
 i

Copyright Declaration: This is a pre-print of a paper accepted for inclusion (under the
same title) into a special issue, "Philosophy of Computer Science" (edited by A. Eden), of
Minds and Machines, vol. 21, no. 2, Springer-Verlag, 2011.

Problems for a Philosophy of Software Engineering

 Stefan Gruner
 Department of Computer Science
 University of Pretoria
 South Africa
 sg@cs.up.ac.za

Introduction and Motivation
The call for philosophical meta theory of software science and engineering is partly due
to the success and partly due the problems, shortcomings and failures experienced by this
still rather young discipline so far. Had software engineering had no success at all up to
now, then it might (probably) have vanished already as rapidly as it had emerged, and
thus it could have become at best a footnote in future’s books on the history of science,
but not a topic of this essay. For example, the global social (r)evolution induced by the
internet and mobile telephony, which has profoundly changed some social habits even in
deepest Africa, would not have been possible without the achievements of software
engineering as ‘enabling technology’. On the other hand, had software engineering been
only successful and nothing but successful until today, then we would most probably still
indulge complacently in the sunshine of our success and would not feel any necessity for
critical reflection and self-reflection. The crash of the Ariane5 space flight #501 on the 4th
of June 1996 is probably the most widely known example of the dire consequences of
software defects. As it is common knowledge today, the causa proxima of that costly
accident was a software defect, or, to be more precise: a numeric type error after the
device’s control software had been wrongly ported from the hardware system of Ariane4
to the slightly different hardware system of Ariane5. From such kind of suffering,
philosophy emerges.
 Philosophy of computer science, which is the general theme of this special issue
in this journal, deals predominantly with problems and questions around the nature of
computation as a process in time, the physicality or non-physicality of information
[Lan1961], or with the question whether or not computer science belongs to the group of
mathematical or natural sciences [Den2007]. Thus the question arises why an essay on
the philosophy of software engineering should find its place in a special issue on the
philosophy of computer science? This could be justified with the answer that software
engineering is a sub-field of the field of computer science, as some people would argue,
or that software engineering is based on computer science (as an auxiliary science), as
other people would argue. The question, whether software engineering is a sub-field of
computer science or if computer science is only an auxiliary science to an independent
field of software engineering, is a science-philosophical question with relevance also to
the philosophy of computer science. Anyway –whatever answer to that question the
reader might prefer– we can state with a high degree of credibility that software
engineering has not yet been sufficiently taken into account in our attempts towards a

 ii

philosophical understanding of computer science. Though there already exist several
science-philosophical reflections by various authors on various topics in the computer
science context of software engineering –see, for example, the contribution by Smith on
the ontology of objects [Smi1998] (which are also relevant concepts in software
engineering), or the works by Fetzer on the philosophy of program verification
[Fet1988,1998] and the concept of models in computer science [Fet1999]– the field of
software science and software engineering as a whole is surely not yet exhaustively
explored and philosophically reflected. For these reasons, this essay aims at making
another step into this direction.
 This step shall be made by reviewing and discussing some recent issues in the
philosophy of software engineering, and –consequently– by pointing to some open
problems which deserve our attention in future work. The essay as a whole is motivated
by a recent verdict by Rombach and Seelisch: “up to now, a concise, practicable theory
of software engineering does not exist” [RSe2008]. However, most of the critical and
meta-theoretic remarks about software engineering have come from philosophically
minded software scientists and engineers within this discipline so far, thus we are still
hoping for a more interdisciplinary discourse together with professional philosophers of
science (and also: historians of science, sociologists of science, etc.) in this regard.
 In a recent article by Amnon Eden in this journal [Ede2007] one can find an
interesting discussion of three different ‘paradigms’ of computer science, whereby
software engineering –the topic of this essay– was associated by Eden with the
‘technocratic’ one of those three paradigms.1 For each of those three paradigms of
computer science, Eden had identified different philosophical foundations and
presuppositions in three philosophical areas, namely ontology (i.e.: what is there),
epistemology (i.e.: what can be known), and methodology (i.e.: how can knowledge be
reached). My argument, in this essay, mimics Eden’s argument formally (or structurally)
in the sense that we shall in the following identify and discuss three different ‘paradigms’
of software engineering itself; (and thereby implicitly utter a modest critique of Eden’s
somewhat too one-sided association of software engineering, as a whole, with the
‘technocratic paradigm’ of computer science). [Ede2007] is thus the most important point
of reference in the discourse of this essay.
 Last but not least –after its central argument– this essay also suggests in its
outlook section some possibly promising themes for future research in the philosophy of
software engineering – themes which could not have been treated in this essay due to lack
of space and for the sake of topical cohesion.
 Throughout the remainder of this essay it is assumed that the readers already have
some basic understanding of software engineering as an academic and industrial
discipline; non-expert readers are referred to the explanations provided in an earlier essay
about this topic [NKB+2008].

1 One of the anonymous reviewers of the pre-print manuscript to this article suggested that Eden would
have “conjectured” the technocratic paradigm mainly for methodological reasons, so-to-say as an ideal
methodological entity without much of a basis in reality. On the contrary, Eden replied recently in a private
communication that he still believes that “the technocratic paradigm is not only live and kicking, but it also
has all but taken over computer science, at least at the level of funding and other forms of decision making,
which singularity affects the direction that this field is taking” (18 Oct. 2010, via e-Mail).

 iii

‘Paradigms’ and Quarrels about the Foundations of Sciences
As Eden has pointed out in [Ede2007], there are often deeper science-philosophical
issues behind the facades of obvious ‘paradigmatic’ differences. This shall be shown also
for the case of software engineering in the following parts of this essay – though the now
rather modish term ‘paradigm’ should not be used inflationary, or otherwise it would lose
its particularly important Kuhnian attributes of historic dominance and systematic
incommensurability – Masterman’s critique of the lack of univocity of the term
‘paradigm’ throughout Kuhn’s writings notwithstanding [Mas1970].
 Anyway, the science-philosophical issue behind a ‘paradigm’ is in many cases
something which the constructivists have called the ‘problem of origin’2, i.e., the problem
about how to establish the conceptual foundations of a particular science consistently and
without petitio principii. Even if one is not an ardent supporter of methodological
constructivism,3 one has to credit the protagonists of that philosophical school for their
sincere enquiries in the context of the ‘problem of origin’. Whilst the methodological
constructivists approached this problem rather pragmatically, not un-similar to
Heidegger’s thoughts about ‘world’4 and ‘equipment’5, the problem of origin also has a
terminological aspect which reveals itself in the words (terms, notions, concepts) which
are axiomatically used in the terminological system of a scientific theory but are not
essentially explained by its according particular science. Metaphorically speaking, those
un-explained fundamental terms and notions are the ‘doors’ through which we can
proceed from the domain of a particular science into the domain of philosophy. For a
number of long-established sciences, the following examples of ‘door concepts’ are well
known to every student of philosophy:

• In biology, ‘life’ is comprehensively described but not essentially explained in its
deep nature.6

• In physics, ‘energy’ and ‘force’ remain two aptly described meta-physical
mysteries.

• In stochastics and mathematical statistics, we quantify but do not essentially
clarify an imported idea of ‘probability’ or ‘likelihood’.

• In formal logics, we use but do not deeply explain the notion of ‘truth’.
• In jurisprudence, the notion of ‘law’ is based on the idea of justice, but an

ultimate definition of ‘justice’ cannot be given within the legal framework itself
(and history has indeed seen many examples of unjust laws).

• In informatics (a.k.a. computer science) as well as in information theory (i.e. the
science about message transmissions via channels following the works by Claude

2 Anfangsproblem
3 Hugo Dingler, Peter Janich, etc. Their methodological constructivism must not be confused with
epistemological constructivism (truth as social construct), and also not with Brouwer’s mathematical
constructivism, a.k.a. intuitionism (in which, amongst others, the classical tertium-non-datur axiom, namely
“��A � A”, is not accepted).
4 Welt
5 Zeug
6 Unless, of course, we would be willing to amputate the semantics of ‘explanation’ deliberately and ad-hoc
to such a crippled extent that it becomes, by decree, completely equivalent to the semantics of
“comprehensive description” – the Wiener Kreis (Circle of Vienna) is often associated (rightly or wrongly)
with such kind of epistemological surgery.

 iv

Shannon) we use the idea of ‘information’ but we cannot essentially explain its
deeper meaning within the theoretical framework of these sciences.

• In classical mathematics, a pre-understanding of the notion of ‘proof’ beyond the
symbolic operations is taken for granted, and, last but not least in this list of
examples,

• in psychology, the concepts of ‘soul’ and ‘mind’ lead straight into one of the
oldest problems of philosophical thought.

Historians of science will notice that a ‘foundation dispute’7, i.e.: a methodological and
meta scientific dispute as exemplified above, has a tendency to emerge particularly at the
‘thresholds’ of those ‘doors’ between science and philosophy. In all those foundational
disputes there was ultimately the problem of metaphysics at stake: Shall metaphysics be
acknowledged and admitted at all, yes or no? – if yes, then how much of it? – etc. The
quarreling parties in most of those examples listed above were usually some sorts of
‘positivists’ / ‘empiricists’ / ‘formalists’ / ‘behaviourists’ / ‘reductionists’ / ‘materialists’
(etc.) on the one side, versus some sorts of ‘platonists’ / ‘holists’ / ‘rationalists’ /
‘idealists’ (etc.) on the other side. Take, for example, the notorious debate about vitalism
in meta-biology and philosophy of nature (e.g.: Hans Driesch), or the flurry of modern
truth-theories behind the scenes of sociolinguistics, textual hermeneutics, and
mathematical logics, or the foundation dispute of meta mathematics about the notion of
‘proof’, which lead to the development of proof-theory, Brouwer’s and Heyting’s
intuitionism, etc. For the field of informatics or computer science, empiricism versus
rationalism was discussed in [Ede2007].
 Whereas Eden has delivered a foundations analysis for the domain of computer
science, and thereby identified (or at least strongly associated) software engineering as
(or with) one particular ‘paradigms’ in (or of) computer science [Ede2007], this essay
goes further to discuss different philosophical ‘streams’ within software engineering itself
(which Eden had still treated more or less like one monolithic entity without any inner
frictions and factions). Some kind of foundation dispute in software engineering we can
observe very clearly in these days, namely the one between followers of the human-
centered ‘agile’ versus the followers process-centered ‘engineering’ methodologies
[NKB+2008], or, in other terms: ‘humanists’ versus the ‘formalists’. This quarrel
between ‘humanists’ and ‘formalists’ in software engineering is also connected with the
questions whether or not software engineering is a sub-science of computer science, and
–even more problematic– whether or not software engineering is an instance of ‘science’
at all. This problem, which was also a theme in [Ede2007], will be further discussed in
the remaining sections of this essay.
 However, before this discussion about the philosophical problems in software
engineering can continue, a few clarifying remarks need to be made about ‘what is?’
software engineering, on the basis of some clarification about ‘what is?’ software itself.

The Ontological Status of Software
Much truth has already been said and written about the ontological status of computer
programs or software as a non-material entity, see for example [Ols1997], [Cle2001],
[BRo2002], [Ede2007], [NKB+2008], and many others. To date, and in those literature

7 Grundlagenstreit

 v

examples, there is still some ambiguity about the notions of ‘software’ and ‘computer
programs’ which would deserve some further clarification (i.e.: are ‘software’ and
‘computer programs’ extensionally equivalent concepts, or are these concepts in some
unidirectional inclusion relation with each other, etc.?) but this question is not the main
question of this essay.
 For the understanding of the remainder of this essay it is sufficient to understand
the immaterial nature of software in terms of this often-told anecdote from the early days
of computing: There was computer scientist traveling by ship to some conference
overseas, and the quarter-master of the vessel complained that the ‘software’ in the
travelling scientist’s luggage, full of computer-readable punch cards, was ‘too heavy’.
Answered the scientist to the ship’s quarter-master: “My software weighs nothing! Do
you see the holes in these punch cards? These holes are the software!”
 For the sake of argument in this essay (and notwithstanding the above-mentioned
literature references on the ontological status of software) let us first of all understand
‘software’ as text – however not the paper (or whatever material substrate) on which the
text is written. Like a poem, software has thus also aesthetic qualities (which are often
forgotten in the literature on software ontology), such as: form (and even beauty in its
form), legibility, etc. What distinguishes a module of software from a poem is its
interpretability and executability by some kind of computing machinery, or, in layman’s
language: unlike a poem, software can ‘tell’ a computer ‘what to do’. This features of
software reminds us, for example, of a baking recipe, which is also text, however text in
such a way that it can tell a baker in the bakery how to bake a cake. Thus, in this very
broad sense of the term, even a baker’s recipe for cake-baking could be regarded as
‘software’, whereby the specific differences between this kind of ‘software’ and actually
executable computer programs are mainly found in the degree of detail and precision as
far as the algorithmic description (or prescription) of the executable computational steps
are concerned [Cle2001] – see for comparison [Ede2007] with his terminological
distinctions of ‘program script’, ‘program process’, etc.
 By the way: My categorisation of software code as ‘text’ should not be mistaken
as just a fashionable ‘postmodernist’ hermeneutical gimmick; it has its justification in the
very construction principle of the von-Neumann/Zuse hardware architecture itself, in
which both ‘instructions’ and ‘data’ are stored as bit-patterns –i.e.: ‘text’–
indistinguishable from each other in the same storage section (RAM); whether a bit-
pattern in some RAM cell c is interpreted as ‘instruction’ or as ‘data’ depends mainly on
the operations of the von-Neumann/Zuse machine at runtime – see the ‘technocratic
ontology’ of [Ede2007] for comparison.
 Anyway, on the basis of the simple notion of ‘software’ as sketched above (which
is sufficient for the understanding of the remainder of this essay) it is fair to say that
‘software engineering’ is both the theory (science) of ‘grasping’ software, as well as the
practice (industry) of ‘making’ it in the best possible way – whereby the qualifier ‘best
possible’ refers both to the quality of the production method (process) and to the quality
of the software as deliverable outcome (product) of that production process. For
clarification in terms of the bakery analogy of above, note that the software engineer is
not the baker, and software is not the cake! Rather: the software engineer is like
somebody who creates cake-recipes for the baker, such that the baker (i.e.: the computer)
can bake cake (i.e.: computation output, calculation results, etc.) on the basis of a given

 vi

recipe. This simple analogy is all we need to keep in mind about software and software
engineering for understanding the subsequent sections of this essay. (Whether or not such
a textual software recipe corresponds to a pre-existing ‘form’ or ‘idea’ in a Platonic realm
of super-reality –in other words: whether software recipes, in their role as technical
problem solutions, are ‘discovered’ or ‘invented’– is not a question for this essay.)

Software Engineering between Rationalism and Empiricism
Ten years after the software engineer Gregor Snelting had sharply attacked especially the
academic (not so much the industrial) branch of software engineering for a wide-spread
attitude of ‘Feyerabendianism’ [Sne1998] (as far as the flood of their out-of-the-blue-sky
concepts and rather unsound publications was concerned) –see again [Ede2007] for
comparison– the computer scientists and software engineers Rombach and Seelisch have
continued this dispute with their statement that “software engineering today, seen as a
practically highly relevant engineering discipline, is not mature enough” and that most of
the results from scientific or academic software engineering research are not finding their
way into the industrial or commercial software engineering practice – i.e. that the
knowledge gap between software engineering research and practice is widening
[RSe2008]. They further argued that this gap between theory and practice is due to “a
tremendous lack of empirical evidence regarding the benefits and limitations of new
software engineering methods and tools on both sides”. Those problem statements lead
consequently to the more science-philosophical questions about the status of software
engineering as an empirical discipline – yes or no, and, if yes, to what extent: “The major
claim of this work is that typical shortcomings in the practical work of software engineers
as we witness them today result from missing or unacknowledged empirical facts.
Discovering the facts by empirical studies is the only way to gain insights in how
software development projects should be run best, i.e., insights in the discipline of
software engineering” [RSe2008]. In that short paragraph one can already detect two
relevant science-philosophical problems (which Rombach and Seelisch did not explicitly
address), namely:

• how to bridge the category gap from ontology (“discovering facts”) to deontology
(“how projects should be run best”) without committing the notorious naturalist
fallacy?, and

• what types of investigations may be methodologically admitted as ‘empirical
studies’ if software engineering at large does not (and cannot) happen in the
closed environment of a well-controlled chemical laboratory? – see for
comparison [Tic2007] with a classification of various empirical methods in
software engineering.

Rombach and Seelisch further identified two key reasons for the current practical
problems of software engineering, namely “non-compliance with best-practice
principles” and “non-existence of credible evidence regarding the effects of method and
tools” [RSe2008] which lead them to the meta-disciplinary discussion of the relationship
between software engineering and computer science (informatics), in continuation of an
older contribution to this discourse [BRo2002] – see below. About this relation between
software engineering and computer science we can read: “Computer science is the well-
established science of computers, algorithms, programs and data structures. Just like

 vii

physics, its body of knowledge can be characterized by facts, laws and theories. But,
whereas physics deals with natural laws of our physical world, computer science is a
body of cognitive laws”, and “when software engineering deals with the creation of large
software artifacts then its role is more similar to mechanical and electrical engineering
where the goal is to create large mechanical or electronic artifacts. (...) In this sense,
software engineering can be seen as an analog set of methods for developing software,
based on fundamental results from computer science” [RSe2008]. Thus, in contrast to the
viewpoint of [Ede2007] wherein software engineering appeared like one particular
‘paradigm’ of computer science (i.e.: a particular way of ‘doing’ computer science),
software engineering appeared in [RSe2008] as an autonomous engineering discipline on
the basis of computer science.
 It is not the purpose of this essay to discuss comprehensively the extent of
structural and methodological similarity between computer science and physics which
Rombach and Seelisch have asserted in their essay – such analogy was also mentioned by
[Ede2007] (in its section on the ‘scientific paradigm’). At this moment it seems to me that
such an analogy between computer science and physics, as asserted in [RSe2008], is –at
least in our time– more wishful thinking than observable reality, but anyway that is a
topic of discussion for the ‘classical’ philosophy of computer science about which some
volumes of publications already exist.8 This essay is mainly concerned with software
engineering and its relation to other disciplines, not the meta-scientific disputes about
those other disciplines themselves as such, though it should also be clear that there must
be some topical overlap between the philosophy of computer science and the philosophy
of software engineering, in correspondence with the topical relationships between
computer science and software engineering themselves – see the further discussions
below.
 Anyway, Rombach and Seelisch continued their discussion with the topic of
software engineering “principles”, especially the “general pattern of divide and conquer”,
which is a reductionist method of dividing a large problem into a set of smaller (and thus
easier solvable) sub- and sub-sub- problems under the a-priori assumption that the whole
will not be more than the sum of its parts. Terminologically one might criticize, perhaps
somewhat pedantically, that a “principle” in the terminology of Rombach and Seelisch
should be better called a ‘maxim’, such as not to confuse ontology and deontology, world
and method. However, pedantic terminology aside, there must surely arise the question
about the limits of ‘principles’ such as ‘divide and conquer’ themselves: Classically –and
apparently also in [Ede2007]– one had almost always tacitly presumed rather simple
hardware structures, such as the Zuse/von-Neumann computer architecture (or rather
simple networks composed of such devices), as the material basis for which software
systems were to be developed. However, with the possible emergence of other hardware
systems such as massive-parallel cellular automata in the not-too-far future our cherished
‘principles’ (such as our methodical reductionism) might possibly falter. In the words of
Victor Zhirnov and his co-authors this reads as follows: “When we consider the use of
these systems” (i.e. cellular automata) “to implement computation for general
applications, a vexing set of software challenges arise (...) and we are aware of little work

8 About the philosophy of computer science, at least two special editions of the journal Minds & Machines
(Springer-Verlag, 2007) and the Journal of Applied Logic (Elsevier, 2008) have already appeared in print
(see http://pcs.essex.ac.uk/). Moreover there exist textbooks such as [Flor1999] and [Col2000].

 viii

in this area” [ZCL+2008]. In other words: At stake is thus, from a science-philosophical
perspective, the principle-ness of those software engineering concepts which had been so
far regarded as ‘principles’ under un-reflected, accidental historical circumstances (such
as the technical and technological dominance of the Zuse/von-Neumann machine) which
had been simply been taken for granted during several decades of our times. In this
context, software engineering philosophy must thus ask the question: What is the
characteristic feature of a ‘principle’, and are we really confronted with (genuine)
principles when practical software engineers speak about such? Such a philosophical
concept analysis –for example on the notion of ‘principle’– can then lead to further
‘paradigmatic’ insights, similar to what has been shown in [Ede2007].
 Regarding the demanded empirical evidence in software engineering –see for
comparison the ‘scientific paradigm’ in [Ede2007]– Rombach and Seelisch stated “that
having definitions and measures at one’s disposal does not automatically guarantee that
they be used. Enforcing their usage must be part of the project and can often only be
accomplished by organizational changes or even changes in the working culture”
[RSe2008]. At this point I can see [RSe2008] going a step further than [Ede2007] in
which one cannot find sufficient mentioning of any kind of ‘meta-method’ for an
effective ‘cultural’ transition from the (rejected) ‘technocratic’ to the (desired) ‘scientific
paradigm’ [Ede2007]. Moreover, Here I can also see a ‘door’ into the domains of
philosophical ethics and philosophical anthropology with the question whether or not any
change of our ‘working culture’ is arbitrarily at our disposal, or if there exists anything
like a ‘human nature’ on which our ‘working culture’ might depend in a non-arbitrary
manner; the general presumption of [RSe2008] seems to be that this can be done.
 Another, namely normative, question is then: should such a work-cultural
transition (under the assumption of its possibility) be made (at all)? In this context it is
interesting to note that the software engineer Tom DeMarco, previously known as a
strong supporter of rigorous metrics and quantitative measurements in the software
engineering process as advocated by [RSe2008], has recently dissociated himself from
his earlier positions and is now strongly emphasising the importance of ethical concepts
such as ‘value’ and ‘purpose’ beyond the borderlines of quantitative control and
controllability [DeM2009]. Contrary to Rombach and Seelisch’s remarks regarding
physics as the role-model discipline for computer science and software engineering,
DeMarco claimed recently that “software development is inherently different from a
natural science such as physics, and its metrics are accordingly much less precise in
capturing the things they set out to describe. They must be taken with a grain of salt,
rather than trusted without reservation” [DeM2009].
 Here we have arrived at a fundamental science-philosophical and methodological
point of issue in software engineering again (between the three major parties which like
to I call the ‘formalists’, the ‘engineers’ and the ‘humanists’), at which DeMarco
confessed: “I’m gradually coming to the conclusion that software engineering is an idea
whose time has come and gone. I still believe that it makes excellent sense to engineer
software. But that isn’t exactly what ‘software engineering’ has come to mean. The term
encompasses as specific set of disciplines including defined processes, (etc.) All these
strive for consistency of practice and predictability. Consistency and predictability are
still desirable, but they haven’t ever been the most important things. For the past 40 years
(...) we’ve tortured ourselves over our inability to finish a software project on time and on

 ix

budget. But (...) this never should have been the supreme goal. The more important goal
is transformation, creating software that changes the world (...). Software development is
and always will be somewhat experimental. The actual software construction isn’t
necessarily experimental, but its conception is. And this is where our focus ought to be”
[DeM2009].
 In terms of classical philosophy, DeMarco’s statement sounds very much like
American Pragmatism; yet it remains to be demonstrated whether or not such pragmatism
will be able pull the discipline of software creation by its own hair out of swamp in which
it is notoriously sitting (like in the story of Münchhausen). DeMarco’s is clearly an
optimistic point of view based on the ‘common sense’ experience that we are not daily
confronted with catastrophic Ariane-5 incidents and that our daily interaction with
mundane household software products (e.g.: eMail, internet, telephony, computer games,
etc.) is –in spite of the occasional ‘hickup’– reasonably pleasant and successful. Thus,
DeMarco simply refused to accept the notorious ‘software crisis’ –by which much
software philosophy, including [RSe2008], is motivated– as a crisis at all, which points –
in the end– to related questions in social philosophy and the philosophy of systems about
the concept and the essence of what we want to call a ‘crisis’. For comparison: we would
(at this point in time) also not easily want to assert that the entire discipline of civil
engineering (as a whole) would be ‘in crisis’, though many streets and roads are still
rather poorly built, some hardware structures still collapse catastrophically every now and
then, and also many civil engineering projects –not only software engineering projects–
are running late and over-budget, as many town mayors and district managers can tell.
From the perspective of [Ede2007], however, the viewpoint of [DeM2009] is also
interesting, because his cannot be captured adequately by any of Eden’s three
‘paradigms’ alone: DeMarco’s viewpoint is not in contradiction to any of those three; it is
located somewhat ‘orthogonal’ to (or even beyond) all of them, and single-handedly adds
another dimension to our software-philosophical problems under consideration.
 Anyway, the issue of ‘experimental-ness’ of software engineering, vaguely
mentioned by DeMarco in his quote of above, shall now lead us back to the discussion of
the issues emphasised in [RSe2008] in which it was stipulated that “Laying the
foundations of software engineering thus means to:

• state working hypotheses that specify software engineering methods and their
outcome together with the context of their application,

• make experiments, i.e. studies to gain empirical evidence, given a concrete
scenario,

• formulate facts resulting from these studies (...),
• abstract facts to laws by combining facts with similar, if not equal, contexts,
• verify working hypotheses, and thereby build up and continuously modify a

concise theory of software engineering as a theoretical building block of computer
science”

[RSe2008], which seems very much compatible with the ‘scientific paradigm’ of
computer science in [Ede2007].
 The lengthy quote of above contains the core of Rombach’s and Seelisch basically
empiricist software engineering philosophy. ‘Formally’ we can immediately recognize
their adherence to the ideal of physics as the role-model science, with their mentioning of

 x

hypotheses, experiments, facts and laws. But once again the science-philosophical
question arises whether or not –and, if yes, to what extent– such a formal analogy is
materially justified. For example, Rombach and Seelisch did not clarify (and did not even
attempt to clarify) their notion of ‘experiment’, especially (not) as far as the crucial
classical criterion of repeatability is concerned. How are software engineering
‘experiments’ controlled and isolated from their environment, which is the classical
precondition of their repeatability? Has any ‘software engineering experiment’ in the
history of science ever been de-facto repeated? And if repeatability cannot be granted,
what is then the degree of validity of the ‘laws’ which are supposed to emerge from such
an ‘experimental’ procedure? These are the kind of questions which philosophical
software engineers like Rombach and Seelisch must try to answer seriously – otherwise
they would immediately run into the same kind of difficulties as Auguste Comte with his
empiricist conception of sociology as the ‘physics of society’ more than 150 years ago. I
would like to add that repeatable experiments (in the classical sense of the term) in
software engineering are possible if a computer itself is the well-controlled ‘laboratory’
and a computer program is the subject of experimentation –see [Ede2007] for
comparison– but then we are back in the comparatively narrow field of computer science
and programming, which does not exhaust the wider field of software engineering in
which we have to deal with larger projects, various human or corporate stake-holders,
legal and financial constraints, etc. – how can all those be subject to ‘experiments’ in the
classical, physics- or chemistry-oriented sense of the term? About Rombach’s and
Seelisch’s methodological request regarding the ‘verification’ of hypotheses in the
domain of software engineering, see Karl Popper’s notion of falsifiability and the related
discussions in [NKB+2008].
 Last but not least an academic question re-arises from Rombach’s and Seelisch’s
statement, namely: whether software engineering should be categorized as sub-discipline
of and within computer science, or whether software engineering should be regarded as a
discipline in its on right, with computer science as its basis and auxiliary discipline; this
classification problem was also mentioned in [Ede2007]. Rombach and Seelisch seem to
oscillate between these two classification alternatives and did not commit themselves to a
final decision in this regard. Rightly, however, it was pointed out in [RSe2008] that the
immaturity of software engineering as an ‘engineering’ discipline is closely related to the
following practical shortcomings and methodological flaws:

• “Clear working hypotheses are often missing.
• There is no time for, or immediate benefit from empirical studies for the team

who undertakes it.
• Facts are often ignored (...)” and “often replaced by myths, that is by unproven

assumptions”

[RSe2008], which leads the authors to conclude that “up to now, a concise, practical
theory of software engineering does not exist” [RSe2008]. The remainder of their paper
deals with particular examples of popular software engineering myths, and the suggestion
of some concrete research questions to stimulate research programmes –thereby
obviously intending: ‘progressive’ (not: ‘degenerating’) research programmes in the
terminology of [Lak1978]– with the aim of eventually being able to replace those myths:
In that part of their paper we can find much support for what Eden had called the

 xi

‘scientific paradigm’, in spite of his suggestion that software engineering would largely
be dominated by the ‘technocratic paradigm’ [Ede2007].
 Now, since Rombach’s and Seelisch’s manifesto [RSe2008] is directly related to
an earlier contribution by Broy and Rombach [BRo2002], it makes sense to look at that
contribution as well, for the sake of a more comprehensive understanding of our topic. As
an initial definition of software engineering we can find there: “Purpose of the industrial
engineering of software is the development of large-scale software systems under
consideration of the aspects costs, deadlines, and quality” [BRo2002]. Already this initial
definition by Broy and Rombach could lead us further into a discussion of general
philosophy of technology, namely: what constitutes an ‘industry’? Is ‘industry’ a large
number of people and how they organise their work in a Taylorist or Fordian manner, or
is it the application of accumulated ‘capital’ (i.e.: machinery and automated tools) in the
production process? Is the use of the term ‘software industry’ materially justified if we
observe that most software producing enterprises in our days are in fact hardly any larger
–in terms of numbers of workers– than the workshop of a traditional craftsman and his
helpers? Is ‘industry’ a rather misleading metaphor in this context which does not do
justice to the actual way in which software is actually being produced? Or are we here
already dealing with a completely new notion of the term ‘industry’ itself, which is now
no longer associated with traditional images of iron, smoke, and armies of workers
marching through the gates of their factory? Those would surely be interesting new
questions for a more general philosophy of engineering, technics and technology
[Rap1974]. Though these questions cannot be discussed any further within the scope of
this essay, they clearly tell us that a comprehensive philosophy of software engineering
must reach beyond the scope of our classical philosophy of computer science in which
such questions and problems (e.g.: industry, organisation of human work, etc.) do not
find their suitable place; see Figure 1 for the sketch of a topic map, which shows the
embedding of the philosophy of software engineering in a wider philosophical context.

Figure 1: Philosophies of Computer Science and Software Engineering
as special cases of Philosophies of Science and Technics / Technology.

 xii

However the main theme of [BRo2002] is the degree of difference and similarity between
software engineering and other engineering disciplines, on the basis of the immateriality
of software itself. Particularly they mentioned:

• the difficulties arising from the software’s abstractness,
• the software’s multiple aspects of syntax and semantics,
• the intrinsically hard-to-understand, complex and dynamic system behaviour to

which software is only a static description –see again [Ede2007] for comparison–
and, last but not least,

• the absence of natural physical constraints as protectors against weird forms of
design and construction.

On these premises [BRo2002] concluded – whereby their conclusions can still be
regarded as valid today:

• that software engineering as a discipline has not yet reached the degree of
professional maturity which classical engineering disciplines have already
reached,

• that “the discipline is still struggling with its self-understanding”, and
• that “foundations and methods are partially still missing”.

The most interesting part of [BRo2002] in the context [Ede2007] is their attempt to
classify software engineering in a category of related disciplines, with the purpose of
contributing to a philosophical self-understanding (the lack of which they had previously
identified) of the software engineering discipline. The key question (which also came up
in [RSe2008] again) was, whether software engineering is included as a sub-field of
computer science (as it is currently enshrined the academic curricula at many universities,
with software engineering courses being lectured as part of the computer science degree),
or whether software engineering is a field on its own with computer science as its
separate basis. Also [BRo2002] did not reach a decisive conclusion in this regard, though
they apparently tended towards the latter solution with the analogy argument: “Imagine
that physicists with a specialisation in mechanics would be employed as mechanical
engineers!”. Here we could ask if that was not only an argumentum ad hominem,
especially if we take into consideration that physicists are de-facto employed in all sorts
of jobs and positions, including positions as programmers in the software industry – but
anyway, the basic classification by [BRo2002] (as well as [RSe2008]) looks as depicted
in Figure 2.

Figure 2: Classification of Software Engineering according to [BRo2002]

 xiii

In Figure 2 we can see three categories of sciences, namely ‘auxiliary’ sciences,
‘fundamental’ sciences, and ‘engineering’ sciences. Software engineering appears here in
the third category, together with electrical and mechanical engineering as (some
examples of) sister sciences. Sciences so different from each other as physics, computer
science, and psychology appear here all in the category of ‘fundamental’ sciences
(middle layer of Figure 2), whereas mathematics appears in the bottom layer of Figure 2
only as an ‘auxiliary’ science.
 There are some obvious omissions in that diagram which do not need to be
discussed any further. For example: mathematics is obviously also a helper-science to
economics, and economics must certainly be taken into account not only in commercial
software engineering (as shown in Figure 2) but also in commercial mechanical
engineering (not depicted in Figure 2) – ditto for psychology which must obviously be
taken into account also for the design of useful and intuitive user-interfaces in the domain
of electrical and hardware engineering.
 More interesting about Figure 2 is the question why mathematics does not point
directly also to the engineering sciences (only indirectly via the foundation sciences)?
Thus, the diagram in this form seems to suggest that [BRo2002] seem to believe that
whenever a software engineer is applying mathematics, then he is actually doing
computer science, not software engineering. Such an opinion would be consistent with
Eden’s assertion that the ‘rationalist paradigm’ (in theoretical computer science) and the
‘technocratic paradigm’ (in software engineering) would have little to do with each other
[Ede2007]. However this is in contrast to other schools of software engineering according
to which mathematical methods are indeed genuine software engineering methods, and
not only computer-science-supporting methods at the basis of software engineering. As
far as this mathematical-ness of engineering in general and software engineering in
particular is concerned, Tom Maibaum has recently pointed out two further relevant
issues:

• “Engineers calculate, mathematicians prove”; this is a somewhat bold expression
which basically means that engineers are only applying “distilled handbook-
mathematics” the rules of which had been developed outside the realm of
engineering [Mai2008].

• The branch of mathematics most relevant to classical engineering is the
infinitesimal differential calculus as it was developed since Leibniz and Newton,
whereas the branch of mathematics most relevant to software engineering is
discrete mathematics, set theory and formal logics [Maib2008].

Of course it is necessary to calculate in order to prove, and of course also an engineer
(not only a mathematician) wants to ‘prove’ (by means of calculation) that some design
concept or model appears to be consistent and feasible before the according artifact is
produced. But that was not Maibaum’s point in the discussion. The issue is: Whereas the
classical engineering disciplines already have a large volume of distilled ‘handbook-
mathematics’ available for application, a corresponding formula-handbook readily
applicable for software engineering calculations is yet nowhere to be seen. This I regard
as the deeper meaning of the speaking about “immaturity” and “lack of foundations” in
[BRo2002], and this still notorious lack of ‘handbook mathematics’ in the sense of
[Mai2008] for software engineering might also have been a reason for Eden’s

 xiv

classification of software engineering as mainly ‘technocratic’ [Ede2007]. But on the
other hand it is also true that more and more mathematical ‘tools’ are getting applied
directly in the domain of software engineering: see for example the application of graph
theory for the purpose of software testing, whereby graph theory is helping to design the
test experiments which are then carried out in a practical experimental way [AOf2008]. If
software testing, within the realm of software engineering, is conducted in such a way,
i.e.: when the experimental practice is theory-guided, then we are indeed on the way
towards what Eden has called the ‘scientific paradigm’, not only in computer science but
also in the wider field of software engineering.
 Going back to Figure 2, computer science –there regarded as foundation science
to software engineering– is surely an issue in and by itself. As it was rightly remarked in
[BRo2002], computer science itself is not a monolithic science. Instead, computer science
has various parts and aspects, such that it “structures itself (further) into (computer
science) as foundation science and (computer science) as engineering science”
[BRo2002]. Let me give two simple examples: A formalised theory of Chomsky
grammars and a large volume of empirical, practical experience about the design and
development of operating systems are both included in the domain of computer science at
large, whereby the formal grammars are ‘mathematics’ whereas the operating systems are
‘engineering’ (in this somewhat simplified picture). In [Ede2007] this ‘inner diversity’ of
(or within) computer science was also not fully taken into account.
 Academically, this diversity within the field of computer science is reflected by
the placement of computer science departments into different faculties at different
universities –typically (with some exceptions) either in faculties of mathematics and
natural sciences (example: University of Aachen), or in faculties of engineering and
technology (example: University of Pretoria); sometimes even as a faculty (of
computational sciences) in its own right (example: University of Bremen)– which was
rightly mentioned also in [Ede2007]. But in reality the situation is even more
complicated. Take for example the University of Aachen again, where some computer
science chairs even belong to different faculties, though they are all ‘computer science’:
there, for example, the chair of operating systems belongs (for historic reasons) to the
faculty of electro-engineering, whereas the chair of compiler construction belongs to the
faculty of natural sciences and informatics, though both operating systems and compiler
construction clearly fall into the category of ‘computer science’. As far as the
classification of [Ede2007] is concerned, we can thus say that different ‘paradigms’
might be predominant in different sub-areas of computer science (and software
engineering), but it would –in my opinion– be wrong to say that there are different
‘paradigms’ of computer science as such (as a whole), especially if we also take into
account that Eden’s whole paradigm scheme is very much based on the ontology of ‘what
is a computer program’ [Ede2007], whereas there also exist branches and sub-areas of
computer science (for example: database systems design) in which computer
programming and computer programs, as such, are not in the centre of attention.
 Anyway, the main problem with the classification by [BRo2002], as depicted in
Figure 2, is, as far as I can see, that it treats computer science too simplistically and too
‘monolithically’ as mathematics-based foundation science (of software engineering),
thereby ignoring other engineering-related sub-sciences of computer science, such as the

 xv

above-mentioned operating systems. Consequently, a string of subsequent problems
arises:

• If software engineering has been ‘lifted out’ of the domain of computer science
into the domain of engineering (Figure 2), should then not –by analogy– also the
field of operating systems be lifted out of computer science into the domain of
engineering? – and so on, until ‘computer science’, stripped bare of all its
practical aspects would be nothing more than formalised Chomsky grammars and
some discrete algebra? – then we would indeed arrive at a very narrow
understanding of ‘computer science’, which would correspond quite accurately
with the ‘rationalist paradigm’ of [Ede2007].

• On the other hand, if we would leave our operating systems where they are,
namely in computer science, would then not also the operating systems, according
to Figure 2, belong to the foundations of software engineering? Whilst this is
certainly not wrong, it is only half of the picture: In fact, operating systems are
nothing else than large software systems, which means that software engineering
should now also be listed, vice versa, as a ‘foundation science’ for operating
systems [NKB+2008] within the domain of computer science. In Figure 2,
however, the link between computer science and software engineering is only
unidirectional, not bidirectional.

• In this context, last but not least, it is also interesting to note that the mutual
dependency between computer science and software engineering, or at least parts
thereof (though not depicted in Figure 2), corresponds quite well to the well-
known Constructivist argument about the mutual dependency between physics
and the engineering of technical artefacts which need to be used for physical
measurements; the Constructivist viewpoint is thus in contrast to the classical
interpretation of physics as the foundation of engineering as it was expressed by
[BRo2002] (Figure 2).

As an intermediate summary of the discussion as it has been conducted so far it seems
fair to say that neither is software engineering only a sub-area (nor ‘paradigm’) of
computer science (because it essentially entails activities such as project management
about which genuine computer science is not concerned), nor is software engineering
simply ‘based on’ computer science in an unidirectional relation (because several
subjects of computer science, such as operating systems or compilers, are also large-scale
software systems and would not exist without the existence of successful software
engineering methods; the same is even true for computer hardware design which is
becoming more and more dependent on software-based modelling tools).
 Going back to Figure 2, let us now dig somewhat deeper and ask the question:
What is it, that ‘lifts’ software engineering up onto the level of engineering, above
computer science? The answer of [BRo2002] is: “experience”, such that, for example: “A
new method is perhaps a remarkable result of computer science, but without robust
empirical experiences about its effectivity and limits of applicability it is not a
contribution to software engineering” [BRo2002]. This science-philosophical position is
schematically depicted in Figure 3, which is also taken from [RSe2008] with reference to
[BRo2002].

 xvi

Figure 3: Elements of Software Engineering according to [BRo2002] and [RSe2008]

The problem with the above-mentioned quote, as far as I can see, is the implicit equation
“Software Engineering = Computer Science + Empiricism” (see Figure 3) which tacitly
reduces computer science to purely rationalist, non-empirical science, similar to the
‘rationalist paradigm’ of [Ede2007], in contrast to what we have already discussed above.
On the other hand, computer science was likened by the same authors to physics
according to Figure 2 of [BRo2002] – would they then, by analogy, also assert the
equation “Engineering = Physics + Empiricism” and thereby reduce physics to pure
speculative scholastics (as it has been historically the case throughout the Latin middle
ages)? On the basis of everything what I have discussed above, I cannot conclude that
empiricism would enter software engineering by addition to a purely rationalist computer
science: both computer science and software engineering have both rationalist and
empiricist elements in it, and neither can computer science be fully reduced to (or
subsumed by) software engineering, nor can software engineering be fully reduced to (or
subsumed by) computer science – unless we would aim at a redefinition of our
historically grown terminology in a merely stipulative way, purely ad-libitum and ad-hoc.
 Nevertheless: on the ontological status of software (which has been more
comprehensively discussed elsewhere) it was rightly pointed out by [BRo2002] that
software is an enhancer of the intellectual abilities of its users, (an observation which did
not play an important role for the discussions in [Ede2007]), whereas material hardware
is an enhancer of the bodily abilities of its users. The latter thought leads straight back to
the classical machine theory, formulated already in 1877 by the philosopher of technics
and engineering, Kapp, in his ‘Grundlinien einer Philosophie der Technik’. Moreover,
related to Heidegger’s notion of ‘Zeug’ (equipment), a software-plus-computer system
has elsewhere been dubbed as ‘Denkzeug’ (think-equipment), in contrast to the
‘Werkzeug’ (work-equipment, tool) of the material world, and the same thought, though
not through the same words, was thus expressed in the philosophy of [BRo2002]. Here
we are actually at yet another interface between philosophy of computer science,

 xvii

philosophy of software engineering and a general philosophy of technics and technology;
see Figure 1 again for a graphical sketch of the topical situation.

Summary and Conclusion
What have we reached? Starting from [Ede2007] and his interesting discussion of three
‘paradigms’ of computer science, this essay has asked the question if (and, if “yes”, to
what extent) the arguments of [Ede2007], in the domain of philosophy of computer
science (including software engineering at the margin), could be mapped directly into a
more general philosophy of software engineering (which is related to –though not
identical with– the more specific philosophy of computer science)? It has been found that
not all of the arguments from [Ede2007] are directly applicable in this case, and several
reasons therefore have been shown. More than in [Ede2007] the question about the
‘engineering-ness’ of software engineering has been an important theme of this essay
which should also be regarded as a continuation of [NKB+2008].

Figure 4: Classification and Characterisation of several Engineering Disciplines.

In Figure 4 I have summarily listed four examples of engineering disciplines, including
some related ‘parent’ sciences plus some important features and characteristics. (As
discussed above, the relation between ‘parent’ science and ‘child’ science in the table
must be taken ‘with a grain of salt’ and is not necessarily unidirectional.) The table shows
clearly that software engineering is less constrained by the laws of nature than other
engineering disciplines; this allows for more freedom of human ingenuity and leads

 xviii

consequently also a greater potential of errors and mistakes. Note, however, the grammar
constraint: programming languages must always have a well-defined formal syntax.
 Moreover we can summarize that there are further differences between different
engineering disciplines as far as their efforts in the categories design and (re-) production
are concerned. Take, for example, the design and construction of a bread-toaster in the
classical production industry:

• In a first process, an industrial designer is designing a prototype of the bread-
toaster which is a comparatively simple thing.

• Then, in a second –and considerably more complicated– process the production
engineers have to design the machinery by which the components of the bread-
toaster can be produced and assembled in a factory for mass-production.

Figure 5: Comparison of Design and Production Efforts in different Engineering Areas

In software engineering, on the contrary, all the mental efforts have to be invested into
the design of the software prototype which has a considerably higher structural
complexity than the bread-toaster of this example. Mass-multiplication of the software
product, on the other hand, comes almost for free: because it is software (i.e. immaterial
information) it can simply be copied on almost any available computer. Figure 5 shows
various engineering disciplines, including software engineering, in a two-dimensional
matrix with respect to their efforts in design and (re-) production. This is also one of the
points where a philosophy of software engineering must interface with a general
philosophy of technics and technology, as it was sketched above in Figure 1.

Outlook: Open Questions and Future Work
Since philosophy of software engineering is relatively new in comparison to philosophy
of computer science, there is a long list of interesting questions for future work and

 xix

further discussions. Though the main contribution of this essay –as discussed in the
previous sections– was an analysis of some ‘paradigms’ of software engineering in
comparison with related ‘paradigms’ of computer science from [Ede2007], this essay
would be too incomplete if it would not point at some other issues for further
investigations in a new philosophy of software engineering. This shall be done very
briefly in these remaining few sections at the end of this essay.
 ‘System’, ‘model’ and ‘process’ are three fundamental concepts not only in
computer science [Fet1999] but also in software engineering. Those three terms can be
found in almost every software engineering publication, research paper or textbook for
students. Typically there will be a software development ‘process’ in a software
engineering project, during which a software ‘system’ is being produced in accordance
with a corresponding ‘model’. However, all those three concepts already have a longer
history in the terminology of various sciences, and software engineering has simply
‘inherited’ these terms and continued their usage without much reflection about their
historical semantics. Here I can also see opportunity for interesting philosophical work in
the future, such as to find out which aspects of the historical semantics of ‘system’,
‘process’ and ‘model’ have been preserved in the terminology of software engineering,
and which aspects of their semantics have been modified (or even lost)? As mentioned
above, such an investigation cannot be done within the scope of this essay any more, but
at least the following hints shall be given:

• A ‘model’ in the classical, physical sciences (from which mathematics and formal
logics are here excluded, because they use yet another notion of ‘model’) is usual
constructed by abstraction from something that already exists; for example the
globe on the desk of a foreign minister in politics is a model of our planet Earth.
In software engineering, on the contrary, we typically construct a ‘model’ of a
software system before that software system itself comes into existence. In other
words: we can see here a switch of direction between domain and range of the
model relation.

• According to [Roe1983], our modern notion of ‘process’ –which seems to be an
observable modification of ‘something’ during the passage of time– was strongly
informed by the science of chemistry. Here we could ask if Roettger’s
explanations can be losslessly transferred into the domain of the activity of
software development, or if there is anything specific about a software
development ‘process’ which is not sufficiently covered by the historic semantics
of that technical term. From there we could go even further into the philosophy of
processes (since the Pre-Socratics: Hegel, Nietzsche, Whitehead, etc.) and ask
whether or not a ‘thing’-based metaphysics (e.g.: Strawson) would be sufficient at
all to capture the essence of software engineering?

• As a software ‘system’, when not being processed by a running computer, we
usually regard something rather static, namely a large set of program files and the
program-call relations within and between those files. As far as I can see, such a
static notion of software ‘system’ is well compatible with the classical notion of
‘system’ provided by Johann Heinrich Lambert [Lam1782/1787], but future
investigations would be needed to substantiate such a claim.

 xx

The often-mentioned material ‘no-thing-ness’ of software does not only have
implications for our ability of understanding it [BRo2002]; it also has implications for the
semantics of the term ‘software maintenance’,9 which is a standard word in every
software engineer’s technical vocabulary. Something that is not material cannot
physically decay or wear out; in what sense is it then possible to speak of ‘software
maintenance’? Maintenance of a car means typically, for example, to replace lost engine
oil, or to replace a worn-down tyre by a new one, such that a previous state of newness is
re-established. In the domain of building architecture, such a fix would be called
‘restoration’, for example of an old villa from the previous century, at which some broken
roof tiles could be replaced by tiles of identical type. In the usual software engineering
terminology, on the contrary, ‘maintenance’ typically means either:

• the replacement of a program file F, which is (and had always been since its
creation) wrong in relation to some requirements specification S, by a new
(different) program file F’ which now (hopefully) fulfills the requirements
stipulated by S, or:

• the replacement of a program file F, though not wrong with regard to S, by a new
program file G which adds additional functionality and features to a software
system which had previously not been there, because they had not even been
mentioned by its initial requirements specification S. In other words, the
replacement F/G corresponds to an a-posteriori requirements specification
modification S/S’.

In the analogy of our old villa from the previous century, the latter modification would be
called a ‘renovation’ (rather than a ‘restoration’), whereby the villa could get, for
example, an additional door or window at a place were there was previously only a wall. I
have mentioned this little peculiarity of ‘software maintenance’ –more recently even
more problematic: software ‘evolution’!– as only one example of a software engineering
terminology which is full of ‘home-grown’ and often un-reflected metaphors. Language
philosophers might perhaps find it interesting to delve somewhat deeper into this techno-
linguistic domain.
 In addition to an already existing discussion about the comparability of the
ontological status of software and the ontological status of art [NKB+2008] I shall
remark only briefly at this point that the usual discussion about whether software
engineering is ‘engineering’ or ‘science’ is still confronted with yet another opinion
which claims that software engineering is neither ‘science’, nor ‘engineering’, but simply
‘art’ [Edm2007]. Indeed, such claims seem to be at least partly consistent with the
analyses by arts theorists such as Goodman or Burnham, in the context of which
Edmonds has rightly pointed out that the quality of software systems is also measured in
aesthetic categories [Edm2007], in quite a similar way in which many theoretical
physicists (example: Einstein) have insisted on an aesthetical-theoretical position
according to which a mathematical formulation of a physical law cannot be true if it does
not also have ‘beauty’ – here we can perhaps find a modern remainder of the ancient
Greek notion of ����� (kalos) in which the concepts of ‘beautiful’ and ‘good’ were not
to be separated. In analogy, also a skillful software engineer would intuitively reject an
‘ugly’ software design plan in almost the same way in which Einstein would have

9 Thanks Morkel Theunissen for this hint – see acknowledgments at the end of this essay.

 xxi

intuitively rejected an ‘ugly’ formulation of a physical theory, without being able to
reason analytically and with full logical rigor about such an issue of ‘ugliness’. In other
words: a future philosophy of software engineering could also include some philosophy
of aesthetics.
 Finally I want to mention yet another epistemological issue, namely in the context
of software and knowledge. Many software products seem to be inappropriate or do not
fulfill their intended purpose simply because in many cases we just do not know ‘how to
do things’; we lack procedural knowledge in many domains and circumstances. Vice
versa one could even assume a very radical epistemological position and say: We do not
have any knowledge about something unless it is procedural (algorithmic) knowledge
about how to create it.10 This is related to the problem of what is ‘creativity’. For
example, it is fair to say that we have very good procedural knowledge about how to
create a compiler – in short: we ‘know’ compilers very well. On the contrary we do not
have procedural knowledge about how to create stunning original pieces of art –
therefore, in radical terms, we do not know art, not in this strong sense of ‘knowing’ with
which we know compilers (because we can produce them easily following standardized
handbook procedures). Also in software engineering in general we still have very little
(procedural) knowledge about how to create a software system which adequately fulfills
some arbitrarily given purpose P. This epistemological problem is related especially to
the ongoing efforts in the sub-field of ‘automated software engineering’ (ASE), wherein
we could say: the more software creation processes we can automate (algorithmically) the
better we ‘know’ software engineering, and vice versa. Not everybody would want to
assume such a radical epistemological position –which says: only procedural production
knowledge is counted as ‘knowledge’ at all– but this to discuss is yet another task or
problem for an upcoming philosophy of software engineering.

Acknowledgements
For inspiring discussions I thanks the students of my software engineering seminar at the
University of Pretoria, as well as Tom Maibaum, Derrick Kourie, and Morkel Theunissen.

References
Amman, P. & Offut, J. Introduction to Software Testing. Cambridge University Press, 2008.
Broy, M. & Rombach, D. Software Engineering: Wurzeln, Stand und Perspektiven.
 Informatik Spektrum, Vol. 16, pp. 438-451, Springer-Verlag, 2002.
Cleland, C. Recipes, Algorithms, and Programs. Minds and Machines, Vol. 11, No. 2, pp. 219-
 237, Kluwer Acad. Publ. / Springer-Verlag, 2001.
Colburn, T. Philosophy and Computer Science. Series ‘Explorations in Philosophy’, M.E. Sharpe
 Publ., 2000.
DeMarco, T. Software Engineering: An Idea whose time has come and gone? IEEE Software,
 Vol. 26, No. 4, pp. 95-96, IEEE Computer Society Press, 2009.
Denning, P. Computing is a Natural Science. Communications of the ACM, Vol. 50, No. 7, pp.
 13-18, ACM Press, 2007.
Eden, A. Three Paradigms of Computer Science. Minds and Machines, Vol. 17, No. 2, pp. 135-
 167, Springer-Verlag, 2007.
Edmonds, E. The Art of Programming or Programs as Art. Proceedings ‘New Trends in
 Software Methodologies, Tools and Techniques’, pp. 119-125, IOS Press, 2007.

10 I have heard about such a position in a lecture presented by Manfred Nagl in the late 1990s.

 xxii

Fetzer, J. Program Verification: The very Idea. Communications of the ACM, Vol. 31, No. 9, pp.
 1048-1063, ACM Press, 1988.
Fetzer, J. Philosophy and Computer Science: Reflections on the Program Verification Debate, pp.
 253-273 in Bynum, T. & Moor, J.H. (eds.), The Digital Phoenix: How Computers are
 changing Philosophy, Basil Blackwell Publ., 1998.
Fetzer, J. The Role of Models in Computer Science. The Monist, Vol. 82, pp. 20-36, Hegeler
 Institute Publ., 1999.
Floridi, L. Philosophy and Computing: An Introduction. Routledge Publ., 1999.
Lakatos, I. The Methodology of Scientific Research Programmes – Philosophical Papers, Vol. 1,
 Cambridge University Press, 1978.
Lambert, J. Drei Abhandlungen zum Systembegriff (1782/1787). Re-published in Diemer, A.
 (ed.), System und Klassifikation, 1968.
Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Journal of
 Research and Development, Vol. 5, No. 3. Reprinted in IBM Journal of Research and
 Development, Vol. 44, No. 1/2, pp. 261-269, 2000, IBM Press, 1961.
Maibaum, T. Formal Methods versus Engineering. Proceedings of the First International
 Workshop on Formal Methods in Education and Training, at the ICFEM International
 Conference on Formal Engineering Methods, Kitakyushu, Japan, 2008.
Masterman, M. The Nature of a Paradigm, pp. 59-89 in Lakatos, I. & Musgrave, A. (eds.),
 Criticism and the Growth of Knowledge (Proceedings of the 1965 International
 Colloquium in the Philosophy of Science ay Bedford College), Vol. 4, Cambridge
 University Press, 1970.
Northover, M. & Kourie, D. & Boake, A. & Gruner, S. & Northover, A. Towards a
 Philosophy of Software Development: 40 Years after the Birth of Software
 Engineering. Zeitschrift für allgemeine Wissenschaftstheorie, Vol. 39, No.1, pp. 85-113,
 Springer-Verlag, 2008.
Rapp, F. (ed.), Contributions to a Philosophy of Technology: Studies in the Structure of Thinking
 in the Technological Sciences. Reidel Publ., 1974.
Roettgers, K. Der Ursprung der Prozeßidee aus dem Geiste der Chemie. Archiv für Begriffs-
 geschichte, Vol. 27, pp. 93-157, Meiner-Verlag, 1983.
Rombach, D. & Seelisch, F. Formalisms in Software Engineering: Myths versus Empirical Facts.
 Lecture Notes in Computer Science, Vol. 5082, pp. 13-25, Springer-Verlag, 2008.
Smith, B. On the Origin of Objects. MIT Press, 1998.
Snelting, G. Paul Feyerabend und die Softwaretechnologie. Informatik Spektrum, Vol. 21, No. 5,
 pp. 273-276, Springer-Verlag. English translation: Paul Feyerabend and Software
 Technology. Software Tools for Technology Transfer, Vol. 2, No. 1, pp. 1-5, Springer-
 Verlag, 1998.
Tichy, W. Empirical Methods in Software Engineering Research. Invited Lecture; Proceedings 4th
 IFIP WG 2.4 Summer School on Software Technology and Engineering, Gordon’s Bay,
 South Africa, 2007.
Zhirnov, V. & Cavin, R. & Leeming, G. & Galatsis, K. An Assessment of Integrated Digital
 Cellular Automata Architectures. Computer Vol. 41, No. 1, pp. 38-44, IEEE Computer
 Society Press, 2008.

