Meta Typing is Compatible to the Typed
SPO Approach

Stefan Gruner
Fachbereich Informatik
Technische Universitat Berlin
http://tfs.cs.tu-berlin.de/ stefan/

Abstract. Meta-typing, as for example employed in the PROGRES environ-
ment, is syntactic sugar making the specification of typed graph grammar
systems more convenient. This paper presents an approach of meta-typing
that fits in the well-elaborated framework of the typed single pushout
(spo) approach to graph transformation. In a first step the node meta-
typing system of PROGRES is generalized such that edges may be subject
to meta-typing, too. In a second step it is shown how any meta-typed
graph grammar can be transformed into an equivalent ordinary typed spPo
graph grammar.

The main result of this contribution is that the presented concept of meta-
typing is compatible to the sPO theory and can be implemented, therefore,
into the sPo-based graph grammar engineering environment AGG without
spoiling its formally sound basis. As a more practical result it can be
claimed that the well-known application gap between PROGRES and AGa
will certainly become smaller in the immediate future.

1 Introduction

A remarkable advantage of the well-known PROGREs system [10] is the pos-
sibility of using meta-typed nodes in the graphs of the left hand sides of the
graph replacement rules. For example: If there is some node (vertex) v of type
x occuring in some host graph G, and if there is some node (vertex) ¢ of type
X occuring in some left hand graph L of some graph replacement rule r which
shall be applied to GG, then v may not be mapped onto v in case that X is not
a meta-type of z.% Continuing the example, the meta-type X is an abbrevia-
tion subsuming every of its possible ground-types {«1,...,2,} as explained in
more detail in [8]. Thus: the advantage of meta-typing turns out as a convenient
reduction of alternatives in a graph grammar specification.

! In the terminology of PROGRES (belonging to the algorithmic approaches of graph
transformation rather than to the algebraic ones), the nodes and edges occuring in
a replacement rule are called “node variables” and “edge variables”. The concept of
that terminology is to instantiate those variables with actual host graph nodes and
edges at rule application time. Finding such an instantiation, however, is equivalent
to finding homomorphic mappings from the nodes and edges of a rule graph onto
some nodes and edges of a host graph (expressed in the terminology of the algebraic
graph transformation approach). For a comparative discussion of algorithmic versus
algebraic graph transformation approaches the reader is referred to [12].

Stefan Gruner

While the PROGRES system allows meta-typing only on nodes, the Aca sys-
tem [1] allows no meta-typing at all, because this system is immediately derived
from the typed single pushout approach (spo) as described in [4]. Therefore,
the goal and the contribution of this paper is to show that meta-typing is not
incompatible with the SPo approach, such that the concept of meta-typing is im-
plementable in Aca, too. Unlike PROGRES, the here presented approach allows
meta-typing also on edges (arcs). Finally, the typing systems of both PROGRES
and AGG are expressed and compared in terms of a more general formalism.

1.1 Genealogy of the Meta-Typing Approach

The meta-typing approach presented in this paper combines mainly two ideas
that can be found in the recent literature on graph transformation systems. In
[6], you can find a partially-ordered labeling system wherein variables play a
similar role as the meta-types which belong to the topics of this contribution. In
[5] you can find a concept of a type-graph restricting the structure (shape, form,
gestalt) of graphs that shall be graph-grammatically generated. Type schemas,
as introduced in the following section, may be viewed as a generalized cross-over
of partially-ordered labeling systems and non-hierarchically labeled type graphs.

2 Type Schema

2.1 Motivation

The lattice-shaped type schema of a graph transformation system, as introduced
below, plays the role of a simple terminological system (begriffssystem) [7] in
a certain universe of discourse wherein the graph transformation system shall
operate. Of course, the type schema shall reflect the usual concepts of nodes
(vertices) and edges (arcs) as well as the possible adjacency relations between
them. Nodes and edges are disjoint concepts here, in contrast to the more general
ALR graph transformation approach of [2].

2.2 Definition (Syntax)

Let ¥ := SW{Ll, T} a finite supply of symbols such that S # @. A quadruple
S = (X, <, sre,tgt) is called type schema if all the following conditions hold:

o The reflexive, transitive, and antisymmetric partial order < :C (X x %) de-
fines a lattice [3] such that Yoe X: (L< o < T).

e S = AWV disjoint such that V #) and Va € A Vv eV Yo e U Vre X
((c<a<7T)A(e<v=<T1)= ((c=L)A(r=T)).

Meta Typing is Compatible to the Typed SPO Approach

e src : A — V and tgt : A — V partial but equally defined such that
def(sre) = def(tgt) C dom(src) = dom(tgt) = A and Yo € A VG € A :
(a < B) = ((sre(a) < sre(f)) A (tgt(a) < tgt(3)) wherever src and tgt are
defined.T

2.3 Comment

Now that the syntax definition of a type schema is given, it is necessary to
provide some comments on the meaning as well as on the intended application
of these concepts:

e In the terminology of lattice theory, the set T:={re S| dc € S:0 <7 A
o #L A o # 7} contains the atoms of the lattice structure. In order to clarify
the intention, the atoms are called ground types here. ¥ := S\T is the set of
meta types.N Any host graph G must be ground-typed in 7. If r : L — R
is a graph replacement rule, the objects L and r(L) may be ground-typed
or meta-typed in S = T'WT. The generative part R\r(L), however, must be
ground-typed in T because of the ground-typed host graphs. A rule object
z may be mapped onto a host object y, if typ(y) < typ(x); please note that
V7 € X : 7 < 7 because of the reflexivity condition.

e The subset A contains the arc-related types and meta types, whereas V' con-
tains the vertex-related types and meta types.

e The adjacency functions src and tgt properly assign certain source node
types, target node types, and edge types to each other. In contrast to the
typing system of the SPO approach, it is not necessary that every occurring
arc type may be combined with every occurring vertex type here.

e In [8] it is shown that the lattice-structured meta-typing in X' is a sufficient
reason for src and tgt to be functions: They are not required to be relations,
as those adjacency relations can be simulated by the adjacency functions
of above, together with the property inheritance represented by the lattice
order prec. For the same reason, the adjacency functions src and tgt need
not to be total functions in A (thus: def(src) # dom(sre) = A — the same
with ¢gt), because the property of totality can be simulated by partiality
with help of the semantic inheritance relation < as well.

! Please note that dom(f) is the “land” in which the individuals z; subject to some
partial function f are “living”, whilst def(f) is the set of individuals z; for which
f(z;) is not undefined. Obviously we have dom(f) = def(f)if f is a total function.

T When operating with attributed graph grammars, the attribute set of a meta type 7
must be obviously a subset of the attribute set of each of its ground types ¢t < 7, but
that subject is out of the scope of this paper.

Stefan Gruner

7 N
/ <
/ RN -
’ / N T
/ . \
/ / \
' / \
I / \
' K \
' '
T
\ ' |
\ ' h
\

Fig. 1 type schema and meta-typed rule application

3 Example (Part I)

Fig.1 shows how a meta-typed left hand side of a graph replacement rule is
mapped by a conjective (i.e.: not injective) homomorphism onto a ground-typed
host graph according to a given type schema. In the schema part of Fig.1, the
lattice relation < is symbolized by dotted lines.

4 Meta Typed Graph Grammars

4.1 Definition (Syntax)

Let & be a type schema as characterized by Def.2.1 and G = {go,71,...,7n}
a graph grammar whereby r; := L; — R; for all ¢ = 1,... ,n < oco. Further it
supposed that all r; are finite structures themselves. G is called an &-meta-typed
graph grammar, if the following conditions are satisfied:

e Every node and every edge of the start graph g¢ is ground-typed with an
atom of &.

e In every left-hand-side rule graph L;, every node or edge z is typed in & such
that L# typ(x) # T. (The total function typ(-) provides the graph elements
with types.)

o typ(x) = typ(ri(x)) € & for all nodes or edges x € def(r;) C L.

o all generative nodes or edges y € R; (for which Az € def(r;) : y = r;(x)) are
ground-typed with an atom of &.

4.2 Typing Lemma

Let & be a type schema (as characterized by Def.2.1) and G = {go,7r1,...,rn}
a G-meta-typed graph grammar (as characterized by Def.4.1). Then G can be

Meta Typing is Compatible to the Typed SPO Approach

losslessly translated into an sPo graph grammar & = {vy, 01, ..., 0m } such that
m>n and VG : G € L(G) <= G € L(®) ground-typed in T C &.

4.3 Proof Sketch

According to Motivation 2.1 and Comment 2.3, the lemma is shown by a nonde-
terministic fixpoint construction relying on the supposition that type schemas,
graph grammars, and graph replacement rules are finite structures.

e Let get be an operation returning two graph objects # and y (nodes or edges)
from a given graph replacement rule r : I — R such that y = r(z), whereby
y may be undefined because of r being partially defined.

e Let proj; and projs be projections from tuples as usual.

o Let retype;y be an operation on the typing of a graph object x such that
typ(retype(ry(x)) := 7 whereby typ(x) = o with 7 < o, 7 #L, and 7 # 7 in
the given type schema &. (Otherwise, retype(, is the void operation which
does nothing.)

e Let create be an operation constructing a new graph replacement rule ¢ from
a given graph replacement rule p by applying retype(;(proji(get(p))) at the
same time with retype(projz(get(p))), where t # L is arbitrarily taken from
G.

o Let augment be an operation performing Gpey := Goiq U create(r), where r
€ G,q ad libitum.

o &= FIX(augment*(G)) is the maximum of the type replacement procedure,
and of course & exists since & is finite.

e Let flush be an operation performing &,,c., := G414 \ 0, where g € &4 such
that typ(proji(get(e))) € T or typ(projz(get(o))) € T.

o & := FIX(flush*(®)) is the desired graph grammar containing only ordi-
nary typed graph replacement rules according to the definitions of the spo
transformation approach.

4.4 Comment

Resulting from this construction one can show that in any case a left-hand-side
graph L of a meta-typed rule » matches to a ground-typed host graph G via the
type inheritance order < of &, there is exactly one ground-typed rule g derived
(deduced) from r such that g is applicable to G and, moreover, o(G) = r(G) is
true for the application results. Thus: the applicability of ground-typed rules is
a consequence of the match-ability of meta-typed rules in this approach.

Stefan Gruner
5 Example (Part II)

Fig.2 shows the result of applying the operations of Proof Sketch 4.3 to the meta-
typed graph replacement rule taken from Fig.1: eight ground-typed rules have
come into existence, exactly one of them is applicable to the given hostgraph
(taken from Fig.1, too) — which intuitively holds true also in the general case.

(=@

BN DE»E

®-@

:
;

;
;
;

-0

!
’
'

Fig. 2 ground-typed rules after expansive meta-type reduction: one is matching

6 The Type Systems of PROGRES and AGG until Now

Now that a notion of type schemas 1s supplied by Definition 2.1, the typing
mechanisms of PROGREs and AGaG can be compared quite easily. (A similar
comparison can be found on top of Table 7.1, page 531 of [12], however, table
representations are considered as less intuitive in general.)

6.1 PROGRES

The type schema of the PROGRES language is called graph schema in the PrRO-
GRES terminology. Except of the possibility of special edge-type cardinality-
constraints (the operational semantics of which is yet rather vague), a PROGRES
graph schema can be characterized as follows (which is illustrated by Fig.3):

Meta Typing is Compatible to the Typed SPO Approach

eVace AVoe XVreX (a<xtT=717=T)A(6 <a=—= o=1),in
words: all edge types in the lattice are atoms which means that there is no
meta-typing on edges at all.

e src : A — Voand tgt : A = V with def(src) = def(tgt) = dom(srec) =
dom(tgt) = A are total functions (“—=”) instead of partial ones (“—") which
is a logical consequence of the lacking meta-typing on edges. (Please remem-

ber that def(f) C dom(f) but def(f) # dom(f) for any partial function f.)

Fig.3 example of a PROGRES graph schema, expressed as type schema

Fig.4 example of the poor typing in AGG, expressed as type schema

Stefan Gruner

6.2 Acgag

From the view of a graph grammar practioneer (specificator, engineer), the typ-
ing system of AGG seems to appear really poor, structure-less and error-prone
because of its greatest-possible generality wherein “everything” is allowed.*

eVteSVoeXVreX: t<r=71=T)A (0 <t = ¢ =1), in words:
there 1s no meta-typing at all.

e src = tgt are no functions at all, but left-right-total relations (A x V) instead.
For better intuition, these relations are simulated in Fig.4 by two wvirtual
meta types node and edge which are, of course, not available in the real
AGG environment.

7 Summary and Future Work

Meta-typing is considered as powerful means of abstraction in order to avoid
clumsy or error-prone specifications in graph grammar engineering. While the
graph grammar engineering environment (GGEE) of PROGRES provides the fa-
cility of meta-typing at least partially, namely on nodes, the GGEE of AGa al-
lows no meta-typing until now. This paper has shown in a semi-formal manner
that certain forms of meta-typed graph grammars can easily be translated via
a lattice-shaped type schema into ordinary typed sPo specifications, as required
by the AGG environment. Therefore, it is possible to implement this concept of
meta-typing on nodes as well as on edges in the GGEE of Aaa, too.

Among other improvements and features, the meta-typing facility is currently
being incorporated into the software architecture of the AGG environment. More-
over it 1s planned to supply the AGa system with a concept of meta-typing that
is not only concerned with rules but also with the host-graphs that rules are
operating on. Such a concept of host-graph meta-typing should support the al-
ready existing object-oriented features of the GGEE of AGG which are due to the
underlying Java [9] programming language.

Acknowledgments

Good cooperation with Olga Runge, Thorsten Schultzke and Gabi Taentzer from
the AGaG development group as well as with Manfred Munch from the PROGRES
development group is gratefully acknowledged. Uwe Wolter and Hartmut Ehrig
as well as the referees of GRATRA 2000 have given valuable remarks and com-
ments on the draft of this paper.

* Please note that arcs and vertices are strictly separated concepts in the GUI-relevant
top layer of the AGG software architecture, while they are not strictly separated
concepts in the basic ALR layer of the AGG architecture. However, the ALR layer is
not visible to the user. For this reason it is legal to express the AGG typing properties
by means of a type schema as given above.

Meta Typing is Compatible to the Typed SPO Approach

References

12

. AGG, http://tfs.cs.tu-berlin.de/agg/
. R.Arlt, M.Roder, Grundlegende Datenstrukturen und Algorithmen zur Implemen-

tierung von algebraischen Graphgrammatiken. Report, Fachbereich Informatik,
Technische Universitat Berlin 1989

. G.Birkhoff, Lattice Theory. American Math. Soc. 1948
. A.Corradini, H.Ehrig, R.Heckel, M.Korff, M.Lowe, L..Ribeiro, A.Wagner, Alge-

braic Approaches to Graph Transformation: pt.II (Single Pushout Approach and
Comparison with Double Pushout Approach). chpt.4, pp.247-312 in [11]

. A.Corradini, H.Ehrig, M.L.owe, U.Montanari, J.Padberg, The Category of Typed

Graph Grammars and its Adjunctions with Categories of Derivations. J.Cuny,
H.Ehrig, G.Engels, G.Rozenberg (Eds.), Graph Grammars and their Application
to Computer Science: 5" International Workshop. LNCS 1073, Springer-Verlag,
Berlin 1995

. H.Ehrig, U.Montanari, F.Parisi-Presicce, Graph Rewriting with Unification and

Composition. H.Ehrig, M.Nagl, G.Rozenberg (Eds.), Graph Grammars and
their Application to Computer Science: 3™ International Workshop. LNCS 291,
Springer-Verlag, Berlin 1987

. B.Ganter, R.Wille, Formale Begriffsanalyse: mathematische Grundlagen. Sprin-

ger-Verlag, Berlin 1996

. S.Gruner, Fine schematische und grammatische Korrespondenzmethode zur Spezi-

fikation konsistent verteilter Datenmodelle. Shaker-Verlag, Aachen 1999

. JAVA| http://wuw.javasoft.com/
10.
11.

PROGRES, http://www-1i3.informatik.rwth-aachen.de/research/progres/
G.Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph
Transformation: vol.1 (Foundations). World Scientific, Singapore 1997

A.Schiirr, Programmed Graph Replacement Systems. chpt.7, pp.479-546 in [11]

This article has been processed with I#TEX in an LNCs-compatible style.

