
Meta Typing is Compatible to the Typed

SPO Approach

Stefan Gruner

Fachbereich Informatik
Technische Universit�at Berlin

http���tfs�cs�tu�berlin�de��stefan�

Abstract�Meta�typing� as for example employed in the Progres environ�
ment� is syntactic sugar making the speci�cation of typed graph grammar
systems more convenient� This paper presents an approach of meta�typing
that �ts in the well�elaborated framework of the typed single pushout
�spo� approach to graph transformation� In a �rst step the node meta�
typing system of Progres is generalized such that edges may be subject
to meta�typing� too� In a second step it is shown how any meta�typed
graph grammar can be transformed into an equivalent ordinary typed spo
graph grammar�
The main result of this contribution is that the presented concept of meta�
typing is compatible to the spo theory and can be implemented� therefore�
into the spo�based graph grammar engineering environment Agg without
spoiling its formally sound basis� As a more practical result it can be
claimed that the well�known application gap between Progres and Agg

will certainly become smaller in the immediate future�

� Introduction

A remarkable advantage of the well�known Progres system ���� is the pos�
sibility of using meta�typed nodes in the graphs of the left hand sides of the
graph replacement rules� For example� If there is some node 	vertex
 v of type
x occuring in some host graph G� and if there is some node 	vertex
 �v of type
X occuring in some left hand graph L of some graph replacement rule r which
shall be applied to G� then �v may not be mapped onto v in case that X is not
a meta�type of x�z Continuing the example� the meta�type X is an abbrevia�
tion subsuming every of its possible ground�types fx�� � � � � xng as explained in
more detail in �
�� Thus� the advantage of meta�typing turns out as a convenient
reduction of alternatives in a graph grammar speci�cation�

z In the terminology of Progres �belonging to the algorithmic approaches of graph
transformation rather than to the algebraic ones�� the nodes and edges occuring in
a replacement rule are called 	node variables
 and 	edge variables
� The concept of
that terminology is to instantiate those variables with actual host graph nodes and
edges at rule application time� Finding such an instantiation� however� is equivalent
to �nding homomorphic mappings from the nodes and edges of a rule graph onto
some nodes and edges of a host graph �expressed in the terminology of the algebraic
graph transformation approach�� For a comparative discussion of algorithmic versus
algebraic graph transformation approaches the reader is referred to ��
��



Stefan Gruner

While the Progres system allows meta�typing only on nodes� the Agg sys�
tem ��� allows no meta�typing at all� because this system is immediately derived
from the typed single pushout approach 	spo
 as described in ���� Therefore�
the goal and the contribution of this paper is to show that meta�typing is not
incompatible with the spo approach� such that the concept of meta�typing is im�
plementable in Agg� too� Unlike Progres� the here presented approach allows
meta�typing also on edges 	arcs
� Finally� the typing systems of both Progres
and Agg are expressed and compared in terms of a more general formalism�

��� Genealogy of the Meta�Typing Approach

The meta�typing approach presented in this paper combines mainly two ideas
that can be found in the recent literature on graph transformation systems� In
���� you can �nd a partially�ordered labeling system wherein variables play a
similar role as the meta�types which belong to the topics of this contribution� In
��� you can �nd a concept of a type�graph restricting the structure 	shape� form�
gestalt
 of graphs that shall be graph�grammatically generated� Type schemas�
as introduced in the following section� may be viewed as a generalized cross�over
of partially�ordered labeling systems and non�hierarchically labeled type graphs�

� Type Schema

��� Motivation

The lattice�shaped type schema of a graph transformation system� as introduced
below� plays the role of a simple terminological system 	begri�ssystem
 ��� in
a certain universe of discourse wherein the graph transformation system shall
operate� Of course� the type schema shall re�ect the usual concepts of nodes
	vertices
 and edges 	arcs
 as well as the possible adjacency relations between
them� Nodes and edges are disjoint concepts here� in contrast to the more general
alr graph transformation approach of ����

��� De�nition �Syntax�

Let � �� S � f���g a �nite supply of symbols such that S �� �� A quadruple
S �� 	���� src� tgt
 is called type schema if all the following conditions hold�

� The re�exive� transitive� and antisymmetric partial order � �	 	� 
�
 de�
�nes a lattice ��� such that ���� � 	�� � � �
�

� S � A � V disjoint such that V �� � and �� � A �� � V �� � � �� �� �
		� � � � � 
 
 	� � � � � 

 �� 		� ��
 
 	� � �

�



Meta Typing is Compatible to the Typed SPO Approach

� src � A 	 V and tgt � A 	 V partial but equally de�ned such that
def	src
 � def	tgt
 	 dom	src
 � dom	tgt
 � A and �� � A �
 � A �
	� � 

 �� 		src	�
 � src	



 	tgt	�
 � tgt	


 wherever src and tgt are
de�ned�y

��� Comment

Now that the syntax de�nition of a type schema is given� it is necessary to
provide some comments on the meaning as well as on the intended application
of these concepts�

� In the terminology of lattice theory� the set T �� f� � S j � �� � S � � � � 

� ��� 
 � �� �g contains the atoms of the lattice structure� In order to clarify
the intention� the atoms are called ground types here� T �� SnT is the set of
meta types�� Any host graph G must be ground�typed in T � If r � L 	 R

is a graph replacement rule� the objects L and r	L
 may be ground�typed
or meta�typed in S � T �T� The generative part Rnr	L
� however� must be
ground�typed in T because of the ground�typed host graphs� A rule object
x may be mapped onto a host object y� if typ	y
 � typ	x
� please note that
�� � � � � � � because of the re�exivity condition�

� The subset A contains the arc�related types and meta types� whereas V con�
tains the vertex�related types and meta types�

� The adjacency functions src and tgt properly assign certain source node
types� target node types� and edge types to each other� In contrast to the
typing system of the spo approach� it is not necessary that every occurring
arc type may be combined with every occurring vertex type here�

� In �
� it is shown that the lattice�structured meta�typing in � is a su�cient
reason for src and tgt to be functions� They are not required to be relations�
as those adjacency relations can be simulated by the adjacency functions
of above� together with the property inheritance represented by the lattice
order prec� For the same reason� the adjacency functions src and tgt need
not to be total functions in A 	thus� def	src
 �� dom	src
 � A � the same
with tgt
� because the property of totality can be simulated by partiality
with help of the semantic inheritance relation � as well�

y Please note that dom�f� is the 	land
 in which the individuals xi subject to some
partial function f are 	living
� whilst def�f� is the set of individuals xj for which
f�xj� is not unde�ned� Obviously we have dom�f� � def�f� if f is a total function�

� When operating with attributed graph grammars� the attribute set of a meta type �
must be obviously a subset of the attribute set of each of its ground types t � � � but
that subject is out of the scope of this paper�



Stefan Gruner

::=
src

tgt

src

tgt

Fig� � type schema and meta�typed rule application

� Example �Part I�

Fig�� shows how a meta�typed left hand side of a graph replacement rule is
mapped by a conjective 	i�e�� not injective
 homomorphism onto a ground�typed
host graph according to a given type schema� In the schema part of Fig��� the
lattice relation � is symbolized by dotted lines�

� Meta Typed Graph Grammars

	�� De�nition �Syntax�

Let S be a type schema as characterized by Def���� and G � fg�� r�� � � � � rng
a graph grammar whereby ri �� Li 	 Ri for all i � �� � � � � n � �� Further it
supposed that all ri are �nite structures themselves� G is called an S�meta�typed

graph grammar� if the following conditions are satis�ed�

� Every node and every edge of the start graph g� is ground�typed with an
atom of S�

� In every left�hand�side rule graph Li� every node or edge x is typed inS such
that ��� typ	x
 �� �� 	The total function typ	�
 provides the graph elements
with types�


� typ	x
 � typ	ri	x

 � S for all nodes or edges x � def	ri
 	 Li�

� all generative nodes or edges y � Ri 	for which � �x � def	ri
 � y � ri	x

 are
ground�typed with an atom of S�

	�� Typing Lemma

Let S be a type schema 	as characterized by Def����
 and G � fg�� r�� � � � � rng
a S�meta�typed graph grammar 	as characterized by Def����
� Then G can be



Meta Typing is Compatible to the Typed SPO Approach

losslessly translated into an spo graph grammarG � f��� 
�� � � � � 
mg such that
m � n and �G � G � L	G
 �� G � L	G
 ground�typed in T � S�

	�� Proof Sketch

According to Motivation ��� and Comment ���� the lemma is shown by a nonde�
terministic �xpoint construction relying on the supposition that type schemas�
graph grammars� and graph replacement rules are �nite structures�

� Let get be an operation returning two graph objects x and y 	nodes or edges

from a given graph replacement rule r � L 	 R such that y � r	x
� whereby
y may be unde�ned because of r being partially de�ned�

� Let proj� and proj� be projections from tuples as usual�

� Let retype��� be an operation on the typing of a graph object x such that
typ	retype���	x

 �� � whereby typ	x
 � � with � � �� � ���� and � �� � in
the given type schema S� 	Otherwise� retype��� is the void operation which
does nothing�


� Let create be an operation constructing a new graph replacement rule q from
a given graph replacement rule p by applying retype�t�	proj�	get	p


 at the
same time with retype�t�	proj�	get	p


� where t ��� is arbitrarily taken from
S�

� Let augment be an operation performing Gnew �� Gold � create	r
� where r
� Gold ad libitum�

� �G �� FIX	augment�	G

 is the maximumof the type replacement procedure�

and of course �G exists since S is �nite�

� Let 	ush be an operation performing Gnew �� Gold n 
� where 
 � Gold such
that typ	proj�	get	



 � T or typ	proj�	get	



 � T�

� G �� FIX		ush�	 �G

 is the desired graph grammar containing only ordi�
nary typed graph replacement rules according to the de�nitions of the spo
transformation approach�

	�	 Comment

Resulting from this construction one can show that in any case a left�hand�side
graph L of a meta�typed rule r matches to a ground�typed host graph G via the
type inheritance order � of S� there is exactly one ground�typed rule 
 derived
	deduced
 from r such that 
 is applicable to G and� moreover� 
	G
 � r	G
 is
true for the application results� Thus� the applicability of ground�typed rules is
a consequence of the match�ability of meta�typed rules in this approach�



Stefan Gruner

� Example �Part II�

Fig�� shows the result of applying the operations of Proof Sketch ��� to the meta�
typed graph replacement rule taken from Fig��� eight ground�typed rules have
come into existence� exactly one of them is applicable to the given hostgraph
	taken from Fig��� too
 � which intuitively holds true also in the general case�

::=::=

::=

::=

::=::=

::=

::=

::=

Fig� � ground�typed rules after expansive meta�type reduction� one is matching

� The Type Systems of Progres and Agg until Now

Now that a notion of type schemas is supplied by De
nition ���� the typing
mechanisms of Progres and Agg can be compared quite easily� 	A similar
comparison can be found on top of Table ���� page ��� of ����� however� table
representations are considered as less intuitive in general�



�� Progres

The type schema of the Progres language is called graph schema in the Pro�
gres terminology� Except of the possibility of special edge�type cardinality�
constraints 	the operational semantics of which is yet rather vague
� a Progres
graph schema can be characterized as follows 	which is illustrated by Fig��
�



Meta Typing is Compatible to the Typed SPO Approach

� �� � A �� � � �� � � � 	� � � �� � � �
 
 	� � � �� � ��
� in
words� all edge types in the lattice are atoms which means that there is no
meta�typing on edges at all�

� src � A � V and tgt � A � V with def	src
 � def	tgt
 � dom	src
 �
dom	tgt
 � A are total functions 	���
 instead of partial ones 	�	�
 which
is a logical consequence of the lacking meta�typing on edges� 	Please remem�
ber that def	f
 � dom	f
 but def	f
 �� dom	f
 for any partial function f �


src

tgt

tgt

src

Fig� � example of a Progres graph schema� expressed as type schema

src

tgt
edge node

Fig� � example of the poor typing in Agg� expressed as type schema



Stefan Gruner


�� Agg

From the view of a graph grammar practioneer 	speci�cator� engineer
� the typ�
ing system of Agg seems to appear really poor� structure�less and error�prone
because of its greatest�possible generality wherein �everything� is allowed��

� �t � S �� � � �� � � � 	t � � �� � � �
 
 	� � t �� � ��
� in words�
there is no meta�typing at all�

� src � tgt are no functions at all� but left�right�total relations 	A
V 
 instead�
For better intuition� these relations are simulated in Fig�� by two virtual

meta types node and edge which are� of course� not available in the real
Agg environment�

	 Summary and Future Work

Meta�typing is considered as powerful means of abstraction in order to avoid
clumsy or error�prone speci�cations in graph grammar engineering� While the
graph grammar engineering environment 	ggee
 of Progres provides the fa�
cility of meta�typing at least partially� namely on nodes� the ggee of Agg al�
lows no meta�typing until now� This paper has shown in a semi�formal manner
that certain forms of meta�typed graph grammars can easily be translated via
a lattice�shaped type schema into ordinary typed spo speci�cations� as required
by the Agg environment� Therefore� it is possible to implement this concept of
meta�typing on nodes as well as on edges in the ggee of Agg� too�

Among other improvements and features� the meta�typing facility is currently
being incorporated into the software architecture of the Agg environment�More�
over it is planned to supply the Agg system with a concept of meta�typing that
is not only concerned with rules but also with the host�graphs that rules are
operating on� Such a concept of host�graph meta�typing should support the al�
ready existing object�oriented features of the ggee of Agg which are due to the
underlying Java ��� programming language�

Acknowledgments

Good cooperation with Olga Runge� Thorsten Schultzke and Gabi Taentzer from
the Agg development group as well as with Manfred M�unch from the Progres
development group is gratefully acknowledged� Uwe Wolter and Hartmut Ehrig
as well as the referees of GraTra ���� have given valuable remarks and com�
ments on the draft of this paper�

� Please note that arcs and vertices are strictly separated concepts in the gui�relevant
top layer of the Agg software architecture� while they are not strictly separated
concepts in the basic alr layer of the Agg architecture� However� the alr layer is
not visible to the user� For this reason it is legal to express the Agg typing properties
by means of a type schema as given above�



Meta Typing is Compatible to the Typed SPO Approach

References

�� AGG� http���tfs�cs�tu�berlin�de�agg�

� R�Arlt� M�R�oder� Grundlegende Datenstrukturen und Algorithmen zur Implemen�

tierung von algebraischen Graphgrammatiken� Report� Fachbereich Informatik�
Technische Universit�at Berlin ����

�� G�Birkho�� Lattice Theory� American Math� Soc� ����
�� A�Corradini� H�Ehrig� R�Heckel� M�Kor�� M�L�owe� L�Ribeiro� A�Wagner� Alge�

braic Approaches to Graph Transformation� pt�II �Single Pushout Approach and
Comparison with Double Pushout Approach�� chpt��� pp�
�����
 in ����

�� A�Corradini� H�Ehrig� M�L�owe� U�Montanari� J�Padberg� The Category of Typed
Graph Grammars and its Adjunctions with Categories of Derivations� J�Cuny�
H�Ehrig� G�Engels� G�Rozenberg �Eds��� Graph Grammars and their Application
to Computer Science� �th International Workshop� LNCS ����� Springer�Verlag�
Berlin ����

�� H�Ehrig� U�Montanari� F�Parisi�Presicce� Graph Rewriting with Uni�cation and
Composition� H�Ehrig� M�Nagl� G�Rozenberg �Eds��� Graph Grammars and
their Application to Computer Science� �rd International Workshop� LNCS 
���
Springer�Verlag� Berlin ����

�� B�Ganter� R�Wille� Formale Begri	sanalyse� mathematische Grundlagen� Sprin�
ger�Verlag� Berlin ����

�� S�Gruner� Eine schematische und grammatische Korrespondenzmethode zur Spezi�
�kation konsistent verteilter Datenmodelle� Shaker�Verlag� Aachen ����

�� JAVA� http���www�javasoft�com�
��� PROGRES� http���www�i��informatik�rwth�aachen�de�research�progres�
��� G�Rozenberg �Ed��� Handbook of Graph Grammars and Computing by Graph

Transformation� vol�
 �Foundations�� World Scienti�c� Singapore ����
�
� A�Sch�urr� Programmed Graph Replacement Systems� chpt��� pp�������� in ����

This article has been processed with LATEX in an lncs�compatible style�


