ci_plus = max (0, Ci_1_plus + W - exp_w - k); 

 Ci_minus = max (0, Ci_1_minus + exp_w - k - W); 

      *Comparing the charting statistics to the control limits; 

 if ((Ci_plus >= H) | (Ci_minus >= H)) then indicator = 1; 

      Ci_1_plus = Ci_plus; 

      Ci_1_minus = Ci_minus; 

end; 

runl[j,1] = count; 

end; 

create CUSUM from runl [colname = {RL}]; 

append from runl; 

proc univariate data = CUSUM noprint; 

var RL; 

output out = output_row1 median = median qrange = IQR;  

output out = output_row2 p5 = lower_perc q1 = first_quar q3 = third_quar p95 = 

upper_perc; 

proc print data = output_row1; 

proc print data = output_row2; 

run; 
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4.6.4.3 SAS® program to compute the run-length characteristics of the CUSUM-� chart 

when the underlying process distribution is normal 

 
quit; 

proc iml; 

sim = 100000;  * Number of simulations; 

m = 100;   *Size of the IC Phase I reference sample; 

n = 5;   *Size of the Phase II test sample;     

stdev = 1;      

H = 30.1;   *Decision interval; 

k = 0.1*stdev/sqrt(n); *Reference value; 

gamma = 0;   *Shift;    

runl = j(sim,1,.); 

mean = gamma*stdev/(sqrt(n));  

do o = 1 to sim; 

 *Generating Phase I observations from the Normal distribution; 

 xi = j(m,1,.); 

 call randgen(xi,'NORMAL',0,1); 

 *Obtaining the average and variance; 

 x_bar = sum(xi)/m; 

 ave_vec = j(m,1,x_bar); 

 diff_vec = xi - ave_vec; 

 diff_vec_sq = diff_vec # diff_vec; 

 var_x = sum(diff_vec_sq)/(m-1); 

 *Initializing values; 

 indicator = 0; 

 count = 0; 

 Ci_1_plus = 0; 

 Ci_1_minus = 0;  

 do i = 1 to 1000000000 until (indicator = 1); 

 count = count + 1; 

 *Generating Phase II observations from the Normal distribution; 

 yi = j(n,1,.); 

 call randgen(yi,'NORMAL',mean,1); 

 *Obtaining the average; 

 y_bar = sum(yi)/n; 

 *Obtaining the var; 

 y_ave_vec = j(n,1,y_bar); 

 y_diff_vec = yi - y_ave_vec; 

 y_diff_vec_sq = y_diff_vec # y_diff_vec; 

 var_y = sum(y_diff_vec_sq)/(n - 1); 

 fin = sqrt(m*n*(m+n-2)/(m+n))*(y_bar-x_bar)/sqrt((m-1)*var_x+(n-1)*var_y);  

 * Charting statistics; 

 Ci_plus = max(0, (Ci_1_plus + fin - k)); 

 Ci_minus = max(0, (Ci_1_minus - fin - k)); 

 *Comparing the charting statistics to the control limits; 

  if ((Ci_plus >= H) | (Ci_minus >= H)) then indicator = 1; 

  Ci_1_plus = Ci_plus; 

  Ci_1_minus = Ci_minus; 

 end; 

    runl[o,1] = count; 

end; 

create CUSUM from runl[colname={RL}]; 

append from runl; 

proc univariate data = CUSUM noprint; 

var RL; 

output out=Final mean=mean_ std=std_ p5=p5_ q1=q1_ median=median_ q3=q3_  

p95=p95_; 

proc print data = Final; 

run; 
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4.6.4.4 SAS® program to compute the run-length characteristics of the NPEWMA-EX chart 

when the underlying process distribution is normal 

 
proc iml; 

m = 100;    *Size of the IC Phase I reference sample; 

r = 25;    * Percentile of interest; 

sim = 100000;   *Number of simulations; 

runlength = j(sim,1,.); 

n = 5;    *Size of the Phase II test sample; 

lambda = 0.05;   *Design parameter of the EWMA control chart; 

L = 2.041;    *Design parameter of the EWMA control chart; 

gamma = 0;    *Shift; 

stdev = 1; 

mean  = gamma*(stdev/sqrt(n)); 

*Generating an IC Phase I sample; 

xi = j(m,1,.); 

do j = 1 to sim; 

 * Generating observations from the Normal distribution; 

 call randgen(xi,'NORMAL',0,1); 

 call SORTNDX(xi_sorted, xi, {1});  

 xi=xi[xi_sorted,]; 

 val_of_percentile = xi[r,1]; *Obtaining the percentile; 

 *Calculating the EWMA; 

 count = 0; 

 indicator = 0; 

 z_1=0; 

 do i = 1 to 100000000000000000 until (indicator = 1); 

 count = count + 1; 

 *Generating a Phase II sample; 

 y = j(n,1,.); 

 *Generating observations from the Normal distribution; 

 call randgen(y,'NORMAL',mean,1); 

 *Calculating the precedence statistic; 

 precedence = j(n,1,0); 

        do ll = 1 to n; 

            if y[ll,]> val_of_percentile then precedence[ll,]=1; 

        end; 

 U = sum(precedence); 

 *Charting statistic; 

 z = lambda*U + (1-lambda)*z_1; 

 *Control limits; 

 UCL= n*((m - r + 1)/(m + 1 ))*(1-(1-lambda)**(i))+L*sqrt(((n**2)*(r*(m-

 r+1))/(((m+1)**2)*(m+2)))*((1-(1-lambda)**(i))**2)+(1-(1-

 lambda)**(2*(i)))*(lambda/(2-lambda))*n*(r*(m-r+1))/((m+1)*(m+2))) ; 

 LCL= n*((m - r + 1)/(m + 1 ))*(1-(1-lambda)**(i))-L*sqrt(((n**2)*(r*(m-

 r+1))/(((m+1)**2)*(m+2)))*((1-(1-lambda)**(i))**2)+(1-(1-

 lambda)**(2*(i)))*(lambda/(2-lambda))*n*(r*(m-r+1))/((m+1)*(m+2))) ; 

 if (z < UCL) & (z > LCL) then do; indicator = 0; end; 

 if (z > UCL) | (z < LCL) then do; indicator = 1; end; 

 z_1=z; 

end; 

runlength[j,1] = count; 

end; 

create EWMA from runlength [colname = {RL}]; 

append from runlength; 

proc univariate data = EWMA noprint; 

var RL; 
output out=Final median=median_ p5=p5_ q1=q1_ q3=q3_  p95=p95_; 

proc print data = Final; 

run; 
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4.6.4.5 SAS® program to compute the run-length characteristics of the NPEWMA-Rank 

chart when the underlying process distribution is normal 

 

quit; 

proc iml; 

m = 100;     *Size of the IC Phase I reference sample; 

sim = 10000;    *Number of simulations;  

runl = j(sim,1,.); 

n = 5;     *Size of the Phase II test sample; 

exp_w = (n*(n+m+1))/2;    *Expected value of W; 

stdev_w = sqrt (n*m*(n+m+1)/12); *Standard deviation of W; 

lambda = 0.2;    *Smoothing parameter of the EWMA chart; 

LCL = 219.5;    *Lower control limit; 

UCL = 310.5;    *Upper control limit; 

gamma = 2;     *Shift;  

stdev = 1; 

mean  = gamma*(stdev/sqrt(n)); 

do j = 1 to sim; 

*Initializing values; 

count = 0; 

indicator = 0; 

zi_1 = exp_W; 

xi = j(m,1,.); 

zeros = j(m,1,0); 

*Generating an IC Phase I sample; 

call randgen(xi,'NORMAL',0,1); 

xii = zeros||xi; 

do i = 1 to 100000000000000000 until (indicator = 1); 

 count = count + 1; 

 yi = j(n,1,.); 

      *Generating a Phase II sample; 

 call randgen(yi,'NORMAL',mean,1); 

      *Obtaining the rank-sum statistics; 

 ones = j(n,1,1); 

 yii = ones||yi; 

 comb = xii // yii; 

 rank = ranktie(comb[,2]); 

 comb_rank = comb || rank; 

 call sort (comb_rank, {2 3}, {3}); 

 W_vec = comb_rank[,1]#comb_rank[,3]; 

 W = sum(W_vec); 

      *Charting statistic; 

 zi = lambda*W + (1-lambda)*zi_1; 

      *Comparing the charting statistics to the control limits; 

 if ((zi >= UCL) | (zi <= LCL)) then indicator = 1; 

      zi_1 = zi; 

end; 

runl[j,1] = count; 

end; 

create EWMA from runl [colname = {RL}]; 

append from runl; 

proc univariate data = EWMA noprint; 

histogram; 

inset mean std p5 q1 median q3 p95 / format = 10.2; 

run; 
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4.6.4.6 SAS® program to compute the run-length characteristics of the EWMA-� chart 

when the underlying process distribution is normal 

 
quit; 

data final; 

proc iml; 

sim = 100000;   *Number of simulations;  

runl = j(sim,1,.); 

lambda = 0.2;   *Design parameter of the EWMA control chart; 

L = 3;    *Design parameter of the EWMA control chart; 

n = 5;    *Phase II test sample size; 

m = 100;    *Phase I reference sample size;  

gamma = 2;    *Shift; 

stdev = 1;  

mean = gamma*(stdev/sqrt(n)); 

UCL = 0 + 1.01*L*sqrt((lambda/(2-lambda))); *Upper control limit; 

LCL = 0 - 1.01*L*sqrt((lambda/(2-lambda))); *Lower control limit; 

do k = 1 to sim; 

 *Generating an IC Phase I sample; 

 xi = j(m,1,.); 

 call randgen(xi,'NORMAL',0,1); 

 x_bar = sum(xi)/m; 

 ave_vec = j(m,1,x_bar); 

 diff_vec = xi - ave_vec; 

 diff_vec_sq = diff_vec # diff_vec; 

 var_x = sum(diff_vec_sq)/(m - 1); 

 *Initializing values; 

  indicator = 0; 

 count = 0; 

 zi_1 = 0; 

 do i = 1 to 100000 until (indicator = 1); 

    count = count + 1; 

 *Generating Phase II samples; 

 yi = j(n,1,.); 

 call randgen(yi,'NORMAL',mean,1); 

 y_bar = sum(yi)/n; 

 y_ave_vec = j(n,1,y_bar); 

 y_diff_vec = yi - y_ave_vec; 

 y_diff_vec_sq = y_diff_vec # y_diff_vec; 

 var_y = sum(y_diff_vec_sq)/(n - 1); 

 fin = sqrt(m*n*(m+n-2)/(m+n))*(y_bar-x_bar)/sqrt((m-1)*var_x+(n-1)*var_y); 

 * Charting statistic; 

      zi = lambda*fin + (1 - lambda) * zi_1; 

 * Comparing charting statistic with the control limits; 

   if (zi<UCL) & (zi>LCL) then do; indicator = 0; end; 

    if (zi>UCL) | (zi<LCL) then do; indicator = 1; end; 

 zi_1 = zi; 

end; 

    runl[k,1] = count; 

end; 

create EWMA from runl[colname={RL}]; 

append from runl; 

proc univariate data = EWMA noprint; 

var RL; 

output out=Final mean=mean_ std=std_ p5=p5_ q1=q1_ median=median_ q3=q3_  

p95=p95_; 

proc print data = Final; 

run; 
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4.6.4.7 SAS® programs to compute the run-length characteristics of the above-mentioned 

charts when the underlying process distribution is non-normal 

 

Distribution Necessary amendments to the SAS® programs above 

G
A

M
(F,1

) 
*Shape parameter (F) of the Gamma distribution; 
shape = 1;  *	F = 1 for GAM(1,1) which is EXP(1); 
            *	F = 3 for GAM(3,1); 
 

* IC distribution; 

call randgen(xi,'gamma',shape); 

xi = (xi - shape)/sqrt(shape); 

 

* OOC distribution; 

call randgen(yi,'gamma', shape); 

yi=(yi-shape)/sqrt(shape)+gamma*(stdev/sqrt(n)); 

t(
3

) 

*Degrees of freedom for the t-distribution; 

df = 3; 

 

* IC distribution; 

call randgen(xi,'t',df); 

term = sqrt ( (df-2)/df); 

xi = xi # term; 

 

* OOC distribution; 

call randgen(yi,'t',df); 

yi = yi # term + gamma/sqrt(n); 

D
E

(0
,1

) 

*Computing the stdev; 

stdev = sqrt(2);   

 

* Note that a Probability Integral Transformation was used to 

obtain the Double Exponential distribution; 

* IC distribution; 

xi = j(m,1,.); 

ui = j(m,1,.); 

call randgen(ui,'UNIFORM'); 

xi=quantile('laplace',ui,0,1); 

xi = (1/sqrt(2))*xi; 

 

* OOC distribution; 

yi = j(n,1,.); 

uni = j(n,1,.); 

call randgen(uni,'UNIFORM'); 

yi=quantile('laplace',uni,gamma*(stdev/sqrt(n)),1); 

yi = (1/sqrt(2))*yi; 
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M
ix

tu
re

 o
r 

C
o

n
ta

m
in

at
ed

 N
o

rm
al

 
 

*Mixture level; 

eta = 0.4; 

m1 =  (1-eta)*m; 

m2 = eta*m; 

n1 = (1-eta)*n; 

n2 = eta*n; 

 

*Mixture normal distribution; 

mu1 = 0; 

mu2 = 0; 

sigma1 = 0.25; 

sigma2 = 4; 

overall_mean = (1-eta)*mu1 + eta*mu2;  

overall_var  = ( (1-eta)*(mu1*mu1 + sigma1*sigma1) + eta*(mu2*mu2   

               + sigma2*sigma2) ) - (overall_mean**2); 

overall_stdev = sqrt(overall_var);  

*Generating an IC Phase I sample; 

xi_1 = j(m1,1,.); 

xi_2 = j(m2,1,.); 

 

* Generating observations from the CN distribution; 

call randgen(xi_1,'NORMAL',mu1,sigma1); 

call randgen(xi_2,'NORMAL',mu2,sigma2); 

xi = xi_1//xi_2; 

xi = (xi - overall_mean) / overall_stdev; 

 

*Generating a Phase II sample; 

yi_1 = j(n1,1,.); 

yi_2 = j(n2,1,.); 

 

*Generating observations from the CN distribution; 

call randgen(yi_1,'NORMAL',mu1,sigma1); 

call randgen(yi_2,'NORMAL',mu2,sigma2); 

y = yi_1//yi_2; 

y = (y - overall_mean) / overall_stdev + gamma/sqrt(n); 

L
o

g
-L

o
g

is
ti

c 
(F=

1, G
=2.

5) 

*Parameters of the Log-logistic distribution; 

alpha = 1; 

beta = 2.5; 

 

*Computing the stdev; 

pi = constant('PI'); 

t = pi/beta; 

var = (alpha*alpha)*(((2*t)/sin(2*t))-(t*t)/(sin(t)*sin(t))); 

stdev = sqrt(var); 

 

* Note that a Probability Integral Transformation was used to 

obtain the Log-Logistic distribution; 

* IC distribution; 

temp_1 = j(m,1,.); 

call randgen (temp_1, 'UNIFORM'); 

xi = log(alpha)+(1/beta)*(log(temp_1/(1- 

     temp_1))); 

xi = exp(xi); 
 
* OOC distribution; 

call randgen (temp_2, 'UNIFORM'); 

yi = log(alpha)+(1/beta)*(log(temp_2/(1-temp_2))); 

yi = exp(yi)+ gamma*(stdev/sqrt(n)) ; 
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Chapter 5  

 

Concluding Remarks: Summary and Recommendations for Future Research 

 

 In this final section we give a brief summary of the research conducted in this dissertation and 

offer concluding remarks concerning unanswered questions and future research opportunities. 

 

 Statistical Process Control (SPC) is a collection of statistical procedures and problem solving 

tools that are used to control, monitor and improve the quality of the output of a process. In this 

dissertation we focused on a variety of aspects related to a powerful statistical tool often used in quality 

improvement efforts within the realm of SPC, namely, the control chart. More specifically, we focused 

on nonparametric control charts since standard control charts are often based on the assumption that the 

observations follow a specific parametric distribution (such as the normal distribution).  

 

 However, in many applications we do not have enough information to make this assumption. In 

such situations, development and application of control charts that do not depend on a particular 

distributional assumption is desirable and this is where nonparametric or distribution-free control charts 

can be useful. A key advantage of nonparametric charts is that its in-control run-length distribution is 

the same for all continuous process distributions. This means, for example, that the false alarm rate and 

the in-control average run-length of a nonparametric chart is the same for all continuous distributions. 

This is not true for parametric control charts in general and consequently their in-control robustness can 

be a legitimate concern.   

 

 In this dissertation we discussed some ideas and recent developments in the area of univariate 

nonparametric control charts. In the next few paragraphs we point out some of the highlights of the 

research carried out in this dissertation and state some future research ideas that could be pursued. We 

also list the research outputs associated with this dissertation; this includes technical reports and peer-

reviewed articles that have been published, articles that have been accepted for publication, local and 

international conferences where papers have been presented and draft articles that have been submitted 

for publication and are currently under review. 
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Phase I control charting  

 

 Chapter 1 served as an introduction where some important terminology and concepts related to 

SPC were defined, In Chapter 2 we started off by giving a literature overview of Shewhart-type Phase I 

control charts followed by the design and implementation of these charts. A nonparametric Shewhart-

type Phase I control chart for monitoring the location of a continuous variable was proposed. The chart 

is based on the pooled median of the available Phase I samples and the charting statistics are the counts 

(number of observations) in each sample that are less than the pooled median. Although the literature 

on Phase I control charting has witnessed a tremendous growth (and rightfully so) in the last few years, 

much more remains to be done.  We list a few of these ideas below. 

 

i. From a practical standpoint, control charting procedures must be made more accessible to 

practitioners and, to this end, the ease of implementation is vital. Computer programs, add-ons 

to popular software packages such as Minitab® SAS®, and R® and / or websites would greatly 

help in this effort. 

 

ii. In terms of theoretical (i.e. desk research), more work needs to be done on nonparametric Phase 

I charts for monitoring scale and joint monitoring of location and scale. Although there are 

some articles in the literature that address these problems (see e.g. Human et al. (2010b)), these 

are parametric control charting procedures based on the assumption that the observations follow 

a specific parametric distribution. As far as we are aware, the only articles considering Phase I 

control charts for evaluating process scale were published recently, in 2010, by Jones-Farmer 

and Champ (2010) and Bakir (2010), respectively. 

 

iii. Development of nonparametric Phase I control charts for individual measurements needs to be 

done. Frequently in practice, situations arise that require a charting procedure for individuals 

data, for example, when little data are available or where it does not make sense to group 

measurements. Although there are some articles in the literature that address this problem (see 

e.g. Nelson (1982), Roes et al. (1993) and Bryce et al. (1997)), these are parametric control 

charting procedures based on the assumption that the observations follow a specific parametric 

distribution. It has been pointed out that with individuals data, since the central limit theorem 

does not apply,  the validity of normal theory charts such as the ones mentioned in Montgomery 

(2009, Chapter 6, page 226) become suspect at best. 
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Phase II control charting  

 

 In Chapters 3 and 4 of this dissertation Phase II control charts were introduced and considered 

for the case when the underlying parameters of the process distribution are known or specified (see 

Chapter 3) and for the case when the underlying parameters of the process distribution are unknown 

and need to be estimated (see Chapter 4). Various nonparametric Phase II control charts were proposed 

and studied in this body of work; these included two nonparametric EWMA charts based on the sign 

and signed-rank statistics for the situation when the IC process median is specified or known, a 

nonparametric EWMA chart based on exceedance statistics for monitoring the unknown median and a 

nonparametric CUSUM chart based on exceedance statistics for monitoring the unknown median. 

Although the literature on nonparametric Phase II control charting has witnessed a tremendous growth 

(and rightfully so) in the last few years, much more remains to be done: 

 

i. From a practical standpoint, nonparametric control charting procedures must be made more 

accessible to practitioners and, to this end, it would help if software developers were to include 

nonparametric control charting applications to their computer programs. Consequently, add-ons 

to popular software packages such as Minitab® SAS®, and R® and / or websites would greatly 

help in this effort. 

 

ii. There is a major shortcoming regarding the application of nonparametric charts in industry. 

This could be due to a number of contributing factors, such as the fact that nonparametric 

methods are not well-known, since they are only typically touched on in undergraduate and / or 

postgraduate courses in most programs. Also, in a search of standard SPC books on the market, 

very little on nonparametric control charting was found. For example, in the well-known SPC 

book by Montgomery (2009), only one page is devoted to nonparametric control charts (see 

Montgomery (2009) page 487). Thus, in a well-known SPC book of over 700 pages only 1 page 

is devoted to nonparametric control charting applications.  

 

iii. In terms of research, more work needs to be done on nonparametric Phase II charts for 

monitoring scale and joint monitoring of location and scale. Recently, in their overview paper, 

Chakraborti et al. (2011) noted that not much work is currently available on nonparametric 

Phase II charts for monitoring scale and joint monitoring of location and scale. Although there 

are some articles in the literature that address the problem of monitoring scale (see e.g. Chang 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 328 

and Gan (1994), Chen et al. (2001) and Castagliola (2005)), these are parametric control 

charting procedures based on the assumption that the observations follow a specific parametric 

distribution. In the literature, only a handful of articles have been published on nonparametric 

Phase II charts for monitoring scale and joint monitoring of location and scale; these include 

Amin et al. (1995), Das and Bhattacharya (2008), Murakami and Matsuki (2010), Khilare and 

Shirke (2012), Ross et al. (2011), Mukherjee and Chakraborti (2012) and Chowdhury et al. 

(2013). 

 

Research outputs 

 

 Next we list the research outputs associated with this dissertation. This includes technical 

reports and peer-reviewed articles that have been published, articles that have been accepted for 

publication, local and international conferences where papers have been presented and draft articles 

that have been submitted and are currently under review. 

 

Published articles 

 

i. Mukherjee, A., Graham, M.A. and Chakraborti, S. (2013). “Distribution-free exceedance 

CUSUM control charts for location.” Communications in Statistics - Simulation and 

Computation, 42 (5), 1153-1187. 

 

ii. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Distribution-free exponentially 

weighted moving average control charts for monitoring unknown location.” Computational 

Statistics and Data Analysis, 56 (8), 2539–2561. 

 

iii. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “A nonparametric EWMA sign chart 

for location based on individual measurements.” Quality Engineering, 23 (3), 227-241. 

 

iv. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “A nonparametric exponentially 

weighted moving average signed-rank chart for monitoring location.” Computational Statistics 

and Data Analysis, 55 (8), 2490-2503. 
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v. Chakraborti, S., Human, S.W. and Graham, M.A. (2011). “Nonparametric (distribution-free) 

quality control charts.” In Handbook of Methods and Applications of Statistics: Engineering, 

Quality Control, and Physical Sciences. N. Balakrishnan, Ed., 298-329, John Wiley & Sons, 

New York. 

 

vi. Graham, M.A., Human, S.W. and Chakraborti, S. (2010). “A Phase I nonparametric Shewhart-

type control chart based on the median.” Journal of Applied Statistics, 37 (11), 1795-1813. 

 

vii. Chakraborti, S., Human, S.W. and Graham, M.A. (2009). “Phase I Statistical Process Control 

charts: An overview and some results.” Quality Engineering, 21 (1), 52-62. 

 

Articles under review 

 

i. Graham, M.A., Chakraborti, S. and Mukherjee, A. “Design and implementation of CUSUM 

exceedance control charts for unknown location.” Submitted to Computational Statistics and 

Data Analysis. 

 

Technical reports 

 

i. Graham, M.A., Human, S.W. and Chakraborti, S. (2009). “A nonparametric EWMA control 

chart based on the sign statistic.” Technical report, 09/04, Department of Statistics, University 

of Pretoria, Pretoria, South Africa, ISBN 978-1-86854-777-7. 

 

International conferences (presentations) 

 

i. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Nonparametric control charts for 

monitoring location based on the exceedance statistic.” Joint Statistical Meetings (JSM), San 

Diego, California, USA, 28 July – 2 August 2012. 

 

ii. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Nonparametric control charts 

based on exceedance statistics.” The 22
nd

 Columbian Symposium on Statistics, Bucaramanga, 

Colombia, 17 – 21 July 2012. 
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iii. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “Monitoring location: A 

nonparametric control chart based on the signed-rank statistic.” The 58th Session of the 

International Statistical Institute (ISI), Dublin, Ireland, 21 – 26 August 2011. 

 

iv. Graham, M.A., Chakraborti, S. and Human, S.W. (2010). “A nonparametric EWMA control 

chart for location based on the sign statistic.” Joint Statistical Meetings (JSM), Vancouver, 

British Columbia, Canada, 31 July – 5 August 2010. 

 

v. Graham, M.A., Human, S.W. and Chakraborti, S. (2009). “The design and implementation of 

a Phase I nonparametric control chart based on the median.” The 57
th

 Session of the 

International Statistical Institute (ISI), Durban, South Africa, 16 – 22 August 2009. 

 

International conferences (published proceedings) 

 

i. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Nonparametric control charts for 

monitoring location based on the exceedance statistic.” JSM 2012 Proceedings, Section on 

Quality and Productivity, 1611 – 1625, San Diego, California, USA. 

 

ii. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “Monitoring location: A 

nonparametric control chart based on the signed-rank statistic.” International Statistical 

Institute (ISI) Proceedings, Dublin, Ireland. 

 

iii. Graham, M.A., Chakraborti, S. and Human, S.W. (2010). “A nonparametric EWMA control 

chart for location based on the sign statistic.” JSM 2010 Proceedings, Section on Quality and 

Productivity, 1808 – 1816, Vancouver, British Columbia, Canada. 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 331 

National conferences (presentations) 

 

i. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Nonparametric CUSUM and 

EWMA control charts for monitoring unknown location based on the exceedance statistic.” 

The 54
th

 annual conference of the South African Statistical Association (SASA), Nelson 

Mandela Metropolitan University (NMMU), Port Elizabeth, 5 – 9 November 2012. 

 

ii. Graham, M.A., Mukherjee, A. and Chakraborti, S. (2012). “Monitoring location: Distribution-

free exponentially weighted moving average control charts based on the exceedance statistic.” 

1
st
 ICCSSA (Institute of Certificated and Chartered Statisticians of South Africa) Convention, 

Lagoon Beach Hotel, Milnerton, Cape Town, 28 – 29 March 2012. 

 

iii. Graham, M.A., Chakraborti, S. and Human, S.W. (2011). “Nonparametric exponentially 

weighted moving average control charts based on the sign and signed-rank statistics.” The 53
rd

  

annual conference of the South African Statistical Association (SASA), CSIR, Pretoria, South 

Africa, 1 – 3 November 2011. 

 

iv. Graham, M.A., Chakraborti, S. and Human, S.W. (2010). “Monitoring location: A 

nonparametric EWMA control chart based on the sign statistic.” The 52
nd

 annual conference 

of the South African Statistical Association (SASA), North-West University, Potchefstroom 

Campus, South Africa, 8 – 12 November 2010. 

 

 

v. Graham, M.A., Human, S.W. and Chakraborti, S. (2008). “A Phase I nonparametric control 

chart based on the median.” The 51
st
 annual conference of the South African Statistical 

Association (SASA), University of Pretoria, Pretoria, South Africa, 27 – 31 October 2008. 

 

The end. 
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