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In a wireless communication system the transmitted information is subjected to a number of impair-

ments, among which inter-symbol interference (ISI), thermal noise and fading are the most prevalent.

Owing to the dispersive nature of the communication channel, ISI results from the arrival of mul-

tiple delayed copies of the transmitted signal at the receiver. Thermal noise is caused by the random

fluctuation on electrons in the receiver hardware, while fading is the result of constructive and de-

structive interference, as well as absorption during transmission. To protect the source information,

error-correction coding (ECC) is performed in the transmitter, after which the coded information is

interleaved in order to separate the information to be transmitted temporally.

Turbo equalization (TE) is a technique whereby equalization (to correct ISI) and decoding (to correct

errors) are iteratively performed by iteratively exchanging extrinsic information formed by optimal

posterior probabilistic information produced by each algorithm. The extrinsic information determined

from the decoder output is used as prior information by the equalizer, and vice versa, allowing for

the bit-error rate (BER) performance to be improved with each iteration. Turbo equalization achieves

excellent BER performance, but its computational complexity grows exponentially with an increase in

channel memory as well as with encoder memory, and can therefore not be used in dispersive channels

where the channel memory is large. A number of low complexity equalizers have consequently been
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developed to replace the maximum a posteriori probability (MAP) equalizer in order to reduce the

complexity. Some of the resulting low complexity turbo equalizers achieve performance comparable

to that of a conventional turbo equalizer that uses a MAP equalizer. In other cases the low complexity

turbo equalizers perform much worse than the corresponding conventional turbo equalizer (CTE)

because of suboptimal equalization and the inability of the low complexity equalizers to utilize the

extrinsic information effectively as prior information.

In this thesis the author develops two novel iterative low complexity turbo equalizers. The turbo equa-

lization problem is modeled on superstructures, where, in the context of this thesis, a superstructure

performs the task of the equalizer and the decoder. The resulting low complexity turbo equalizers

process all the available information as a whole, so there is no exchange of extrinsic information

between different subunits. The first is modeled on a dynamic Bayesian network (DBN) modeling

the Turbo Equalization problem as a quasi-directed acyclic graph, by allowing a dominant connection

between the observed variables and their corresponding hidden variables, as well as weak connections

between the observed variables and past and future hidden variables. The resulting turbo equalizer is

named the dynamic Bayesian network turbo equalizer (DBN-TE). The second low complexity turbo

equalizer developed in this thesis is modeled on a Hopfield neural network, and is named the Hopfield

neural network turbo equalizer (HNN-TE). The HNN-TE is an amalgamation of the HNN maximum

likelihood sequence estimation (MLSE) equalizer, developed previously by this author, and an HNN

MLSE decoder derived from a single codeword HNN decoder. Both the low complexity turbo equal-

izers developed in this thesis are able to jointly and iteratively equalize and decode coded, randomly

interleaved information transmitted through highly dispersive multipath channels.

The performance of both these low complexity turbo equalizers is comparable to that of the con-

ventional turbo equalizer while their computational complexities are superior for channels with long

memory. Their performance is also comparable to that of other low complexity turbo equalizers, but

their computational complexities are worse. The computational complexity of both the DBN-TE and

the HNN-TE is approximately quadratic at best (and cubic at worst) in the transmitted data block

length, exponential in the encoder constraint length and approximately independent of the channel

memory length. The approximate quadratic complexity of both the DBN-TE and the HNN-TE is

mostly due to interleaver mitigation, requiring matrix multiplication, where the matrices have di-

mensions equal to the data block length, without which turbo equalization using superstructures is

impossible for systems employing random interleavers.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context

In a wireless communication system information is transmitted through a multipath communication

channel, where multiple delayed copies of the transmitted signal arrive at the receiver. Inter-symbol

interference (ISI) is a phenomenon caused by the dispersive nature of a multipath wireless communic-

ation channel, which introduces memory to the system. In order to reverse the effect of the multipath

channel on the transmitted information, an equalizer is used to detect or estimate the transmitted

information with maximum confidence [1, 2].

During transmission the information is subjected to a number of impairments, of which multipath

propagation, thermal noise and channel fading are the most prevalent. Fading is caused by the con-

structive and destructive interference of the signal during transmission, while thermal noise is caused

by random fluctuations of electrons in the electronic components in the receiver. In order to mitigate

the effect of these impairments on the transmitted symbols, the source information is encoded before

transmission. Error-correction coding (ECC) is used to introduce controlled redundancy to the un-

coded information to allow for the correction of errors that might have occurred during transmission

and reception. Decoding is performed after detection or equalization in the receiver and can greatly

improve the system performance compared to a system that does not employ ECC [2–4]. Equalization

and decoding of convolutional codes are performed by using an optimal soft-input soft-output (SISO)

maximum a posteriori probability (MAP) algorithm, adapted to each task, which ensures optimal

performance [2, 3].
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Chapter 1 Introduction

Turbo equalization is a technique whereby equalization and decoding are performed in an iterative

fashion, where information is exchanged between the equalizer and the decoder, improving the overall

bit-error rate (BER) with each iteration [2,5–7]. The computational complexity of turbo equalization,

however, becomes an issue with an increase in channel memory and encoder memory. In fact, the

computational complexity of turbo equalization grows exponentially with an increase in channel and

encoder memory. As a result of the high computational complexity due to channel memory, much

research has been devoted to the development of low complexity equalizers, which can be used to

replace the MAP equalizer in order to reduce the overall complexity of the turbo equalizer [8–11].

Although these low complexity equalizers result in a significant reduction in computational complex-

ity, the resulting turbo equalizer performance may be suboptimal in some cases.

It is therefore of interest to the field of turbo equalization applied to wireless communication systems

to explore different modeling approaches to produce more elegant and efficient algorithms. In this

thesis the author develops two new joint equalization and decoding algorithms, which can be used

to replace conventional turbo equalizers. These new algorithms are developed by modeling the turbo

equalization problem holistically using a single model, and not as separate equalization and decoding

solutions that interact iteratively. The thesis shows that this approach leads to elegant solutions with

excellent BER performance and favorable computational complexity characteristics.

1.1.2 Research Gap

Whereas the MAP equalizer is based on a structure that allows optimal equalization, the low complex-

ity equalizers developed as a replacement for the MAP equalizer are modeled as minimization prob-

lems. Minimum mean squared error (MMSE) and decision feedback (DF) techniques, and combina-

tions thereof, are used to design these low complexity equalizers, at the cost of optimality [7,8,10–12].

The iterative exchange of information in a turbo equalizer also results in suboptimal performance,

since suboptimal decisions are made in response to incomplete information during early iterations.

This is true even when an optimal MAP equalizer is used, and it is only after many iterations that per-

formance (using MAP detection) will approach levels that may be considered to be acceptable.

There is therefore an opportunity to develop a turbo equalizer that solves the turbo equalization prob-

lem using one superstructure,1 similar to the approach followed for turbo decoding in [13], and not

two separate structures that exchange information in order to improve the overall system perform-

1In this context a superstructure is a structured algorithm that performs the task of both the equalizer and the decoder.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

ance. The thesis instead proposes to use a single superstructure, and two specific cases are proposed

to model a turbo equalizer. The first is a dynamic Bayesian network (DBN), and the second a Hopfield

neural network (HNN). Both these methods have the potential to use all the available information and

process it as a whole, without having to exchange information between constituent parts.

1.2 RESEARCH OBJECTIVES AND QUESTIONS

The objective of the research in this thesis is to stay true to the structured approach that enables pro-

cessing of all available information as a whole without the need to exchange information between the

equalizer and the decoder. By integrating the equalizer and decoder, computational complexity re-

duction comparable to that of turbo equalizers employing MMSE based equalizers must be achieved,

while BER performance must remain comparable to that of a conventional turbo equalizer (CTE).

Some research questions to consider are:

• Is it possible to use superstructures to equalize and decode information jointly and achieve the

same results as a CTE?

• Will a joint approach result in lower computational complexity while still achieving acceptable

performance?

• What will be the effect of an interleaver used in the transmitter? Will there be a limitation on

the structure of the interleaver and will the interleaver affect computational complexity?

Throughout this thesis the answers to these questions will become clear as the research objectives are

achieved.

1.3 HYPOTHESIS AND APPROACH

The research undertaken was supported by a number of factors that indicated that successful devel-

opment and implementation of a new kind of turbo equalizer can be achieved, using two different

approaches.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

1.3.1 Hypothesis

It is hypothesized that a DBN and an HNN can be used to model the turbo equalization problem in

order to equalize and decode coded and interleaved transmitted information jointly, and to achieve

performance that is comparable to the performance achievable with a CTE, but with reduced com-

plexity. The hypothesis is based on a number of previous works:

1.3.1.1 Dynamic Bayesian Network Turbo Equalizer (DBN-TE)

• It was shown in [14] that optimal, non-iterative joint equalization and decoding can be per-

formed on a super-trellis, when a depth-limited block interleaver is used. The computational

complexity grows exponentially with an increase in channel memory, encoder memory and in-

terleaver depth. This implementation is infeasible for systems employing an interleaver with a

depth of multiple codeword lengths, and impossible when a random interleaver is used.

• The optimal MAP equalizer and decoder uses belief propagation (BP) on a trellis in order to

estimate the posterior distributions of the transmitted symbols [2, 3, 15]. BP is also used in

DBNs to infer beliefs regarding particular states of nodes in a solution space, using evidence

from neighboring nodes [16].

• It was shown in [13, 17] that turbo decoding can be performed by iteratively decoding the

received codewords on a graph with cycles using BP. It was also shown in [18] that turbo

decoding is an instance of Pearl’s BP algorithm [15]. Because of the similarities between turbo

equalization and turbo decoding, these works suggest that turbo equalization is in fact possible

using a DBN or a graph.

1.3.1.2 Hopfield Neural Network Turbo Equalizer (HNN-TE)

• It was shown by this author in [19, 20] that the HNN can be used to equalize M-ary quadrature

amplitude modulation (M-QAM) modulated information in single carrier systems transmitting

information through highly dispersive multipath channels, with computational complexity that

is approximately independent of the channel memory length and quadratic in the data block

length.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4
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• It has also been demonstrated that the HNN could be used to decode a special class of check

codes, namely balanced codes [21, 22], where the HNN algorithm is applied to each code-

word received. To perform turbo equalization the codeword sequence, and not each separate

codeword, will have to be estimated.

Previous work therefore suggests that joint equalization using superstructures could be possible, and

that a DBN and an HNN can be used as frameworks. The fact that a random interleaver, as is often

used in wireless communication systems, might have an adverse effect on the computational com-

plexity of the envisioned turbo equalizers, and may in fact inhibit the development thereof, remains

an area of concern. Given the successful development of the non-iterative joint equalizer and decoder

proposed in [14], the thesis shows that successful development and implementation can be achieved

with some limited restrictions on the structure of the interleaver, which affects the computational

complexity as well.

1.3.2 Approach

The approach that will be followed for the development of the two new turbo equalizers will be as

follows:

1.3.2.1 DBN-TE

• The turbo equalization problem will be graphically modeled using a directed cyclic or acyclic

graph, and system equations will be derived from the model.

• State transition probabilities will be determined for a given convolutional encoder, which will

be used to describe the probabilities of transitioning from one state to the next in the DBN.

• The encoder outputs will be determined for each encoder state transition, which will be used to

determine the cost of transitioning from on state to the next in the DBN.

• The equalizer and decoder cost functions of the respective MAP equalizer and decoder al-

gorithms will be combined to enable the DBN to perform equalization while decoding.

• The effect of different interleavers - block interleavers and random interleavers - will be invest-

igated and it will be attempted to adapt the model to allow for the use of any interleaver.
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Chapter 1 Introduction

• Simulations will be performed to study the convergence properties as well as the performance

of the proposed DBN-TE.

1.3.2.2 HNN-TE

• The HNN maximum likelihood sequence estimation (MLSE) equalizer in [19,20] and the HNN

decoder in [21, 22] will be implemented for binary phase shift keying (BPSK) modulation.

• The HNN decoder will be modified to decode sequences of codewords in a data block, since

the HNN decoder is only able to decode single codewords.

• The HNN equalizer and the HNN decoder will be integrated so that joint equalization and

decoding can be performed using one HNN rather than two separate HNNs.

• Like the DBN-TE, the HNN-TE will be adapted to be able to equalize and decoded interleaved

information jointly.

• Simulations will be performed to study the convergence properties as well as the BER perform-

ance of the proposed HNN-TE.

1.4 RESEARCH GOALS

The research presented in this thesis aims to achieve the following goals:

• To derive and develop two novel joint equalizers/decoders, or turbo equalizers, each using

one superstructure to perform joint equalization and decoding without exchanging information

between separate algorithms.

• To ensure that the computational complexity characteristics of the proposed turbo equalizers

are comparable to those of current MMSE based turbo equalizers, to enable turbo equalization

in systems transmitting information through highly dispersive multipath channels.

• To enable the proposed turbo equalizer to be used in systems were the information is interleaved

using a random interleaver, without limitations to the interleaver structure.

• To ensure that the performance of the proposed turbo equalizers is comparable to that of a CTE,
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Chapter 1 Introduction

using an optimal MAP equalizer/decoder pair in static and mobile fading channels.

1.5 RESEARCH CONTRIBUTION

In this thesis two novel techniques for iterative joint equalization and decoding are developed using

a DBN and an HNN as frameworks. These turbo equalizers are unique in the sense that they do not

serve to replace the equalizer in a turbo equalizer setup, like other low complexity equalizers, but to

replace both the equalizer and the decoder. They are able to process all available information as a

whole, without having to pass information between separate algorithms.

The DBN-TE is developed by modeling the turbo equalizer on a DBN. The DBN-TE is modeled as

a quasi-directed acyclic graph (DAG), assuming that a dominant connection exists between the ob-

served variable and its corresponding hidden variable and weak connections between the observed

variable and past and future hidden variables due to ISI. This allows for joint equalization and decod-

ing to be performed in an iterative fashion. During the first iteration only the dominant connection

is used to produce initial estimates regarding the transmitted coded information. During subsequent

iterations the dominant connection as well as the weak connections to past and future hidden variables

are used in conjunction with the coded symbol estimates from the previous iteration to remove the ISI

introduced during multipath propagation. The performance of the DBN-TE is comparable to that of

the CTE in fading channels, while being able to equalize and decode BPSK modulated information

jointly in highly dispersive fading channels. However, the performance of the DBN-TE is worse than

that of the CTE in some static channels where the leading channel impulse response (CIR) coeffi-

cient is not sufficiently dominant. The computational complexity of the DBN-TE is approximately

quadratic at best, and cubic at worst in the coded data block length, exponential in the encoder con-

straint length and approximately independent of the channel memory length, and is much lower than

that of the CTE for systems with long channel memory. Its computational complexity is however

inferior compared to MMSE and DFE based turbo equalizers for large coded data block lengths, but

comparable to MMSE based turbo equalizers for moderate data block lengths.

The HNN-TE is developed by combining the HNN MLSE equalizer developed by this author in [19,

20] and the HNN decoder in [21, 22]. The equalizer in [19, 20] has computational complexity that is

quadratic in the data block length and approximately independent of the channel memory length. It is

also able to near-optimally equalize uncoded M-QAM information in extremely dispersive multipath

channels. Also, the decoder in [21,22] is able to decode single balanced codes using the HNN, but in

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1 Introduction

order to merge the HNN MLSE decoder with the HNN MLSE equalizer, the decoder is modified to

enable the decoding of sequences of balanced codes, resulting in an HNN MLSE decoder. The HNN

MLSE equalizer and the HNN MLSE decoder are integrated to form the HNN-TE. The HNN-TE

performance is comparable to that of the CTE and it is able to equalize and decode BPSK and 4-

QAM modulated information jointly in extremely dispersive multipath channels. Like the DBN-TE,

the performance of the HNN-TE is lacking in some static channels. The computational complexity of

the HNN-TE is approximately independent of the channel memory length and almost quadratically

related to the coded data block length, and it is comparable to that of MMSE based turbo equalizers

for moderate code data block sizes.

The international journal publications that emanated from this research are as follows:

1. H.C. Myburgh, J.C. Olivier, A.J. Van Zyl, “Reduced Complexity Turbo Equalization Using

a Dynamic Bayesian Network,” EURASIP Journal on Advances in Signal Processing, 2012,

2012:136 (doi: 10.1186/1687-6180-2012-136).

2. H.C. Myburgh, J.C. Olivier, “A Low Complexity Hopfield Neural Network Turbo Equalizer,”

EURASIP Journal on Advances in Signal Processing, 2013, 2013:15 (doi: 10.1186/1687-6180-

2013-15).

3. H.C. Myburgh, J.C. Olivier, “A Primer on Equalization, Decoding and Non-Iterative Joint

Equalization and Decoding,” EURASIP Journal on Advances in Signal Processing, 2013,

2013:79 (doi: 10.1186/1687-6180-2013-79).

1.6 OVERVIEW OF STUDY

This study commences in Chapter 2 with a discussion of the MLSE and MAP algorithms gener-

ally used for equalization as well as decoding of convolutional codes. After discussing the MAP

and MLSE algorithms in general, equalization and decoding using these algorithms are discussed.

This is followed by a discussion on non-iterative joint equalization and decoding. Non-iterative

joint equalization and decoding is first discussed for systems that do not employ an interleaver, after

which it is discussed for depth-limited block interleavers. Complexity analyses of the non-iterative

joint equalizers and decoders are also presented and simulation results are presented throughout this

chapter.
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Chapter 1 Introduction

Chapter 3 is dedicated to the discussion of turbo equalization. It starts by discussing the operation of

the CTE and a computational complexity analysis. This is followed by a discussion on low complexity

equalizers used as replacement in a turbo equalizer, after which computational complexity analyses

are also performed and compared to that of the CTE. Simulation results are presented throughout this

chapter.

In Chapter 4 the DBN-TE is developed. DBNs are discussed in general, after which the forward-

backward algorithm is discussed. The turbo equalization problem is presented as a graphical model,

and the significant implications of interleaving are discussed. Next a transformation which mitig-

ates the randomization effect of the interleaver is discussed, after which the DBN-TE algorithm is

developed. Complexity reduction and optimization techniques are discussed next, followed by a

complexity analysis, where the complexity of the DBN-TE is compared to that of the CTE as well

as low complexity CTEs where the optimal MAP equalizer is replaced with suboptimal MMSE and

DFE based equalizers. Following the complexity analysis and comparison, simulation results are

presented, where the DBN-TE is simulated and compared to the CTE and other low complexity turbo

equalizers (LCTE). This chapter is concluded with a discussion and some general remarks.

Chapter 5 presents the HNN-TE. In this chapter the HNN model is discussed first. The HNN MLSE

equalizer is discussed next, after which the HNN decoder is discussed and expanded to enable the

decoding of a sequence of balanced codes, resulting in an HNN MLSE decoder. The HNN MLSE

equalizer and the HNN MLSE decoder are then merged to form the HNN-TE, and this is followed by

a computational complexity analysis, where again the complexity of the HNN is compared to that of

a CTE as well as other LCTEs. Simulation results are then presented, which show the performance

of the HNN-TE compared to a CTE, after which the chapter is concluded with a discussion and some

general remarks.

In Chapter 6 a summary of the research and the resulting outcomes are presented, and suggestions

are made for future research. Finally, Appendix A serves to explain the simulation environment used

to generate the simulation results.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2

EQUALIZATION, DECODING AND JOINT EQUALIZA-

TION AND DECODING

Equalization and decoding are two essential aspects of any wireless communication system. The

equalizer is tasked with reversing the effect of the communication channel on the transmitted inform-

ation signal, while the decoder receives the equalized symbol sequence and attempts to correct errors

that might have been caused during transmission.

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, also known as the MAP algorithm, is useful when

designing equalizer and decoder algorithms [2, 3]. The BCJR algorithm receives soft probabilistic

information regarding the input and produces a posteriori probabilistic information regarding the

output, and is aptly called a soft-input soft-output (SISO) algorithm. The availability of reliable soft

information at the input allows for more accurate a posteriori estimates to be produced at the output,

which improves overall system performance [5–7].

The equalizer can be designed by using the Viterbi algorithm (VA), also known as the MLSE al-

gorithm, which makes use of the min-sum algorithm to find the most probable transmitted se-

quence [2, 4, 23]. The VA performs optimally but, it is only able to produce hard estimates at the

output, and is therefore not an attractive choice when the equalizer is followed by a SISO decoder.

The VA can be modified to produce suboptimal posterior probabilistic information at the output, res-

ulting in the soft output Viterbi algorithm (SOVA) in [24], but because of its suboptimal nature the

overall system performance will also be suboptimal. Using the MAP algorithm, the equalizer is able

to produce optimal posterior probabilistic information regarding the transmitted information, which

can be exploited by the SISO decoder.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

While the VA and SOVA can also be used for decoding, the MAP algorithm is the algorithm of

choice when the output of the decoder is fed back to be used by the equalizer, a technique known

as turbo equalization [5, 6]. However, when the estimates of the uncoded transmitted symbols are

taken directly from the output of the decoder, ie. when no turbo equalization is performed, the MSLE

algorithm will suffice.

Joint equalization and decoding can be performed by MLSE or MAP algorithms and by employing

a super-trellis, as shown in [14], given that the depth of the interleaver is limited by computational

complexity limitations. The joint equalizer and decoder achieves optimal non-iterative equalization

and decoding. Since the input of the joint equalizer and decoder is ISI-corrupted coded transmitted

symbols, and the output is the equalized and decoded symbol estimates, no posterior probabilistic

information is required at the output. Therefore the MLSE algorithm can also be used. The MAP

algorithm will perform just as well, albeit with approximately twice the computational complexity.

It has also been shown in [25] that joint decoding of turbo codes can be done on a super-trellis as

well.

Fig. 2.1 shows a block diagram of the communication system considered in this chapter. The source

information is encoded, after which an interleaver is used to separate adjacent coded bits tempor-

ally. The coded bits are mapped to modulation symbols chosen from a modulation alphabet D , after

which the symbols are used to modulate the carrier before transmission. The transmitted information

passes through a multipath white Gaussian noise channel and is received by the receiver antenna.

After reception the signal is demodulated and matched filtered in order to produce a received symbol

sequence. The CIR is estimated using a number of known pilot symbols, and is provided as input

to the equalizer together with the received symbol sequence. The equalizer reverses the effect of

the multipath channel and produces optimal symbol estimates (MAP) or an optimal sequence estim-

ate (MLSE) regarding the transmitted coded bits after interleaving. The output of the equalizer is

deinterleaved and provided as input to the decoder, which produces optimal estimates regarding the

uncoded transmitted information in the form of log-likelihood ratios (LLR), which are mapped back

to bits to produce a final estimate of the source information. When joint equalization and decoding

is performed, the equalizer, deinterleaver and decoder are replaced by one functional block, as in-

dicated by the dashed line around these functional blocks. Equalization and decoding are performed

simultaneously, producing LLR estimates of the source information at the output.

Since the subject of this thesis is turbo equalization, equalization, decoding and joint equalization
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

and decoding will be discussed in the context of the MAP algorithm, but for completeness the MLSE

algorithm will also be discussed. The MLSE and MAP algorithms are discussed next, after which

these algorithms will subsequently be related to equalization and decoding.
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symbols

ModulatorEncoderSource
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Equalizer

Channel 
Estimator

Decoder
Symbols-to-

bits
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Figure 2.1: Wireless communication system block diagram.

2.1 THE MLSE AND MAP ALGORITHMS

The MLSE and MAP algorithms are used for equalization as well as for the decoding of convolu-

tional codes [1–4,23]. The MLSE algorithm is able to optimally estimate the most probable sequence

of transmitted symbols/codewords (depending on equalization/decoding), while the MAP algorithm

exactly estimates the probability of each transmitted symbol/codeword. These algorithms are under-

pinned by Bayes’ rule of conditional probability, which states that

P(dt = d(m)|rt) = P(dt=d(m))P(rt |dt=d(m))
P(rt)

= P(dt=d(m)
t )P(rt |dt=d(m))

∑
M
n=1 P(dt=d(m))P(rt |dt=d(m))

= βP(rt |dt = d(m))

, (2.1)

where P(dt = d(m)) is the prior probability of transmitting symbol/codeword d(m) at time instant t.

For equalization, the symbols d(m) are chosen from a given modulation alphabet D of size M, where

m = 1,2, . . . ,M, and for decoding, codewords symbols d(m) are chosen from a list of M possible

codewords. Since it is assumed that the received symbol/codeword sequence is corrupted by white

Gaussian noise, the probability of receiving rt and time instant t having transmitted d(m)
t , is expressed
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

as [1–4, 23]

P(rt |dt = d(m)) =
1√

2πσ
exp

(
−∆

(m)
t

2σ2

)
, (2.2)

where σ is the noise standard deviation and ∆
(m)
t is a cost function for the purpose of minimizing the

Euclidean distance between the received symbol/codeword and the symbol/codeword to be estimated,

which will be discussed in Section 2.2 and Section 2.3 respectively for equalization and decoding.

Since P(dt = d(m)) and P(rt) are independent of the choice of d(m), they can be absorbed into a

normalization constant β , which, since ∑
M
m=1 P(dt = d(m)|rt) = 1, can be expressed as

β =
1

∑
M
m=1 P(dt = d(m)|rt)

. (2.3)

In order to apply Bayes’ rule over a transmitted block of N symbols/codewords, the product rule can

be used to express (2.1) for a sequence of length N such that

P(d1,d2, . . . ,dN |r1,r2, . . . ,rN) = βP(r1|d1).P(r2|d2). . . . .P(rN |dN)

P(d|r) = β ∏
N
t=1 P(rt |dt)

= β ∏
N
t=1

(
1√

2πσ
exp
(
−∆

(m)
t

2σ2

))
= β

(
√

2πσ)N exp
(
−∑

N
t=1 ∆

(m)
t

2σ2

)
= β

(
√

2πσ)N exp
(
− ∆

2σ2

)
, (2.4)

where any symbol/codeword dt in the symbol/codeword sequence d = {d1,d2, . . . ,dN} can be sub-

stituted for any d(m), and where r = {r1,r2, . . . ,rN} is the received symbol/codeword sequence, and

∆ = ∑
N
t=1 ∆

(m)
t .

2.1.1 The Maximum Likelihood Sequence Estimation Algorithm

In 1972 Forney [1] showed that the VA [1, 4, 23], first developed by Viterbi in 1967 to decode con-

volutional error correction codes, can be used to determine the most likely transmitted sequence.

This is done by using a trellis, a special graph, or remerging tree structure, representing all possible

combinations of transmitted symbols, to determine the solution with the lowest cost through the trel-

lis. The sequence of symbols with the lowest cost maximizes the probability that said sequence was

transmitted, thus producing the optimal estimate for the transmitted sequence [1, 2].

The VA, or MLSE algorithm, attempts to minimize the cumulative cost function ∆ = ∑
N
t=1 ∆m

t in

(2.4), which in turn maximizes P(d|r) in (2.4). After minimizing ∆ in (2.4), there is no sequence of

transmitted symbols/codewords that is more likely to have been transmitted. However, the probability
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

of each estimated symbol/codeword in the sequence will not necessarily be maximized among all

possible transmitted symbols/codewords. As stated before, the MAP algorithm is used to calculate

exact posterior probabilities on each symbol/codeword. The min-sum algorithm is used to find the

MLSE solution and is discussed next.

2.1.1.1 The Min-Sum Algorithm

In order to perform optimal sequence estimation, the min-sum algorithm is used. Viterbi and Forney

in [1, 23] showed that the min-sum algorithm can be used by constructing a trellis and tracing a

path, corresponding to the most likely transmitted symbol/codeword sequence through the trellis.

The min-sum algorithm allows for the elimination of more costly contending paths at each state on

a trellis, thereby greatly reducing the computational complexity due to complete enumeration. For

equalization, there will always be ML−1 possible paths at every stage in the trellis, where M is the

modulation alphabet size and L is the channel memory length. Similarly, for decoding, there will

always be 2K−1 remaining paths at every stage in the trellis (if convolutional encoding is performed

in GF(2)), where K is the encoder constraint length which introduces memory to the transmitted

codewords. ML−1 and 2K−1 also correspond to the number of respective states in the trellis for each

time instant t, for the equalizer and the decoder.

Fig. 2.2 shows a trellis with ML−1 = 2K−1 = 4 states, corresponding to an equalizer used in a system

where a BPSK modulated symbol sequence of length N is transmitted through a multipath channel

with a CIR of length L = 3, or to a decoder used to decode a coded sequence of N codewords where a

convolutional encoder with constraint length K = 3 is used. The trellis is initiated by assuming that it

starts at state S1 at time instant t = 0 and it is terminated at state S1 at time instant t = N. For equali-

zation, each state represents a unique combination of modulation symbols sm, where m = 1,2, . . . ,M,

from a modulation alphabet D of size M, and for decoding each state represents a possible codeword

at the output of the convolutional decoder. The edges, or transitions from state Si, i = 1,2,3,4 at time

instant t to any other state S j, j = 1,2,3,4 at time instant t +1 describes the likelihood of this occur-

rence, which will be a maximum if the cost function ∆
(m)
t in (2.2) is a minimum. Table 2.1 shows the

values associated with states S j, j = 1,2,3,4 for equalization and decoding respectively.

For equalization, each state will have M incoming transitions (from the left), while there will be two

incoming transitions for decoding.1 But as stated above, there will only be 2L−1 = 2K−1 = 4 remaining

1It is assumed that GF(2) decoding is used as usual.
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S1

S2

S3

S4

t = 1 t = 2 t = 3 t = 4 t = Nt = N-1t = N-2

Figure 2.2: Trellis diagram.

Table 2.1: Equalizer/Decoder state values

S1 S2 S3 S4

Equalizer 1,1 -1,1 1,-1 -1,-1

Decoder -1,-1, 1,-1 -1,1 1,1

paths at each time instant in the trellis, which means that all but one path has to be eliminated at each

state. To eliminate more costly paths at each state in the trellis at time t, the cumulative cost function

∆ = ∑
N
t=1 ∆

(m)
t in (2.4) is calculated for all possible paths leading to the said state up to time t, where

the cost of the contending paths are compared, and the path with the highest cost (corresponding to the

lowest probability), is eliminated. Therefore, at each state all the previous ∆t, j→i’s are accumulated,

and where there are contending paths, the path with the largest accumulated cost is eliminated.

There will therefore be 22 = 4 surviving paths in each stage on the trellis for stages beyond t =

2. When stages t = N − 2 to t = N are considered, the number of allowed transitions decrease,

because of the known tail symbols at the end of the transmitted symbol sequence. For the last few

states in the trellis the contending paths are also eliminated, until only one possible path remains at

stage t = N. This path is then traced back to determine the most probable sequence of transmitted

symbols/codewords.

The MLSE equalizer/decoder produces outputs from a set of M symbols for equalization or from a

set of uncoded bits for decoding. These estimates are called hard outputs, since the estimates do not

contain any probabilistic information regarding the reliability of those estimates. The MAP equalizer
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

can be used to produce probabilistic information as an indication of the reliability of the estimates.

The MAP algorithm is discussed next.

2.1.2 The Maximum A Posteriori Probability Algorithm

Following the development of the Viterbi MLSE decoding algorithm [23], the BCJR algorithm [3],

named after its developers L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, also known as the MAP al-

gorithm, was developed in 1974, also for the decoding of convolutional codes. In the artificial intelli-

gence community this algorithm was developed independently by Pearl and is called belief propaga-

tion (BP) [15]. The MAP algorithm is able to produce the posterior probability of each symbol in the

estimated transmitted sequence, as opposed to maximizing the probability of the whole transmitted

sequence, as done by the Viterbi MLSE equalizer [1, 2, 4, 23].

The aim of the MAP algorithm is to maximize the posterior probability distribution for each trans-

mitted symbol/codeword. While the MLSE algorithm assumes the prior probabilities P(d) of the

transmitted symbols to be equal, the MAP algorithm is able to exploit the prior probabilities P(d),

if necessary, in order to enhance the quality of posterior probabilistic information on each individual

transmitted symbol. Like the MLSE algorithm, the MAP algorithm uses the model in (2.4) on a trellis,

but unlike the MLSE algorithm, the MAP algorithm propagates the transition probabilities forward

from past states to future states, as well as backwards from future states to past states, after which the

marginalized probability for each estimated symbol/codeword dt is produced, given past and future

information. That is [3, 26]

P(dt = d(m)|r) =
N

∑
dt† :t† 6=t

P(d|r) (2.5)

where again d(m), m = 1,2, . . . ,M, is the mth symbol chosen from a modulation alphabet D of size M

for equalization, or d(m) is the mth codeword chosen from a list of M codewords produced by a convo-

lutional encoder for decoding, r is the received sequence, and N is the number of symbols/codewords

in the received sequence.

Referring to Fig. 2.2, the probability of a transition from state S j,t−1 (at time t−1) to state Si,t (at time

t), where i, j = 1,2, . . . ,ML−1 for equalization and i, j = 1,2, . . . ,2K−1 for decoding, is given by

ω j→i,t(S j,t−1,Si,t) = βP(dt = d(m))P(rt |S j,t−1,Si,t), (2.6)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

where β is a normalization constant and P(rt |S j,t−1,Si,t) is given by

P(rt |S j,t−1,Si,t) =
1√

2πσ2
exp
(
−∆

2σ2

)
. (2.7)

By considering the relevant transition value2 dξ , P(dt) can be written as [5, 6]

P(dt = d(m)) = exp
(

1
2

dξ L(d̃t)

)
, (2.8)

where L(.) denotes the LLR operation and d̃t is an estimate of dt . Therefore, substituting (2.7) and

(2.8) in (2.6), yields

ω j→i,t(S j,t−1,Si,t) =
δ√

2πσ2
exp
(
−∆

2σ2 + exp
(

1
2

dξ L(d̃t)

))
, (2.9)

which completely describes the probability of a transition from S j,t−1 (or d j) at time t− 1 to Si,t (or

di) at time t, based on all available information. Thus, for a transition labeled dξ = 1 and L(d̃t) equal

to any large positive value,3 P(dt = d(m)) will be large, confirming the transition. Similarly, for a

transition labeled dξ = −1 and L(d̃t) equal to any large negative value P(dt = d(m)) will be large,

also confirming the transition. However, for a transition labeled dξ = 1 and L(dξ ) equal to any large

negative number, or for a transition labeled dξ = −1 and L(d̃t) equal to any large positive number,

P(dt = d(m)) will be small. Thus, if the prior information L(d̃t) is in agreement with the transition

value dξ , the probability of that transition will increase, confirming that transition. Otherwise, if the

prior information L(d̃k) contradicts the transition value dξ , the probability of that transition will be

decreased.

Propagating the transition probabilities ω j→i,t(S j,t−1,Si,t) across the whole sequence from left to right

and from right to left respectively and marginalizing according to (2.5), will produce the posterior

probabilities of each estimated dk. The sum-product algorithm achieves exactly this [26].

2.1.2.1 The Sum-product Algorithm

The sum-product algorithm, also known as the forward-backward algorithm, uses the trellis in Fig. 2.2

to perform marginalization. This algorithm follows three steps [26]:

1. Determine the forward pass messages from left to right on the trellis.

2. Determine the backward pass messages from right to left on the trellis.

2dξ ∈ {-1,1} for BPSK.
3The magnitude of L(d̃t) gives an indication of the confidence of that estimate.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

3. Multiply, scale and accumulate (marginalize) probabilities at each stage of the trellis.

To determine the forward pass messages on the trellis, let a counter t run from left to right (from 1 to

N) on the trellis and compute for each state in the trellis

αi,t = ∑
jεParent(i)

ω j→i,t(S j,t−1,Si,t)α j,t−1

where j represents the parent states of the current state at stage i of the trellis and ωt(S j,t−1,Si,t) is

the probability associated with the transition from S j,t−1 to Si,t . Note that α j,0 = 1. Similarly, to

determine the backward pass messages on the trellis, let a counter t run from right to left (from N−1

to 1) on the trellis and compute for each state in the trellis

β j,t = ∑
jεParent(i)

ω j→i,t(S j,t ,Si,t+1)βi,t+1

where again j represents the parent states of the current state at stage i of the trellis and ωt(S j,t ,Si,t+1)

is the probability associated with the transition from S j,t to Si,t+1. Note that βi,t = 1. Finally, the

exact marginalized symbol probability is determined by summing over all states at each time instant

t corresponding to a transition of either dξ = 1 or dξ =−1 such that

P(dt = 1|r) = ∑
jεParent(i),dξ=1

α j,t−1ω j→i,t(S j,t−1,Si,t)βi,t (2.10)

P(dt =−1|r) = ∑
jεParent(i),dξ=−1

α j,t−1ω j→i,t(S j,t−1,Si,t)βi,t . (2.11)

The MAP algorithm can also produce soft bits. The soft bits, also called LLRs, can be determined

by

L(s̃t) = log
(

P(dt = 1|r)
P(dt =−1|r)

)
, (2.12)

where the sign of L(d̃t) indicates whether d̃t =−1 or d̃t = 1, and |L(s̃t)| is a measure of the confidence

of that estimate.

2.2 EQUALIZATION

A mobile communication system transmission channel is characterized by multipath and fading. Mul-

tipath is the phenomenon resulting from time spreading of the transmitted signal as it is transmitted

through the channel. Fading, on the other hand, results from time variations in the structure of the

transmission medium, causing the nature of the multipath channels to vary with time [2]. During

transmission, the transmitted symbols pass through the channel, which acts like a filter. The channel
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

has a continuous impulse response, which is estimated at the receiver, to aid in the estimation of the

transmitted information.

Each coefficient, or tap, in the impulse response of a multipath fading channel is modeled as a con-

tinuous function of time, where each coefficient in the impulse response corresponds to symbol period

intervals tTs. As such, a tapped delay line is used to model the behavior of this channel, as shown in

Fig. 2.3. Fig. 2.3 indicates that the tth transmitted symbol st is delayed by Ts seconds L− 1 times,

S1

S2

S3

S4

t = 1 t = 2 t = 3 t = 4 t = Nt = N-1t = N-2

Ts Ts Ts

h0 h1 h2 hL-1

st

rt

nt

(t) (t) (t) (t)

Figure 2.3: Tapped delay line for a multipath fading channel.

where L is the CIR length and Ts is the symbol period. Each delayed copy of st is multiplied by h(t)l ,

l = 1,2, ...,L−1, corresponding to the lth delay branch at time t. Therefore, the tth received symbol

can be described by [1, 2]

rt =
L−1

∑
l=0

h(t)l st−l +nt , (2.13)

where nt is the tth noise sample from the distribution N (µ = 0,σ2 = 1). Each h(t)l is a sample

taken from one of L time-varying functions, where t corresponds with the tth transmitted symbol and

l = 1,2, ...,L− 1 is the CIR tap number. Each CIR tap is modeled as an independent uncorrelated

Rayleigh fading sequence, describing the fading behavior of that tap (see Appendix A).

If it is assumed that the CIR is time-invariant for the duration of a data block, (2.13) can be rewritten

as

rt =
L−1

∑
l=0

hlst−l +nt , (2.14)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

where st denotes the tth complex symbol in the transmitted sequence of N symbols chosen from an

alphabet D containing M complex symbols, rt is the tth received symbol, nt is the tth noise sample

from the distribution N (µ = 0,σ2 = 1), and hl is the lth coefficient of the estimated CIR. Equaliza-

tion is performed under the assumption that each CIR coefficient hl is time-invariant for the duration

of a data block. The CIR h = {h0,h1, . . . ,hL−1} therefore completely describes the multipath channel

for a given received data block, assuming that the data block is sufficiently short so as to render the

CIR time-invariant. The equalizer takes as input the received symbol sequence r as well as the CIR

h.

To estimate the transmitted sequence of length N optimally in a wireless communication system trans-

mitting modulated symbols though a multipath channel, the cumulative cost function in (2.4)

∆ = ∑
N
t=1 ∆

(m)
t

= ∑
N
t=1 |rt −∑

L−1
l=0 hlst−l|2

(2.15)

must be minimized [1, 2]. Here s = {s1,s2, · · · ,sN} is the most likely transmitted sequence that will

maximize (2.4). Although the minimization of (2.15) will maximize (2.4), the resulting sequence

estimates will only be optimal in the sequence sense. Depending on the application and whether the

equalizer is followed by a decoder, either optimal sequence estimation or exact posterior probabilistic

symbol estimation can be performed using the MLSE or MAP algorithms discussed above.

2.3 DECODING

In a mobile communication system the transmitted signal is subjected to energy losses due to mul-

tipath and fading as well as interference due to thermal noise, resulting in unreliable estimates of

source information in the receiver. In order to correct errors in the receiver, ECC is used to introduce

controlled redundancy to the source information. The decoder exploits the structure introduced to the

encoded symbol sequence by the encoder, to reconstruct the source information from the estimated

coded symbols, correcting errors while doing so.

ECC, also referred to as error control coding, plays an important role in digital communication sys-

tems. As the name suggests, ECC is used to allow for the correction of errors in the received symbol

sequence. EEC is performed by adding controlled redundancy to the information being transmitted.

Since the redundant information is mathematically related to the original information, errors can be

corrected [2]. Although the redundancy adds an overhead to the transmitted data, the performance

increase overshadows this drawback. During the last few decades, ECC has been the subject of much
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c(1)

c(2)

c(3)

st

X1

X2

X3

X4

XN-1

XN

X1

X2

X3

X4

XN-1

XN

(a) (b)

01

00

10

11

000

110

101

011

100

010

001

111

t

t

t

Figure 2.4: Rate 1/3 convolutional encoder.

research and significant contributions and advancements have been made.

One of the coding schemes considered in this thesis is convolutional encoding, as it is most often

used in turbo equalization. A convolutional code is generated by passing the information sequence to

be transmitted through a linear finite state shift register, consisting of K stages.4 The binary input is

shifted into the shift register k bits at a time, producing n output bits. The code rate is therefore Rc =

k/n. The encoder can be expressed in terms of n generator polynomials, describing the connections

between the states of the encoder shift register. Fig. 2.4 shows the rate Rc = k/n = 1/3, constraint

length K = 3, convolutional encoder considered in this thesis.

The generator polynomials that describe the connections between the elements in the shift register are

given in sequence form as g1 = [100], g2 = [110] and g3 = [011], which can also be written in octal

form as G = [4,6,3] or in polynomial form as G = [1,1+X ,X +X2]. For every input source bit st the

encoder produces k = 3 output bits c(1)t , c(2)t and c(3)t , where

c(1)t = st

c(2)t = st ⊕ s(t−1) (2.16)

c(3)t = s(t−1)⊕ s(t−2),

where ⊕ is the exclusive OR operation. It is assumed that the encoder starts in the all-zero state for

every data block that is encoded. Also, the encoder is forced into a zero-state after the data block is

encoded by appending K− 1 zero bits to the data block. This is done to enable decoding using an

4K is also known as the constraint length.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

MLSE or a MAP decoder [3, 4, 23].

Each convolution encoder has a corresponding state diagram, which is used to map state transitions to

encoder outputs, which in turn are used to determine the most likely state transitions during decoding.

The state diagram of the encoder in Fig. 2.4 is shown in Fig. 2.5. Each state contains two bits

representing the two leftmost elements in the encoder shift register. As bits are shifted through the

encoder k = 1 bit at a time, transitions occur, with each state transition producing n = 3 output bits.

The dashed lines are associated with transitions resulting from a zero at the input of the encoder, and

solid lines are association with a one at the input of the encoder.

c(1)

c(2)

c(3)

s
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X2
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XN
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Figure 2.5: Rate 1/3 convolutional encoder state diagram.

The decoding of convolutional codes is closely related to equalization discussed in Section 2.2, in

that the min-sum (Viterbi MLSE) and sum-product (MAP/BCJR) algorithms can also be used for

decoding. The MAP algorithm is an attractive choice for use in iterative equalization/decoding al-

gorithms. It is attractive for two reasons: firstly because it includes prior probabilistic information in

the estimation, and secondly, because it provides soft posterior estimates regarding individual coded
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

or uncoded symbols, which in turn can be used as prior information in subsequent iterations.

To decode a convolutional code using the MLSE or MAP algorithms discussed above, the cumulative

cost function in (2.4)

∆ = ∑
N
t=1 ∆

(m)
t

= ∑
N
t=1 ∑

k
n=1 |r

(n)
t − c(n)t |2

(2.17)

is minimized [1, 23], where rt = {r(1)t , . . . ,r(n)t } are the received coded symbols corresponding to

codeword ct = {c(1)t , . . . ,c(k)t } at time instant t, selected based on the encoder output generated by the

relevant state transition.5 Here k is the number of output bits generated by the encoder. The MLSE or

MAP algorithms can be applied to find either the most probable transmitted sequence of codewords,

or the most probable transmitted uncoded and/or coded symbols. The output of the latter can be used

in a turbo equalizer as feedback to aid the equalizer in making more informed decisions.

2.4 NON-ITERATIVE JOINT EQUALIZATION AND DECODING

(NI-JED)

In conventional single-carrier wireless communication systems, where the coded information is trans-

mitted through a multipath channel, equalization and decoding, as explained in Section 2.2 and Sec-

tion 2.3, are performed separately. However, joint equalization and decoding can also be performed

on a single trellis when it is assumed that that the coded symbols are not interleaved before transmis-

sion, or that certain assumptions are made regarding the structure of the interleavers used to interleave

the coded symbols.

Interleavers allow for the temporal separation of adjacent coded symbols during transmission, so

that when burst errors occur in response to a loss of signal power during fading, the resulting errors

in an error burst will be distributed throughout the data block after deinterleaving. This leads to

performance gains in the receiver, as the equalizer and the decoder are able to infer information and

correct single errors more accurately, as opposed to correcting consecutive, or burst errors. Therefore

interleavers are employed in a wireless communication system where the transmitted signal is subject

to multipath and fading [2].

In [14] an optimal joint equalizer and decoder is presented, where the equalizer and the decoder

5During decoding, the output bits ct = {c
(1)
t , . . . ,c(n)t } are made bipolar because the elements of ct are compared to

received symbols, and not bits.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

are jointly modeled on one trellis, a super-trellis according to [14], and a block interleaver is used

to interleave the coded symbols before transmission. The computational complexity of this joint

equalizer and decoder, however, is not only exponentially related to the channel memory length and

the encoder constraint length, but also to the interleaver depth. The interleaver depth determines the

degree of separation between the coded symbols, which has a direct effect on system performance.

In order to improve system performance, the interleaver depth has to be increased, which results in

an exponential increase in computational complexity. Ideally a random interleaver should be used

for maximum performance gains, but a random interleaver has a devastating effect on the causality

relationship between transmitted and deinterleaved received symbols. This joint equalizer/decoder

is therefore only feasible when limited depth block interleavers are used. Joint equalization and

decoding using a super-trellis is discussed next, first for systems where no interleaving is performed,

and then for systems where depth-limited interleavers are used.

2.4.1 No Interleaving

Noting the striking similarities between MAP equalization and MAP decoding in Section 2.1, a pos-

sible joint equalization and decoding algorithm can be envisioned. In order to equalize and decode

a received symbol sequence jointly, the cumulative costs for equalization in (2.15) and decoding in

(2.17) must be combined in order to equalize while decoding. Either the MLSE or MAP algorithms

can be used for this purpose, since the super-trellis encapsulates all the available information and

therefore no exchange of information between equalizer and decoder is necessary. No prior informa-

tion is therefore required when calculating state transitions on a super-trellis.

Consider a system transmitting noninterleaved coded information through a multipath channel of

length L. A rate Rc = k/n constraint length K convolutional encoder is used to produce a sequence c

of coded bits of length Nc from an uncoded bit sequence s of length Nu. The number of super-trellis

states required to perform joint equalization and decoding is the product of the number of states of the

individual trellises required to perform equalization and decoding separately. Therefore the number

of super-trellis states is ML−1MK−1 = M(L−1)+(K−1), where M = 2 due to BPSK modulation as well

as GF(2) encoding.

When the MAP equalizer was considered, the probability of a transition from uncoded symbol s j

transmitted and time t− 1 to si transmitted at time t was calculated (see (2.6)), and when the MAP

decoder was considered, the probability of a transition from codeword c j transmitted at time t−1 to
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

ci transmitted at time t was calculated (although d j and di were used instead for both the equalization

of symbols and decoding of codewords). When modeling the equalizer and decoder jointly, however,

transitions between super states are calculated on a super-trellis, where each state represents the un-

coded symbols that constitute a codeword, together with interfering symbols of previous codewords

due to multipath.

Suppose a communication system encodes a source bit sequence s of length Nu with a rate Rc =

k/n = 1/3, constraint length K = 3, convolutional encoder with arbitrary generator polynomials

g1 = {g(1)1 ,g(2)1 ,g(3)1 }, g2 = {g(1)2 ,g(2)2 ,g(3)2 } and g3 = {g(1)3 ,g(2)3 ,g(3)3 }, in order to produce a coded

bit sequence c of length Nc = Nu/Rc, which is BPSK modulated and transmitted through a multipath

channel with a CIR h of length L. The encoder produces the coded bit sequence

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
}

of length Nc from the length Nc uncoded bit sequence

s = {s1,s2 . . . ,sNu−1,sNu}.

2.4.1.1 Channel length 2≤ L < 5

When the coded sequence is transmitted through a channel with lengths L = 2, L = 3 and L = 4,

the respective resulting received sequences, without noise, can be expressed in terms of the coded

symbols

r(1)t = c(1)t h0 + c(3)t−1h1

r(2)t = c(2)t h0 + c(1)t h1

r(3)t = c(3)t h0 + c(2)t h1

, (2.18)

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3

, (2.19)

and
r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3

, (2.20)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

which can respectively be expressed in terms of the uncoded symbols

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

, (2.21)

for L = 2,

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h2

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

+(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h2

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h2

, (2.22)

for L = 3, and

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h2 +(g(1)1 st−1⊕g(2)1 st−2⊕g(3)1 st−3)h3

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

+(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h2 +(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h3

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h2 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h3

, (2.23)

for L = 4. It is clear from (2.21) to (2.23) that each rt = {r(1)t ,r(2)t ,r(3)t } contains uncoded symbols

{st ,st−1,st−2,st−3}. The transition probability between superstate S j,t−1 and Si,t can therefore be

calculated, where Si,t represents {st ,st−1,st−2} and S j,t−1 represents {st−1,st−2,st−3}. The number

of super-trellis states will therefore be M = 23, as three symbols need to be represented by each

superstate. In order to express the number of states for 2≤ L < 5 this author defines

Q = 1, i f 2≤ L≤ 4. (2.24)

The number of super-trellis states can therefore be expressed as M = 2Q+(K−1) = 2(1)+(2) = 23.

2.4.1.2 Channel length 5≤ L < 8

Transmitting the coded sequence

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
}
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

through a channel length L = 5, L = 6 and L = 7 respectively, the received symbol sequences without

noise can be expressed as

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3 + c(3)t−2h4

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3 + c(1)t−1h4

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3 + c(2)t−1h4

, (2.25)

r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3 + c(3)t−2h4 + c(2)t−2h5

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3 + c(1)t−1h4 + c(3)t−2h5

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3 + c(2)t−1h4 + c(1)t−1h5

, (2.26)

and
r(1)t = c(1)t h0 + c(3)t−1h1 + c(2)t−1h2 + c(1)t−1h3 + c(3)t−2h4 + c(2)t−2h5 + c(1)t−2h6

r(2)t = c(2)t h0 + c(1)t h1 + c(3)t−1h2 + c(2)t−1h3 + c(1)t−1h4 + c(3)t−2h5 + c(2)t−2h6

r(3)t = c(3)t h0 + c(2)t h1 + c(1)t h3 + c(3)t−1h3 + c(2)t−1h4 + c(1)t−1h5 + c(3)t−2h6

. (2.27)

As before, expressing rt = {r(1)t ,r(2)t ,r(3)t } above in terms of the uncoded symbols, one gets

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h2 +(g(1)1 st−1⊕g(2)1 st−2⊕g(3)1 st−3)h3

+(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h4

, (2.28)

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

+(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h2 +(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h3

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h4

, (2.29)

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h2 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h3

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h4

, (2.30)

for L = 5,

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h2 +(g(1)1 st−1⊕g(2)1 st−2⊕g(3)1 st−3)h3

+(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h4 +(g(1)2 st−2⊕g(2)2 st−3⊕g(3)2 st−4)h5

, (2.31)

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

+(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h2 +(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h3

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h4 +(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h5

, (2.32)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h2 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h3

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h4 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h5

, (2.33)

for L = 6,

r(1)t = (g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h0 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h1

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h2 +(g(1)1 st−1⊕g(2)1 st−2⊕g(3)1 st−3)h3

+(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h4 +(g(1)2 st−2⊕g(2)2 st−3⊕g(3)2 st−4)h5

+(g(1)1 st−2⊕g(2)1 st−3⊕g(3)1 st−4)h6

, (2.34)

r(2)t = (g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h0 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h1

+(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h2 +(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h3

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h4 +(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h5

+(g(1)2 st−2⊕g(2)2 st−3⊕g(3)2 st−4)h6

, (2.35)

r(3)t = (g(1)3 st ⊕g(2)3 st−1⊕g(3)3 st−2)h0 +(g(1)2 st ⊕g(2)2 st−1⊕g(3)2 st−2)h1

+(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h2 +(g(1)3 st−1⊕g(2)3 st−2⊕g(3)3 st−3)h3

+(g(1)2 st−1⊕g(2)2 st−2⊕g(3)2 st−3)h4 +(g(1)1 st ⊕g(2)1 st−1⊕g(3)1 st−2)h5

+(g(1)3 st−2⊕g(2)3 st−3⊕g(3)3 st−4)h6

, (2.36)

for L = 7. It is clear from (2.30) to (2.36) that for 5 ≤ L < 8 rt = {r(1)t ,r(2)t ,r(3)t } contains

{st ,st−1,st−2,st−3,st−4}, necessitating super-trellis state S j,t−1 and Si,t to represent respectively

{st−1,st−2,st−3,st−4} and {st ,st−1,st−2,st−3} in order to calculate the transition probability. With

the new information, this author redefines Q in (2.24) as

Q =

 1 i f 2≤ L < 5

2 i f 5≤ L < 8
.

The number of super-trellis states required for 5 ≤ L < 8 is therefore M = 2Q+(K−1) = 2(2)+(2) =

24.
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2.4.1.3 Channel length L

Given any channel memory length L, encoder constraint length K, code rate Rc = k/n= 1/3, the num-

ber of bits needed to be represented by a superstate can be determined by Q+(K−1), where

Q =



1 i f n−1≤ L < 2(n−1)

2 i f 2(n−1)≤ L < 3(n−1)

3 i f 3(n−1)≤ L < 4(n−1)
...

...
...

q−1 i f (q−1)(n−1)≤ L < (q−2)(n−1)

q i f q(n−1)≤ L < (q−1)(n−1)

,

which in turn can be used to determine the number of super-trellis states by M = 2Q+(K+1). Keeping

track of the ISI undergone by the coded symbols due to multipath, and replacing those symbols with

their corresponding uncoded symbols, a model for the received symbols can be derived.

The probability of a transition from superstate S j,t−1 to superstate Si,t is given by

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |S j,t−1,Si,t)P(st), (2.37)

which can be rewritten in terms of the uncoded symbols represented by each state

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |st ,st−1, . . . ,st−log2(M))P(st), (2.38)

where

P(r(1)t ,r(2)t ,r(3)t |st ,st−1, . . . ,st−log2(M)) =
1√

2πσ

(
−∑

k
i=1 ∆i,t

2σ2

)
. (2.39)

∆i,t can be determined by minimizing the receiver equations such that

∆1,t =
∣∣∣r(1)t −∑

L−1
l=0 hl(g

(1)
u st−m⊕g(2)u s(t−m)−1⊕g(3)u s(t−m)−2)

∣∣∣2
∆2,t =

∣∣∣r(2)t −∑
L−1
l=0 hl(g

(1)
v st−n⊕g(2)v s(t−n)−1⊕g(3)v s(t−n)−2)

∣∣∣2
∆3,t =

∣∣∣r(3)t −∑
L−1
l=0 hl(g

(1)
w st−o⊕g(2)w s(t−o)−1⊕g(3)w s(t−o)−2)

∣∣∣2
, (2.40)

where

u =


1 i f l = 0,n,2n, . . .

3 i f l = 1,n+1,2n+1, . . .

2 i f l = 2,n+2,3n+1, . . .

,
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

and v = ((u+1) mod 3)+1 and w = ((u+2) mod 3)+1. Also m, n and o starts at 0 and increases

by 1 each time uncoded symbols from the previous time instant are used to create the coded symbol

interfering with the current received symbol such that

m =



0 i f l = 0

1 i f l = 1,2,3

2 i f l = 4,5,6

3 i f l = 7,8,9

,

n =



0 i f l = 0,1

1 i f l = 2,3,4

2 i f l = 5,6,7

3 i f l = 8,9

,

o =



0 i f l = 0,1,2

1 i f l = 3,4,5

2 i f l = 6,7,8

3 i f l = 9

.

Finally, since there are always only two equiprobable codewords that can follow each codeword,

P(st) = 0.5. Therefore,

ω j→i,t(S j,t−1,Si,t) =
1

2
√

2πσ

(
−∑

k
i=1 ∆i,t

2σ2

)
, (2.41)

which completely describes the transition from state S j,t−1 to Si,t .

The model derived for the NI-JED without interleaving can be used to jointly equalize and decode

BPSK modulated coded information transmitted through a multipath channel with CIR length L,

where the convolutional encoder has constraint length K and the code rate is Rc = k/n = 1/3 . This

model can be extended for higher order modulation alphabets, larger encoder constraint lengths and

different code rates.6

2.4.1.4 Computational Complexity

The computational complexity is determined by counting the number of computations performed for

each received data block, and expressed in terms of the uncoded block length Nu, the CIR length L and

6Joint equalization and decoding using a higher order modulation alphabet will require convolutional encoding to be

performed in GF(M), where M is the modulation alphabet size.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

the encoder constraint length K and the modulation alphabet size M. The computational complexity

of the NI-JED without interleaving, for the MLSE and MAP algorithms, is determined by

CCMLSE = O(8KLNuMQ+(K−1)) (2.42)

and

CCMAP = O(2NuMQ+(K−1)(8KL+6)). (2.43)

Fig. 2.6 shows the normalized computational complexity7 of this joint equalizer and decoder, em-
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Figure 2.6: Non-iterative MLSE joint equalizer/decoder normalized computational complexity

(without interleaver).

ploying the MLSE algorithm, for a CIR length of L = 2 to L = 10, constraint lengths K = 2, K = 4

and K = 16, and modulation alphabet sizes of M = 2, M = 4, M = 16 and M = 64. Fig. 2.7 shows the

complexity of employing the MAP algorithm for the same parameters, where the respective complex-

ity curves are only slightly higher than their corresponding MLSE complexity curves in Fig. 2.6. It

is clear that the computational complexity grows exponentially with an increase in channel memory,

encoder constraint length and modulation alphabet size, and it should be clear that computational

complexity for long channel memories and large encoder constraint lengths is too high for feasible

implementation.

7The computational complexity is normalized by the number of coded transmitted symbols Nc.
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Figure 2.7: Non-iterative MAP joint equalizer/decoder normalized computational complexity

(without interleaver).

2.4.2 Block Interleaving

In [14] it was demonstrated that equalization and decoding can be performed jointly by transforming

the convolution decoder trellis into a super-trellis, and then using this super-trellis to perform equali-

zation while decoding. This is a novel idea in the sense that all the available information is processed

as a whole, and there is no exchange of information between independent subunits. This approach

achieves optimal performance, because all calculations on the super-trellis are performed with com-

plete information. The only limitation is that the interleaver has to be a block interleaver and that this

interleaver has a certain depth limit due to the exponential relationship between the interleaver depth

and the computational complexity.

Contrary to this approach, turbo equalization makes use of two independent subunits, namely a MAP

equalizer and a MAP decoder, with each unit being supplied with information regarding the decisions

made by the other unit [5–7]. This results in assumptions and estimations being made by the respect-

ive subunits based on incomplete information, which in turn results in suboptimal calculations during

subsequent iterations, ultimately leading to suboptimal performance. Only by iteratively exchanging

extrinsic information between the equalizer and decoder, where this information is used as prior in-
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formation on the calculations in the next iteration, can the performance be increased. However, the

turbo equalizer is not limited by the structure of the interleaver, since interleaving and deinterleaving

are performed during each turbo iteration.

It was shown in [14] that the NI-JED performs optimally and therefore outperforms the turbo equali-

zer, but its computational complexity grows unimaginably as the interleaver depth and the CIR length

increase. Despite the excellent performance of the NI-JED, it is not a viable solution for practical

systems. Although the computational complexity of a CTE is not as high, it is still exponentially

related to the encoder constraint length, as well as the channel memory length, but it is not influenced

by the structure of the interleaver.

In this section this author attempts to derive a general model for the NI-JED proposed in [14], which

can be presented as a function of encoder constraint length, interleaver depth and channel memory

length. The authors of [14] were very vague as to how the algorithm functions. After explaining

the effect of the interleaver on the coded information bits, and the subsequent effect after passing

the information through a multipath channel, they simply show that the received symbols contain

the uncoded information bits, and state that the MAP algorithm is “invoked.” Nothing is said about

the fact that the received symbols have to be deinterleaved, nor is it explained how the probabilities

between state transitions are determined. The author of this thesis therefore presents the NI-JED for

various interleaver depths and then derives a general model.

Suppose a communication system encodes a source bit sequence s of length Nu with a rate Rc = k/n=

1/3, constraint length K = 3, convolutional encoder with generator polynomials g1 = 4 (1002), g2 = 6

(1102) and g3 = 3 (0112) in order to produce a coded bit sequence c of length Nc = Nu/Rc, which is

interleaved using a block interleaver, BPSK modulated and transmitted through a multipath channel

with a CIR h = {h0,h1} of length L = 2. The encoder produces coded bits ct = {c(1)t c(2)t c(3)t } from

the uncoded bit st .

2.4.2.1 Interleaver Depth: D = n = 3

When using a n × Nu interleaver, as shown in Fig. 2.8, the coded sequence

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
},
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Figure 2.8: n × Nu interleaver.

is transformed to

c = {c(1)1 ,c(1)2 , . . . ,c(1)t−1,c
(1)
N c(2)1 ,c(2)2 , . . . ,c(2)Nu−1,c

(2)
Nu
,c(3)1 ,c(3)2 , . . . ,c(3)Nu−1,c

(3)
Nu
}

before transmission, grouping all the first, second and third encoder output bits together after in-

terleaving. During transmission the interleaved coded symbols travel through a multipath channel

h = {h0,h1} of length L = 2 and are received, as shown in the graphical model in Fig. 2.9.8

The noiseless received symbols can therefore be expressed in terms of the interleaved coded sym-

bols
r(1)t = c(1)t h0 + c(1)t−1h1

r(2)t = c(2)t h0 + c(2)t−1h1

r(3)t = c(3)t h0 + c(3)t−1h1

, (2.44)

for t = 1,2, . . . ,Nu, which in turn can be expressed in terms of the uncoded bits

r(1)t = sth0 + st−1h1

r(2)t = (st ⊕ st−1)h0 +(st−1⊕ st−2)h1

r(3)t = (st−1⊕ st−2)h0 +(st−2⊕ st−3)h1

. (2.45)

From (2.45) it is clear that {st ,st−1,st−2,st−3} is contained in r = {r(1)t ,r(2)t ,r(3)t }. Therefore, the

received symbol sequence r must be deinterleaved before joint equalization and decoding can com-

mence.9 Deinterleaving r will result in the sequence

r = {r(1)1 ,r(1)2 , . . . ,r(1)Nu−1,r
(1)
Nu

,r(2)1 ,r(2)2 , . . . ,r(2)Nu−1,r
(2)
Nu

,r(3)1 ,r(3)2 , . . . ,r(3)Nu−1,r
(3)
Nu

,}

being transformed to

r = {r(1)1 ,r(2)1 ,r(3)1 ,r(1)2 ,r(2)2 ,r(3)2 , . . . ,r(1)Nu−1,r
(2)
Nu−1,r

(3)
Nu−1,r

(1)
Nu

,r(2)Nu
,r(3)Nu
},

8Note that the channel coefficients are not shown in Fig. 2.9.
9This step in not mentioned, nor implied in [14], but has been inferred by the author of this thesis.
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Figure 2.9: Graphical model for a system with a rate Rc = 1/3 convolutional encoder, a 3 × Nu

block interleaver and L = 2.
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from which it is clear that all r = {r(1)t ,r(2)t ,r(3)t } are adjacent and can be used to estimate st using a

trellis-based algorithm, assuming {st−1,st−2,st−3} is known from previous states.

The NI-JED uses the sum-product algorithm,10 as explained in Section 2.1.2.1, and the number of

super-trellis states are determined by the interleaver depth (D), the channel memory length (L− 1)

as well as the number of encoder memory elements (K− 1). Since BPSK modulation is used, the

number of states in the super-trellis is M = 2D(L−1)+(K−1) [14]. Therefore M = 8. The number of

states can also be determined by the range of source bits contained in (2.45) minus one, since the

trellis has to model state transitions {st−1,st−2,st−3} to {st ,st−1,st−2}, which when combined yields

{st ,st−1,st−2,st−3}. Therefore the number of states can also be determined by M = 24−1 = 8.

The task of the NI-JED is to produced the maximum a posteriori probability of each uncoded source

symbol at time t from the deinterleaved received symbol sequence, or

P(st |r) =
Nc

∑
st† :t† 6=t

P(s|r). (2.46)

The probability of a transition from state S j,t−1 to state Si,t , where i, j = 1,2, . . . ,M is given by

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |S j,t−1,Si,t)P(st), (2.47)

where the symbols associated with states S j,t−1 ({st−1,st−2,st−3}) and Si,t ({st ,st−1,st−2}) can be

combined so that

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3)P(st), (2.48)

where

P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3) =
1√

2πσ

(
−∑

n
i=1 ∆i,t

2σ2

)
. (2.49)

∆i,t can be determined by minimizing the receiver equations in (2.45) such that

∆1,t =
∣∣∣r(1)t −∑

L−1
l=0 hl(st−l)

∣∣∣2
∆2,t =

∣∣∣r(2)t −∑
L−1
l=0 hl(st−l⊕ s(t−1)−l)

∣∣∣2
∆3,t =

∣∣∣r(3)t −∑
L−1
l=0 hl(s(t−1)−l⊕ s(t−2)−l)

∣∣∣2
, (2.50)

where the calculation of each ∆i,t , i = 1,2, . . . ,n is determined by the structure of the encoder. Finally,

since there are only two equiprobable bits that can be transmitted, P(st) = 0.5. Therefore,

ω j→i,t(S j,t−1,Si,t) =
1

2
√

2πσ

(
−∑

n
i=1 ∆i,t

2σ2

)
, (2.51)

which completely describes the transition from state S j,t−1 to Si,t .

10The min-sum algorithm can also be used.
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2.4.2.2 Interleaver Depth: D = 2n = 6

In the above explanation the depth of the block interleaver was D = n. It is subsequently assumed

that an interleaver with depth D = 2n is used. Applying the 2n × Nu/2 interleaver in Fig. 2.10 to the

coded symbols

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
},

transforms it to

c = {c(1)1 ,c(1)3 , . . . ,c(1)Nu−1,c
(2)
1 ,c(2)3 , . . . ,c(2)Nc−1,c

(3)
1 ,c(3)3 , . . . ,c(3)Nc−1, . . .

c(1)2 ,c(1)4 , . . . ,c(1)Nc
,c(2)2 ,c(2)4 , . . . ,c(2)Nc

,c(3)2 ,c(3)4 , . . . ,c(3)Nc
}.

(2.52)

The received symbols can be expressed in terms of the coded symbols

r(1)t = c(1)t h0 + c(1)t−2h1

r(2)t = c(2)t h0 + c(2)t−2h1

r(3)t = c(3)t h0 + c(3)t−2h1

, (2.53)

where t = 1,2, . . . ,Nu, which in turn can be expressed in terms of the uncoded bits

r(1)t = sth0 + st−2h1

r(2)t = (st ⊕ st−1)h0 +(st−2⊕ st−3)h1

r(3)t = (st−1⊕ st−2)h0 +(st−3⊕ st−4)h1

. (2.54)

Comparing (2.53) and (2.54) with (2.44) and (2.45) respectively reveals that the system memory has

doubled with a twofold increase in interleaver depth (from D = n to D = 2n).
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Figure 2.10: 2n × Nu/2 interleaver.
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As before, the received symbol sequence r must be deinterleaved. Deinterleaving r will result in the

sequence

r = {r(1)1 ,r(1)3 , . . . ,r(1)Nu−1,r
(2)
1 ,r(2)3 , . . . ,r(2)Nr−1,r

(3)
1 ,r(3)3 , . . . ,r(3)Nr−1, . . .

r(1)2 ,r(1)4 , . . . ,r(1)Nr
,r(2)2 ,r(2)4 , . . . ,r(2)Nr

,r(3)2 ,r(3)4 , . . . ,r(3)Nr
}.

being transformed to

r = {r(1)1 ,r(2)1 ,r(3)1 ,r(1)2 ,r(2)2 ,r(3)2 , . . . . . . ,r(1)Nu−1,r
(2)
Nu−1,r

(3)
Nu−1,r

(1)
Nu

,r(2)Nu
,r(3)Nu
},

which ensures that all r = {r(1)t ,r(2)t ,r(3)t } are adjacent and can be used to estimate st , assuming that

{st−1,st−2,st−3,st−4} is known from previous states.

As explained earlier, the number of super-trellis states can be determined by the range of source

bits in (2.54) minus one. Counting the range of source bits, minus one, gives the number of states

M = 25−1 = 16. Alternatively the number of trellis states can be determined by M = 2D(L−1)+(K−1)

which gives M = 22(1)+2 = 16. Therefore, for an interleaver with depth D = 2n, the calculation of

state transition probabilities will require four bits per state.

As before, the probability of a transition from state S j,t−1 to state Si,t , where i, j = 1,2, . . . ,M is given

by

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |S j,t−1,Si,t)P(st), (2.55)

which can be written as

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3,st−4)P(st), (2.56)

where

P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3,st−4) =
1√

2πσ

(
−∑

n
i=1 ∆i,t

2σ2

)
. (2.57)

∆i,t can be determined by minimizing the receiver equations in (2.54) such that

∆1,t =
∣∣∣r(1)t −∑

L−1
l=0 hl(st−2l))

∣∣∣2
∆2,t =

∣∣∣r(1)t −∑
L−1
l=0 hl(st−2l⊕ s(t−1)−2l)

∣∣∣2
∆3,t =

∣∣∣r(1)t −∑
L−1
l=0 hl(s(t−1)−2l⊕ s(t−2)−2l)

∣∣∣2
. (2.58)

By comparing (2.58) and (2.50), it is already clear that the interleaver depth has an effect on the

computational complexity of the NI-JED. Apart from the increase in the number of super-trellis states

as a function of interleaver depth, this is the only part of the algorithm that is different from when the

interleaver depth is D = n. Therefore, the transition probabilities are calculated as before.
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2.4.2.3 Interleaver Depth: D = 3n = 9

In order to derive a general model for the NI-JED, the system parameters with different interleaver

depths are analyzed. Here it is assumed that the 3n × Nu/3 interleaver in Fig. 2.11 is used. Interleav-

ing the coded symbols

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
},

with a 3n × Nu/3 interleaver, will result in

c = { c(1)1 ,c(1)4 ,c(1)7 , . . . ,c(1)Nu−2,c
(2)
1 ,c(2)4 ,c(2)7 , . . . ,c(2)Nu−2,c

(3)
1 ,c(3)4 ,c(3)7 , . . . ,c(3)Nu−2, . . .

c(1)2 ,c(1)5 ,c(1)6 , . . . ,c(1)Nu−1,c
(2)
2 ,c(2)5 ,c(2)6 , . . . ,c(2)Nu−1,c

(3)
2 ,c(3)5 ,c(3)6 , . . . ,c(3)Nu−1, . . .

c(1)3 ,c(1)6 ,c(1)9 , . . . ,c(1)Nu
,c(2)2 ,c(2)5 ,c(2)9 , . . . ,c(2)Nu

,c(3)2 ,c(3)5 ,c(3)9 , . . . ,c(3)Nu
}

.

Again the received symbols can be expressed in terms of the coded symbols

r(1)t = c(1)t h0 + c(1)t−3h1

r(2)t = c(2)t h0 + c(2)t−3h1

r(3)t = c(3)t h0 + c(3)t−3h1

, (2.59)

where t = 1,2, . . . ,Nu, which can be expressed in terms of the uncoded bits

r(1)t = sth0 + st−3h1

r(2)t = (st ⊕ st−1)h0 +(st−3⊕ st−4)h1

r(3)t = (st−1⊕ st−2)h0 +(st−4⊕ st−5)h1

, (2.60)

from which it is clear that the system memory is once again affected by the increase in interleaver

depth.
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Figure 2.11: 3n × Nu/3 interleaver.

Deinterleaving r

r = { r(1)1 ,r(1)4 ,r(1)7 , . . . ,r(1)Nu−2,r
(2)
1 ,r(2)4 ,r(2)7 , . . . ,r(2)Nu−2,r

(3)
1 ,r(3)4 ,r(3)7 , . . . ,r(3)Nu−2, . . .

r(1)2 ,r(1)5 ,r(1)6 , . . . ,r(1)Nu−1,r
(2)
2 ,r(2)5 ,r(2)6 , . . . ,r(2)Nu−1,r

(3)
2 ,r(3)5 ,r(3)6 , . . . ,r(3)Nu−1, . . .

r(1)3 ,r(1)6 ,r(1)9 , . . . ,r(1)Nu
,r(2)3 ,r(2)6 ,r(2)9 , . . . ,r(2)Nu

,r(3)3 ,r(3)6 ,r(3)9 , . . . ,r(3)Nu
}

results in

r = {r(1)1 ,r(2)1 ,r(3)1 ,r(1)2 ,r(2)2 ,r(3)2 , . . . . . . ,r(1)Nu−1,r
(2)
Nu−1,r

(3)
Nu−1,r

(1)
Nu

,r(2)Nu
,r(3)Nu
},

which ensures that all r = {r(1)t ,r(2)t ,r(3)t } are adjacent and can be used to estimate st , assuming that

{st−1,st−2,st−3,st−4,st−5} is known from previous states. Therefore the number of super-trellis states

for an interleaver depth of D= 3n and channel memory length L−1 is M = 2D(L−1)+(K−1) which gives

M = 23(1)+2 = 32.

The probability of a transition from state S j,t−1 to state Si,t , where i, j = 1,2, . . . ,M is given by

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |S j,t−1,Si,t)P(st), (2.61)

which can be written as

ω j→i,t(S j,t−1,Si,t) = P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3,st−4,st−5)P(st). (2.62)
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where

P(r(1)t ,r(2)t ,r(3)t |st ,st−1,st−2,st−3,st−4,st−5) =
1√

2πσ

(
−∑

n
i=1 ∆i,t

2σ2

)
. (2.63)

∆i,t can be determined by minimizing the receiver equations in (2.54) such that

∆1,t =
∣∣∣r(1)t −∑

L−1
l=0 hl(st−3l))

∣∣∣2
∆2,t =

∣∣∣r(1)t −∑
L−1
l=0 hl(st−3l⊕ s(t−1)−3l)

∣∣∣2
∆3,t =

∣∣∣r(1)t −∑
L−1
l=0 hl(s(t−1)−3l⊕ s(t−2)−3l)

∣∣∣2
. (2.64)

2.4.2.4 Interleaver Depth: D = dn

After deriving the NI-JED for various interleaver depths it is now possible to present a general model

for this algorithm for any nk × Nu/d interleaver. Even though the channel memory length L− 1

remained fixed at L−1 = 1, and the number of encoder output bits remained fixed at n = 3 throughout

the analysis, it is easy to generalize the model for any L and n, as will be shown.

When an nk × Nu/d interleaver is used to interleave the coded symbol sequence

c = {c(1)1 ,c(2)1 ,c(3)1 ,c(1)2 ,c(2)2 ,c(3)2 , . . . . . . ,c(1)Nu−1,c
(2)
Nu−1,c

(3)
Nu−1,c

(1)
Nu
,c(2)Nu

,c(3)Nu
},

encoded with an encoder that produces n output bits, the result will be

c = { c(1)1 ,c(1)1+d ,c
(1)
1+2d , . . . ,c

(1)
Nu−(d−1),c

(2)
1 ,c(2)1+d ,c

(2)
1+2d , . . . ,c

(2)
Nu−(d−1), . . . ,c

(n)
1 ,c(n)1+d ,c

(n)
1+2d , . . . ,c

(n)
Nu−(d−1), . . .

c(1)2 ,c(1)2+d ,c
(1)
1+2d , . . . ,c

(1)
Nu−(d−2),c

(2)
2 ,c(2)2+d ,c

(2)
2+2d , . . . ,c

(2)
Nu−(d−2), . . . ,c

(n)
2 ,c(n)2+d ,c

(n)
2+2d , . . . ,c

(n)
Nu−(d−2), . . .

...
...

...
...

...
...

c(1)d ,c(1)d+d ,c
(1)
d+2d , . . . ,c

(1)
Nu

,c(2)d ,c(2)d+d ,c
(2)
d+2d , . . . ,c

(2)
Nu

, . . . ,c(n)d ,c(n)d+d ,c
(n)
d+3d , . . . ,c

(n)
Nu
}.

Transmitting the interleaved code symbol sequence through a multipath channel with a CIR length

of L, where the encoder produces n output bits at a rate of Rc = 1/n, the received symbols can be

expressed in terms of the coded symbols

r(1)t = c(1)t h0 + c(1)t−dh1 + c(1)t−2dh2 + . . .+ c(1)t−(L−1)dhL−1

r(2)t = c(2)t h0 + c(2)t−dh1 + c(2)t−2dh2 + . . .+ c(2)t−(L−1)dhL−1
...

...
...

...

r(n)t = c(n)t h0 + c(n)t−dh1 + c(n)t−2dh2 + . . .+ c(n)t−(L−1)dhL−1

, (2.65)

which can be rewritten as
r(1)t = ∑

L−1)
l=0 c(1)t−ldhl

r(2)t = ∑
L−1)
l=0 c(2)t−ldhl

...
...

r(n)t = ∑
L−1)
l=0 c(3)t−ldhl

, (2.66)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

which can be expressed in terms of the uncoded bits

r(1)t = ∑
L−1)
l=0

(
(g(1)1 st−ld)⊕ (g(2)1 s(t−1)−ld)⊕ (g(3)1 s(t−2)−ld)⊕ . . .⊕ (g(K)

1 s(t−(K−1))−ld)
)
hl

r(2)t = ∑
L−1)
l=0

(
(g(1)2 st−ld)⊕ (g(2)2 s(t−1)−ld)⊕ (g(3)2 s(t−2)−ld)⊕ . . .⊕ (g(K)

2 s(t−(K−1))−ld)
)
hl

...
...

...
...

...
...

r(n)t = ∑
L−1)
l=0

(
(g(1)n st−ld)⊕ (g(2)n s(t−1)−ld)⊕ (g(3)n s(t−2)−ld)⊕ . . .⊕ (g(K)

n s(t−(K−1))−ld)
)
hl

, (2.67)

where K is the encoder constraint length and generator polynomials g1 = {g(1)1 ,g(2)1 , . . . ,g(K)
1 }, g2 =

{g(1)2 ,g(2)2 , . . . ,g(K)
2 } and gn = {g(1)n ,g(2)n , . . . ,g(K)

n }. Deinterleaving r will result in the sequence

r = { r(1)1 ,r(1)1+d ,r
(1)
1+2d , . . . ,r

(1)
Nu−(d−1),r

(2)
1 ,r(2)1+d ,r

(2)
1+2d , . . . ,r

(2)
Nu−(d−1), . . . ,r

(n)
1 ,r(n)1+d ,r

(n)
1+2d , . . . ,r

(n)
Nu−(d−1), . . .

r(1)2 ,r(1)2+d ,r
(1)
1+2d , . . . ,r

(1)
Nu−(d−2),r

(2)
2 ,r(2)2+d ,r

(2)
2+2d , . . . ,r

(2)
Nu−(d−2), . . . ,r

(n)
2 ,r(n)2+d ,r

(n)
2+2d , . . . ,r

(n)
Nu−(d−2), . . .

...
...

...
...

...
...

r(1)d ,r(1)d+d ,r
(1)
d+2d , . . . ,r

(1)
Nu

,r(2)d ,r(2)d+d ,r
(2)
d+2d , . . . ,r

(2)
Nu

, . . . ,r(n)d ,r(n)d+d ,r
(n)
d+3d , . . . ,r

(n)
Nu
}.

being transformed to

r = {r(1)1 , . . . ,r(n)1 ,r(1)2 , . . . ,r(n)2 , . . . . . . ,r(1)Nu−1, . . . ,r
(n)
Nu−1,r

(1)
Nu

,r(2)Nu
,r(3)Nu
},

from which it is clear that all r = {r(1)t , . . . ,r(n)t } are adjacent and can be used to estimate st using

a trellis-based algorithm, assuming {st−1,st−2,st−3, . . . ,st−(D(L−1)+(K−1))} is known from previous

states. The number of super-trellis states for an interleaver depth of D = dn, channel memory length

L−1, and encoder constraint length K, is M = 2D(L−1)+(K−1).

The probability of a transition from state S j,t−1 to state Si,t , where i, j = 1,2, . . . ,M is given by

ω j→i,t(S j,t−1,Si,t) = P(r(1)t , . . . ,r(n)t |S j,t−1,Si,t)P(st), (2.68)

which can be written as

ω j→i,t(S j,t−1,Si,t) = P(r(1)t , . . . ,r(n)t |st ,st−1,st−2, . . . ,st−(d(L−1)+(K−1)))P(st), (2.69)

where

P(r(1)t , . . . ,r(n)t |st ,st−1,st−2, . . . ,st−(d(L−1)+(K−1))) =
1√

2πσ

(
−∑

n)
i=1 ∆i,t

2σ2

)
(2.70)

and P(st) = 0.5 as before.

∆i,t can be determined by minimizing the receiver equations in (2.67) such that

∆1,t =
∣∣∣r(1)t −∑

L−1)
l=0

(
(g(1)1 st−ld)⊕ (g(2)1 s(t−1)−ld)⊕ . . .⊕ (g(K)

1 s(t−(K−1))−ld)
)
hl

∣∣∣2
∆2,t =

∣∣∣r(2)t −∑
L−1)
l=0

(
(g(1)2 st−ld)⊕ (g(2)2 s(t−1)−ld)⊕ . . .⊕ (g(K)

2 s(t−(K−1))−ld)
)
hl

∣∣∣2
...

...
...

...
...

...

∆n,t =
∣∣∣r(n)t −∑

L−1)
l=0

(
(g(1)n st−ld)⊕ (g(2)n s(t−1)−ld)⊕ . . .⊕ (g(K)

n s(t−(K−1))−ld)
)
hl

∣∣∣2
. (2.71)
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

This algorithm can therefore be used to jointly, non-iteratively equalize and decode BPSK modulated

information, encoded with a rate Rc = 1/n, constraint length K convolutional encoder, transmitted

through a multipath channel with a CIR length of L, using an interleaver with depth D = dn. This

concludes the derivation of a general model for the NI-JED.

2.4.2.5 Computational Complexity

The computational complexity of the NI-JED, with block interleaving, is determined by counting

the number of computations performed for each data block received, and expressed in terms of the

uncoded block length Nu, the CIR length L and the encoder constraint length K, the modulation

alphabet size M and the interleaver depth D. The computational complexity of the NI-JED without

interleaving, using the MAP algorithm, is determined by

CCMAP = O(2NuMD(L−1)+(K−1)(8KL+6)). (2.72)

Fig. 2.12 shows the normalized computational complexity for a CIR length of L= 2 to L= 10, encoder

constraint lengths K = 2, K = 4, K = 6, a modulation alphabet size of M = 2 and interleaver depths

of D = 3, D = 6, D = 9 and D = 12. It is clear that the computational complexity grows exponentially

with an increase in channel memory, encoder constraint length and interleaver depth. Fig. 2.13 shows

the normalized computational complexity for the same parameters but with a fixed interleaver depth

of D = 6 and varying modulation alphabet sizes of M = 2, M = 4, M = 16 and M = 64, resulting in

an increase in complexity with an increase in modulation alphabet size.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding
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Figure 2.12: NI-JED normalized computational complexity (with a block interleaver) for M=2.
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Figure 2.13: NI-JED normalized computational complexity (with a block interleaver) for D=6.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

2.5 SIMULATION RESULTS

Parameter Setting

Modulation BPSK

Interleaver None & Block

Interleaver depth (D ) 1, k, 2k, 3k

Uncoded block length (Nu) 600

Coded block length (Nc) 1800

Channel Static

CIR length (L) 2, 3, 4

Channel Estimation No

Channel State Information Perfect CSI

PDP Uniform

The performance of the NI-JED is evaluated with and without interleaving, and it is compared to that

of a CTE, which will be discussed at length in the next chapter, where the number of CTE iterations is

Z = 10. The CIR h = {h0,h1, . . . ,hL−1} of length L is normalized such that h′h = 1, the uncoded and

coded block lengths are Nu = 600 and Nu = 1800 respectively, the various channel lengths are L = 2,

L = 3 and L = 4, and interleaver depths of D = 1, D = k, D = 2k and D = 3k were used, where k = 3

is the number of encoder output bits. For details regarding the simulation setup used throughout this

thesis please refer to Appendix A.

Fig. 2.14 shows the BER performance of the NI-JED compared to that of the CTE, for various inter-

leaver depths and a channel length of L = 2. From Fig. 2.14 it can be seen that the performance of

both algorithms improves with an increase in the interleaver depth, except for an increase from D = 1

to D = 3. It is clear that the NI-JED outperforms the CTE, even thought the CTE uses multiple iter-

ations, while the NI-JED performs close to the coded additive white Gaussian noise (AWGN) bound

when the interleaver depth is D = 9. In Fig. 2.15 and Fig. 2.16 the performance of the NI-JED is

again compared to that of the CTE for various interleaver depths, for L = 3 and L = 4 respectively.

As before, the NI-JED outperforms the CTE. From Fig. 2.14 through to Fig. 2.16 it is clear that

the NI-JED is superior in terms of performance, and it is in fact optimal. Even though the NI-JED

outperforms the CTE, its vast computational complexity inhibits it from finding practical application.

The CTE is therefore used as an alternative solution in practical systems.
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Figure 2.14: NI-JED and CTE performance for interleaver depths D = 1, D = k, D = 2k and D = 3k,

and CIR length L = 2.
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Figure 2.15: NI-JED and CTE performance for interleaver depths D = 1, D = k, D = 2k and D = 3k,

and CIR length L = 3.
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Figure 2.16: NI-JED and CTE performance for interleaver depths D = 1, D = k, D = 2k and D = 3k,

and CIR length L = 4.

2.6 CONCLUDING REMARKS

In this chapter optimal equalization and decoding using the MLSE (min-sum) and MAP (sum-

product) algorithms were discussed. It was shown how the MLSE algorithm can be used to determine

the most likely sequence of estimates, while the MAP algorithm can be used to determine optimal

posterior probabilities regarding the transmitted symbols or codewords. Non-iterative joint equaliza-

tion and decoding was also discussed, first assuming no interleaving and then assuming that special

block interleavers were used for interleaving. As a result a general model was derived for systems

transmitting convolutionally encoded BPSK modulated information through a multipath channel of

length L, where the information is interleaved with an interleaver of depth D = dk, and where the

uncoded information is encoded with a rate Rc = 1/k encoder with constraint length K. The compu-

tational complexity was analyzed by counting the number of computations performed, given certain

system parameters. The complexity of the NI-JED without interleaving grows exponentially with

an increase in either channel memory length or encoder constraint length, while the complexity of

the NI-JED with block interleaving is exponentially related to the channel memory length, encoder

constraint length and the interleaver depth.
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Chapter 2 Equalization, Decoding and Joint Equalization and Decoding

From these analyses it is clear that non-iterative joint equalization and decoding is extremely expens-

ive in terms of the number of computations required, even for moderate channel memory lengths,

encoder constraint lengths and interleaver depths. In order to achieve acceptable performance in a

multipath fading environment, block interleavers with depths of multiple orders of the encoder output

length are required to separate adjacent coded symbols sufficiently. Under these conditions the NI-

JED becomes infeasible. Ideally a random interleaver will allow for maximum performance gains, but

the NI-JED cannot be applied when interleaving is performed with a random interleaver. In Chapter 4

and Chapter 5 this author develops two novel turbo equalizers using superstructures, where the com-

putational complexity is not influenced by the interleaver structure.

In the next chapter turbo equalization is discussed, where the MAP equalizer and MAP decoder

iteratively exchange information, while allowing for any interleaver to be used without additional

complexity. Turbo equalization is used as an alternative to optimal non-iterative joint equalization and

decoding, which is not feasible because of computational complexity constraints discussed before, to

the extent that approximate inference via the iterative exchange of information is the last resort. Turbo

equalization is not optimal, as demonstrated in this chapter, but it is the best alternative amongst all

iterative joint equalization and decoding solutions, as its constituent parts - the MAP equalizer and

the MAP decoder - produce optimal posterior estimates about the respective coded and uncoded

transmitted symbols.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3

TURBO EQUALIZATION

In the previous chapter optimal equalization and decoding using the MLSE and MAP algorithms were

discussed, after which non-iterative joint equalization and decoding with and without depth-limited

block interleaving using the NI-JED was discussed. It was shown that, although the NI-JED performs

optimally, the computational complexity is exponentially related to the channel memory length, en-

coder constraint length and interleaver depth, making it infeasible for use in practical systems.

In this chapter conventional turbo equalization is discussed. Instead of performing optimal non-

iterative joint equalization and decoding on a super-trellis, a turbo equalizer uses an optimal MAP

equalizer and MAP decoder pair to exchange information iteratively in order to improve BER per-

formance. When the channel memory is long, the computational complexity of the CTE becomes

prohibitive owing to its exponential relationship to the CIR length [5, 6]. Low complexity SISO

equalizers are therefore often used as a replacement for the optimal MAP equalizer in a CTE, yield-

ing LCTEs [8–11]. A number of these reduced complexity SISO equalizers are also discussed. Where

applicable, permissions was obtained to use figures from the literature.

It is important to note that these LCTEs belong to a different paradigm than the DBN-TE and the

HNN-TE developed in this thesis. The low complexity SISO equalizers discussed in this chapter are

used to replace the optimal MAP equalizer in the equalizer/decoder pair in a CTE, whereas the DBN-

TE and the HNN-TE replace both the equalizer and the decoder. The DBN-TE and the HNN-TE use

superstructures to model the turbo equalization problem, and do not require the exchange of extrinsic

information between subunits, since all the available information is processed in its entirety.
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Chapter 3 Turbo Equalization

3.1 TURBO EQUALIZER

Turbo equalization has its origin in the turbo principle, first proposed in [27], where it was applied

to the iterative decoding of concatenated convolutional codes. A Turbo Decoder uses two MAP

decoders to decode convolutional coded concatenated codes iteratively. Like the MAP equalizer, the

MAP decoder produces posterior probabilistic information on the source symbols. The output of each

decoder is therefore used to produce prior probabilistic information about the input symbols of the

other decoder, thus allowing this scheme to exploit the inherent structure of the code to correct errors

with each iteration [2], achieving near Shannon limit performance in AWGN channels [27].]

Since the communication channel can be viewed as a non-binary convolutional encoder, the channel

can be viewed as an inner-code while a convolutional encoder is used as an outer-code in much the

same way as in serially concatenated Turbo Codes [5, 6], so that the Turbo Principle can be applied

to channel equalization. As such, one of the MAP decoders in the Turbo Decoder is substituted with

a MAP equalizer to mitigate the effect of the channel on the transmitted symbols (to “decode” the

ISI-corrupted received symbols) [5, 6]. The output of the MAP equalizer is used to produce prior

probabilistic information on the encoded symbols, which is exploited by the MAP decoder. In turn,

the output of the MAP decoder is used to produce prior probabilistic information on the unequalized

received symbols, which is again exploited by the MAP equalizer. By iterating this system a number

of times, the performance of the system can be improved significantly, but at the cost of additional

computational complexity. [5–7, 12].

Turbo equalization becomes exceedingly complex in terms of the number of computations, because

of the high computational complexity of the MAP equalizer and MAP decoder most often used in a

turbo equalizer. The complexity of the MAP equalizer is linear in the data block length N, but grows

exponentially with an increase in channel memory. Its complexity is therefore O(NML−1), where L is

the CIR length, and M is the modulation alphabet size. Similarly, the complexity of the MAP decoder

is linear in the data block length and exponential in the encoder constraint length K [2].

An interleaver is used as standard in a turbo equalizer, not only to mitigate the effect of burst errors by

randomizing the occurrence of bit errors in a transmitted data block, but also to aid in the dispersion

of the positive feedback effect, which is due to the fact that the MAP algorithm used for equalization

and decoding produces outputs that are locally highly correlated [7].
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Figure 3.1: Turbo equalizer.

Fig. 3.1 shows the structure of the turbo equalizer. The MAP equalizer takes as input the ISI-corrupted

received symbols r and the extrinsic information LD
e (ŝ) and produces a sequence of posterior transmit-

ted symbol LLR estimates LE(ŝ) (note that LD
e (ŝ) is zero during the first iteration). The LLR estimates

are produced by marginalizing over each bit in a codeword, for each codeword in the sequence. The

LLR estimate i = 1,2, ...,k (k is the number of encoder output bits) at time instant t is calculated

as

LE(ŝt
(i)) = log

(
P(st

(i) = 1)
P(st

(i) = 0)

)
(3.1)

where

P(s(i)t = 1) =
M

∑
j=1

P(s(i) = 1|S j,t ,rt), (3.2)

P(s(i)t = 0) =
M

∑
j=1

P(s(i) = 0|S j,t ,rt), (3.3)

where S j,t denotes the jth state in the trellis at time instant t, rt is the received codeword at time instant

t, and M is the number of states in the trellis. After all LE(ŝt
(i)) are calculated, LE(ŝ) is constructed

as follows:

LE(ŝ) = {LE(ŝ1
(1)), . . . ,LE(ŝ1

(i)),LE(ŝ2
(1)), . . . ,LE(ŝ2

(i)), . . . ,LE(ŝN
(1)), . . . ,LE(ŝN

(i))}, (3.4)

where N is the number of codewords in the sequence. Extrinsic information LE
e (ŝ) is determined

by

LE
e (ŝ) = LE(ŝ)−LD

e (ŝ), (3.5)
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Chapter 3 Turbo Equalization

which is deinterleaved to produce LE
e (ŝ′), which is used as input to the MAP decoder to produce a

sequence of posterior coded symbol LLR estimates LD(ŝ′). LD(ŝ′) is used together with LE
e (ŝ′) to

determine the extrinsic information

LD
e (ŝ
′) = LD(ŝ′)−LE

e (ŝ
′), (3.6)

LD
e (ŝ′) is interleaved to produce LD

e (ŝ). LD
e (ŝ) is used together with the received symbols r in the MAP

equalizer, with LD
e (ŝ) serving to provide prior information on the received symbols. The equalizer

again produces posterior information LE(ŝ) of the interleaved coded symbols. This process continues

until the outputs of the decoder settle, or until a predefined stop-criterion is met [5]. After termination,

the output L(û) of the decoder gives an estimate of the source symbols.

The power of turbo equalization lies in the exchange of extrinsic information LE
e (ŝ) and LD

e (ŝ′)

between the equalizer and the decoder. By feeding back the extrinsic information, without creat-

ing self-feedback loops, the correlation between prior information and output information is minim-

ized, allowing the system to converge to a near-optimal state in the solution space. If information is

exchanged directly between the equalizer and the decoder by ignoring interleaving and/or extrinsic

information, self-feedback loops will be formed. This will cause minimal performance gains, since

the equalizer and the decoder will inform each other about information already attained in previous

iterations [5–7].

3.2 REDUCED COMPLEXITY SISO EQUALIZERS

Because of the high computational complexity of the MAP equalizer, especially with long channel

memory, various suboptimal low complexity alternatives have been considered as a replacement for

the optimal MAP equalizer in the turbo equalizer structure [8]. These equalizers typically have lin-

ear to quadratic complexity with respect to the channel memory length, but still achieve acceptable

performance. These equalizers are also modified to incorporate prior information so as to improve

equalizer performance with each turbo iteration.

3.2.1 MMSE-based SISO Equalizer

The MMSE equalizer is a well-known low complexity alternative to reduce the effect of ISI on the

transmitted information. The MMSE equalizer determines a set of linear filter coefficients which are

then used to filter the ISI-corrupted received symbols in order to produce estimates of the transmitted
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Chapter 3 Turbo Equalization

symbol sequence. This equalizer therefore belongs to the class of linear equalizers. MMSE based

equalizers have per symbol complexity that is quadratic in the filter length (N) as well as in the CIR

length (L) and is expressed as O(N2 + L2) [8]. Below follows a discussion of the MMSE linear

equalizer (MMSE-LE) and the MMSE decision feedback equalizer (MMSE-DFE).

3.2.1.1 MMSE-LE

Assuming a system that transmits BPSK symbols through a finite impulse response (FIR) channel

h = {h−M1 ,h−M1+1, . . . ,hM2} of length M = M1 +M2 +1, the received symbol at time t is

rt =
M2

∑
l=−M1

hlst−l +nt , (3.7)

where nt is the tth AWGN sample which is assumed to be independent and identically distributed

(i.i.d). The MMSE-LE equalizer aims to calculated a linear filter of length N = N1 +N2 + 1, wt =

{w−N1,t ,w−N1+1,t , . . . ,wN2,t}, in order to minimize the mean squared error (MSE) [8] E{|st − s̃t |2}

such that the estimated symbol s̃t is given by

s̃t = wH
t (rt −pr

t )+ ps
t , (3.8)

where rt = {rt+N1 ,rt+N1−1, . . . ,rt−N2}T . According to [8, 9], E{|st − s̃t |2} is minimized when

wt = Cov(rt ,rt)
−1Cov(rt ,st)

ps
t = E{st}−wH

t E{rt}
. (3.9)

Substituting (3.9) in (3.8) gives

s̃t = Cov(rt ,rt)
−1Cov(rt ,st)rt +E{st}−Cov(rt ,rt)

−1Cov(rt ,st)E{rt}

= E{st}+Cov(rt ,rt)
−1Cov(rt ,st)(rt −E{rt}).

(3.10)

The structure of this MMSE-LE is shown in Fig. 3.2.
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Figure 3.2: SISO MMSE-LE [8] (Figure 3).

3.2.1.1.1 Without prior information: Since no prior information is available, the transmit-

ted information symbols are equiprobable, therefore E{st} = 0 and hence E{rt} = 0. Also

E{rt} = HE{st}, where

H =



h−M1 h−M1+1 . . . hM2 0 . . . . . . 0

0 h−M1 h−M1+1 . . . hM2 0 . . .
...

... 0
. . . . . . . . . . . . . . .

...
...

...
... h−M1 h−M1+1 . . . hM2 0

0 . . . . . . 0 h−M1 h−M1+1 . . . hM2


(3.11)

is an N× (N +M−1) convolution matrix. s̃t is determined by

s̃t =Cov(rt ,rt)
−1Cov(rt ,st)rt . (3.12)

Therefore, without the availability of prior information, that is when L(st) = 0, the linear filter para-

meters in (3.8) are determined by

wt = Cov(rt ,rt)
−1Cov(rt ,st)

ps
t = 0

. (3.13)
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Chapter 3 Turbo Equalization

Considering the i.i.d. properties of the additive noise samples nt , E{nt} = 0 and Cov(nt ,nt) = σ2I,

and due to uniform prior information, E{s}= 0,

Cov(rt ,rt) = E{rt ,rH
t }−E{rt}E{rH

t }

= E{(Hst +nt)(Hst +nt)
H}−HE{st}HHE{sH

t }

= E{(Hst)(Hst)
H +(Htst)nH

t +(Htst)
Hnt +ntnH

t }−0

= E{(Hst)(Hst)
H}+E{(Htst)nH

t }+E{(Htst)
Hnt}+E{nt ,nH

t }

= HCov(st ,st)HH +0+0+(Cov(nt ,nt)+E{nt}E{nH
t })

= HCov(st ,st)HH +0+0+(Cov(nt ,nt)+0)

= HCov(st ,st)HH +σ2I,

(3.14)

and

Cov(rt ,st) = HCov(st ,st). (3.15)

Therefore wt can be rewritten as [8]

wt =
(
σ

2I+HCov(st ,st)HH)−1 HCov(st ,st), (3.16)

By further noting that Cov(st ,s′t) = δ (t− t ′) due to the fact that st and s′t are independent and that all

transmitted symbols are equally likely,

wt = (σ2I+HHH)−1Hu, (3.17)

where u is the length N +M−1 vector

u = {0N1+M1 1 0N2+M2}T .

3.2.1.1.2 With prior information: When prior information is available the statistics of st are

time variant, which will affect the parameters wt , E{rt} and E{st} with respect to t. The MMSE

estimate for the transmitted symbol at time t is obtained by (3.10), which is repeated here for con-

venience:

s̃t = E{st}+Cov(rt ,rt)
−1Cov(rt ,st)(rt −E{rt}). (3.18)

The time-variant statistics can be calculated as follows:

E{st} = P(st = 1).1+P(st =−1).(−1)

= exp(L(st))
1+exp(L(st))

+ (−1)
1+exp(L(st))

= tanh
(1

2 L(st)
)
,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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and

Cov(st ,st ′) =

 1− tanh2 (1
2 L(st)

)
if t = t ′

0 otherwise,

such that

Cov(st ,st) =


1−E{st+M1+N1}2 0 . . . 0

0 1−E{st+M1+N1−1}2 . . .
...

...
. . . . . . 0

0 . . . 0 1−E{st−M2−N2}2

 . (3.19)

The covariance matrix associated with Cov(st ,st) is defined as

Dt =


1− tanh2 ( 1

2 L(st+M1+N1)
)

0 . . . 0

0 1− tanh2 ( 1
2 L(st+M1+N1−1)

) . . .
...

...
. . .

. . . 0

0 . . . 0 1− tanh2 ( 1
2 L(st−M2−N2)

)

 (3.20)

Given the variables E{rt} = HE{st}, Dt = Cov(st ,st) and Cov(st ,st) =
(
σ2I+HCov(st ,st)HH

)
,

and by noting that, since s̃t should not depend on L(st), L(st) is set to 0 while computing s̃t . The

estimate for st is therefore given by [8]

s̃t = wH
t (rt −E{rt}+E{st}Hu)

= wH
t (rt −HE{st}+E{st}Hu)

= wH
t (rt −Hps

t + ps
t Hu)

= wH
t
(
rt −Hps

t + tanh
(1

2 L(st)
)

Hu
)
, (3.21)

where ps
t = {tanh

(1
2 L(st+M1+N1)

)
, tanh

(1
2 L(st+M1+N1−1)

)
, . . . , tanh

(1
2 L(st−M2−N2)

)
}T , and where wt

is determined by

wt =
(
σ2I+HDtHH +(E{st})2(Hu)(Hu)H

)−1 Hu

=
(
σ2I+HDtHH + tanh2 (1

2 L(st)
)
(Hu)(Hu)H

)−1 Hu
. (3.22)

For and MMSE equalizer incorporating priors, the above calculation has to be performed for every

symbol st to be estimated, which leads to high computational complexity. Computational complexity

reduction is achieved by assuming that wt is time-invariant for the duration of the data block being

processed, but leads to performance degradation [8]. Disregarding this complexity reduction, it will be

seen in Section 3.5 that the MMSE-LE based turbo equalizer achieves full convergence and performs

optimally when the data block length is extremely long and the turbo equalizer is iterated a large

number of times.
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Chapter 3 Turbo Equalization

3.2.1.2 MMSE-DFE

An MMSE-DFE uses the MMSE structure in Fig. 3.3 with the addition of a feedback loop, feed-

ing back s̃t to be used for interference cancellation in the estimation of s̃t+1. The feedback fil-

ter wb
t = {wb

1,t ,w
b
2,t , . . . ,w

b
Nb,t}, where Nb ≤ N2 +M2, which implies that ISI caused by N2 +M2

previous symbols can be removed. Hard decisions are made on s̃t in the feedback loop such that

s̃h
t = sign(s̃h

t ).
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Figure 3.3: SISO MMSE-DFE Equalizer [8] (Figure 4).

The estimated output s̃t can be expressed as [8]

rt = Hst +nt ,

s̃t = wH
t (rt −pr

t )+(wb
t )

H
(
s̃h

t −ph
t
)
+ px

t ,
(3.23)

where pr
t is subtracted from rt before filtering, and s̃h

t = {sh
t−1,s

h
t−2, . . . ,s

h
t−N f
} and mh

t =

{mh
t−1,m

h
t−2, . . . ,m

h
t−Nb
}, where mh

t = E{sh
t }. It is clear from (3.23) that s̃t is a function of rt as

well as N f previous estimates s̃h
t . wt and wb

t can be expressed as [8]

wt =
(
σ2I+HCov(st ,st)HH

)−1 HCov(st ,st)+
(
HCov(s, s̃h

t )
)−1Cov(s̃h

t ,s)

wb
t =

(
Cov(s̃h

t ,s)HH
)−1 HCov(st ,st)+Cov(s̃h

t , s̃
h
t )
−1Cov(s̃h

t ,st)
. (3.24)

Since it is assumed that s̃h
t is a perfect estimate of st , the statistics of s̃h

t are identical to that of st .

Therefore E{s̃h
t }= E{st} and Cov(s̃h

t , s̃
h
t ) =Cov(st ,st). Therefore the filter parameters wt and wb

t can
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Chapter 3 Turbo Equalization

be expressed as [8]

wt =
(
σ2I+H

(
Cov(st ,st)−Cov(st , s̃h

t )Cov(s̃t , s̃t)
−1Cov(s̃t ,st)

)
HH
)−1 HCov(st ,st)

wb
t = −Cov(s̃t , s̃t)

−1Cov(s̃t ,st)HHwt

. (3.25)

Therefore s̃t is given by

s̃t = wH
t (rt −pr

t )−wH
t H(Cov(s̃t , s̃h

t )
−1Cov(s̃t ,st))

H(s̃h
t −ph

t )+ ps
t

= wH
t (rt −Hps

t )+ ps
t

, (3.26)

where ps
t = {ps

t+M1+N1
, . . . , ps

t , s̃
h
t−1, . . . , s̃

h
t−N f

, ps
t−N f−1, . . . , ps

t−M2−N2}T

3.2.1.2.1 No prior information: Assuming that transmitted symbols st are equiprobable,

yields

s̃t = wH(rt −Hps
t ),

wt = (σ2I+HHH)−1Hu
, (3.27)

where ps
t = {01×(M1+N1+1), s̃h

t−1, . . . , s̃
h
t−N f

, ps
t−N f−1,01×(M2+N2−N f )}

T .

3.2.1.2.2 With prior information: Assuming general priors L(st)

s̃t = wH(rt −Hps
t + ps

t Hu),

wt = (σ2I+HDtHH)−1Hu
, (3.28)

where again ps
t = {01×(M1+N1+1), s̃h

t−1, . . . , s̃
h
t−N f

, ps
t−N f−1,01×(M2+N2−N f )}

T . As will be seen in Sec-

tion 3.5, the MMSE-DFE based turbo equalizer does not achieve full convergence and performs

suboptimally, even with a large number of turbo iterations.

3.2.1.3 Mapping

After calculating the estimate s̃t , mapping needs to be performed in order to produce extrinsic inform-

ation LMMSE
e (st) from s̃t . The SISO equalizer output, for both the MMSE-LE and the MMSE-DFE is

given by [8]

LMMSE
e st =

2s̃t µ
(+1)
t

σ2
n

=
2s̃t

1− (Hu)Hwn
, (3.29)

where
µ
(+1)
t = wH(HE{st |st = 1}−HE{st |st =−1}) = wH

t s,

µ
(−1)
t = −wH

t (Hu),

σ2
t = wH

t
(
σ2I+HDtHH −Hu(Hu)H

)
wt = wH

t (Hu)−|µ(+1)
t |2.
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3.2.2 Decision Feedback Equalizer

MMSE based equalizers have been shown to be able to exploit prior information on the transmitted

symbols, therefore making them an attractive choice for use as a replacement for the MAP equalizer

in a turbo equalizer setup. Although the computational complexity of the MMSE equalizers are quad-

ratic in the number of filter coefficients (a function of channel memory), whereas the complexity of the

MAP equalizer grows exponentially with an increase in channel memory, the complexity of MMSE

equalizers making use of prior information becomes prohibitive when the channel memory is long,

since the coefficients of the MMSE equalizer have to be determined anew for each estimated symbol.

The soft feedback equalizers proposed in [10] and [11] allow for a reduction in complexity while

being able to incorporate prior information by combining it with the equalizer outputs to determine

more reliable estimates on the residual ISI. The per symbol complexity of these decision feedback

equalizers is only linearly related to the CIR length, as well as the filter length [10, 11].

Suppose a wireless communication system, after interleaving, transmits BPSK symbols s =

{s1,s2, . . . ,sN} through a frequency-selective fading channel such that the received symbol at time

t is

rt =
L−1

∑
l=0

hlst−l +nt , (3.30)

where the CIR is h = {h0,h1, . . . ,hL−1} and nt is an AWGN sample from the distribution N (µ =

0,σ2). It is assumed that prior information on the transmitted symbols is available at the receiver in

the form of LLRs

λ
p

t = log
(

P(st = 1)
P(st =−1)

)
(3.31)

which, together with the received symbols r = {r1,r2, . . . ,rN+(L−1)} are used to determine the LLR,

given the a posterior probabilities, such that

Lt = log
(

P(st = 1|r)
P(st =−1|r)

)
. (3.32)

3.2.2.1 Soft Feedback Equalizer

Fig. 3.4 shows the structure of the soft feedback equalizer proposed in [10], where the received

symbols are filtered with a linear filter f of which the output contains residual ISI due to imperfect ISI

removal. The output of the equalizer, together with the prior information, is then combined in order

to mitigate the residual ISI by subtracting the result of the feedback loop from the output of f.
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Figure 3.4: Soft feedback equalizer [10] (Figure 1).

More specifically, in the right branch of the feedback loop the output of the equalizer is additively

combined with the prior information, after which the result is passed through a soft decision function

(tanh(u/2)) of which the result is linearly filtered by a filter g2 = {g1,g2, . . . ,gM2+(L−1)} of length

M2 +(L− 1), whose output is an estimate of the causal part of the residual ISI. In the left feedback

branch the prior information is passed through a soft decision function and filtered by a linear filter

g1 = {g−M1 ,g−M1+1, . . . ,g−1} of length M1, whose output is an estimate of the anticausal part of the

residual ISI at the output of f. The results of g1 and g2 are combined to cancel residual ISI in the output

of f = { f−M1 , f−M1+1, . . . , fM2−1, fM2}. This combination of equalizer output with prior information

ensures better performance than conventional decision feedback equalizers, where only the equalizer

output, but not the prior information, is used to cancel ISI.

3.2.2.1.1 Extrinsic Information: In order to compute the extrinsic information, the output of f

after ISI cancellation is given by [10]

zt = g0st + vk, (3.33)

where g0 = ∑i hi f−i and vt = zt − g0st , which is the channel noise and residual ISI that has to be

removed from zt . Assuming that the elements of the sequence vt are i.i.d. Gaussian random variables
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with variance σ2
v , the LLR of st is

λt =
2g0zt

σ2
v

, (3.34)

which is the extrinsic LLR, which can be passed directly to the decoder in a turbo equalizer

setup.

3.2.2.1.2 Filter coefficients: The respective filters’ coefficients can be calculated by minimizing

the MSE E{|zt − st |2}. If zt is rewritten such that

zt = fT rt −gT
1 s̃t −gT

2 dt (3.35)

while assuming that the statistics of st , s̃t , dt are identical, such that E{s̃tst ′}=E{s̃tdt ′}=E{stdt ′}= 0

for t 6= t ′ and E{s̃tst} = E{|s̃t |2} and E{dtst} = E{|dt |2}, the filter coefficients can be derived by

following the derivation for the MMSE-DFE as before, which gives

f =
(
HHT −α1H1H1

T −α2H2H2
T +σ

2I
)−1 h0 (3.36)

g1 = HT
1 f (3.37)

g2 = HT
2 f (3.38)

where H is and M× (M+L−1) channel convolution matrix

H =



h0 h1 . . . hL−1 0 0 . . . 0

0 h0 h1 . . . hL−1 0 . . . 0
...

...
. . . . . . . . . . . .

...
...

0 . . . 0 h0 h1 . . . hL−1 0

0 . . . 0 0 h0 h1 . . . hL−1


(3.39)

where M = M1 + M2 + 1, α1 = E{s̃tst}, α2 = E{dtst}, H1 = {hM1 , . . . ,h−1}, H2 =

{h1, . . . ,hM2+(L−1)}.

To complete the derivation of the soft feedback equalizer, expressions need to be determined for

α1 = E{s̃tst} and α2 = E{dtst}. Following [10], α1 and α2 can be determined by conditioning on

st = 1, that is E{s̃t |st = 1} and E{dt |st =−1}. Assuming that λ
p
k can be modeled as an information

symbol transmitted through an AWGN channel such that λ
p
k = γpst +wt , where wt is a sample from

the distribution N (µ = 0,σ2 = 2γp) z. Then, conditioning on st = 1, λ
p
k can be modeled as a sample

from the distribution N (µ = γp,σ
2 = 2γp). Therefore

α1 = φ1(γp), (3.40)
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where

φ1(γ) = E{tanh(u/2)}, (3.41)

where u is a sample take from a Gaussian distribution with γ mean and 2γ variance. γp can be

estimated from the prior information such that

γ̃p =

√
1+

1
N

N−1

∑
t=0
|λ p

t |2−1. (3.42)

To determine α2, one can use a Gaussian approximation for λt , in Lt = λ
p

t +λt , by letting γe =
2g2

0
σ2 be

a parameter that is twice the low signal-to-noise ratio (SNR) of the AWGN channel that produces γt .

Using the Gaussian approximation to λ
p

t ,

Lt = (γp + γe)st + γpwt + γevt . (3.43)

Conditioning on st = 1 produces Lt that is a sample from a distribution N (µ = γp + γe,σ
2 = 2(γp +

γe)) and 2(γp + γe), and therefore

α2 = φ1(γp + γe). (3.44)

Noting that, since g0 = fT h0 and σ2
v = g0(1−g0),

γe =
2fT h0

1− fT h0
, (3.45)

which requires f to determine γe, in order to determine α2, which is used to determine f. Therefore,

given an initial estimate of γe

f =
(
HHT −α1H1H1

T −φ1(γp + γe)H2H2
T +σ

2I
)−1 h0 (3.46)

can be determined in an iterative fashion until a certain stop-criterion is met, which quickly converges

to a fixed point [10].

3.2.2.2 Soft-decision Feedback Equalizer [11]

The soft-decision feedback equalizer (SDFE) is shown in Fig. 3.5. The received se-

quence rt = {rt−N2 ,rt−N2+1, . . . ,rt+N1}T of length N1 + N2 + 1 is filtered by a linear filter ft =

{ fN2,t , fN2−1,t , . . . , f−N1,t}T , after which residual ISI is canceled by feedback based on previous de-

cisions. The result is transformed to LLRs (λt) on which soft decisions are made to produce sd
t ,

before filtering the result with a linear filter bt = {bN3,t ,bN3−1,t , . . . ,b1,t}T , where N3 = N2 +M− 1,

which is used to cancel the residual ISI.
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Figure 3.5: Soft-decision Feedback Equalizer [11] (Figure 2).

For the first iteration HE{st}= 0, E{st}= 0 and E{sd
t }= 0 and the SDFE reduces to a conventional

DFE [2]. During subsequent iterations HE{st} becomes more reliable and is used to cancel residual

ISI from rt .

The MMSE estimate of the transmitted symbol st is given by

s̃n = ftrt +btsd
t +dt , (3.47)

where sd
n = {sd

t−N3
,sd

t−N3+1, . . . ,s
d
t−1}. It is assumed that the statistics of sd

t and st are identical, there-

fore Cov(st ,st ′) = 0, Cov(st ,sd
t ′) = 0 and Cov(sd

t ,s
d
t ′) = 0 for all t 6= t ′.

To determine the filter coefficients ft , bt and dt , the partial derivatives of E{|st − s̃t |2} are taken with

respect to ft , bt and dt [11]:

∂E{|st − s̃t |2}
∂dn

= 2E{st − ftrt −btsd
t −dt} (3.48)

∂E{|st − s̃t |2}
∂ fH

n
= 2E{(st − ftrt −btsd

t −dt)rH
t } (3.49)

∂E{|st − s̃t |2}
∂bH

n
b = 2E{(st − ftrt −btsd

t −dt)sdH
t } (3.50)

where

H =



hL−1 hL−2 . . . h0 0 0 . . . 0

0 hL−1 hL−2 . . . h0 0 . . . 0
...

...
. . . . . . . . . . . .

...
...

0 . . . 0 hL−1 hL−2 . . . h0 0

0 . . . 0 0 hL−1 hL−2 . . . h0


(3.51)
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Setting (3.48) to zero

dt = 2E{st − ftrt −btsd
t }

= E{st}−E{ftrt}−E{btsd
t }

= E{st}− ftE{rt}−btE{sd
t }

= E{st}− ftHE{st}−btE{sd
t }

, (3.52)

Substituting dt in (3.49) and (3.50) and setting both to zero gives

ftHCov(st ,sd
t )+btCov(sd

t ,s
d
t ) = 0 (3.53)

and

(σ2I+HCov(st ,st)HH)fH
t = gt . (3.54)

Therefore, solving (3.53) and (3.54) for ft and bt , the filter coefficients are given by

fH
t =

(
σ2I+H(Cov(st ,st)−Cov(st ,sd

t )Cov(sd
t ,sd

t )
−1Cov(st ,sd

t )HH)
)−1 gt

bH
t = −Cov(sd

t ,sd
t )
−1
(
HCov(st ,sd

t )
)H fH

t

dt = E{st}− ftHE{st}−btE{sd
t }

s̃t = ft(rt −HE{st})+bt(sd
t −E{sd

n})+E{st}

, (3.55)

where gt = H(E{st ,s∗t }−E{st}E{s∗t }).

3.2.2.2.1 Expected value computation: A number of expected values have to be determined in

order to calculate Cov(st ,st), Cov(st ,sd
t ) and Cov(sd

t ,sd
t ). Following a similar approach as for the SFE

in Section 3.2.2.1, the required expected values are determined as follows [11]:

E{sd
t }= E{sd

t |st = 1}P(st = 1)+E{sd
t |st =−1}P(st =−1), (3.56)

E{stsd∗
t } = E{sd

t |st = 1}P(st = 1)−E{sd
t |st =−1}P(st =−1)

= E{sd
t |st =−1}

, (3.57)

and
E{sd

t sd∗
t } = E{(sd

t )
2|st = 1}P(st = 1)−E{(sd

t )
2|st =−1}P(st =−1)

= E{(sd
t )

2|st = 1}
, (3.58)

where

sd
t = tanh

(
Lt

2

)
, (3.59)

and Lt = λt +λ
p

t as before. E{sd
t }, E{stsd∗

t } and E{sd
t sd∗

t } are time-varying and needs to be computed

according to the prior probability for each st . The same iterative method proposed in [10], as discussed

in Section 3.2.2.1, is used to determine E{stsd∗
t } and E{sd

t sd∗
t }.
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Since the filter coefficients and covariance matrices have to be determined for each s̃t to be estimated,

the computational complexity is excessive. The complexity can be greatly reduced if it is assumed

that these variables are time-invariant and that f, b, Cov(st ,sd
t ) and Cov(sd

t ,sd
t ) are constant for each

received data block.

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the CTE as well as the various other turbo equalizers, employing the

low complexity equalizers discussed in this chapter, are determined for a given received data block,

and normalized with respect to coded data block length so as to present the computational complex-

ity per coded bit. The computational complexity is determined for each algorithm by counting the

number of computations performed during the iterative equalization and decoding of one data block.

It is assumed that a rate Rc = 1/2, constraint length K = 5 convolutional encoder is used to encode

the information, and that Z = 10 iterations are used in each case. L is the CIR length and Nu and Nc

are the respective uncoded and coded data block lengths.

For the MMSE based equalizers, as well as the DFE equalizers, the maximum and minimum computa-

tional complexities are given. The maximum complexities were determined by counting the number

of computations performed during equalization, and approximating each maximum complexity by

eliminating insignificant terms. The minimum complexities were obtained from the relevant cited

literature, and were determined by simplifying the respective matrix and vector operations so as to

minimize the number of computations required.

The computational complexity of the MAP equalizer is

CCMAP = 4Nc2L−1L. (3.60)

The minimum and maximum complexities of the MMSE-LE and MMSE-DFE equalizers are given

by

CCmax
MMSE−LE

= Nc(3N(4+2N +N2)+4NQ(2+Q))

≈ Nc(3N3 +4NQ2)
, (3.61)

CCmin
MMSE−LE

≈ Nc(N2 +Q2), (3.62)
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and
CCmax

MMSE−DFE
= Nc(5N +2N2 +N3 +6NQ+2NQ2)

≈ Nc(3N3 +2NQ2)
. (3.63)

CCmin
MMSE−DFE

≈ Nc(N2 +Q2), (3.64)

where Q = N +L−1 and N = N1 +N2 +1, where N1 = L and N2 = L/2. For the SFE the minimum

and maximum computational complexities are given by

CCmax
SFE

= 7M+2(K1 +K2)+2M(K1 +K2)+ . . .

. . .+(2M2(K +K1 +K2)+M(6+4M+M2))

≈ 2M2 +R(2M2(K +K1+K2)+M3)

. (3.65)

CCmin
SFE
≈ Nc(N +M), (3.66)

where M = M1 +M2 +1, K1 = M1 and K2 = M2 +L−1, where M1 and M2 are the respective lengths

of the causal and anticausal parts of the linear filter f, and R is the number of iterations required to

deterimine f, chosen as R = 5 for this analysis. Finally the minimum and maximum computational

complexity of the SDFE are given by

CCmax
SDFE

= 4N +4N2 +5N3 +2N3 +R(4N +14N3 +4N2 +2N3)

≈ 5N3 +2N3+R(14N3)
, (3.67)

CCmin
SDFE
≈ Nc(N +M). (3.68)

where N = N1 +N2 +1, N3 = N2 +L−1.

Fig. 3.6 shows the maximum and minimum computational complexities of the various low complexity

equalizers together with that of the MAP equalizer, from which it can be seen that the low complexity

equalizers, without complexity reduction, are in fact more computationally complex that the MAP

equalizer for low to moderate CIR lengths. However, after optimizing matrix and vector calculations

the respective complexities of the MMSE and SFE/SDFE equalizers are more favorable and only

increases exponentially or linearly with an increase in CIR length.
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Figure 3.6: Maximum and minimum computational complexities of various low complexity equal-

izers compared to that of the MAP equalizer.

3.4 EXIT CHARTS

The extrinsic information transfer (EXIT) chart is a tool developed to analyze the effectiveness of

information transfer between the equalizer and the decoder in a turbo equalizer. It was first proposed

in [28] for parallel concatenated turbo codes, but can also be used for turbo equalization. It is useful

in analyzing the convergence properties and the performance of turbo equalizers and aids in designing

good codes for use in turbo equalizers.

In order to show the information transfer between the input and the output of the equalizer, an EXIT

chart graphically depicts the mutual information between the extrinsic information at the input of the

equalizer and the transmitted symbols s,

I(LE
in,s) = ∑

sε{−1,1}

∫
p(LE

in|s) log2
p(LE

in|s)
p(LE

in|s = 1)+ p(LE
in|s =−1)

dLE
in, (3.69)

and the mutual information between the extrinsic information at the output of the equalizer and the

transmitted symbols s,

I(LE
out ,s) = ∑

sε{−1,1}

∫
p(LE

out |s) log2
p(LE

out |s)
p(LE

out |s = 1)+ p(LE
out |s =−1)

dLE
out , (3.70)
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where p(LE
in|s) and p(LE

out |s) are the respective probability density functions of LE
in and LE

out given that

s was transmitted, which are given by

p(LE
in|s =±1) =

1√
2πσ

exp
(
−(LE

in±1)2

2σ2

)
(3.71)

and

p(LE
out |s =±1) =

1√
2πσ

exp
(
−(LE

out ±1)2

2σ2

)
. (3.72)

According to [2, 29] (3.69) and (3.70) can be simplified to

I(LE
in,s) = 1−E{log2

(
1− exp(−LE

in)
)
}

≈ 1− 1
N ∑

N
n=1 log2

(
1− exp(−sLE

in)
) (3.73)

and
I(LE

out ,s) = 1−E{log2
(
1− exp(−LE

out)
)
}

≈ 1− 1
N ∑

N
n=1 log2

(
1− exp(−sLE

out)
) (3.74)

respectively, where N is the total number of output symbols generated. The same principles can be

applied to determine the mutual information between the extrinsic information at the input/output of

the decoder and the decoded transmitted symbols, I(LD
in,s) and I(LD

out ,s). To determine the mutual

information, the expected values in (3.69) and (3.70) must be determined, calculating the approx-

imations in (3.73) and (3.74) by means of Monte Carlo simulation over a large number of samples

(typically N > 106) for a given Eb/N0, and plotting the results.

Fig. 3.7 [28] shows the EXIT chart for a MAP decoder at various Eb/N0, where the encoder is a

rate 1/2 recursive systematic convolutional code with octal generator polynomials (Gr,G) = (23,37)

and constraint length K = 5, of which the output is punctured to obtain a rate of 2/3. The prior

information is available. From Fig. 3.7 the evolution of the mutual information I(LE
in,s) and I(LE

out ,s)

is clear for a given Eb/N0.
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Figure 3.7: EXIT chart for a rate 2/3 recursive convolutional code [28].

3.5 SIMULATION RESULTS

The various SISO equalizers discussed in this chapter are used as a replacement for the optimal MAP

equalizer in a turbo equalizer, and the resulting turbo equalizer is simulated for a number of scenarios.

The corresponding EXIT charts are shown to evaluate the effectiveness of each low complexity SISO

equalizer. In each case the performance of the reduced complexity turbo equalizer is compared to that

of a CTE.

3.5.1 MMSE-LE and MMSE-DFE

In [12] the MMSE-LE and MMSE-DFE based turbo equalizers are simulated through a channel

h = {0.227,0.46,0.688,0.46,0.227} of length L = 5, using a rate 1/2 recursive systematic convo-

lutional encoder with octal generator polynomial G = {7,5}, where the first generator is the feedback

part. Nu = 215 uncoded bits are encoded to Nc = 216 coded bits and interleaved using an S-random

interleaver with S = 0.5
√

0.5Nc. Fig. 3.8 shows the performance of the MMSE-LE and MMSE-DFE

based turbo equalizers compared to that of the CTE employing a MAP equalizer. It is clear that, al-

though the convergence of the MMSE-LE-TE is worse than that of the CTE, the MMSE-LE-TE still

achieves coded AWGN performance after 14 iterations, as if the CIR were h = 1. The MMSE-DFE

however does not perform well, even after a great number of iterations. Fig. 3.9 shows the corres-
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ponding exit chart for Eb/N0 = 4 dB, from which it is clear that the mutual information at the input

and the output of the MMSE-LE equalizer converges to 1, while the MMSE-DFE fails to transfer

much information.
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Figure 3.8: MMSE-LE and MMSE-DFE turbo equalizer BER performance [12].
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Figure 3.9: MMSE-LE and MMSE-DFE turbo equalizer EXIT chart for Eb/N0 = 4 dB [12].
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3.5.2 SFE

The SFE based turbo equalizer (SFE-TE) in [10] is simulated for a number of dispersive channels.

A rate 1/2 recursive convolutional encoder with generator (1+D2)/(1+D+D2) was used before

interleaving. The first channel is of length L = 5 and has an CIR h = {0.227,0.46,0.688,0.46,0.227}

for which M1 = 9 and M2 = 5 were used. Nu = 215 bits were encoded before interleaving, using a

random interleaver, and transmission. The SFE-TE was iterated 14 times and compared to a CTE

using a MAP equalizer. Fig. 3.10 shows the performance of the SFE-TE compared to that of the

CTE, from which it can be seen that both the CTE and SFE-TE achieve matched filter performance,

although the SFE-TE does so only for Eb/N0 ≤ 5 dB. The corresponding EXIT chart is shown in Fig.

3.11.
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Figure 3.10: SFE-TE BER performance for h = {0.227,0.46,0.688,0.46,0.227} [10].

The second channel has a CIR of h= {0.23,0.42,0.52,0.52,0.42,0.23} of length L= 5, which causes

maximum degradation for the ML sequence detector, through which Nu = 211 encoded bits are trans-

mitted after interleaving. M1 = 15 and M2 = 10 was used. The performance of the SFE-TE and the

CTE is shown in Fig. 3.12 for various numbers of iterations. Here it is clear that the CTE greatly
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outperforms the SFE-TE for this channel. The high performance gap between the CTE and SFE-TE is

due to the fact that energy is almost uniformly spread throughout the channel, ie. there is no dominant

CIR coefficient in h.
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Figure 3.11: SFE-TE EXIT chart at Eb/N0 = 5.1 dB for h = {0.227,0.46,0.688,0.46,0.227} [30].
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Figure 3.12: SFE-TE BER performance for h = {0.23,0.42,0.52,0.52,0.42,0.23} [30].
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3.5.3 SDFE

The soft-decision feedback turbo equalizer (SDFE-TE) proposed in [11] is simulated and compared to

the SFE-TE and MMSE-TE, where the CIR is once again as in Fig. 3.12 and a rate 1/2 convolutional

encoder with octal generator polynomial G = {7,5} is used to encode the information to Nu = 10560

encoded symbols, after which the encoded symbols are interleaved with a random interleaver. The

filter parameters were chosen as follows: N1 = 9, N2 = 5, N3 = N2 +M− 1. Fig. 3.13 shows the

BER performance of the SDFE-TE compared to that of the SFE-TE and the MMSE-TE for three and

ten iterations respectively. Even though the performance of these turbo equalizers is comparable, it is

clear from the EXIT chart in Fig. 3.14 that the SDFE-TE does not exhibit such favorable convergence

properties as the MMSE-LE-TE. However, the SDFE-TE has much lower computational complexity

than the MMSE-LE-TE.
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Figure 3.13: SDFE-TE, SFE-TE and MMSE-LE-TE BER performance [11].
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Figure 3.14: SDFE-TE EXIT chart at Eb/N0 = 5 [11].

3.6 CONCLUDING REMARKS

In this chapter conventional turbo equalization was discussed and it was explained how the turbo

equalizer iteratively exchanges information between the MAP equalizer and the MAP decoder in or-

der to improve the BER performance with each iteration. It was discussed how the computational

complexity of the CTE becomes excessive with moderate to long channel memory, and that the CTE

is not useful in systems that transmit coded information through highly dispersive multipath chan-

nels.

A number of reduced complexity SISO equalizers were discussed, which can be used as an alternative

to the optimal MAP equalizer in a turbo equalizer. Two MMSE SISO equalizers were discussed -

the MMSE-LE and the MMSE-DFE - and their performance in a turbo equalizer was demonstrated

via computer simulations from [12]. The MMSE equalizers have complexity that is quadratic in

the channel memory length, but low-complexity alternatives do exist. Two other feedback based

equalizers were discussed - the SFE and the SDFE - and it was shown that these equalizers have

lower complexity than their MMSE counterparts, while maintaining acceptable performance. Their

complexity is linear in the channel memory length, which makes them suitable for use in systems with

extremely long memory. Simulation results from [10] and [11] demonstrated that these algorithms

achieve performance that is comparable to that of the more complex MMSE-LE when used as SISO

equalizers in a turbo equalizer.
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In the following two chapters the author presents two unique approaches to perform iterative joint

equalization and decoding by using two superstructures, namely a Bayesian belief network and a re-

current neural network. This paradigm is different from the paradigm discussed in this chapter, where

information is iteratively exchanged between the equalizer and the decoder. When superstructures

are used to perform iterative joint equalization and decoding, there are no restrictions on the structure

of the interleaver and suboptimal equalizers are not resorted to in order to relieve the computational

strain due to large channel memory. This approach combines the two joint equalization and decoding

philosophies: The first was discussed in Chapter 2, where non-iterative joint equalization and decod-

ing was performed on a super-trellis, while some restrictions were imposed on the structure of the

interleaver. The second philosophy stems from the fact that, in order to have freedom when selecting

and interleaver, the equalizer and the decoder must be separate SISO algorithms, which iteratively

supply information to each other in order to improve the overall BER performance. Traditionally the

use of superstructures for joint equalization and decoding had limitations with respect to the com-

putational complexity, as discussed in Chapter 2, as well as the performance loss incurred by using

depth-limited interleavers. As will be shown in Chapter 4 and Chapter 5, these limitations are erad-

icated by employing two low complexity superstructures, enabling iterative joint equalization and

decoding in systems transmitting randomly interleaved coded information through highly dispersive

multipath channels.
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CHAPTER 4

DYNAMIC BAYESIAN NETWORK TURBO EQUALI-

ZER

During the past two decades much attention has been paid to approximate inference on factor graphs

using the sum-product algorithm. Factor graphs provide a means by which complex functions can be

factorized into the product of more simplistic functions, in order to infer posterior probabilistic in-

formation regarding hidden, or unknown variables [31, 32] for a particular application. Factor graphs

include a myriad of graphical models used in the field of artificial intelligence and signal processing

such as Bayesian networks, Markov random fields and Tanner graphs, and many well know algorithms

such as the forward-backward algorithm, the turbo decoding algorithm and the Kalman filter, are all

instances of factor graphs [31]. Factor graphs have also been extensively applied to the design of

iterative receivers in wireless communication systems [17, 18, 33–46].

It was demonstrated in [17, 18] that turbo decoding can be performed by iteratively decoding the

received codewords on a graph with cycles. Also, in [36–38] it was shown how low density par-

ity check (LDPC) codes transmitted through multipath and partial response channels can be iterat-

ively decoded, and therefore turbo equalized, on a factor graph. In all cases BP via the sum-product

algorithm is used to calculate the approximate marginal posterior probabilities of the uncoded in-

formation symbols. Factor graphs adapted for use in wireless communication receiver algorithms,

especially Turbo algorithms, usually have cycles due to a randomization effect designed to separate

transmitted information temporally, ie. interleaving, to improve overall system performance. In order

to reduce detection complexity, cycles have to be eliminated, and in order to remove cycles in a graph

the junction tree algorithm is often used to combine nodes into supernodes, where each supernode

represents a collection of original nodes [26,31]. This combination of nodes results in an exponential
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Chapter 4 Dynamic Bayesian Network Turbo Equalizer

growth in the state space, and therefore the computational complexity. Apart from the very high com-

putational complexity of this approach, it has been shown in [32, 35, 47–49] that fast, exact inference

is not guaranteed on graphs with cycles.

In a wireless communication system transmitting coded information through a multipath communic-

ation channel, an interleaver is ofter used to mitigate the effect of burst errors by randomizing the

occurrence of errors in a transmitted data block, as stated before. When a random or pseudo random

interleaver is used, the Markov assumption, which states that the current state is only dependent on

a finite history of previous states [16], is violated since the interleaver randomizes the encoded data

according to some predetermined random permutation. The Markov assumption therefore fails and

the turbo equalizer can no longer be modeled as a DAG to form a cycle-free decision tree.

In this chapter a low complexity near-optimal dynamic Bayesian network turbo equalizer (DBN-TE)

is developed. The DBN-TE is modeled as a DAG, while relaxing the Markov assumption, by allowing

weak dependencies on past and future states. Thus the DBN-TE model ensures that there is always

one dominant connection between a given hidden state and its corresponding observations, while there

may be several weak connections to past and future hidden states. The computational complexity

of the DBN-TE is approximately quadratic in the coded data block length, exponential in decoder

constraint length. Additional complexity is due to the channel memory, but is only approximately

linear since it does not increase the size of the state space, but merely increases the summation terms

in the sensor model. Its computational complexity is superior to that of the CTE, while being inferior

to that of MMSE and DFE based LCTEs for moderate to large coded data block lengths. Results show

that the performance of the DBN-TE closely matches that of a CTE in Rayleigh fading multipath

channels, achieving full convergence after only a small number of iterations. Its performance in short

static multipath channels is also comparable to that of the CTE and other LCTEs.

4.1 DYNAMIC BAYESIAN NETWORKS

A Bayesian network is a DAG consisting of nodes, where each node can be in a number of states [16].

Each of the possible states in turn has a corresponding probability indicating the likelihood of the node

being in that state. Nodes are indicated by Xi and each node can assume M states {x1,x2, . . . ,xM}.

Conditional dependence between nodes is indicated by a directed link, or edge, between nodes.

Fig. 4.1 shows a simple Bayesian network, where nodes X1 and X2 are respectively connected to

nodes X3 and X4, which are in turn connected to node X5. The connections between nodes in Fig. 4.1
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means that X1 has an effect on X3, X2 has an effect on X4, and X3 and X4 have and effect on X5. There-

fore X1 and X2 have an indirect effect on X5 via X3 and X4. Each node, except nodes X1 and X2 has a

conditional distribution P(Xi|Parents(Xi)) that quantifies the effect of the parents on the node.

Bits-to-
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s c c'
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Tx

Rx

c'

-1 Channel 
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h
~
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Xt-3 Xt-2 Xt-1 Xt

Et-3 Et-2 Et-1 Et

Figure 4.1: Bayesian network with five variable nodes.

4.1.1 Representing Joint Distributions

Given the conditional probability distributions for each variable, a Bayesian network is able to rep-

resent the full joint distribution for all the variables. A Bayesian network can either be viewed as a

representation of the joint probability distribution of a given domain, or as an encoding of a collection

of conditional independence statements [16, 50]. The joint distribution of all the variables in Fig. 4.1

can be determined as follows:

P(X1 = x1,X2 = x2,X3 = x3,X4 = x4,X5 = x5) =
5

∏
i=1

P(xi|parents(Xi)), (4.1)

which can be written in short as

P(x1,x2,x3,x4,x5) =
5

∏
i=1

P(xi|parents(Xi)), (4.2)

Assuming that each node can assume M = 4 states, namely x1, x2, x3 and x4, the probability of any

combination of state assignments can be calculated, assuming that the conditional probabilities are

available. For instance, the probability that X1 = x2, X2 = x4, X3 = x2, X4 = x1 and X5 = x3 is calculated

as
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P(x2,x4,x2,x1,x3) = P(X5 = x3|X3 = x2)P(X3 = x2|X1 = x2) . . .

P(X1 = x2)P(X4 = x1|X2 = x4)P(X2 = x4). (4.3)

Note that X1 and X2 do not have conditional probabilities, since they are not affected by any other

nodes.

4.1.2 Bayesian Network Construction

It is important to be able to construct the Bayesian network so as to represent the domain by means

of the joint distribution. The product rule can be used to accomplish this, by rewriting the joint

distribution in (4.1) for n variables [16],

P(x1, . . . ,xn) =
n

∏
i=1

P(xi|parents(Xi)), (4.4)

in terms of the conditional probabilities such that

P(x1, . . . ,xn) = P(xn|xn−1, . . . ,x1)P(xn−1, . . . ,x1), (4.5)

which, when each conjunctive probability is reduced to a conditional probability and smaller con-

junction, factorizes to

P(x1, . . . ,xn) = P(xn|xn−1, . . . ,x1)P(xn−1|xn−2, . . . ,x1) . . .P(x2|x1)P(x1)

= ∏
n
i=1 P(xi|xi−1, . . . ,x1)

. (4.6)

From (4.6) it is clear that the Bayesian network is a correct representation of the domain if each node

is conditionally independent from its predecessor. It is therefore important to select parents for each

node so that this condition holds true.

4.1.3 Probabilistic Reasoning over Time

When dealing with systems that evolve over time it is necessary to be able to infer the joint distribution

of any number of random variables, given all available information up to the current time instant.

Keeping track of the joint distributions of the variables in past nodes, the belief state of the current

node can be inferred from the observation at the current time instant. Let Xt be a set of unobservable

state variables at time t, and let Et be a set of observable evidence variables, where the observation

at time t is Et = et for some set of values et . In a Bayesian network that performs inference over
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time, the transition model and the sensor model are key descriptors of the behavior of the system to

be modeled. The transition model describes the probability of transitions between states at a given

time, while the sensor model explains the process involved in producing the observed or evidence

variables.

4.1.3.1 Transition Model

In order to construct a Bayesian network for temporal models, a description of the evolutionary nature

of the system must be specified. This is done in the form of a transition model which describes

the transitions between the different states of neighboring nodes. The transition model is given by

P(Xt |Xt−1), which gives information regarding the probability of Xt being in a given state, given that

Xt−1 is in a certain state. In other words, the transition model specifies the probability distribution

over the latest state variables, given the previous state variables. Here it is important to note that

the current state is only dependent on a fixed number of previous states. This is called the Markov

assumption [16]. In a first order Markov process, the current state only depends on the previous state

(P(Xt |Xt−1)), whereas the current state depends on two previous states in a second order Markov

process (P(Xt |Xt−1,Xt−2)). In his thesis the focus is on the former.

4.1.3.2 Sensor Model

The sensor model, or observation model, is responsible for testing the relevance of the observed

evidence variables with respect to each individual state in Xt, and producing a value for each state in

Xt which is proportional to the probability of the state for which it is evaluated. The sensor model

should faithfully model the process by which observed variables Et are produced in order to best infer

the probability of occurrence of each state in Xt. The sensor model is given by P(Et |Xt), producing a

probability for each state in Xt, given the evidence Et .

4.1.3.3 Inference over Time

Fig. 4.2 shows a Bayesian network structure with four nodes Xt , Xt−1 , Xt−2 and Xt−3, and four

corresponding evidence variables Et , Et−1 , Et−2 and Et−3. The nodes are connected by arrows, in-

dicating the flow of time, and each node is connected to an evidence variable, with the arrow pointing

towards the evidence variable since that state of the world causes the evidence variable to assume a

certain value. In order to determine the probabilities of the state variables in Xt , given all historic
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information, one may write

P(Xt ,Et) = P(X0)
t

∏
i=1

P(Xi|Xi−1)P(Ei|Xi), (4.7)

where the first, second and third terms on the right-hand side are the initial state model, the transition

model, and the sensor model respectively. Note that, in order for the system to start inferring future

probability distributions, there must be an initial state model which is known a priori. Therefore,

knowing the initial state model, the transition model and the sensor model, the joint probability dis-

tributions over all the states in Xt can be determined, given all past information, for any time instant

t.
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Figure 4.2: Bayesian network structure showing variable nodes and observed/evidence variables.

4.1.3.4 The Forward-backward Algorithm

The forward-backward algorithm computes the distribution over past and future states given evidence

up to the present. It determines the exact MAP distribution P(Xk|e1:t) for 1 ≤ k < t, where e1:t is a

sequence of observed variables from time 1 to t. This is done by calculating two evidence “messages”

- the forward message from 1 up to k and the backward message from t to k+1.

4.1.3.4.1 Forward message: The forward message computes the posterior distribution over future

states, given all evidence up the current state. To compute the forward message, the current state is

projected forward from time t to time t+1 and is then updated using the new evidence et+1. To obtain

the prediction of the next state it is necessary to condition on the current state Xt , hence:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)∑
xt

P(Xt+1|xt)P(xt |e1:t) (4.8)

where α is a normalization constant, P(et+1|Xt+1) is obtained from the sensor model, P(Xt+1|xt)

is the transition model and P(xt |e1:t) is the current state distribution. The forward message can be
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computed recursively using (4.8).

4.1.3.4.2 Backward message: The backward message is computed in a similar fashion. It com-

putes the posterior distribution over past states, given all future evidence up to the current state.

Whereas the forward message is computed forwards from 1 to k, the backwards message is computed

backwards from k+1 to t. Thus, the backwards message determines

P(ek+1:t |Xk) = α ∑
xk+1

P(ek+1|xk+1)P(xk+1|Xk)P(ek+2:t |xk+1) (4.9)

where P(ek+1|xk+1) is obtained from the sensor model, P(xk+1|Xk) is the transition model and

P(ek+2:t |xk+1) is the current state distribution. The backward message can be computed recursively

using (4.9).

4.1.3.4.3 Forward-backward Message: Finally, by combining the forward and backward mes-

sage, the posterior distribution over all states at any time instant 1 ≤ k < t can be determined

as

P(Xk|e1:t) = αP(Xk|e1:k)P(ek+1:t |Xk). (4.10)

Using the posterior distribution for each Xt , the hidden variable can be estimated by marginalizing

over all states {x1,x2, . . . ,xM}, where M is the number of possible states.

4.2 MODELING A TURBO EQUALIZER AS A QUASI-DAG

Suppose a wireless communication system generates a sequence of source bits s of length Nu and s

is encoded by a convolutional encoder of rate Rc = 1/n, producing a coded bit sequence c of length

Nc = Nu/Rc. Now suppose that the coded bit sequence is interleaved using a random interleaver,

which produces a bit sequence ć of length Nc, which is transmitted. The resulting symbol sequence

to be transmitted is given by

ć = JGT s, (4.11)
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where T denotes the transpose operation and G is an Nu×Nc matrix

G =



g1K . . . gnK 0 . . . 0 0 0 0
...

. . .
... g1K . . . 0 0 0 0

g11 . . . gn1
... . . . 0 0 0 0

0 0 0 g11 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . gnK 0 0 0

0 0 0 0 . . .
... g1K . . . gnK

0 0 0 0 . . . gn1
...

. . .
...

0 0 0 0 0 0 g11 . . . gn1



(4.12)

representing the convolutional encoder, where

g =


g11 . . . gn1

...
. . .

...

g1K . . . gnK

 (4.13)

is the generator matrix of a rate Rc = k/n (k = 1) convolutional encoder with constraint length K,

and J is the Nc × Nc interleaver matrix. Now suppose the symbol sequence ć is transmitted over a

single-carrier frequency-selective Rayleigh fading channel with a time-invariant impulse response h

of length L, the received symbol sequence is given by

r = Hć+n, (4.14)

where H is the Nc×Nc channel matrix with the CIR h = {h0, h1, . . . , hL−1}T on the diagonal such

that

H =



h0 0 . . . 0 0 0 0
... h0 . . . 0 0 0 0

hL−1
...

. . . 0 0 0 0

0 hL−1
. . . . . . 0 0 0

...
...

. . . . . . h0 0 0

0 0 0 hL−1 . . . h0 0

0 0 0 0 hL−1 . . . h0


(4.15)

and n is a complex Gaussian noise vector with 2Nc samples (Nc for real and Nc for imaginary) from

the distribution N (0,σ2).
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Fig. 4.3 (a) shows a graphical model of the transmission model in (4.14), without noise, where it is

assumed that J = I where I is an Nc×Nc identity matrix (ie. no interleaving is performed) where

Rc = 1/3 and L = 2. It shows that every uncoded bit sk produces Rc
−1 = 3 coded bits ck′ , ck′+1 and

ck′+2, where k′ = ((k− 1)/Rc)+ 1 (k runs from 1 to Nu and k′ runs from 1 to Nc). Each received

symbol can be expressed as

rk′ =
L−1

∑
l=0

ck′−lhl, (4.16)

where h = {h0, h1} is the CIR. Note that h0 and h1 are not shown in Fig. 4.3 (a). This joint

equalization and decoding problem can be modeled as a DAG, and the forward-backward algorithm

can be used to optimally estimate c, and hence s, with relative ease, since a one-to-one relationship

exists between the observed variables r and the hidden variables c. A relationship also exists between

consecutive codewords (groups of n bits). Fig. 4.3 (a) also depicts the causality relationship between

the hidden variables and the observed variables.

Now consider Fig. 4.3 (b). It shows a graphical model of the transmission model in (4.14), again

without noise, but now J is a random Nc×Nc interleaver matrix and again Rc = 1/3 and L = 2. Each

received symbol can be expressed as

rk′ =
L−1

∑
l=0

ćk′−lhl, (4.17)

where ćk′ is the k′th interleaved symbol. It is clear from Fig. 4.3 (b) that there is no obvious relation-

ship between the observed variables r and the hidden variables c and that the causality relationship

in Fig. 4.3 (a) is destroyed by the randomization effect of the interleaver. Moreover, the relationship

between consecutive codewords (groups of n bits) is also destroyed. This problem can therefore no

longer be modeled as a DAG and exact inference is in fact impossible [32].

Deinterleaving the received sequence r will ensure that the one-to-one relationship between each

element in r and c is restored, but only with respect to the first coefficient h0 of the CIR h. If h0 is

dominant and if h is sufficiently short, approximate inference is possible due to the negligible effect

of h1 to hL−1 on r, but this is not normally the case. In a wireless communication system transmitting

information through a realistic frequency-selective Rayleigh fading channel, h0 cannot be guaranteed

to be dominant and the contribution of h1 to hL−1 is not negligible, and therefore this approach will

fail. This has been simulated and verified by the author. Another viable alternative is to model the

system as a loopy graph in order to perform approximate inference as in [49], but as stated before,

exact inference is impossible [32,47–49] and full convergence is not guaranteed [51]. In loopy graphs

convergence is normally achieved after many iterations.
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Figure 4.3: Graphical models of (4.14) without (a) and with (b) a random interleaver.
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4.2.1 Prefiltering and Deinterleaving

For the DBN-TE to perform approximate inference a strong connection must exist between the ob-

served variable and the hidden variable at time instant t, and weak connections must exist between

the observed variable at time instant t and hidden variables at other time instants. The randomization

effect of the interleaver must also be mitigated in order for the turbo equalizer to be modeled as a

quasi-DAG so that a one-to-one relationship (dominant connection) can exist between the observed

variable and the corresponding hidden variable at time instant t.

For this exposition assume that the coded symbols c are transmitted through a channel Q=HJ, where

H is the channel matrix and J is the interleaver matrix as previously defined. Therefore (5.9) can be

written as

r = Qc+n. (4.18)

4.2.1.1 Cholesky Minimum Phase Filtering

To ensure that the connection between the observed variable at time instant t and its corresponding

hidden variable is dominant, and that the connections between the same observed variable and past

and future neighboring hidden variables are weak, the energy must be concentrated in the first tap

(h0) of h. This can be achieved by applying a Cholesky decomposition to the autocorrelation of

the estimated channel matrix (HHH), and then using the resulting composition to filter the received

symbols r [52, 53].

The Cholesky decomposition is a decomposition of a matrix into the product of a lower triangular

matrix and its conjugate transpose [54]. The matrix has to be Hermitian as well as positive-definite.

An Hermitian matrix is a square matrix A containing complex values, that is equal to its own conjugate

transpose. Also, an N ×N Hermitian matrix A is said to be positive definite if bHAb is real and

positive for all non-zero complex vectors b [54].

Given an Hermitian, positive definite matrix A, it can be factorized as

A = CCH , (4.19)

where C is the lower triangular matrix produced by the decomposition. The Cholesky decomposition

is therefore the matrix analogue of taking the square root of a number.
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Applying the Cholesky decomposition to the autocorrelation of the channel matrix as in [52, 53]

yields

HChol =Chol
(
HHH

)
(4.20)

where HChol is a lower triangular matrix resulting from the decomposition, which represents the new

channel matrix with the energy concentrated in the first tap. To allow for HChol to be used as the new

channel matrix, the received symbol sequence has to be transformed, or filtered, such that

r f ilt =
(
HH

Chol
)−1 HHr. (4.21)

The transmission model in (4.18) is therefore adapted to include these modifications. Hence

r f ilt = HJc+n, (4.22)

which is mathematically equivalent to

r = HCholJc+n. (4.23)

Therefore the effect of filtering the received symbol sequence r as in (4.21) is the same as transmitting

the coded interleaved information through a channel HChol as in (4.23), where the first tap of the CIR

h is dominant.

Fig. 4.5 and Fig. 4.4 show the CIR h = {0.2294,0.4588,0.6882,0.4588,0.2294}, with and without

Cholesky decomposition filtering. Fig. 4.6 and Fig. 4.7 show the frequency response of the average

CIR, and Fig. 4.8 and Fig. 4.9 show the pole-zero plots of the average CIR. In Fig. 4.5 and Fig. 4.4 it

can be seen that the CIR resulting from the factorized channel matrix is tapered such that the energy

is concentrated in the leading CIR taps. However, the energy in the first tap is not the highest. From

Fig. 4.7 and Fig. 4.6 it is clear that Cholesky decomposition filters the frequency response so as

to remove the spectral nulls, which is responsible for noise enhancement and error propagation in

MMSE and DFE equalizers, and finally, Fig. 4.9 and Fig. 4.8 indicate that Cholesky decomposition

filtering moves the zeros from the unit circle towards the centre of the circle. However, the nulls are

not close to the origin and there is still a zero on the unit circle, which will result in instability and

ultimately unacceptable BER performance.
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Figure 4.4: Average CIR for a system with L = 6 without Cholesky decomposition filtering.
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Figure 4.5: Average CIR for a system with L = 6 with Cholesky decomposition filtering.
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Figure 4.6: Frequency response of the average CIR for a system with L = 6 without Cholesky de-

composition filtering.

0 0.2 0.4 0.6 0.8

−20

−15

−10

−5

0

5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 4.7: Frequency response of the average CIR for a system with L = 6 with Cholesky decom-

position filtering.
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Figure 4.8: Pole-zero plot of the average CIR for a system with L = 6 without Cholesky decomposi-

tion filtering.
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Figure 4.9: Pole-zero plot of the average CIR for a system with L = 6 with Cholesky decomposition

filtering.

During simulation it became clear that the application of the Cholesky decomposition filtering to
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render the channel in its minimum phase form has some drawbacks. Firstly it adds computational

complexity that is cubic as well as quadratic in the coded data block length. The complexity of (4.20)

is a maximum of O(2N3
c ) and a minimum of O(2N2.376

c ), as the complexity of matrix multiplication

and inversion can be reduced from O(N3) to O(N2.376) by applying the Coppersmith-Winograd al-

gorithm in [55]. However, (4.20) can be determined using a subset of H, determined by the CIR length

L.1 Therefore, when using a 2L×2L subset of H the complexity of (4.20) reduces to a minimum of

O((2L)2.376) and a maximum of O((2L)3). Also the computational complexity of (4.21) is a minimum

of O(2N2.376
c +N2

c ) and maximum of O(2N3
c +N2

c ) for a fading channel, and trivial for a static chan-

nel.2 The total computational complexity of minimum phase filtering via Cholesky decomposition is

therefore a minimum of O(2N2.376
c +N2

c +(2L)2.376) and a maximum of O(2N3
c +N2

c +(2L)3).

Second, when simulations are performed in static multipath channels, the Cholesky decomposition

sometimes fails to concentrate the energy sufficiently in the leading taps of the CIR, as is evident

in Fig. 4.5, thus inhibiting the DBN-TE from achieving acceptable performance because of error

propagation. However, when simulations are performed in fading multipath channels, the Cholesky

decomposition sufficiently filters the channel to achieve full convergence and near-optimal perform-

ance. In order to make the DBN-TE competitive in static channels, an MMSE based minimum phase

filter has to be implemented, which has complexity that is cubic in its filter length, where the filter

length is usually a multiple of the unfiltered CIR. This prefilter has a computational complexity of

O(4L3+4L2+NcL), where the first and second terms are associated with the prefilter calculation, and

the second term is associated with filtering the received symbol sequence with the resulting minimum

phase filter.

It is however worth mentioning that computational complexity due to Cholesky decomposition fil-

tering can also be reduced if frequency hopping is applied. During frequency hopping the channel

changes owing to frequency-selective fading, and Cholesky decomposition and filtering are applied

to smaller matrices. Fig. 4.10 shows the minimum and maximum numbers of calculations required

for Cholesky decomposition and filtering for a system transmitting blocks of coded information of

length from Nc = 600 to Nc = 6000 in intervals of 600, for a number of frequency hops from F = 1 to

F = 16. From Fig. 4.10 it can be seen that frequency hopping has a favorable effect on the complexity

of Cholesky decomposition and filtering, where the blue and red lines correspond to the respective

1A 2L×2L matrix is sufficient to determine HChol .
2When the channel is static

(
HH

Chol
)−1 HH in (4.21) reduces to a positive time shift that is equal to the CIR length L.

The complexity of (4.21) for a fading channel is used for the computational complexity calculations.
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minimum and maximum complexities. This changes the minimum and maximum complexities to

O(2F(Nc/F)2.376 +F(Nc/F)2 +(2L)2.376) (red) and O(2F(Nc/F)3 +F(Nc/F)2 +(2L)3) (blue) re-

spectively.
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Figure 4.10: Effect of frequency hopping on the complexity of Cholesky decomposition and filtering.

4.2.1.2 MMSE-DF Minimum Phase Filtering

The MMSE-DF minimum phase filter is discussed according to [56,57], and the MMSE-DF prefilter

of the GSM simulator discussed in [57] is used in the simulation of the DBN-TE in static channels.

Consider the receiver structure in Fig. 4.11 from [56], containing a matched filter, a feed-forward

filter, a decision device and a feedback filter. The matched filter and an FIR filter constitute the

prefilter. The output of the matched filter can be expressed in the z-domain as

Y (z) =C∗(z)C(z)D(z)+C∗N(z), (4.24)

where D(z) the is the transmitted symbols, C(z) is the estimated CIR and N(z) is the noise. Since the

z-transform of the autocorrelation of c is nonnegative, there are no zeros in the power spectrum.
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Figure 4.11: MMSE-DF prefilter [56] (Figure 7.2).

Therefore

C∗(z)C(z) = G∗(z)G(z)(
1
z∗
), (4.25)

and G(z) is causal and in minimum phase form, hence G(z)(1/z∗) is anticausal and in maximum

phase form. G(z) may be found by assigning roots of C∗(z)C(z) greater than 1 to the feed-forward

filter as well as the remainder of the feedback filter.

4.2.1.2.1 Feedforward filter: The feed-forward filter should be chosen to cancel the precursor

CIR with respect to time instant t. Therefore, the feed-forward filter ideally needs to have a z-domain

representation

F(z) = 1/G(z)(
1
z∗
). (4.26)

After the feedforward filter, the z-domain representation is

Z(z) = F(z)G(z)G∗(
1
z∗
)D(z)+F(z)C∗(z)N(z) (4.27)

= G(z)D(z)+
C∗(z)
G∗( 1

z∗ )
N(z) (4.28)

(4.29)

in order for the prefiltered CIR G(z) to be causal and in minimum phase form. However, C∗(z)
G∗( 1

z∗ )
is

an infinite impulse response (IIR) filter in the time domain, and therefore has to be approximated by

an FIR filter. Since the FIR filter will have to be infinitely long, it is approximated by truncation,

assuming that the IIR filter has an finite decaying impulse response [57].

The noise after the prefilter is given by C∗(z)
G∗( 1

z∗ )
N(z) and is non-white. In order to simplify the operation
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of the detector, the noise has to be whitened by a noise whitening filter.

4.2.1.2.2 Prefilter design: The prefilter is designed by using a single filter, consisting of the

matched filter, the feed-forward filter and the noise whitening filter, a decision device (detector) and a

feedback mechanism, as shown in Fig. 4.11. In order to maximize the energy in the leading feedback

tap, the filter-detector combination is designed so that decisions made on st have zero delay.

The anticausal prefilter f is selected and is used to filter the received symbols such that

z = fT r, (4.30)

where z has an impulse response b. Therefore, zt can be expressed as

zt =
L

∑
l=0

blst−l +nt (4.31)

where st−l is the (t− l)th transmitted symbol and nt is a white Gaussian noise sample.

4.2.1.2.3 Choosing f and b: Past symbols are fed back using b in order to eliminate the ISI on the

received symbols as in (4.31), assuming that the leading tap in b is b0 = 1, and that s̃t is an estimate of

st from a given modulation alphabet. Since the correct past symbols are fed back, the decision device

can make hard decisions on st .

Therefore, the best choice for f and b will minimize the MMSE between st and s̃t . That is

min{E{|st − s̃t |2}}= min{E{|εt |2}} (4.32)

εt can therefore be expressed as

εt = wT y− st (4.33)

where w and y are respectively given by

w = { f0, f1, . . . , fP,−b1, . . . ,−bL}T (4.34)

and

y = {rt ,rt+1, . . . ,rt+P,sn−1, . . . ,sn−L}T . (4.35)

The MMSE can therefore be written as

min{E{|wT y− st |2}} (4.36)
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and the solution to w is given by the Wiener-Hopf equation

E{yyH}w∗ = E{s∗t y} (4.37)

which jointly yields f and b, assuming as before that b0 = 1. The impulse response of the feedback

filter b is the minimum phase equivalent impulse response (of c) that is to be used together with the

filtered signal z in the equalizer. The SNR will be maximized since b0 is fixed to 1 while E{‖εt‖2} is

minimized. In other words

SNR ∝
‖b‖2

E{‖ε‖2}
. (4.38)

4.2.1.2.4 Implementation: Referring to the Wiener-Hopf equation in (4.37), E{yyH} is written

as

E{yyH}= E{Ω} (4.39)

where Ω is given by

Ω =

 Ω11 Ω12

Ω21 Ω22

 , (4.40)

and Ω11, Ω12, Ω21 and Ω22 are respectively given below:

Ω11 =


rtr∗t rtr∗t+1 . . . rtr∗t+P

rt+1r∗t rt+1r∗t+1 . . . rt+1r∗t+P

. . . . . . . . . . . .

rt+Pr∗t rt+Pr∗t+1 . . . rt+Pr∗t+P

 , (4.41)

Ω12 =


rts∗t−1 rts∗t−2 . . . rts∗t−P−1

rt+1s∗t−1 rt+1s∗t−2 . . . rt+1s∗t−P−1

. . . . . . . . . . . .

rt+Ps∗t−1 rt+Ps∗t−2 . . . rt+Ps∗t−P−1

 , (4.42)

Ω21 =


st−1r∗t st−1r∗t+1 . . . st−1r∗t+P

st−2r∗t st−2r∗t+1 . . . st−2r∗t+P

. . . . . . . . . . . .

st−Lr∗t st−Lr∗t+1 . . . st−Lr∗t+P

 , (4.43)

and

Ω21 =


st−1s∗t−1 st−1r∗t−2 . . . st−1s∗t−P−1

st−2s∗t−1 st−2r∗t−2 . . . st−2s∗t−P−1

. . . . . . . . . . . .

st−Ls∗t−1 st−Lr∗t−2 . . . st−Ls∗t−P−1

 , (4.44)
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where P is the number of feed-forward filter coefficients. Also, E{s∗t y} in (4.37) is given by

E{s∗t y}= E{s∗t rt ,s∗t rt+1, . . . ,s∗t rt+P,s∗t s∗t−1,s
∗
t s∗t−1, . . . ,s

∗
t s∗t−1}T . (4.45)

The feed-forward and feedback filters are determined by

w∗ = Ω
−1h (4.46)

where h contains the estimated CIR c padded P−L with zeros

f = {w0,w1, . . . ,wP−1} (4.47)

and

b = {−wP,−wP+1, . . . ,−wP+L} (4.48)

as given by (4.34). Finally, the received symbol sequence is filtered using the feedback filter as in

(4.30) such that z = fT r. The minimum phase CIR b and the filtered received symbol sequence z are

now used in the equalizer to determine the most likely transmitted symbols.
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Figure 4.12: Average CIR for a system with L = 6 with MMSE-DF filtering.
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Figure 4.13: Frequency response of the average CIR for a system with MMSE-DF filtering.
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Figure 4.14: Pole-zero plot of the average CIR for a system with MMSE-DF filtering.

This concludes the derivation and discussion of the MMSE-DF prefilter used to filter the non-

minimum phase CIR and the received symbols, before the DBN-TE is applied to jointly equalize

and decode the received symbol sequence. Fig. 4.12 through to Fig. 4.14 show the prefiltered CIR,
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its pole-zero plot and its frequency response for the same scenario as for Cholesky decomposition

filtering, from which it is clear that the energy is concentrated in the leading CIR tap, that the zeros

are well inside the unit circle, and that the spectral nulls have been removed.

4.2.1.3 Interleaver Mitigation

In order to model the turbo equalization problem as a DAG, or a quasi-DAG due to weak connec-

tions to past and future states, the randomization effect of the random interleaver must be mitigated.

Fig. 4.15 and Fig. 4.16 show |Q| for systems with CIR lengths of L = 1 and L = 3 respectively, for

a hypothetical system with parameters Nu = 50, Nc = 150, Rc = 1/3. It should be clear that any

sequence c that is transmitted through a channel Q, as described in (4.18), will be subject to random-

ization.

In order to reverse the randomization effect of the interleaver while ensuring a dominant connection

between the observed variables and their corresponding hidden variables, one leans on the fact that

the product of the transpose of any random interleaver matrix with the interleaver matrix itself, will

produce an identity matrix. That is

JT J = I, (4.49)

thus removing the randomness of the interleaver. To reverse the effect of the interleaver in the trans-

mission model in (4.18) is not straightforward, since the coded information is interleaved (J) and then

transformed by the channel (H), since Q = HJ. In order to reverse the effect of the interleaver on

the received symbol sequence, the autocorrelation of the combined interleaver/channel matrix Q is

determined, and used to filter the received symbol sequence. To mitigate the effect of the interleaver,

the following transformation is applied to r:

QHr = QHQc+QHn, (4.50)

which is equivalent to transmitting the coded symbol sequence c through a channel U, where

U = QHQ, (4.51)

so that

QHr = Uc+QHn. (4.52)

Fig. 4.17 and Fig. 4.18 show |U| for systems with CIR lengths of L = 1 and L = 3 respectively.

It is clear that this transformation mitigates the randomness exhibited in Q, since the new “chan-
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nel” U is diagonally dominant. The one-to-one relationship between the observed variables and the

corresponding hidden variables is therefore restored. The computational complexity of interleaver

mitagation is quadratic in the coded data block length (O(N2
c )) because of the filtering of the received

symbol sequence (QHr in (4.52)), and cubic in the coded data block length (O(N3
c )) because of the

autocorrelation of the interleaver/channel matrix (QHQ in (4.51)). The computational complexity

of interleaver mitigation is therefore a maximum of O(N3
c +N2

c ) and a minimum of O(N2.376
c +N2

c ).

Unfortunately no complexity reduction is possible by making use of frequency hopping.

Therefore, by applying a Cholesky decomposition to the correlation of the channel matrix and filtering

r accordingly, before performing the transformation in (4.52) to mitigate the effect of the interleaver,

all the conditions are met to model the turbo equalizer as a quasi-DAG with dominant connections

between the observed variables and their corresponding hidden variables.3 Cholesky decomposition

and filtering ensures that a dominant connection exists between the observed variable and the hidden

variable at time instant t, and that weak connections exist between the observed variable at time

instant t and the hidden variable at other time instants, while the transformation in (4.52) mitigates

the randomization effect of the interleaver so that a one-to-one relationship may exist between each

observed variable and its corresponding hidden variable. The minimum computational complexity

of the prefiltering phase (minimum phase filtering and interleaver mitigation) is therefore O(N2.376
c +

N2
c +NcL+ 4L2), and the maximum complexity is O(5N3

c + 2N2
c ). These maximum and minimum

complexities will be used in the calculation of the overall complexity of the DBN-TE.

3As stated before, a minimum phase prefilter can also be used to produce a minimum phase equivalent CIR.
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Figure 4.15: |Q| for a system with L = 1 CIR coefficients.
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Figure 4.16: |Q| for a system with L = 3 CIR coefficients.
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Figure 4.17: |U| for a system with L = 1 CIR coefficients.
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Figure 4.18: |U| for a system with L = 3 CIR coefficients.
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4.3 THE DBN-TE ALGORITHM

After making preparations for the turbo equalization problem to be modeled as a quasi-DAG, as

explained in the previous section, the DBN-TE algorithm can be executed. This author assumes

a system with an uncoded block length of Nu, using the rate Rc = 1/3, constraint length K = 3,

convolutional encoder in Fig. 4.19 to produce Nc bits, where Nc = Nu/Rc. The coded bits are

interleaved with a random interleaver and passed through a multipath channel with a CIR of length

L.
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Figure 4.19: Rate Rc = 1/3 convolutional encoder.

4.3.1 Graph Construction

The graph is constructed to model the possible outputs of a convolutional encoder in much the same

way as a trellis is constructed in a conventional MAP decoder. For the DBN-TE graph the number of

states per time instant t is equal to the number of possible state transitions, given by M = 2K , where

K is the encoder constraint length. This is different from the number of states in a MAP decoder,

which is equal to the number of possible states, given by M = 2K−1. In Section 4.4 it will be shown

how the number of states can be reduced to M = 2K−1. The number of time instants in the DBN-TE

graph is equal to the number of uncoded bits Nu, which is also equal to the number of codewords.

Fig. 4.20 (a) and (b) show the graphical model of a DBN-TE for the first and subsequent iterations

respectively, where the dashed lines in Fig. 9 (b) depict weak connections to past and future states

due to ISI. Each Xt on the graph contains a set of M state transitions x(m)
t , where t = 1,2, ...,Nu and

m = 1,2, ...,M.
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Figure 4.20: Graphical models for the (a) first iteration and (b) subsequent iterations.
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During the first iteration no coded bit estimates c̃ are available, so the graphical model is a pure DAG

because the current state is only dependent on the previous state. Hence only Ut,t is used in the cost

function of the sensor model, where Ut,t is a coefficient on the diagonal of the new channel matrix

U in (4.52). After the first iteration, estimates of the coded bits c̃ are produced and can therefore be

used in subsequent iterations. During subsequent iterations then, Ut,u and Ut,v are also considered in

the cost function of the sensor model, where u = 1,2, ..., t−1 and v = t +1, t +2, ...,Nu.

4.3.2 State Transition Output Table

The output associated with each state transition is also tabulated using the encoder state diagram in

Fig. 4.21. The output produced by each state transition x(m)
t , m = 1,2, ...,8, is determined by loading

the bit-values of the current state into the leftmost K− 1 = 2 fields of the convolutional encoder in

Fig. 4.19, and then placing a 0 and a 1 respectively on the input of the encoder, each producing a new

codeword c(1)c(2)c(3) at the output. This process is followed exhaustively and tabulated. Table 4.1

shows the state transition outputs of the encoder in Fig. 4.19 that results from moving from one state

to the next.
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Figure 4.21: Convolutional encoder state diagram.
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Table 4.1: State transition output table

c(1) c(2) c(3)

x(1)t 0 0 0

x(2)t 1 1 0

x(3)t 1 0 1

x(4)t 0 1 1

x(5)t 1 0 0

x(6)t 0 1 0

x(7)t 0 0 1

x(8)t 1 1 1

4.3.3 Transition Probability Table

The DBN-TE depends on a transition model to describe the permissible state transitions. This is

constructed by examining the encoder state transition diagram in Fig. 4.21 and noting the possible

state transitions. The solid lines and dashed lines indicate state transitions caused by ones and zeros

at the input of the encoder. It is clear from Fig. 4.21 that only two state transitions emanate from any

given state transition (one caused by a 1 at the input and one caused by a 0 at the input). Table 4.2

shows the transition probabilities of the encoder in Fig. 4.19, of which the state transition diagram is

shown in Fig. 4.21.

4.3.4 Sensor Model

The conditional probabilities obtained from the sensor model for the respective forward- and back-

ward messages, P(et+1|Xt+1) and P(ek+1|xk+1) are determined by calculating a metric between the

observed variable et and the hidden variable x(m)
t , where m= 1,2, ...,M. The observed variable et con-

sists of Rc
−1 received symbols rt ′+1 to rt ′+Rc

−1 , where t ′ = ((t−1)/Rc)+1 (t runs from 1 to Nu and t ′

runs from 1 to Nc), and the hidden variable x(m)
t consists of the output (c(1), c(2) and c(3)) associated

with state transition x(m)
t in Table 4.1.

During the first iteration, only the dominant connection Ut ′,t ′ between the observed variable et and

the hidden variable xt is used in the cost calculation, since no coded bit estimates c̃ are available at
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Table 4.2: Transition probability table

x(1)t+1 x(2)t+1 x(3)t+1 x(4)t+1 x(5)t+1 x(6)t+1 x(7)t+1 x(8)t+1

x(1)t
1
2

1
2 0 0 0 0 0 0

x(2)t 0 0 1
2

1
2 0 0 0 0

x(3)t 0 0 0 0 1
2

1
2 0 0

x(4)t 0 0 0 0 0 0 1
2

1
2

x(5)t 0 0 0 0 1
2

1
2 0 0

x(6)t 0 0 0 0 0 0 1
2

1
2

x(7)t
1
2

1
2 0 0 0 0 0 0

x(8)t 0 0 1
2

1
2 0 0 0 0

that point. Recall that U is the new channel matrix brought about by performing the transformation in

(4.50), resulting in the new transmission model in (4.52) having the desired properties to model the

system as a quasi-DAG. During the first iteration the system can therefore be modeled as a pure DAG,

as if no ISI occurred. Given a hidden variable or state transition output xn
t+1, its associated bits (as

tabulated in Table 4.1) are used together with observed variables / received symbols rt ′+1 to rt ′+Rc
−1 ,

where t ′ = ((t−1)/Rc)+1 and Rc
−1 is the number of encoder output bits, to calculate the cost of the

nth state transition at time instant t

∆
n
t =

R−1−1

∑
j=0
|rt ′+ j−Ut ′+ j,t ′+ jc j+1

n β (i)|2, (4.53)

where t = 1,2, ...,Nu runs over time for the uncoded bit estimates and β (.) is a function that produces

an optimization scaling factor for each iteration i. P(et+1|Xt+1) in (4.8) is determined by

P(et+1|xn
t+1) = α exp(−∆

n
t /2σ

2) (4.54)

where α is a normalization constant and σ is the noise standard deviation.

During subsequent iterations, LLR estimates of the uncoded bits are available, since the first set of

LLRs are produced after the first iteration. Therefore the system can be modeled as a quasi-DAG due

to the fact that a dominant connection exists between the observed variable et and the hidden variable

xt and weak connections between the observed variable et and other hidden variables. Thus the rest

of the coefficients Ut ′,1 to Ut ′,Nc (and not only Ut ′,t ′) are also used in the cost calculation. Analogous

to the first iteration, the output bits associated with a given state transition xn
t+1 are used together with
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the observed variables rt ′+1 to rt ′+Rc
−1 as well as the LLR estimates c̃ of the uncoded bits to calculate

the cost of the nth state transition at time instant t. Therefore, the cost of the nth state transition for

subsequent iterations at time instant t is given by

∆
n
t =

Rc
−1+1

∑
j=0
|rt ′+ j−Ut ′+ j,t ′+ jc j+1

n −
Nc

∑
v=1,v6=t ′,|Ut′+ j,v|>0

Ut ′+ j,vc̃vβ (i)|2. (4.55)

The last term in (4.55) contains the ISI terms that must be subtracted from the received symbols in

order to minimize ∆n
t so that P(et+1|xn

t+1), determined as in (4.54), can be maximized.

4.3.5 Computing LLR Estimates

After the forward and backward messages have been combined as in (4.10), the LLRs for each un-

coded bit is determined from the graph. Rc
−1 LLR vectors of length Nu are determined - each one

corresponding to one output bit of the encoder - after which they are multiplexed to form one vector

of length Nc containing the LLR estimates c̃ of the coded bits c. With reference to the state transitions

in Table 4.1, the LLRs for the convolutional encoder in Fig. 4.19 are determined as follows:

c̃(1) = tanh

(
log

(
∑

M
j=1,c(1)=1 P(Xk|e1:t)

∑
M
j=1,c(1)=0 P(Xk|e1:t)

))
(4.56)

c̃(2) = tanh

(
log

(
∑

M
j=1,c(2)=1 P(Xk|e1:t)

∑
M
j=1,c(2)=0 P(Xk|e1:t)

))
(4.57)

c̃(3) = tanh

(
log

(
∑

M
j=1,c(3)=1 P(Xk|e1:t)

∑
M
j=1,c(3)=0 P(Xk|e1:t)

))
. (4.58)

The final LLR vector is constructed by multiplexing the respective LLR vectors such that

c̃ = {c̃(1)1 , c̃(2)1 ,c(3)1 , c̃(1)2 , c̃(2)2 , c̃(3)2 , . . . , c̃(1)Nu
, c̃(2)Nu

, c̃(3)Nu
} (4.59)

which is used in (4.55) in the next DBN-TE iteration.

4.3.6 Dynamic LLR Updates

It was shown in Section 4.3.5 that the LLR estimates are only calculated after the forward and back-

ward messages have been combined. The forward and backward messages are normally combined

once each message has been determined across the entire received data block, from which LLR es-

timates are calculated to be used in the next iteration.
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What if LLR estimates can be calculated while the forward and backward messages are being formed?

Since the DBN-TE iteratively improves upon estimates in previous iterations, will it not be beneficial

to provide new LLR estimates as soon as they become available? Fig. 4.22 shows the progression

of the forward and backward messages in three stages. In Fig. 4.22 (a) the forward message (left to

right) and backward message (right to left) are being constructed, but have not reached the center of

the graph. In Fig. 4.22 (b) the forward and backward messages have reached the center of the graph

and are now overlapping by one time instant. In Fig. 4.22 (c) the forward and backward messages are

almost completely determined and are overlapping by a large number of time instants.
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Figure 4.22: Three stages of the forward, backward, and forward-backward message.

From Fig. 4.22 it is clear that the forward-backward message, and hence the LLR estimates, can be

determined as soon as the forward and backward messages overlap, but only for the time instants

for which they overlap. Since the DBN-TE relies on past and future state estimates, it is crucial that

accurate information be provided as soon as it becomes available. By calculating the LLR estimates at

the earliest, the DBN-TE can use these new LLR estimates in the current iteration, and not only in the

next iteration. This modification does not affect the computational complexity of the DBN-TE at all,

but provides a means to improve its performance. Instead of calculating the LLR estimates at the end

of an iteration, each LLR is calculated as soon as the required information becomes available.
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4.3.7 Iterative System

The DBN-TE produces estimates regarding the uncoded source information at its output, and im-

proves the quality of these estimates with each iteration. During the first iteration the DBN-TE only

relies on the dominant connection between the observation and the hidden variables at a given time

instant, but starts using estimates from past and future time instants as they become available, as

explained in Section 4.3.6. To summarize the DBN-TE algorithm:

1. Set up the M×Nu graph, where M = 2K−1 is the number of states per time instant, and Nu is the

uncoded data block length. This step also involves the calculation of the transition probability

table and the state transition table, based on the structure of the convolutional encoder.

2. Using the sensor model, calculate the forward and backward messages. Calculate the forward-

backward message, and hence the corresponding LLRs, as soon as the forward and the back-

ward messages overlap.

3. Repeat the previous step until the iteration number equals the predefined number of iterations

Z.

4. When Z iterations are completed, determine the coded bit estimates from the LLRs.

Fig. 4.23 and Fig. 4.24 show the output of the DBN-TE for a coded data block length of Nc = 600, a

CIR length of L = 2, Z = 5 iterations, at a Eb/N0 of 4 dB, with and without dynamic LLR updates.

Fig. 4.23 shows how the LLR estimates are recalculated after each iteration. The first LLR estimates

are only available after the first iteration and can therefore only be used during the second iteration.

In Fig. 4.24 it is clear that LLR estimates are available already during the first iteration, since LLR

estimates are calculated from the forward-backward message as soon as the forward message and the

backward message overlap. This allows for LLR estimates to be used in the second half of the first

iteration.
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Figure 4.23: DBN-TE LLR convergence without dynamic LLR updates.
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Figure 4.24: DBN-TE LLR convergence with dynamic LLR updates.
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4.4 COMPLEXITY REDUCTION

The derivation of the DBN-TE was performed using a DBN framework by assuming that each state

transition and its resulting encoder output is treated as a unique state. Whilst this approach is more

descriptive of the problem domain, another approach may be followed in order to reduce the number

of required states per time instant by half, therefore effectively reducing the computational complexity

by half. Instead of the state Xt being represented by the state transitions, one rather uses the encoder

states in the encoder state diagram in Fig. 4.21 to represent each state Xt .

From Fig. 4.21 it is clear that each encoder state has two parent states (which may cause a given

state) and two child states (which may be caused by a given state). Therefore, given any encoder state

in Fig. 4.21, the output produced by a transition from each child state to that state can be uniquely

determined from the state transition output table in Table 4.1.

The number of states per time instant is therefore reduced from M = 2K to M = 2K−1, where each

state Xt represents two encoder outputs. For the forward message the encoder output associated with

the current state depends on the two previous states in Xt−1. Similarly, for the backward message

the encoder output associated with the current state depends on the two next states in Xt+1. For

clarity, Table 4.3 and Table 4.4 show the state transition output tables from the perspective of the

forward message as well as the backward message. Even though Table 4.3 and Table 4.4 contain the

same information, the state transitions are reshuffled in order to highlight current state Xt and the

corresponding previous states Xt−1 and next states Xt+1, together with their corresponding outputs.

The only difference between the DBN-TE with M = 2K states and the DBN-TE with M = 2K−1 states

is that the latter uses one state to represent two state transitions, whereas the former uses one state to

represent a single state transition. The computational complexity of the reduced complexity DBN-TE

is therefore halved. The performance of the DBN-TE with this complexity reduction remains the

same as before. LLRs are also computed by noting the relevant positions of ones and zeros in the

state transition table and marginalizing by summing over all states at a given time instant t.
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Table 4.3: State transition output table for the forward message

Xt−1 Xt ct

00 00 000

01 001

00 10 110

01 111

10 01 011

11 100

10 11 101

11 010

Table 4.4: State transition output table for the backward message

Xt Xt+1 ct

00 00 000

10 110

10 01 011

11 101

01 00 001

10 111

11 01 100

11 010

4.5 COMPUTATIONAL COMPLEXITY ANALYSIS

4.5.1 DBN-TE vs CTE

The computational complexity of the DBN-TE and the CTE are presented in this section. The com-

plexity equations were derived by counting the number of computations needed to perform turbo

equalization. The computational complexity of the DBN-TE without a prefilter (PF), together with

the minimum and maximum complexities with Cholesky decomposition filtering (CPF) and MMSE-
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DF filtering (MPF), was determined as

CCDBN−T E ≈ O(Z(NcMdQk)), (4.60)

CCDBN−T E,CPF ≈ O(Z(NcMdQk)+2F(Nc/F)i +F(Nc/F)2 +(2L)3 +Ni
c +N2

c ), (4.61)

where i = 2.376 when optimized matrix inversion and multiplication are used, and i = 3 when normal

operations are used. Furthermore

CCDBN−T E,MPF ≈ O(Z(NcMdQk)+Ni
c +N2

c +4L3 +4L2 +NcL), (4.62)

where Z is the number of turbo iterations, Md is the number of decoder states determined by 2K−1

where K is the encoder constraint length, Q is the number of interfering symbols which can be ap-

proximated by Q ≈ 2L− 1, Rc is the code rate, k is the number of encoder output bits, and F is the

number of frequency hops. The approximation for Q was obtained empirically by calculating the av-

erage number of interfering symbols in the new channel U in (4.51) for a given original channel length

L, after the transformation in (4.50) had been applied. The complexity of the CTE was determined

as

CCCT E ≈ O(Z(NcMeL+NcMdk)), (4.63)

where Me is the number of equalizer states determined by 2L−1 for BPSK modulation.

Fig. 4.25 and Fig. 4.26 shows the computational complexity graphs of the DBN-TE and the CTE,

normalized by the number of coded transmitted symbols, for CIR lengths from L = 1 to L = 25,

where Z = 5, Rc = 1/3, K = 3 and Nu = 400 (Nc = 1200), and where the number of frequencies used

for frequency hopping are F = 1 and F = 8 respectively. Fig. 4.25 and Fig. 4.26 shows the same

information as Fig. 4.25 and Fig. 4.26, but for Nu = 1600 (Nc = 4800).

From Fig. 4.25 it can be seen that the computational complexity of the DBN-TE is much lower than

that of the CTE when no prefiltering is performed, without which the DBN-TE will fail. However,

when prefiltering via the MMSE-DF is performed the minimum complexity is the same as that of

the CTE for L ≈ 6, and the corresponding maximum complexity meets that of the CTE at L ≈ 13.

Also, when prefiltering via the Cholesky decomposition is performed, the minimum and maximum

complexities are equivalent to the complexity of the CTE at L ≈ 8 and L ≈ 15 respectively. In all

cases the DBN-TE complexity with prefiltering remains approximately constant as the CIR length

increases. Fig. 4.26 shows that when frequency hopping is employed, the maximum complexities of

the DBN-TE with Cholesky and MMSE prefiltering are approximately equal to their corresponding
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minimum complexities, highlighting the complexity reduction with an increase in the number of

frequencies used for frequency hopping.

From Fig. 4.27 and Fig. 4.28 it can be seen that the same trends identified in Fig. 4.25 and Fig. 4.26

continue. In Fig. 4.27 the minimum and maximum complexities of the DBN-TE when using Cholesky

prefiltering reaches a breakeven point with respect to the CTE at L ≈ 10 and L ≈ 17 respectively,

while the minimum and maximum complexities when using MMSE-DF prefiltering reaches a break-

even point with the CTE at L ≈ 12 and L ≈ 18. It is also clear from Fig. 4.28 that the maximum

complexities of the DBN-TE using Cholesky and MMSE-DF prefiltering are approximately equal to

their corresponding minimum complexities when the number of frequencies is increased.

From Fig. 4.25 through to Fig. 4.28 it was seen that the DBN-TE has complexity that is approximately

quadratic (at best) with respect to the coded data clock length (and cubic at the worst), and it is

approximately independent of the CIR length. It is also evident that the minimum computational

complexities, when using Cholesky and MMSE-DF prefiltering, are very favorable compared to those

of the CTE for moderate coded data block length. Apart from the fact that frequency hopping provides

a means whereby BER improvement can be achieved in multipath fading channels, it is also clear that

the use of frequency hopping reduces complexity. To conclude the computational complexity analysis

of the DBN-TE, Fig. 4.29 shows its various complexities for extremely long CIRs with Nu = 800

(Nc = 2400) and F = 1, from which it is clear that it maintains its constant complexity with growth

in channel memory. This makes the DBN-TE a very attractive choice for use in systems transmitting

convolutionally coded information through higly dispersive multipath channels.
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Figure 4.25: DBN-TE and CTE normalized computational complexity for different CIR lengths for

Nu = 400 and F = 1.

5 10 15 20 25

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

CIR length [L]

N
or

m
al

iz
ed

 n
um

be
r 

of
 c

om
pu

ta
tio

ns

 

 
CTE

DBN−TE (no PF)

DBN−TE (min,CPF)

DBN−TE (max,CPF)

DBN−TE (min,MPF)

DBN−TE (min,MPF)

Figure 4.26: DBN-TE and CTE normalized computational complexity for different CIR lengths for

Nu = 400 and F = 8.
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Figure 4.27: DBN-TE and CTE normalized computational complexity for different CIR lengths for

Nu = 1600 and F = 1.
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Figure 4.28: DBN-TE and CTE normalized computational complexity for different CIR lengths for

Nu = 1600 and F = 8.
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Figure 4.29: DBN-TE and CTE normalized computational complexity for very long CIR lengths for

Nu = 800 and F = 1.

4.5.2 DBN-TE vs LCTEs

Fig. 4.30 shows the minimum computational complexities of the DBN-TE with prefiltering (Cholesky

and MMSE-DF), the MMSE-LE/DFE-TE and the SFE/SDFE-TE, using the same parameters as be-

fore, for uncoded data block lengths of Nu = 200, Nu = 400 and Nu = 800 and F = 1, assuming

the computational complexities of the MMSE-LE/DFE (in (3.62) and (3.64)) and the SFE/SDFE (in

(3.66) and (3.68)). Assuming a MAP decoder computational complexity of O(NcMdk), the resulting

LCTE computational complexities are expressed as

CCMMSE−LE/DFE−T E = O(Z(Nc(N2 +L2)+NcMdk)) (4.64)

and

CCSFE/SDFE−T E = O(Z(Nc(N +L)+NcMdk)), (4.65)

which are shown together with those of the DBN-TE in Fig. 4.30 for uncoded data block lengths of

Nu = 200, Nu = 400 and Nu = 800 anf F = 1. From Fig. 4.30 it is once again clear that the compu-

tational complexity of the DBN-TE remains approximately constant as the CIR length increases, and

that the complexity increases as the data block length increases.
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In general the computational complexity of the DBN-TE is inferior to that of the MMSE-LE-TE and

MMSE-DFE-TE. The DBN-TE complexity employing a prefilter via the MMSE-DF filter reaches

a breakeven point with the MMSE-LE/DFE-TE at L ≈ 20 for Nu = 200, at L ≈ 30 for Nu = 400,

and at L≈ 50 for Nu = 800. The high computational complexity of the DBN-TE is due to interleaver

mitigation, which requires matrix operations that have quadratic to cubic complexity in the coded data

block length Nc. Even so, the computational complexity of the DBN-TE is favorable when compared

to that of the CTE for moderate data block lengths.
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Figure 4.30: DBN-TE, MMSE-LE/DFE and SFE/SDFE normalized computational complexity for

different CIR lengths for Nu = 200, Nu = 400 and Nu = 800.
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4.6 SIMULATION RESULTS

The DBN-TE is evaluated in static and fading multipath channels. Various simulations are firstly

performed in order to compare the performance of the DBN-TE to that of the CTE in [5, 6]. Second,

simulations are performed in order to compare the DBN-TE performance to the performance of,

among others, the various LCTEs discussed in Chapter 3. The simulation environment is described

in detail in Appendix A. For the first set of simulations, the following standard simulation parameter

settings were used:

Parameter Setting

Modulation BPSK

Interleaver Random

Uncoded block length (Nu) 400

Coded block length (Nc) 1200

Channel Fading/Static

CIR length (L) Varying

Channel Estimation No

Channel State Information Perfect CSI

Number of pilots -

Frequency hopping Yes

Number of freq. hops 8

Number of CTE iterations (ZCT E) 5

Number of DBN-TE iterations (ZDBN−T E) 5

Mobile speed (v) 0 km/h

PDP Uniform (hT h = 1)

Minimum phase filtering Cholesky (fading) / MMSE-DF (static)

In order to evaluate the effect of each parameter on the performance of the DBN-TE, the following

simulations were performed by fixing all the parameters and varying one parameter at a time.
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4.6.1 DBN-TE vs CTE

4.6.1.1 Optimization

In order to evaluate the performance of the DBN-TE using dynamic LLR updates, the system was

simulated for fading (at 0 km/h mobile speed) and static channels with and without dynamic LLR

updates. Fig. 4.31 and Fig. 4.32 show the performance of the DBN-TE with and without fading

(slow fading), for a channel length of L = 3. In Fig. 4.31 it can be seen that the BER performance

is best when dynamic updates are performed. From Fig. 4.32 it is clear that dynamic LLR updates

provide a significant performance gain for this fading channel. Fig. 4.33 and Fig. 4.34 show the

performance of the DBN-TE with and without fading, for a channel length of L = 5. Fig. 4.33 shows

that the BER performance does not increase with an increase in Eb/N0 unless dynamic LLR updates

are applied. It is clear that dynamic LLR updates provides and increase in performance. In Fig. 4.34

it is clear once again that dynamic LLR updates alone provide improved BER performance. From

the results presented here it can be concluded that optimization via dynamic LLR updates allows for

an improvement in BER performance. The DBN-TE will therefore henceforward be simulated using

dynamic LLR updates for optimization.
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Figure 4.31: DBN-TE performance with and without dynamic LLR updates in a static channel with

L = 3.
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Figure 4.32: DBN-TE performance with and without dynamic LLR updates in a fading channel with

L = 3.
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Figure 4.33: DBN-TE performance with and without dynamic LLR updates in a static channel with

L = 5.
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Figure 4.34: DBN-TE performance with and without dynamic LLR updates in a fading channel with

L = 5.
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Figure 4.35: DBN-TE and CTE performance for various PDPs in a static channel with L = 4.
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4.6.1.2 Power Delay Profiles

The DBN-TE is evaluated against the CTE using uniform, linear and exponential PDPs, for both

fading and static channels for CIR lengths of L = 4 and L = 8. Fig. 4.35 shows the performance of

the DBN-TE and the CTE in a static channel for L = 4 for the various PDPs, while Fig. 4.36 shows

the results achieved in a fading channel of the same length. Also, Fig. 4.37 shows the performance of

the DBN-TE and the CTE in a static channel for L = 8, while Fig. 4.38 shows the results achieved in

a fading channel of length L = 8.

From Fig. 4.35 it is clear that the DBN-TE outperforms the CTE for all PDPs when the channel is

fairly short and static. Fig. 4.36 shows that the performance of the DBN-TE is comparable to that of

the CTE in short fading channels for all three PDPs. From Fig. 4.37 it can be seen that the DBN-

TE performs worse than the CTE for all but one of the PDPs in static channels of length L = 8,

while the DBN-TE outperforms the CTE in fading channels of the same length for all PDPs. The

underperformance of the DBN-TE in longer static channels is due to the fact that there is too much

energy in the latter CIR taps and that the soft feedback mechanism of the DBN-TE fails under these

conditions. The DBN-TE is therefore not suitable in static channels that are too long, where the first

tap (h0) of the CIR is not sufficiently dominant.

From these simulations it is clear that the DBN-TE is suitable for use in short static or fading channels,

using all three PDPs considered. The DBN-TE is also suitable for use in longer fading channels, but

fails in longer static channels because of energy in the latter CIR taps of these channels that cause

error propagation via the feedback mechanism inherent in the DBN-TE.
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Figure 4.36: DBN-TE and CTE performance for various PDPs in a fading channel with L = 4.
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Figure 4.37: DBN-TE and CTE performance for various PDPs in a static channel with L = 8.
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Figure 4.38: DBN-TE and CTE performance for various PDPs in a fading channel with L = 8.

4.6.1.3 Mobile Speeds

The DBN-TE and the CTE are evaluated for different mobile speeds in a fading channel with lengths

of L = 4 and L = 8 respectively. Fig. 4.39 shows the performance of the DBN-TE and the CTE for

mobile speeds from 20 km/h to 110 km/h in intervals of 20 km/h for L = 4, and Fig. 4.40 shows the

results in a channel with length L = 8.

From Fig. 4.39 it is clear that the CTE outperforms the DBN-TE for L = 4, and that the DBN-TE

performs the same as the CTE at a mobile speed of 50 km/h. However, at a mobile speed of 80 km/h

and 100 km/h the DBN-TE outperforms the CTE by some margin. At higher mobile speeds the

CSI is not reliable, since the CIR cannot be assumed to be time invariant owing to fast fading. It

seems, however, that the DBN-TE is more resilient against imperfect channel information. Fig. 4.40

shows the performance of the DBN-TE and the CTE for a longer fading channel of length L = 8,

where the DBN-TE consistently outperforms the CTE. As seen before, the DBN-TE outperforms the

CTE in longer fading channels, while the improvement in performance of the DBN-TE over the CTE

increases with an increase in mobile speed.
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Figure 4.39: DBN-TE and CTE performance for various mobile speeds in a fading channel with

L = 4.
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Figure 4.40: DBN-TE and CTE performance for various mobile speeds in a fading channel with

L = 8.
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From these simulations it is concluded that the DBN-TE is useful in systems operating in a mobile

fading environment, and the performance of the DBN-TE compared to that of the CTE increases with

an increase in mobile speed.

4.6.1.4 Frequency Hops

In order to determine the effect of the number of frequency hops on the performance of the DBN-TE

and the CTE, they are evaluated in fading channels of length L = 4 and L = 8 using F = 2, F = 4 and

F = 8 frequency hops. Fig. 4.41 shows the DBN-TE and CTE performance for the various frequency

hops in a fading channel of length L = 4, and Fig. 4.42 shows the performance for L = 8.

In Fig. 4.41 it can be seen that the performance of both the DBN-TE and the CTE improves with an

increase in the number of frequency hops, while the CTE outperforms the DBN-TE, as expected for

a short channel like this. Fig. 4.42 show the DBN-TE and CTE performance in a length L = 8 fading

channel, from which it is clear that the performance of both the CTE and the DBN-TE also improves

with an increase in the number of frequency hops. Here, however, the DBN-TE outperforms the CTE

when F = 8 frequency hops are used.

From these results it is clear that the performance of the DBN-TE is comparable to that of the CTE

in systems where the frequency is hopped a sufficient number of times during each transmitted data

block. This will ensure that the CIR changes with each frequency hopped segment, allowing the DBN-

TE to yield better inference than when a single CIR is present if the frequency is not hopped. The

DBN-TE is therefore able to exploit the frequency diversity introduced by frequency hopping.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

127

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4 Dynamic Bayesian Network Turbo Equalizer

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

 

 

CTE: F=2

CTE: F=4

CTE: F=8

DBN−TE: F=2

DBN−TE: F=4

DBN−TE: F=8

Coded AWGN

Figure 4.41: DBN-TE and CTE performance for various frequency hops in a fading channel with

L = 4.
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Figure 4.42: DBN-TE and CTE performance for various frequency hops in a fading channel with

L = 8.
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4.6.1.5 Block Lengths

The effect of the block length on the performance of the DBN-TE and the CTE is evaluated by

simulating the system for various coded data block lengths. Since a random interleaver is used, it is

expected that the performance will increase with an increase in data block length. Simulations are

performed in a static channel with a length of L = 3 and a fading channel with a length of L = 5 where

the coded data block lengths are Nc = 300, Nc = 1200 and Nc = 4800 respectively.

Fig. 4.43 and Fig. 4.44 show the performance of the DBN-TE and the CTE for various coded block

lengths, for a static channel of length L = 3 and a fading channel of length L = 5 respectively. In

both cases it is clear that the performance improves with an increase in the coded data block length

owing to the random distribution of neighboring bits in the coded bit sequence. Fig. 4.43 shows that

the DBN-TE outperforms the CTE, especially at low Eb/N0 levels, and achieves near matched-filter

performance for Nc = 4800. From Fig. 4.44 it can also be seen that the DBN-TE outperforms the

CTE.
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Figure 4.43: DBN-TE and CTE performance for various coded data block lengths in a static channel

with L = 3.
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Figure 4.44: DBN-TE and CTE performance for various coded data block lengths in a fading channel

with L = 5.

From these simulations it is concluded that the DBN-TE is able to exploit the temporal separation of

the coded information bits in order to perform near-optimal inference. It seems that it is able to do so

more effectively than the CTE, thus achieving better performance for both scenarios.

4.6.1.6 Training Symbols

In a practical wireless communication system perfect CSI is not available, and hence the channel has

to be estimated using training or pilot symbols, which are usually placed in the center of the transmit-

ted data block, and are known at the transmitter and the receiver. In order to test the resilience of the

DBN-TE against channel estimation errors, it is evaluated alongside the CTE in a system where the

channel is estimated using a least squares (LS) channel estimator, as explained in Appendix A, using

various numbers of training symbols. The DBN-TE and the CTE are simulated in fading channels of

length L = 4 and L = 8 where the number of training symbols are P = 4L, P = 6L and P = 8L, and

the results are compared to the performance achieved when perfect CSI is available.

Fig. 4.45 and Fig. 4.46 show the performance of the DBN-TE and the CTE in fading channels of
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length L = 4 and L = 6 respectively for various numbers of training symbols used for channel es-

timation. From Fig. 4.45 it can be seen that the DBN-TE performs worse than the CTE for smaller

numbers of training symbols for L = 4, and only performs slightly worse than the CTE for P = 8L

training symbols. Fig. 4.46 shows that the DBN-TE only performs worse than the CTE for P = 4L

training symbols when L = 8, after which the DBN-TE outperforms the CTE by 0.5 dB.

From these simulations it is concluded that the DBN-TE is able to achieve acceptable perform-

ance in the presence of channel estimation errors, while its performance is comparable to that of

the CTE.
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Figure 4.45: DBN-TE and CTE performance for various numbers of training symbols in a fading

channel with L = 4.
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Figure 4.46: DBN-TE and CTE performance for various numbers of training symbols in a fading

channel with L = 8.
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Figure 4.47: DBN-TE performance in long fading channels.
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4.6.1.7 Long Memory

Because of its low computational complexity the DBN-TE is able to jointly equalize and decode

information transmitted though highly dispersive multipath channels. The DBN-TE is therefore sim-

ulated for channels of length L = 5, L = 10 and L = 20. Fig. 4.47 shows the performance of the

DBN-TE in these long channels. It is clear from Fig. 4.47 that the DBN-TE effectively jointly equal-

izes and decodes the information in highly dispersive fading channels, but that the performance does

not increase for CIR lengths beyond L = 10. This might be remedied by using larger coded data

blocks.

4.6.2 DBN-TE vs LCTEs

In this section the DBN-TE is evaluated against LCTEs, which use a low complexity equalizer as a re-

placement for the optimal, but complex, MAP equalizer. The LCTEs considered are formed by repla-

cing the MAP equalizer with the MMSE-LE, MMSE-DFE, SFE and the SDFE discussed in Chapter 3,

here named MMSE-LE-TE, MMSE-DFE-TE, SFE-TE and the SDFE-TE respectively. The perform-

ance of the DBN-TE is also compared to that of a few other LCTEs in the literature.

4.6.2.1 DBN-TE vs MMSE-LE/DFE-TE

The DBN-TE is evaluated against the MMSE-LE-TE and the MMSE-DFE-TE in [58], where BPSK

modulated information is transmitted through a static multipath channel of length L = 3 with a CIR

of h = {0.408,0.815,0.408}. A rate Rc = 1/2, constraint length K = 3 recursive systematic convolu-

tional encoder with generator G = [7,5] is used, and the encoded information is randomly interleaved

in blocks of length Nc = 512 before transmission. The MMSE-LE-TE and the MMSE-DFE-TE are

iterated until full convergence is achieved, and the DBN-TE is iterated Z = 10 times, first using the

Cholesky decomposition (Chol) to concentrate the energy in the first CIR tap, and secondly using the

MMSE-DF prefilter (MMSE). Fig. 4.48 shows the performance of the turbo equalizers, with Cholesky

decomposition filtering and MMSE-DF prefiltering. It is clear that the DBN-TE performance is com-

parable to that of the MMSE-LE-TE when Cholesky decomposition filtering is used, and outperforms

the MMSE-LE-TE when MMSE-DF prefiltering is used.
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Figure 4.48: DBN-TE performance compared to that of MMSE-LE-TE and MMSE-DFE-TE in [58].

4.6.2.2 DBN-TE vs BDFE-TE and iBDFE-TE

The DBN-TE performance is also compared to that of the turbo equalizer using low complexity SISO

block decision feedback equalizer (BDFE) proposed in [52]. The uncoded information is encoded

using a rate Rc = 1/2 convolutional encoder with generators G = [23,57] and with constraint length

K = 5. Blocks of Nc = 2048 coded information is randomly interleaved and transmitted through

a fading channel with a CIR according the typical urban channel profile in [59]. The channel is

constant for each data block and varies between data blocks. For each data block the channel energy

is normalized as in [52]. Fig. 4.49 shows the performance of the DBN-TE compared to that of the

BDFE-TE-TE and the MMSE-LE-TE for Z = 1, Z = 2 and Z = 5 iterations. It is clear from Fig. 4.49

that the performance of the DBN-TE is comparable to that of the MMSE-LE-TE as well as the BDFE-

TE in [52].

Fig. 4.50 shows the performance of a turbo equalizer using an improved BDFE-TE proposed in [53]

(iBDFE-TE) for the identical simulation parameters as in Fig. 4.49. The only difference is that the

generators are G = [23,57] in the simulation setup in [53], and that QPSK modulation is used instead

of BPSK. Fig. 4.50 also shows the performances of the DBN-TE for BPSK modulation using the

same parameters as in [53]. It is clear from Fig. 4.50 that the performance of the DBN-TE is slightly
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better than that of the improved DBFE proposed in [53].
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Figure 4.49: DBN-TE performance compared to that of MMSE-LE-TE [58] and BDFE-TE [52].
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Figure 4.50: DBN-TE performance compared to that of MMSE-LE-TE and improved iBDFE-TE

[53] .
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4.6.2.3 DBN-TE vs MMSE-LE-TE and PDA-TE

The performance of the DBN-TE is compared to that of the MMSE-LE-TE and another LCTE, the

probabilistic data association turbo equalizer (PDA-TE), where the MAP equalizer is replaced with

a low complexity PDA equalizer proposed in [60]. The system encodes information using a rate

Rc = 1/2, constraint length K = 3, convolutional encoder with generator G = [7,5] to encode un-

coded blocks of length Nu = 256, and is then interleaved with a random interleaver. The information

is transmitted through a channel h = {0.408,0.815,0.408} of length L = 3. To evaluate the perform-

ance of the DBN-TE, Cholesky decomposition filtering was used. Fig. 4.51 shows the performance of

the DBN-TE compared to that of the MMSE-LE-TE and the PDA-TE for Z = 0, Z = 1 and Z = 2 itera-

tions. The DBN-TE performance is also shown for Z = 3 iterations. It is clear that the performance of

the DBN-TE is comparable to that of the MMSE-LE-TE and the PDA-TE at Z = 2 iterations.
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Figure 4.51: DBN-TE performance compared to that of MMSE-LE-TE in [58] and PDA-TE [60].

4.6.2.4 DBN-TE vs SISO-DFE-TE and SISO Bi-DFE-TE

The performance of the DBN-TE is compared to that of the SISO DFE-TE and the SISO bi-directional

DFE-TE (Bi-DFE-TE) proposed in [61]. The information is encoded using a rate Rc = 1/2 recursive

systematic convolutional encoder with constraint length K = 3, where the generators G = [7,5] are
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used. Coded data blocks of length Nc = 2048 are randomly interleaved and transmitted through a

channel h = {0.2294,0.4588,0.6882,0.4588,0.2294} of length L = 5. As before, the MMSE-DF

prefilter is used for the DBN-TE. Fig. 4.53 shows the performance of the DBN-TE compared to that

of the SISO-DFE-TE and the BiD-DFE-TE, from which it is clear that the DBN-TE performs better

at low Eb/N0 levels, but does not achieve the same asymptotic performance as the SISO-DFE-TE and

the BiD-DFE-TE. The performance of the DBN-TE is still acceptable.
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Figure 4.52: DBN-TE performance compared to that of Bi-DFE-TE and SISO-DFE-TE [61].

4.6.2.5 DBN-TE vs SISO-DFE-TE and SFE-TE

The DBN-TE’s performance is compared to that of the SISO-DFE-TE developed in [62] and the SFE-

TE in [10]. The information is encoded using a rate Rc = 1/2 convolutional encoder with constraint

length K = 3, where once again the generators G = [7,5] are used. The coded data block length

is Nc = 10560 and a random interleaver is used. The coded information is transmitted through a

channel h = {0.2294,0.4588,0.6882,0.4588,0.2294}. As before, the MMSE-DF prefilter is used for

the DBN-TE. Fig. 4.53 shows the performance of the DBN-TE compared to that of the SISO-DFE-

TE and SFE-TE. As in Fig. 4.53, the DBN-TE performs comparably against the SISO-DFE-TE and

the SFE-TE, with better performance at low Eb/N0 levels and worse performance at higher Eb/N0

levels.
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Figure 4.53: DBN-TE performance compared to that of SISO-DFE-TE [62] and SFE [10].

4.7 CONCLUDING REMARKS

In this chapter a turbo equalizer modeled on a dynamic Bayesian network was presented. The res-

ulting turbo equalizer was named the DBN-TE, which uses BP via the forward-backward algorithm

together with a soft-feedback mechanism to jointly equalize and decode the received information in

order to estimate the uncoded information symbols. The DBN-TE works on the basis of approxim-

ate inference on a quasi-DAG, with dominant connections between the observed variables and their

corresponding hidden variables as well as weak connections to past and future state variables. A min-

imum phase filter in the form of a Cholesky decomposition filter or a MMSE-DF prefilter is applied in

order to concentrate the energy in the leading CIR tap, so as to ensure a dominant connection between

the observed variables and their corresponding hidden variables. In order to restore the one-to-one

relationship between the coded transmitted symbols and the leading CIR tap, the effect of the inter-

leaver is eliminated by a transform on the interleaved channel matrix and a corresponding filtering of

the received symbol sequence.

It was shown that the performance of the new DBN-TE closely matches that of the CTE in fading

channels, with and without perfect CSI knowledge, and in some cases the DBN-TE outperforms the
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CTE. It was also demonstrated that the DBN-TE performs favorably compared to other LCTEs in the

literature, in static and fading channels, although at higher computational cost. The computational

complexity of the DBN-TE is approximately quadratic in the coded data block length (worst case

is cubic), exponential in the encoder constraint length, and approximately independent of channel

memory length. Although the complexity of the DBN-TE is higher than that of the MMSE and DFE

based turbo equalizers, it is still superior to that of the CTE for systems with long memory.
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CHAPTER 5

HOPFIELD NEURAL NETWORK TURBO EQUALI-

ZER

An artificial neural network is a mathematical model that imitates the processing of information in the

brain. Since 1861 the functioning of the human brain has been studied [16], and in 1929 the measuring

of brain activity became possible with the invention of the electroencephalograph (EEG). The recent

development of magnetic resonance imaging (MRI) provides neuroscientists with images of brain

activity that corresponds with cognitive processes. These advancements were complemented by the

study of single neuron activity, which entails the collection and processing of data on the finest level in

the brain. A collection of these neurons, with each neuron being described by a mathematical model,

is used to model primitive processing of the brain in the form of a neural network. Neural networks

can be used to solve difficult scientific and engineering problems such as biometric identification,

statistical prediction and signal processing [16].

Because of their ability to perform classification and pattern recognition based on partial informa-

tion, as well as their low complexity processing capabilities, neural networks have also been used in

designing wireless communication receiver algorithms. Neural networks have been used for equali-

zation [63–66], multiuser detection in code division multiple access (CDMA) systems [67–71] and

decoding [72, 73]. Of particular interest in this thesis is the HNN, a recurrent or feedback neural

network, which has also been used in the aforementioned applications [19, 21, 22, 74–86].

In [19, 20] the author of this thesis proposed an MLSE equalizer which is able to equalize M-QAM

modulated signals in systems with extremely long memory. The complexity of the equalizer proposed

in [19,20] is approximately quadratic in the data block length1 and approximately independent of the

1It is explained how the complexity of matrix multiplication can be reduced via more efficient algorithms.
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channel memory length. Its superior computational complexity is due to the high parallelism of its

underlying neural network structure. It uses the HNN structure, which enables fast parallel processing

of information between neurons, producing ML sequence estimates at the output. It was shown

in [19,20] that the performance of the HNN MLSE equalizer closely matches that of the Viterbi MLSE

equalizer in short channels, and near-optimally recombines the energy spread across the channel in

order to achieve near-matched filter performance when the channel is extremely long.

The HNN has also been shown by several authors to be able to decode balanced check codes [21,22].

These codes, together with methods for encoding and decoding, were first proposed in [87], but it

was later shown in [21, 22] that single codeword decoding can also be performed using the HNN.

The ability of the HNN to detect binary patterns allows it to determine the ML codeword from a

predefined set of codewords. In this chapter it is shown that the HNN ML decoder can be extended to

allow for the ML estimation of a sequence of balanced check codes. It is therefore extendable to an

MLSE decoder.

In this chapter a novel turbo equalizer is developed by combining the HNN MLSE equalizer de-

veloped in [19, 20] and an HNN MLSE decoder (used to decode balanced codes), resulting in the

Hopfield Neural Network Turbo Equalizer (HNN-TE), which can be used as replacement for a CTE

in systems with extremely long memory, where the coded symbols are interleaved before transmis-

sion through the multipath channel. The HNN-TE is able to equalize and decode balanced codes

in systems with extremely long memory, since the computational complexity is nearly independent

of the channel memory length. Like the HNN MLSE equalizer in [19, 20], its superior complexity

characteristics are due to the high parallelism of its underlying neural network structure.

5.1 THE HOPFIELD NEURAL NETWORK

The HNN is a recurrent neural network and can be applied to optimization as well as pattern recog-

nition problems, of which the former is of interest in this thesis. In 1985 Hopfield and Tank showed

how neurobiological computations can be modeled with the use of an electronic circuit [88]. This cir-

cuit is shown in Fig. 5.1. By using basic electronic components, they constructed a recurrent neural

network and derived the characteristic equations for the network. The set of equations that describe
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Figure 5.1: Hopfield neural network circuit diagram.

the dynamics of the system is given by [88]

Ci
dui

dt
= −ui

τi
+∑

j
Ti jIi + Ii (5.1)

Vi = g(ui)

with Ti j, the dots, describing the interconnections between the amplifiers, u1-uN the input voltages

of the amplifiers, V1-VN the output voltages of the amplifiers, C1-CN the capacitor values, ρ1-ρN the

resistivity values, and I1-IN the bias voltages of each amplifier. Each amplifier represents a neuron.

The transfer function of the positive outputs of the amplifiers represents the positive part of the activ-

ation function g(u) and the transfer function of the negative outputs2 represents the negative part of

the activation function g(u). The activation function is shown in Fig. 5.2. It was shown in [88] that

the stable state of this circuit network can be found by minimizing the function

L =−1
2

N

∑
i=1

N

∑
j=1

Ti jViVj−
N

∑
i=1

ViIi (5.2)

2Negative outputs are not shown here.
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Figure 5.2: Activation function.

provided that Ti j = Tji and Tii = 0, implying that T is symmetric around the diagonal and its diagonal

is zero [88]. There are therefore no self-connections. This function is called the energy function or

the Lyapunov function, which by definition is a monotonically decreasing function, ensuring that the

system will converge to a stable state [88]. When minimized, the network converges to a local min-

imum in the solution space to yield a "good" solution. The solution is not guaranteed to be optimal,

but by using optimization techniques, the quality of the solution can be improved. To minimize (5.2)

the system equations in (5.1) are solved iteratively until the outputs V1-VN settle.

Hopfield also showed that this kind of network can be used to solve the traveling salesman problem

(TSP). This problem is of a class called NP-complete, the class of nondeterministic polynomial prob-

lems. Problems that fall in this class can be solved optimally by enumerating each possible solution

and choosing the best solution from all possible solutions [56]. Complete enumeration is a time-

consuming and computationally expensive exercise, with the number of possible solutions growing

exponentially with a linear increase in the number of unknowns. Complete enumeration is therefore

not a feasible approach to solving real-time NP-complete problems, of which MLSE equalization is

of concern in this thesis.

The HNN was first proposed in [88] and it was shown in [89] that the HNN can be used to solve com-

binatorial optimization problems as well as pattern recognition problems. In [88] Tank and Hopfield

derived an energy function and showed how the HNN can be used to minimize this energy function,
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thus producing near-ML sequence estimates at the output of the neurons. To enable the HNN to solve

an optimization problem, the cost function of that problem is mapped to the HNN energy function,

whereafter the HNN iteratively minimizes its energy function and performs near-MLSE. Also, to en-

able the HNN to solve a binary pattern recognition problem, the autocorrelation matrix of the set of

patterns is used as the weights between the HNN neurons, while the noisy pattern to be recognized

is used as the input to the HNN. Again, the HNN iteratively performs pattern recognition in order to

produce the near-ML pattern at the output of the HNN.

5.1.1 Energy Function

The Hopfield energy function can be written as [19, 20, 88]

L =−1
2

sT Xs− IT s, (5.3)

where I is a column vector with N elements, X is an N×N matrix. Assuming that s, I and X contain

complex values, these variables can be written as [19, 20, 88]

s = si + jsq,

I = Ii + jIq,

X = Xi + jXq,

(5.4)

where s and I are column vectors of length N, and X is an N×N matrix, where subscripts i and q are

used to denote the respective in-phase and quadrature components. X is the cross-correlation matrix

of the complex received symbols such that

XH = XT
i − jXT

q = Xi + jXq, (5.5)

implying that it is Hermitian. Therefore XT
i = Xi is symmetric and XT

q = −Xq is skew symmetric

[19, 20]. By using the symmetric properties of Xi and Xq, (5.3) can be expanded and rewritten

as

L =−1
2
[sT

i Xisi + sT
q Xqsq +2sT

q Xqsi]− [sT
i Ii + sT

q Iq]

which in turn can be rewritten as [19, 20]

L =−1
2
[sT

i |sT
q ]

 Xi XT
q

Xq Xi

[ si

sq

]
− [IT

i |IT
q ]

[
si

sq

]
. (5.6)
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It is clear that (5.6) is in the form of (5.3), where the variables in (5.3) are substituted as follows:

sT = [sT
i |sT

q ],

IT = [IT
i |IT

q ],

X =

 Xi XT
q

Xq Xi

 . (5.7)

Equation (5.6) is used to derive the HNN MLSE equalizer, HNN decoder, and eventually the HNN-

TE.

5.1.2 Iterative System

The HNN minimizes the energy function (5.3) with the following iterative system:

u(i) = Xs(i)+ I

s(i+1) = g
(

β (i)u(i)
)
, (5.8)

where u = {u1,u2, · · · ,uN}T is the internal state of the HNN, s = {s1,s2, · · · ,sN}T is the vector of es-

timated symbols, g(.) is the decision function associated with each neuron and i indicates the iteration

number. β (.) is a function used for optimization as in [19, 20].

The estimated symbol vector sT = [sT
i |sT

q ] is updated with each iteration. IT = [IT
i |IT

q ] contains the

best blind estimate of s via energy recombination, and is therefore used as input to the network, while

X =

 Xi XT
q

Xq Xi

 contains the cross-correlation information of the transmitted symbols. The system

produces the MLSE estimates in s after Z iterations.

5.2 HOPFIELD NEURAL NETWORK TURBO EQUALIZER

Turbo Equalizers are used in multipath communication systems that make use of encoders, usually

convolutional encoders, to encode the source symbol sequence s of length Nu (using some generator

matrix G) at a rate Rc to produce coded information symbols c of length Nc = Nu/Rc, after which

the coded symbols c are interleaved with a random interleaver before modulation and transmission.

The interleaved coded symbols ć are transmitted through a multipath channel with a CIR length of L,

causing inter-symbol interference among adjacent transmitted symbols at the receiver. At the receiver

the received inter-symbol ISI corrupted coded symbols are matched filtered and used as input to the
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turbo equalizer. The received symbol sequence is given by

r = Hć+n, (5.9)

where n is a vector containing complex Gaussian noise samples and ć is the interleaved coded symbols

given by

ć = JGT s, (5.10)

where J is an Nc×Nc interleaver matrix, and H is the Nc×Nc channel matrix

H =



h0 0 . . . 0 0 0 0
... h0 . . . 0 0 0 0

hL−1
...

. . . 0 0 0 0

0 hL−1
. . . . . . 0 0 0

...
...

. . . . . . h0 0 0

0 0 0 hL−1 . . . h0 0

0 0 0 0 hL−1 . . . h0


. (5.11)

In this section the derivation of the HNN-TE is discussed, by first deriving its constituent parts - the

HNN MLSE equalizer and the HNN MLSE decoder - and then showing how the HNN-TE is finally

realized by combining the two.

5.2.1 HNN MLSE Equalizer

The HNN MLSE equalizer was developed by the author in [19, 20]. The HNN MLSE equalizer

was applied to single-carrier M-QAM modulated systems with extremely long memory, where the

CIR length was as long as L = 250, even though this was not the limit. The ability of the HNN

MLSE equalizer to equalize signals in systems with highly dispersive channels is due to the fact

that its complexity grows quadratically with an increase in transmitted data block size, and that it

is approximately independent of the channel memory length. The HNN MLSE equalizer developed

in [19, 20] will subsequently be presented, without spending time on the derivation.

It was shown in [19, 20] that the correlation matrices Xi and Xq in (5.7), for a single carrier system

transmitting a data block of length N through a multipath channel of length L with the data block

initiated and terminated by L−1 known tail symbols, with values 1 for BPSK modulation and 1√
2
+
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j 1√
2

for M-QAM modulation, can be determined by

Xi =−



0 α1 . . . αL−1 . . . 0

α1 0 α1 . . .
. . .

...
... α1 0

. . .
... αL−1

αL−1

...
. . . . . . α1

...
...

. . . . . . α1 0 α1

0
. . . αL−1 . . . α1 0


(5.12)

and

Xq =−



0 γ1 . . . γL−1 . . . 0

γ1 0 γ1 . . .
. . .

...
... γ1 0

. . .
... γL−1

γL−1

...
. . . . . . γ1

...
...

. . . . . . γ1 0 γ1

0
. . . γL−1 . . . γ1 0


(5.13)

where α = {α1,α2, · · · ,αL−1} and γ = {γ1,γ2, · · · ,γL−1} are respectively determined by

αk =
L−k−1

∑
j=0

h(i)j h(i)j+k +
L−k−1

∑
j=0

h(q)j h(q)j+k, (5.14)

and

γk =
L−k−1

∑
j=0

h(q)j h(i)j+k−
L−k−1

∑
j=0

h(i)j h(q)j+k, (5.15)

where k = 1,2,3, ...,L− 1 and i and q denote the in-phase and quadrature components of the CIR

coefficients.

Upon inspection it is easy to see from (5.12) through to (5.15) that Xi and Xq can be determ-

ined using the respective in-phase and quadrature components of the N × N channel matrix,

with the in-phase and quadrature components of the CIR, h(i) = {h(i)0 , h(i)1 , . . . , h(i)L−1}T and

h(q) = {h(q)0 , h(q)1 , . . . , h(q)L−1}T , on the diagonals such that

H(i) =



h(i)0 0 . . . 0 0 0 0
... h(i)0 . . . 0 0 0 0

h(i)L−1
...

. . . 0 0 0 0

0 h(i)L−1
. . . . . . 0 0 0

...
...

. . . . . . h(i)0 0 0

0 0 0 h(i)L−1 . . . h(i)0 0

0 0 0 0 h(i)L−1 . . . h(i)0


(5.16)
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and

H(q) =



h(q)0 0 . . . 0 0 0 0
... h(q)0 . . . 0 0 0 0

h(q)L−1
...

. . . 0 0 0 0

0 h(q)L−1
. . . . . . 0 0 0

...
...

. . . . . . h(q)0 0 0

0 0 0 h(q)L−1 . . . h(q)0 0

0 0 0 0 h(q)L−1 . . . h(q)0


. (5.17)

Using H(i) and H(q) the correlation matrices in (5.12) and (5.13) can be determined by

Xi =−
(
H(i)T H(i)+H(q)T H(q)) (5.18)

which is simply

Xi =−Re{HT H}. (5.19)

Also

Xq =−
(
H(q)T H(i)−H(i)T H(q))T , (5.20)

which is

Xq =−Im{HT H}. (5.21)

Xi and Xq are then used to construct the combined correlation matrix in (5.7).

X =

 Xi XT
q

Xq Xi

 . (5.22)
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It was also shown in [19, 20] that the input vectors Ii and Iq in (5.7) are determined by

Ii =



λ1−ρ(α1 + γ1 + . . .+αL−1 + γL−1)

λ2−ρ(α2 + γ2 + . . .+αL−1 + γL−1)

λ3−ρ(α3 + γ3 + . . .+αL−1 + γL−1)
...

...
...

λL−1−ρ(αL−1 + γL−1)

λL

...
...

...

λN−L+1

λN−L+2−ρ(αL−1− γL−1)
...

...
...

λN−2−ρ(α3− γ3 + . . .+αL−1− γL−1)

λN−1−ρ(α2− γ2 + . . .+αL−1− γL−1)

λN −ρ(α1− γ1 + . . .+αL−1− γL−1)



(5.23)

and

Iq =



ω1−ρ(α1− γ1 + . . .+αL−1− γL−1)

ω2−ρ(α2− γ2 + . . .+αL−1− γL−1)

ω3−ρ(α3− γ3 + . . .+αL−1− γL−1)
...

...
...

ωL−1−ρ(αL−1− γL−1)

ωL

...
...

...

ωN−L+1

ωN−L+2−ρ(αL−1 + γL−1)
...

...
...

ωN−2−ρ(α3 + γ3 + . . .+αL−1 + γL−1)

ωN−1−ρ(α2 + γ2 + . . .+αL−1 + γL−1)

ωN −ρ(α1 + γ1 + . . .+αL−1 + γL−1)



, (5.24)

where ρ = 1/
√

2 for M-QAM modulation, ρ = 1 in Ii and ρ = 0 in Iq for BPSK modulation, and

ΛΛΛ = {λ1,λ2, · · · ,λN} is determined by

λk =
L−1

∑
j=0

r(i)j+kh(i)j +
L−1

∑
j=0

r(q)j+kh(q)j , (5.25)
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and ΩΩΩ = {ω1,ω2, · · · ,ωN} is determined by

ωk =
L−1

∑
j=0

r(q)j+kh(i)j −
L−1

∑
j=0

r(i)j+kh(q)j , (5.26)

where k = 1,2,3, ...,N with i and q again denoting the in-phase and quadrature components of the

respective elements. The combined input vector in (5.7) is therefore constructed as

I =
[

Ii

Iq

]
. (5.27)

Note that ΛΛΛ and ΩΩΩ can easily be determined by

ΛΛΛ = H(i)T r(i) + H(q)T r(q), (5.28)

and

ΩΩΩ = H(i)T r(q) − H(q)T r(i), (5.29)

where r(i) and r(q) are the respective in-phase and quadrature components of the received symbols

r = {r1,r2, · · · ,rN+L−1}T .

By deriving the cross-correlation matrix X and the input vector I in (5.7), the model in (5.6) is com-

plete, and the iterative system in (5.8) can be used to equalize M-QAM modulated symbols transmit-

ted through a channel with large CIR lengths. The HNN MLSE equalizer was evaluated in [19, 20]

for BPSK and 16-QAM with performance reaching the matched-filter bound in extremely long chan-

nels.

5.2.2 HNN MLSE Decoder

The HNN has been shown to be able to decode balanced codes [21, 22]. A binary word of length

m can be called balanced if it contains exactly m/2 ones and m/2 zeros [87]. In addition, balanced

codes have the property that no codeword is contained in another word, simply meaning that the

positions of ones in one codeword will never be a subset of the positions of the ones in another

codeword [87].

The encoding process is described in [87] where the first k bits of the uncoded word is flipped in order

to ensure the resulting codeword is “balanced,” whereafter the position k is appended to the balanced

codeword before transmission. This encoding process is not followed here, as the set of m = 2n

balanced codewords are determined beforehand, after which encoding is performed by mapping a
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set of n bits to 2n balanced BPSK symbols, or by mapping a set of 2n bits to 2n balanced 4-QAM

symbols.

The HNN decoder developed here uses the set of predetermined codewords to determine the connec-

tion weights describing the level of connection between the neurons. It has previously been shown

how an HNN can be used to decode one balanced code at a time, but the HNN MLSE decoder this au-

thor derives here is able to simultaneously decode any number of concatenated codewords in order to

provide the ML transmitted sequence of codewords. After the HNN MLSE decoding, the ML BPSK

or 4-QAM codewords of length 2n are demapped to n bits (or 2n bits for 4-QAM), which completes

the decoding process.

5.2.2.1 Codeword Selection:

The author has found that Walsh-Hadamard codes, widely used in CDMA systems [2], are desirable

codes for this application, in view of their seeming balance and orthoganality characteristics. Walsh-

Hadamard codes are linear codes that map n bits to 2n codewords, where each set of codewords has a

Hamming distance of 2n−1 and a Hamming weight of 2n−1.

Walsh-Hadamard codes are not “balanced” as described above. The first codeword is always all-ones,

while subsets of some codewords are contained in others, violating both restrictions for balance.

Instead of using the complete set of Walsh-Hadamard codes to map n bits to 2n codewords, a subset

of codes in the Walsh-Hadamard matrix is selected, duplicated and modified so as to construct a new

set of 2n codewords of length 2n. Consider the set of length 2n = 8 Walsh-Hadamard codes

H8 =



1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 0 0 1 0 1 1 0



. (5.30)
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To construct a set of balanced codewords from H8, a subset of 2n−1 codewords is selected, which are

used as the first 2n−1 codewords in the new set of codewords. The second set of 2n−1 codewords is

constructed as follows:

1. Reverse the order in which the first 2n−1 codewords appear in the new set.

2. Flip the bits of the reversed set of 2n−1 codewords.

Assuming the subset selected from H8 above is the set H8,4:7 (implying that codewords in rows 4

through to 7 are selected), the resulting set of 2n balanced codewords is

C8 =



1 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0

0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0



. (5.31)

It is clear that C8 is balanced in the sense that the rows (codewords) as well as the columns are

balanced. It has been found that the HNN decoder performs better if the rows as well as the columns

are balanced. The Hamming weight of C8 is still 2n−1 = 22, while the Hamming distance increases

to slightly larger than 2n−1 = 22.

By following the steps described above, any set of Walsh-Hadamard codes of length 2n can be used

to create a new set of 2n balanced codes of length m = 2n.

5.2.2.2 Encoding

Encoding is performed by mapping a group of n bits to 2n BPSK symbols, or a group of 2n bits to 2n

4-QAM symbols. Before encoding, the set of codewords C2n derived from the set of Walsh-Hadamard

codes H2n is made bipolar by converting the 0’s to −1.
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5.2.2.2.1 BPSK encoding When BPSK modulation is used, n bits are mapped to 2n BPSK sym-

bols. The n bits are used to determine an index k in the range 1 - 2n, which is then used to select a

codeword from the set of codewords in C2n such that the selected codeword c = C2n(k). Table 5.1

shows the number of uncoded bits, codeword length, uncoded bit to coded symbol rate Rs and the

uncoded bit to coded bit rate Rc (code rate) for different n.

Table 5.1: Input-output relationship for the BPSK encoder

n 2n Rs Rc

1 2 1/2 1/2

2 4 1/2 1/2

3 8 3/8 3/8

4 16 1/4 1/4

5.2.2.2.2 4-QAM encoding When 4-QAM modulation is used, 2n bits are mapped to 2n 4-QAM

symbols. The first and second groups of n bits (out of 2n bits) are used to determine two indices, k(i)

and k(q), in the range 1 - 2n, one for the in-phase part, and the other for the quaternary part of the

codeword. The first index k(i) selects a codeword from C(i)
2n , where C(i)

2n is derived as before, and the

second index k(q) selects a codeword from C(q)
2n , which can be equal to C(i)

2n or can be uniquely determ-

ined as explained earlier. The 4-QAM “codeword” is then calculated as c = C(i)
2n (k(i))+ jC(q)

2n (k(q)),

which is much like the result of coded modulation where groups of coded bits (in this case uncoded

bits) are mapped to signal constellation points to improve spectral efficiency [2]. Table 5.2 shows

the number of uncoded bits, codeword length, the uncoded bit to coded symbol rate Rs and code

rate Rc for different 2n. Even though the code rate remains the same as with BPSK modulation, the

throughput doubles as expected.

Table 5.2: Input-output relationship for the 4-QAM encoder

2n 2n Rs Rc

2 2 1 1/2

4 4 1 1/2

6 8 3/4 3/8

8 16 1/2 1/4
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5.2.2.3 Decoding

The HNN is known to be able to recognize input patterns from a set of stored patterns [88, 89]. In

the context of the HNN decoder, the patterns are the balanced codewords, and the HNN is able to

determine the ML codeword from a set of codewords. This has been demonstrated before [21], but

only for one codeword at a time. Therefore, if a received data block contains P codewords, the HNN

will have to be applied P times in order to determine P ML codewords. The HNN MLSE decoder

developed here is able to determine the most likely sequence of codewords using a single HNN. The

HNN MLSE decoder is therefore applied once to a received data block containing any number of

codewords.

After the HNN MLSE decoder has determined the sequence of most likely transmitted codewords, the

codewords are demapped by calculating the Euclidean distance between each ML codeword and each

codeword in C2n for BPSK modulation, and each codeword in C(i)
2n + jC(q)

2n for 4-QAM modulation.

The indices(s) corresponding to the codeword(s) that have the lowest Euclidean distance/distances

is/are converted to bits, which completes the decoding phase.

The derivation of the HNN MLSE decoder entails the calculation of the cross-correlation matrices

Xi and Xq, and the input vectors Ii and Iq in (5.7). The HNN MLSE decoder is first derived for the

decoding of a single codeword, after which it will be extended to enable the decoding of any number

of codewords simultaneously. Derivations are performed for 4-QAM only, since the BPSK HNN

MLSE decoder is a simplification of its 4-QAM counterpart.

5.2.2.3.1 Single codeword decoding: To enable the HNN to store a set of codewords, the average

correlation between all patterns must be stored in the weights between the neurons. According to

Hebb’s rule of auto-associative memory [90], the connection weight matrix, or correlation matrix,

is calculated by taking the cross-correlation of the patterns to be stored. Since one is working with

complex symbols, there are two weight matrices to be calculated. The cross-correlation matrices in

(5.6) are calculated as

Xi = Re{CT C}

= C(i)T
2n C(i)

2n +C(q)T
2n C(q)

2n

(5.32)

and
Xq = Im{CT C}

= C(q)T
2n C(i)

2n −C(i)T
2n C(q)

2n ,
(5.33)
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where C = C(i)
2n + jC(q)

2n , and C(i)
2n and C(q)

2n are the matrices containing the generated codewords as

before, respectively used for the in-phase and quadrature components of the codeword. Note the

similarities between the correlation matrices in (5.32) and (5.33) and those in (5.18) and (5.20). Also,

the two input vectors are simply the real and imaginary components of the noise-corrupted received

codeword, such that

Ii = Re{c}+Re{n} (5.34)

and

Iq = Im{c}+ Im{n} (5.35)

where c is of length 2n and n is a vector containing complex samples from the distribution N (µ,σ2),

where µ = 0 and σ is the noise standard deviation. After the ML codeword has been detected, each

detected codeword (of length 2n) can be mapped back to n bits for BPSK modulation and 2n bits for

4-QAM modulation.

5.2.2.3.2 Multiple codeword decoding: It was shown how the HNN can be used to decode single

codewords, but the HNN decoder can be extended in order to detect ML transmitted sequences of

codewords. This step is crucial in the quest for merging the HNN decoder with the HNN MLSE

equalizer, since the HNN MLSE equalizer detects ML sequences of transmitted symbols. If the

transmitted information is encoded, these sequences contain multiple codewords, and hence the HNN

decoder must be extended to detect not only single codewords, but codeword sequences.

This extension is easily achieved by using the HNN parameters already derived in (5.32) through

(5.35). Consider a system transmitting a sequence of P balanced codewords of length 2n, where n is

the length of the uncoded bit-words. The new correlation matrix is constructed by copying X in (5.7)

along the diagonal according to the number of transmitted codewords P, such that
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X(P) =



Xi XT
q

Xq Xi

Xi XT
q /0

Xq Xi

. . . . . .

/0
. . . . . .

Xi XT
q

Xq Xi



, (5.36)

where X =

 Xi XT
q

Xq Xi

 is repeated on the diagonal P times and /0 implies that the rest of X(P) is

empty, containing only 0’s.

Also, the input vector I in (5.7), consisting of Ii and Iq, is extended according to the number of

transmitted codewords P such that

I(P) =

[
I(P)i

I(P)q

]
, (5.37)

where

I(P)i = [Re{c1},Re{c2}, . . . ,Re{cp}]T +Re{n} (5.38)

and

I(P)q = [Im{c1}, Im{c2}, . . . , Im{cp}]T + Im{n}, (5.39)

where cp is the pth codeword of length 2n, where p = 1,2, . . . ,P, and n is of length 2nP and con-

tains complex samples from the distribution N (µ,σ2), where µ = 0 and σ is the noise standard

deviation.

The extended cross-correlation matrix and input vector in (5.36) and (5.37) can now be used to es-

timate the ML sequence of transmitted codewords, after which each detected codeword (of length 2n)

can be mapped back to n bits for BPSK modulation and 2n bits for 4-QAM modulation.
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5.2.3 Merging the HNN MLSE Equalizer and the HNN MLSE Decoder

The HNN-TE is an amalgamation of the HNN MLSE equalizer and the HNN MLSE decoder, which

were discussed in the previous sections. In this section it is explained how the HNN MLSE equalizer

and the HNN MLSE decoder are combined in order to perform iterative joint equalization and de-

coding (Turbo Equalization) using a single HNN structure. The HNN-TE is able to jointly equalize

and decode BPSK and 4-QAM coded modulated signals in systems with highly dispersive multipath

channels, with extremely low computational complexity compared to traditional Turbo Equalizers,

which employ a MAP equalizer/decoder pair.

5.2.3.1 System Model

Since complete models for the HNN MLSE equalizer and decoder are now available, the combination

of the two is fairly straightforward. In order to distinguish between equalizer and decoder parameters,

a number of redefinitions are in order. For the HNN MLSE equalizer the correlation matrix and input

vector relating to (5.7), as derived in (5.22) and (5.27), are now XE and IE repectively and will

henceforth be called “equalizer correlation matrix” and “equalizer input vector”. Similarly the HNN

MLSE decoder correlation matrix and input vector relating to (5.7), as derived in (5.36) and (5.37), are

now XD and ID respectively and will henceforth be called “decoder correlation matrix” and “decoder

input vector”.

When a coded data block of length Nc is transmitted through a multipath channel, XE and XD are de-

termined according to (5.22) and (5.36), where both matrices are of size Nc × Nc. Since the function

of the equalizer and the decoder has to be merged, it makes sense to combine XE and XD somehow

to enable the equalizer to perform decoding, or to enable the decoder to perform equalization. This

combination is performed by first normalizing XD with respect to XE , because of varying energy in

a multipath fading channel between received data blocks. XD is therefore normalized with respect to

XE such that

X(norm)
D =

(
||XE ||
||XD||

)
XD. (5.40)

Next the new correlation matrix is determined as

XT E = XE +X(norm)
D . (5.41)

The rationale behind the addition of the equalizer correlation matrix and the normalized decoder

correlation matrix is that the connection weights in the decoder correlation matrix should bias those
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of the equalizer correlation matrix. Since XT E contains XE offset by X(norm)
D , joint equalization and

decoding is made possible.

The new input vector also needs to be calculated. ID contains the noise-corrupted coded symbols,

while IE contains not only received coded symbol information, but also the ISI information. Note

that when there is no multipath or fading (L = 1 and h0 = 1), IE reduces to ID. The new input vector

used in the HNN-TE is therefore only

IT E = IE . (5.42)

With the new correlation matrix XT E and input vector IT E , the HNN-TE model is complete, and

the iterative system in (5.8) can be used to equalize and decode the received coded information

jointly.

5.2.3.2 Interleaver Mitigation

Upon reception the received symbol vector has to be deinterleaved to restore the one-to-one re-

lationship between each element in r and c with respect to the first coefficient h0 of the CIR

h = {h0,h1, · · · ,hL−1}T . Deinterleaving r transforms the transmission model in (5.9).3 Substitut-

ing (5.10) in (5.9) and applying the deinterleaver, which is simply the transpose of the interleaver

matrix J, gives

JT r = JT HJGT s+JT n, (5.43)

which is equivalent to transmitting the coded symbol sequence c = GT s through a channel

Q = JT HJ. (5.44)

Therefore (5.43) can be written as

JT r = QGT s+JT n. (5.45)

Consequently the new channel matrix Q, rather than the conventional channel matrix H in (5.11),

is used in the calculation of the equalizer correlation matrix XE derived in (5.22). Owing to the

above transformation, Q does not contain the CIR h on the diagonal as in H. Rather, each column

in Q (of length Nc) contains a different random combination of all CIR coefficients (where the rest

of the Nc− L elements in a column are equal to 0), dictated by the randomization effect exhibited

in Q because of the random interleaver. This randomization effect results from first multiplying the

channel H with the interleaving matrix J and then deinterleaving by multiplying the result with JT

3Unlike the DBN-TE in Chapter 3 the HNN-TE does not require the channel to be in minimum phase form.
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(see (5.44)). Deinterleaving places the first CIR coefficient (h0) on the diagonal of Q, restoring the

one-to-one relationship between each element in r and each corresponding coded transmitted symbol

in c. The computational complexity of generating Q in (5.44) is O(N3
c ), where Nc is the coded data

block length, and the complexity of deinterleaving r is negligible.

To illustrate this concept, consider the three-dimensional representations of |HJ| and |Q| in Fig. 5.3 to

Fig. 5.8, for a hypothetical system transmitting coded information through a multipath channel with

CIR lengths of L= 1, L= 5 and L= 20 respectively, with a block length Nc = 80. Fig. 5.3 and Fig. 5.4

show |HJ| and |Q| for channels of length L = 1, where |HJ| in Fig. 5.3 is clearly interleaved. It is

also clear that the new channel Q in Fig. 5.4 is deinterleaved, since the first coefficient h0 of the CIR

has been restored to the diagonal of Q. Fig. 5.5 and Fig. 5.7 show the interleaved channels for L = 5

and L = 20, where Fig. 5.6 and Fig. 5.8 show the new channels Q, again with the first CIR coefficient

h0 restored to the diagonal. Even though h0 is restored to the diagonal of Q, it is clear that the rest

of the CIR coefficients h1,h2, . . . ,hL−1 are scattered throughout Q. As stated before, each column in

Q contains a different random combination of all CIR coefficients (with h0 on the diagonal for each

column), dictated by the randomization effect exhibited in Q, where the rest of the Nc−L elements

in each column are equal to 0.
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Figure 5.3: |HJ| for a system with L = 1 CIR coefficient.
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Figure 5.4: |Q| for a system with L = 1 CIR coefficient.

5.3 OPTIMIZATION

Optimization is necessary due to an inherent problem in neural networks.4 When a solution space is

large, the network sometimes struggles to converge to a “good,” solution, leading to suboptimal per-

formance. Because the HNN usually gets stuck in suboptimal local minima, it is necessary to employ

optimization techniques [16, 91] to aid the HNN in escaping less optimal basins of attraction.

5.3.1 Simulated Annealing

Simulated annealing has its origin in metallurgy, where annealing is the process used to temper steel

and glass by heating them to a high temperature and then gradually cooling them. This causes the

material to coalesce into a low-energy crystalline state [16]. In neural networks this process is imitated

to ensure that the neural network escapes less optimal local minima to converge to a near-optimal

solution in the solution space. Since the neural network starts to iterate at a high “temperature”, it is

able to escape the less optimal local minima in the solutions space. As the “temperature” decreases,

4The optimization techniques implemented to improve the performance HNN-TE are identical to those used for the

HHN MLSE equalizer in [19, 20]. The discussion in [20] is summarized here.
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Figure 5.5: |HJ| for a system with L = 5 CIR coefficients.
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Figure 5.6: |Q| for a system with L = 5 CIR coefficients.
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Figure 5.7: |HJ| for a system with L = 20 CIR coefficients.
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Figure 5.8: |Q| for a system with L = 20 CIR coefficients.
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the network will gradually converge to the global, or near global minimum in the solution space to

minimize the energy. This state of minimum energy corresponds to the optimal solution.

The output of the function β (.) in (5.8) is used as a scaling factor in order to perform simulated

annealing. As the system iterates, i is incremented, and β (.) produces a value according to an ex-

ponential function. The output of this function starts at a near zero value for the first iterations, and

converges to 1 for the last iteration Z. This function is given by

β (i−1) = 5
2(i−Z)

Z , (5.46)

and shown in Fig. 5.9. This causes the output of β (.) to start at a near-zero value and to converge

exponentially to 1 with each iteration. The effect of annealing on the decision function during the

iteration cycle is shown in Fig. 5.10, with the slope of the decision function increasing as β (.) is

updated with each iteration.
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Figure 5.9: β -updates for Z = 20 iterations.

5.3.2 Asynchronous Updates

In artificial neural networks, the neurons in the network can be updated using either parallel or asyn-

chronous updates. Consider the iterative solution of the HNN in (5.8). When parallel neuron updates

are used, all the elements in u(n) are calculated before the elements in s(n) are determined. This im-

plies that the output of the neurons will only be a function of the neuron outputs from the previous

iteration. When using asynchronous neuron updates, however, one element in s(n) is determined for
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Figure 5.10: Simulated annealing on the bipolar decision function for Z = 20 iterations.

every corresponding element in u(n). Asynchronous updates allow the changes of the neuron out-

puts to propagate to the other neurons immediately [91], while, with parallel updates, the output of

all of the neurons will only be propagated to the other neurons after all of the neurons have been

updated.

In the context of Turbo Equalization using superstructures the idea of asynchronous neuron updates in

the HNN-TE is analogous to dynamic LLR updates used as an optimization technique for the DBN-

TE in Chapter 3 (see 4.3.6). Dynamic LLR updates allow for coded symbol estimates to be used

in the current iteration as soon as they become available. As soon as the forward and backward

messages overlap, the corresponding LLR coded symbol estimates can be determined and used in

the estimation of the remainder of the code symbol estimates. When dynamic LLR updates are not

applied in the DBN-TE, new coded symbol estimates are only available after the forward-backward

message has been determined completely, after which all the LLR updates are determined for use in

the next iterations. Similarly, when parallel neuron updates are applied, new coded symbol estimates

are only available at the end of each iteration, whereas coded symbol estimates can be used in the

current iteration when asynchronous neuron updates are applied.
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5.4 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the HNN-TE is compared to that of the CTE by calculating the

number of computations performed for each received data block, for a fixed set of system parameters.

The number of computations is normalized by the coded data block length so as to factor out the effect

of the length of the transmitted data block, which allows the computational complexity to be expressed

in terms of the number of computations required per received coded symbol. The complexity of the

HNN-TE is cubically related to the coded data block length, so a change in Nc will still have an effect

on the normalized computational complexity. The HNN-TE complexity is also compared to that of

the LCTEs discussed in Chapter 3.

5.4.1 HNN-TE vs CTE

As discussed in Chapter 3, the complexity can be reduced when frequency hopping is employed,

but for the HNN-TE that reduction is not significant. The complexity of the HNN-TE is therefore

presented without frequency hopping. The computational complexity of the HNN-TE is

CCHNN−T E ≈ O(4(Nc+L−1)2.376 +ZHNN−T E(NcM/2)2), (5.47)

where Nc is the coded data block length, L is the CIR length, M is the modulation constellation alpha-

bet size (M = 2 for BPSK and M = 4 for 4-QAM), ZHNN−T E is the number of iterations and k is the

codeword length, which was chosen as k = 8 for a code rate of Rc = 3/8. Since the cubic complexity

of matrix inversion and multiplication can be reduced to O(N2.376) [55], as mentioned in the previous

chapter, (5.47) serves as a lower bound on the HNN-TE computational complexity.

The complexity of the CTE is

CCCT E ≈ O(ZCT E(NcMeL+Nck2)), (5.48)

where ZCT E is the number of iterations and Me is the number of equalizer states, determined by ML−1

(M = 2 for BPSK modulation and M = 4 for 4-QAM modulation).

Fig. 5.11 shows the normalized computational complexity of the HNN-TE and the CTE for coded

data block lengths of Nc = 80, Nc = 160, Nc = 320, Nc = 640, Nc = 1280 and Nc = 2560, where

ZHNN−T E = 25 and ZCT E = 5, for BPSK (red) and 4-QAM (green) modulation when O(N2.376
c ) mat-

rix multiplication complexity is considered. For the CTE the BPSK (blue) and 4-QAM (black) com-

plexities are also shown. Fig. 5.12 shows the same information as Fig. 5.11, but with O(N3
c ) matrix
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multiplication complexity. It is clear that the computational complexity of the HNN-TE increases

with an increase in the coded data block length, but for realistic data block lengths the complexity of

the HNN-TE is superior to that of the CTE for channels with long memory. The HNN-TE is compu-

tationally less complex for BSPK modulation than for 4-QAM. On the other hand, the complexity of

the CTE grows exponentially with an increase in modulation order. From Fig. 5.11 it is clear that the

complexity of the HNN-TE is almost quadratically related to the coded data block length and approx-

imately independent of the channel memory length, which is more evident when L is increased. The

normalized computational complexity of the HNN-TE and the CTE for O(N2.376
c ) and O(N3

c ) matrix

multiplication complexity) for Nc = 1280 using BPSK and 4-QAM for extremely long channels is

shown in Fig. 5.13, where there is no comparison between the complexity of the HNN-TE and that of

the CTE, for both BSPK and 4-QAM modulation.
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Figure 5.11: HNN-TE and CTE normalized computational complexity for short channels and varying

coded block length with O(N2.376
c ) matrix multiplication complexity.

5.4.2 HNN-TE vs LCTEs

The computational complexity of the HNN-TE is compared to that of the LCTEs discussed in

Chapter 3 for BPSK modulation, using the same parameters as before, assuming the computa-

tional complexities of the MMSE-LE/DFE (in (3.62) and (3.64)) and the SFE/SDFE (in (3.66) and
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Figure 5.12: HNN-TE and CTE normalized computational complexity for short channels and varying

coded block length O(N3
c ) matrix multiplication complexity.
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Figure 5.13: HNN-TE and CTE normalized computational complexity for long channels and Nc =

1280 with O(N2.376
c ) and O(N3

c ) matrix multiplication complexity.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

167

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Hopfield Neural Network Turbo Equalizer

(3.68)). Assuming a MAP decoder computational complexity of O(Nck2) (for the decoding of bal-

anced codes), the resulting LCTE computational complexities are expressed as

CCMMSE−LE/DFE−T E = O(Z(Nc(N2 +L2)+Nck2)) (5.49)

and

CCSFE/SDFE−T E = O(Z(Nc(N +L)+Nck2)). (5.50)

These computational complexities of the LCTEs (red) are shown together with those of the HNN-TE

(for both O(N3
c ) (purple) and O(N2.376

c ) (green) matrix multiplication complexity) in Fig. 5.14 for

uncoded data block lengths of Nu = 240 (circle), Nu = 480 (square) and Nu = 960 (diamond). From

Fig. 5.14 it can be seen that the HNN-TE complexity grows with an increase in the data block length,

and it is clear that the HNN-TE is more computationally complex than both the MMSE-LE/DFE-TE

and the SFE/SDFE-TE. However, when O(N2.376
c ) matrix multiplication complexity is considered, the

complexity of the HNN-TE is comparable to that of the MMSE-LE/DFE-TE. Also, when compared

to the CTE, the complexity of the HNN-TE is far superior when in highly dispersive channels.
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Figure 5.14: HNN-TE and LCTE normalized computational complexity for various uncoded data

block lengths and BPSK modulation.
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5.5 SIMULATION RESULTS

The HNN-TE is evaluated in a mobile fading environment for BPSK and 4-QAM modulation at

a code rate of Rc = n/k = 3/8. The HNN-TE is simulated and compared for both BPSK and 4-

QAM modulation, after which the performance of the HNN-TE is first evaluated alongside that of the

CTE for BPSK modulation. The simulation environment is discussed at length in Appendix A. The

following simulation parameter settings were used:

Parameter Setting

Modulation BPSK/4-QAM

Interleaver Random

Uncoded block length (Nu) 480

Coded block length (Nc) 1280

Channel Fading/Static

CIR length (L) Varying

Channel Estimation No

Channel State Information Perfect CSI

Number of pilots -

Frequency hopping Yes

Number of freq. hops 4

Number of CTE iterations (ZCT E) 5

Number of HNN-TE iterations (ZHNN−T E) Z(Eb/N0) = 2(5(Eb/N0)/5)

Mobile speed (v) 20 km/h

PDP Uniform (hT h = 1)

In order to evaluate the effect of each parameter on the performance of the HNN-TE, the following

simulations were performed by fixing all the parameters and varying one parameter at a time.

5.5.1 HNN-TE: BPSK vs 4-QAM

5.5.1.1 Simulated Annealing

The effectiveness of the application of simulated annealing in the HNN-TE is evaluated by simulating

the system with and without simulated annealing in static and fading channels using BPSK modula-
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tion. Fig. 5.15 shows the performance of the HNN-TE in static channels of length L = 4 and L = 6,

with and without simulated annealing. Although the performance of the HNN-TE is not very good in

a static channel with equal tap weights, it is still much better when annealing is applied than without

the use of annealing.

Fig. 5.16 shows the performance of the HNN-TE in fading channels of length L = 5, L = 10 and

L = 20. Fig. 5.16 indicates that annealing vastly improves the performance of the HNN-TE. It can

therefore be concluded that simulated annealing greatly improves the performance of the HNN-TE in

both static and fading channels. Simulated annealing will henceforth be used in all simulations of the

HNN-TE.
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Figure 5.15: HNN-TE performance in short static channels with and without the use of simulated

annealing.

5.5.1.2 Long Memory

Fig. 5.17 shows the performance of the HNN-TE for channels of length L = 10, L = 20, L = 50,

L = 100 at a fixed mobile speed of 20 km/h for BPSK and 4-QAM modulation, assuming perfect

CSI. It is clear that the performance for BPSK modulation is better than the performance for 4-QAM,

which is due to the fact that Gray coding cannot be applied in the encoding process described in

Section 3.2.2. The performance loss is therefore warranted.
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Figure 5.16: HNN-TE performance in long fading channels with and without the use of simulated

annealing.
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Figure 5.17: HNN-TE BPSK and 4-QAM performance in long channels.
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BPSK HNN−TE: v=20 km/h
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4−QAM HNN−TE: v=200 km/h
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Figure 5.18: HNN-TE BPSK and 4-QAM performance in a long channel at various mobile speeds.

5.5.1.3 Mobile Speed

Fig. 5.18 shows the performance of the HNN-TE for a channel of length L = 50 at mobile speeds

of 20 km/h, 80 km/h, 140 km/h, and 200 km/h for BPSK and 4-QAM modulation, assuming perfect

CSI. It is clear that an increase in mobile speed leads to a performance degradation, although not as

much as expected. Again BPSK modulation performs better than 4-QAM modulation.

5.5.1.4 Training Symbols

Fig. 5.19 shows the performance of the HNN-TE for a channel of length L = 50 at a mobile speed

of 20 km/h for BPSK and 4-QAM modulation, assuming imperfect CSI. To estimate the channel,

training sequences of length 4L, 6L, 8L and 10L were used. As expected, a performance loss is

incurred with a decrease in the number of training symbols. Again BPSK modulation outperforms

4-QAM modulation.
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5.5.1.5 Iterations

Fig. 5.20 shows the performance of the HNN-TE for a channel of length L = 25 at a mobile speed of

20 km/h for BPSK and 4-QAM modulation, assuming perfect CSI, for different numbers of iterations.

The number of iterations was chosen to be Z = 5, Z = 10, Z = 20 and Z = 50. The BER performance

increases with an increase in the number of iterations. Since the performance degradation due to a

decrease in the number of iterations is low at low signal levels, this author adopts an iteration schedule

that is dependent on the signal level. One uses the following function to determine the number of

iterations: Z(Eb/N0) = 2(5(Eb/N0)/5).

5.5.1.6 Code Rates

Fig. 5.21 shows the performance of the HNN-TE for a channel of length L = 50 at a mobile speed of

20 km/h for BPSK and 4-QAM modulation, assuming perfect CSI, for different code rates. The code

rates were Rc = 1/2 (2/4), Rc = 3/8, Rc = 1/4 (4/16) and Rc = 5/32. From Fig. 5.21 it is clear that

the performance of the HNN-TE increases with a decrease in the code rate, with 4-QAM modulation

performing worse than BPSK modulation.
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Figure 5.19: HNN-TE BPSK and 4-QAM performance in a long channel for various numbers of

training symbols.
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Figure 5.20: HNN-TE BPSK and 4-QAM performance in a long channel for various numbers of

iterations.

0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

 

 

BPSK HNN−TE: R
c
=2/4

BPSK HNN−TE: R
c
=3/8

BPSK HNN−TE: R
c
=4/16

BPSK HNN−TE: R
c
=5/32

4−QAM HNN−TE: R
c
=2/4

4−QAM HNN−TE: R
c
=3/8

4−QAM HNN−TE: R
c
=4/16

4−QAM HNN−TE: R
c
=5/32

Coded AWGN bound: R
c
=2/4

Coded AWGN bound: R
c
=3/8

Coded AWGN bound: R
c
=4/16

Coded AWGN bound: R
c
=5/32

Figure 5.21: HNN-TE BPSK and 4-QAM performance in a long channel for different code rates.
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5.5.2 HNN-TE vs CTE

5.5.2.1 Power Delay Profiles

The performance of the HNN-TE is compared to that of the CTE using the PDPs described in Ap-

pendix A for static and fading channels. The HNN-TE and the CTE are simulated for the uniform,

linear and exponential PDPs for fading and static channels of length L = 4 and L = 8. The PDPs

determine the tap weights, and as such influence the performance of the algorithms. Fig. 5.22 and

Fig. 5.23 show the performance of the HNN-TE and the CTE in static channels of length L = 4 and

L = 8 respectively, while the performance of the HNN-TE and the CTE in fading channels of length

L = 4 and L = 8 is shown in Fig. 5.24 and Fig. 5.25.

From Fig. 5.22 and Fig. 5.23 it is clear that the CTE outperforms the HNN-TE for all but the expo-

nential PDP in static channels. Fig. 5.22 shows that the CTE almost perfectly equalizes and decodes

the received signal for all PDPs while the HNN-TE achieves acceptable performance for the uniform

and linear PDP. The HNN-TE struggles to equalize and decode information when the uniform and

linear PDPs are used. However, the HNN-TE performs well when the exponential PDP is used, since

die bulk of the channel energy is concentrated in the leading CIR tap. From Fig. 5.24 and Fig. 5.25

it is clear that the HNN-TE consistently outperforms the CTE for all PDPs in fading channels. The

HNN-TE is therefore not applicable to static channels where the channel energy is spread across all

the taps. However, the HNN-TE is perfectly suited to fading channels regardless of the PDP.

5.5.2.2 Mobile Speed

The performance of the HNN-TE is evaluated and compared to that of the CTE at various mobile

speeds in a fading channel of length L = 6. Fig. 5.26 shows the performance of the HNN-TE and

the CTE for a channel of length L = 6 at mobile speeds of 3 km/h, 50 km/h, 80 km/h, 140 km/h,

and 200 km/h, assuming perfect CSI. It is clear that the HNN-TE outperformans the CTE at mobile

speeds greater than 20 km/h, with the advantage of performance increasing with an increase in mobile

speeds. It seems that the HNN-TE is less affected by increasing mobile speeds, which suggests that

the HNN-TE is able to handle channel estimation errors better that the CTE.
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Figure 5.22: HNN-TE and CTE performance in static channels of length L = 4 for three PDPs.
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Figure 5.23: HNN-TE and CTE performance in static channels of length L = 8 for three PDPs.
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Figure 5.24: HNN-TE and CTE performance in fading channels of length L = 4 for three PDPs.
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Figure 5.25: HNN-TE and CTE performance in faing channels of length L = 8 for three PDPs.
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Figure 5.26: HNN-TE and CTE performance in a short channel at various mobile speeds.
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Figure 5.27: HNN-TE and CTE performance in a short channel for various numbers of training

symbols used for channel estimation.
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5.5.2.3 Training Symbols

To test the resilience of the HNN-TE against channel estimation errors, various numbers of training

symbols are used to estimate the CIR using an LS estimator. To estimate the channel training se-

quences of length P = 4L, P = 6L, P = 8L and P = 10L are used. Fig. 5.27 shows the performance

of the HNN-TE and the CTE for a channel of length L = 6 at a mobile speed of 20 km/h for various

numbers of training symbols. From Fig. 5.27 it is clear that the performance of the HNN-TE and

CTE are comparable and that the HNN-TE is able to achieve acceptable performance with fairly low

numbers of training symbols.

5.6 CONCLUDING REMARKS

In this chapter an LCTE using the HNN as its underlying structure was presented, which is able

to jointly equalize and decode BPSK and 4-QAM coded-modulated signals in systems transmitting

interleaved information through a multipath fading channels. It was shown how sets of balanced codes

can be generated from Walsh-Hadamard codes and the encoding process was discussed in detail. The

HNN MLSE equalizer developed in [19, 20] was discussed, after which the HNN decoder in [21, 22]

was discussed. It was shown how the HNN decoder can be modified to decode sequences of balanced

codes in order to be merged with the HNN MLSE equalizer, resulting in an HNN MLSE decoder. It

was further shown how the HNN MLSE equalizer can be merged with the HNN MLSE decoder in

order to perform joint equalization and decoding using one HNN structure.

The resulting LCTE uses the HNN as framework and hence it was fittingly named the Hopfield Neural

Network Turbo Equalizer, or HNN-TE. The HNN-TE is able to turbo equalize code modulated BPSK

and 4-QAM signals in short as well as long multipath channels. It was shown that the HNN-TE out-

performs the CTE in most simulation scenarios. It was clear that the HNN-TE is not suited to static

channels. The HNN-TE’s computational complexity in long channels is vastly superior to that of

CTEs, but it is higher than that of the MMSE and DFE based LCTEs. The computational complexity

of the HNN-TE is cubically related to the coded data block length, while being approximately inde-

pendent of the CIR length. This enables it to turbo equalize signals in systems transmitting BPSK

and 4-QAM modulated information using moderate coded data block lengths through multipath fad-

ing channels with multiple hundreds of multipath elements. The performance of the HNN-TE for

BPSK modulation is better than for 4-QAM modulation, since Gray coding cannot be employed be-
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cause of the coded modulation explained in this chapter, while the complexity for 4-QAM is slightly

higher.
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CHAPTER 6

CONCLUSION

6.1 SUMMARY

In this thesis two novel iterative joint equalizers and decoders, or turbo equalizers, were developed as

low complexity alternatives to the well known, but computationally expensive, CTE, which employs

an optimal MAP equalizer. This was done by treating the turbo equalization problem as a single

optimization problem, and by designing two unique solutions using superstructures. The idea was

to process all the available information (from the channel as well as the coding scheme used) as a

whole, without exchanging extrinsic information between separate subunits. One concern was the

fact that the interleaver destroys the causality relationship between the transmitted symbols and the

received symbols, but in both cases a deinterleaving transformation was applied to restore the one-to-

one relationship between each received symbol and its corresponding transmitted symbol via the fist

CIR coefficient. ISI mitigation was then performed in an iterative fashion in both cases.

In Chapter 2 equalization, decoding and joint equalization and decoding were discussed. Since the

MLSE and MAP algorithms are used for both equalization and decoding, they were discussed for

the general case, after which it was explained how each of them may be applied to the problems

of equalization and decoding. Non-iterative joint equalization and decoding, dubbed the NI-JED,

was then rigorously analyzed for the case where no interleaving is employed as well as for the case

were block interleaving is employed. Analysis of the NI-JED was an important part of the quest

to design low complexity joint equalization and decoding algorithms using superstructures, since

the NI-JED perfectly models the joint equalization and decoding problem by using a super-trellis

while achieving optimal performance without iterating. Although the NI-JED performs optimally, its

complexity grows exponentially with an increase in channel memory length when no interleaver is

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6 Conclusion

used, and exponentially in both the channel memory length, as well as the interleaver depth, when a

block interleaver is used. The complexity of the NI-JED also increases exponentially with an increase

in the encoder constraint length, but the constraint length is normally limited in length. In order to

achieve the best performance in a wireless communication system transmitting information through

a multipath channel, a random interleaver should be used. However, the NI-JED cannot be used

when a random interleaver is employed, as there is no fixed interleaver structure from which the joint

equalizer and decoder can be designed.

Chapter 3 was dedicated to turbo equalization. It was discussed how a MAP equalizer and a MAP

decoder iteratively exchange information in the form of extrinsic information, which is then used by

the other algorithm as prior information regarding the symbols to be estimated. With each iteration

the output of each algorithm becomes more reliable, which leads to more reliable estimates after

the next iteration etc. The computational complexity of CTEs are however problematic if the chan-

nel memory is large owing to the exponential relationship between the equalizer complexity and the

channel memory. Attention was therefore paid to a number of low complexity equalizers - MMSE-

LE, MMSE-DFE, SFE and SDFE - which can be used as a replacement for the MAP equalizer in a

CTE. The derivations of these low complexity equalizers were presented based on the literature, and

computational complexity analyses of the resulting LCTEs were performed. The computational com-

plexities of the LCTEs were compared to that of the CTE, and simulation results from the literature

were presented.

The DBN-TE was developed in Chapter 4 by using a DBN to model the turbo equalization problem.

For the DBN-TE to function correctly there had to be a dominant connection between the observed

variables and their corresponding hidden variables, as well as weak connections to past and future

hidden variables. This was achieved by performing a Cholesky transformation on the autocorrelation

of the channel matrix and filtering the received symbols accordingly. It was however stated that

Cholesky decomposition filtering is not adequate for some static channels, and therefore an MMSE-

DF prefilter was also used to transform the channel to its minimum phase form. Another precondition

was that the randomization effect of the interleaver had to be mitigated, which was achieved by

filtering the received symbol sequence with the Hermitian transpose of the interleaved channel matrix.

The computational complexity of the DBN-TE is approximately quadratic (cubic worst case) in the

coded data block length, exponential in the encoder constraint length, as is standard in the CTE and

all LCTEs, but approximately independent of the channel memory length. Its complexity is worse

than that of the LCTEs considered in this thesis, but is far superior to that of the CTE for systems
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Chapter 6 Conclusion

with long channel memory. Its performance is comparable to that of a CTE in all fading channels

and short static channels, and comparable to that of the LCTEs in the literature. Its performance is

however lacking in some static channels.

The HNN-TE was derived in Chapter 5 by combining the HNN MLSE equalizer and the HNN MLSE

decoder. The HNN MSLE equalizer was developed by this author in [19,20], and it has exceptionally

low computational complexity due to the high parallelism of its underlying neural network structure,

which makes it suitable for use in systems transmitting uncoded information through a highly dis-

persive multipath channel. The HNN MLSE decoder was proposed in [21, 22] for the decoding of

balanced codewords, but it is only able to decode single balanced codewords. However, in order to

merge the HNN MLSE decoder with the HNN MLSE equalizer, the decoder had to be able to de-

code sequences of balanced codewords, not single codewords only. This was achieved by scaling the

correlation matrix with respect to the coded transmitted data block size and copying the correlation

matrix of the single codeword HNN MLSE decoder along the diagonal, and instead of using single

received codewords as input, received codeword sequences were used as input to the sequence based

HNN MLSE decoder. The HNN MLSE equalizer and the HNN MLSE decoder were merged by

simply normalizing the correlation matrix of the former and adding it to that of the latter, thus biasing

the equalizer correlation matrix with that of the decoder, allowing for joint equalization and decoding

to be performed in an iterative fashion. The computational complexity of the HNN-TE is approxim-

ately independent of the channel memory length and almost quadratically related to the coded data

block length (cubic worst case), which allows it to jointly equalize and decode information transmit-

ted through severely dispersive multipath channels. The HNN-TE outperforms the equivalent CTE in

fading channels, but like the HNN MLSE equalizer in [19] and the DBN-TE developed in this thesis,

the HNN-TE does not perform well in some static channels.

6.2 FURTHER RESEARCH

Although the DBN-TE and HNN-TE developed in this thesis are unique in the sense that they iterat-

ively and jointly equalize and decode information using superstructures, they serve as a baseline for

further investigation as proposed in the following:
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6.2.1 DBN-TE

• It was developed for BPSK only. It should be possible to extend the DBN-TE to be able to

jointly equalize and decode information transmitted using higher order modulation schemes.

• Only convolution codes were investigated. The DBN-TE could be adapted for convolution

codes in higher order Galois fields as well as for LDPC codes.

• The DBN-TE does not perform well in some static channels. Better optimization techniques

and prefitering might improve its performance in static channels.

6.2.2 HNN-TE

• To date the only HNN decodable codes are balanced check codes, which do not provide good

coding gains. In order to make the HNN-TE attractive for practical use, better HNN decodable

codes must be found.

• Like the DBN-TE, the HNN-TE does not perform well in static channels. Better optimization

techniques might improve its performance in static channels.

6.3 CONCLUDING REMARKS

The DBN-TE and HNN-TE developed in this thesis have been thoroughly analyzed and simulated,

and their performance and computational complexity characteristics have been compared to that of

the CTE as well as other LCTEs. While offering very low computational complexity, the performance

of both turbo equalizers are comparable to that of the CTE. The proposed turbo equalizers are unique

in the sense that they make use of superstructures to solve the turbo equalization problem, doing so

without any limitation regarding the structure of the interleaver.
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APPENDIX A

SIMULATION ENVIRONMENT

The simulation enviroment used to produce the simulation results in this thesis is described here.

Since the author of this thesis used a similar simulation environment than the one in [20], the descip-

tion is similar to that in Chapter 3 of [20].

A.1 SYMBOL MAPPING AND DE-MAPPING

In order to transmit information in a communication system, a carrier frequency must be modulated

by a representation of the source data. To perform this task, a symbol constellation map is used to

transform the source information from bits to modulation symbols. These modulation symbols are

then used to modulate the carrier frequency in order to convey information. In this thesis three modu-

lation schemes are considered, namely BPSK and 4-QAM, each of which uses a unique constellation

map. The number of bits that can be transmitted during symbol period Ts using a constellation map

with M symbols, is log2(M) [2].

Figures A.1 and A.2 show the normalized1 Gray coded2 constellation maps using BPSK and 4-QAM

modulation, respectively, with their respective mappings shown in tables A.1 to A.2. The source bits

are mapped to modulation symbols according to the constellation map. For BPSK, one information bit

is transmitted during one symbol interval Ts. For 4-QAM, two information bits are transmitted during

one symbol interval, and for 16-QAM, four information bits are transmitted during one symbol inter-

val. Once the symbols have been estimated at the receiver, the constellation map is again used to map

1The constellation maps are normalized such that the Euclidean distance from the origin to the farthest symbols is equal

to 1. During simulation, a scaling factor is used to normalize the noise so that the average signal energy is equal to 1.
2Gray coding is employed so that each tuple of bits from neighboring symbols only differs by one bit. This will increase

the probability of one bit error when a symbol error is made during detection [2].
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the symbols back to bits in order to produce estimates of the transmitted source information.
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Figure A.1: BPSK constellation map.
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Figure A.2: 4-QAM constellation map.
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Table A.1: BPSK symbol mapping.

Bits Symbol (Rectangular) Symbol (Polar)

1 1 ∠0

0 -1 ∠π

Table A.2: 4-QAM symbol mapping.

Bits Symbol (Rectangular) Symbol (Polar)

00 1√
2
+ j 1√

2
∠π

4

01 − 1√
2
+ j 1√

2
∠ 3π

4

10 1√
2
− j 1√

2
∠−3π

4

11 − 1√
2
− j 1√

2
∠−π

4

A.2 INTERLEAVING

Interleavers are used to randomize the noise introduced to the transmitted information during trans-

mission and reception. In a mobile communication environment, where the channel is characterized

by multipath and fading, burst errors are common, which will cause a stream of adjacent symbols

to be damaged beyond recognition. Signal fading due to time-invariant multipath propagation often

causes the signal to fall below the noise level, resulting in a large number of consecutive errors [2].

This will inhibit the decoder from correcting errors, since the decoder relies on the structure in the

coded information as introduced by the encoder.

When the coded symbols are interleaved before transmission, burst errors will be transformed into

independent errors. An interleaver reorders the symbols before transmission so that the errors will

be decorrelated after deinterleaving in the receiver. Interleaving aids the decoder in that the structure

introduced by the encoder to the transmitted symbols can be exploited to the full, which will yield

performance gains.

A number of interleavers are widely used. These are convolutional, block, and S-random interleav-

ers [2]. The interleaver considered in this thesis is of the class of random interleavers, without the

restriction imposed on S-random interleavers [92].3 Fig. A.3 shows a random interleaver of length

3For S-random interleavers, each pair in the group of S consecutive bits must be at least S indices apart after interleaving.
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N = 20. In this thesis block interleavers are also considered. Please refer to Section 2.4.2.

kz

ku3

)1(3 +ku

)2(3 +ku

11

00

01

10

000
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100 110

011

101
111

010
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13s '
14s '

15s '
16s '

18s '
19s '

20s'
17s

Figure A.3: Random interleaver of length N = 20.

A.3 THE CHANNEL

A mobile communication system transmission channel is characterized by multipath and fading. Mul-

tipath is the phenomenon resulting from time spreading of the transmitted signal as it is transmitted

through the channel. Fading, on the other hand, results from time variations in the structure of the

transmission medium, causing the nature of the multipath channels to vary over time [2]. During

transmission, the transmitted symbols pass through the channel, which acts like a filter. The chan-

nel has a continuous time-varying impulse response, which is estimated at the receiver to aid in the

estimation of the transmitted information.

A.3.1 Multipath

Each coefficient, or tap, in the impulse response of a multipath fading channel is modeled as a con-

tinuous function of time, where each coefficient in the impulse response corresponds to symbol period

intervals tTs.4 As such, a tapped delay line is used to model the behavior of this channel, as shown in

Fig. A.4.

4The section is a repetition of the description in Section 2.2. It is mentioned here again for completeness
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S1

S2

S3

S4

t = 1 t = 2 t = 3 t = 4 t = Nt = N-1t = N-2

Ts Ts Ts

h0 h1 h2 hL-1

st

rt

nt

(t) (t) (t) (t)

Figure A.4: Tapped delay line for a multipath fading channel.

Fig. A.4 indicates that the tth transmitted symbol st is delayed by Ts seconds L−1 times, where L is

the channel impulse response (CIR) length and Ts is the symbol period. Each delayed copy of st is

multiplied by h(t)l , l = 1,2, ...,L− 1, corresponding to the lth delay branch at time t. Therefore, the

tth received symbol can be described by [1, 2]

rt =
L−1

∑
l=0

h(t)l st−l +nt , (A.1)

where nt is the tth noise sample from the distribution N (µ = 0,σ2 = 1). Each h(t)l is a sample

taken from one of L time-varying functions, where t corresponds with the tth transmitted symbol and

l = 1,2, ...,L− 1 is the CIR tap number. Each CIR tap is modeled as an independent uncorrelated

Rayleigh fading sequence, describing the fading behavior of that tap..

If it is assumed that the CIR is time-invariant for the duration of a data block, (A.1) can be rewritten

as

rt =
L−1

∑
l=0

hlst−l +nt , (A.2)

where st denotes the tth complex symbol in the transmitted sequence of N symbols chosen from an

alphabet D containing M complex symbols, rt is the tth received symbol, nt is the tth noise sample

from the distribution N (µ = 0,σ2 = 1), and hl is the lth coefficient of the estimated CIR. Equaliza-

tion is performed under the assumption that each CIR coefficient hl is time-invariant for the duration

of a data block. The CIR h = {h0,h1, . . . ,hL−1} therefore completely describes the multipath channel
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for a given received data block, assuming that the data block is sufficiently short so as to render the

CIR time-invariant. The equalizer takes as input the received symbol sequence r as well as the CIR

h.

A.3.2 Fading

It was stated that each coefficient, or tap, in the impulse response of a multipath fading channel is

modeled as a continuous function of time. Each tap, then, can be modeled as a flat fading channel. If

a signal with bandwidth B<<Bc is transmitted, the fading across the entire signal bandwidth is highly

correlated, which is referred to as flat fading. Here Bc is the coherence bandwith of the system, defined

as the minimum frequency separation for which the CIR is independent [93]. On the other hand, if

the bandwidth B >> Bc , then the channel amplitude values at frequencies separated by more than

the coherence bandwidth are roughly independent, which is referred to as frequency-selective [93].

In flat fading channels there is no inter-symbol interference (ISI) and in frequency-selective channels

there is ISI.

When channel fading is considered, a distinction needs to be made between Rayleigh fading and

Rician fading. When it is assumed that there is no line of sight (LOS) between the transmitter and the

receiver, Rayleigh fading is used, and Rician fading is used when there is LOS between the transmitter

and the receiver [2]. The former is considered in this thesis.

For a Rayleigh fading channel the fading amplitude at instance k is given by

Rk =
√

X2
k +Y 2

k , (A.3)

where Xk and Yk are samples taken from a Gaussian random process N (0,σ2
r ) [2]. The probability

density function of a Rayleigh random variable is given by

p(x) =
x

σ2
r

exp
(
−x2

2σ2
r

)
, x≥ 0. (A.4)

The model proposed in [94] is used for the generation of uncorrelated fading vectors. This model

is based on a sum-of-sinusoids approach, which is an extension off Clarke’s frequency nonselective

fading process model [95]. Clarke’s model is given by

g(t) =

√
2
N

exp(ωdtcosαn +φn) (A.5)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

199

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix A Simulation Environment

where αn is the angle of the incoming wave, φn is the initial phase associated with the nth propagation,

and ωd is the maximum angular Doppler frequency when αn = 0. The model in (A.5) is modified

such that N = 4M, φn+M = −ϕ + π

2 , φn+2M = −φn, φn+3M = ϕn +
π

2 , and αn = (2πn− π + θ)/N,

where θ is uniformly distributed in [−π;π) [94]. The complex low-pass Rayleigh fading process in

(A.5) is therefore described by

g(t) =

√
2
N

(
M

∑
n=1

2cos(wdtcosαn +φn)+ j
M

∑
n=1

2cos(wdtsinαn +ϕn)

)
, (A.6)

of which the PDF of the magnitude will approximate a Rayleigh distribution [94]. To produce a new

set of uncorrelated fading vectors, one for the real symbol components and one for the imaginary

symbol components, the normalized low-pass fading process of a new statistical sum-of-sinusoids

simulation model is defined by [94]

Z(t) = Zi(t)+ jZq(t)

Zi(t) =

√
2
N

(
M

∑
n=1

cos(wdtcosαn +φn)

)

Zq(t) =

√
2
N

(
M

∑
n=1

cos(wdtsinαn +ϕn)

)
,

where

αn =
2πn−π +θ

4M

and φn, ϕn and θ are statistically independent and uniformly distributed in [−π;π) for all n.

A.3.3 White Gaussain Noise

In addition to ISI, the transmitted symbols are also corrupted by AWGN, mainly caused by electron

fluctuations in electronic components and amplifiers in the receiver [2]. This type of noise is charac-

terized as a zero-mean Gaussian noise process with variance σ2
n . The Gaussian process PDF is given

by

p(x) =
1√

2πσ2
exp

(
−|x−µ|2

2σ2
n

)
, (A.7)

where µ is the mean and σ2
n is the variance. The assumption of AWGN is important for designing

equalizers for digital communication systems. This will become clear in Section 2.2. The simulation

of Gaussian noise, and how it is applied to the received symbols, is discussed next.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

200

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix A Simulation Environment

A.3.3.1 AWGN Simulation

In order to evaluate the performance of digital communication systems, it is useful to evaluate the

systems for a given signal-to-noise ratio (SNR), expressed as

SNR =
σ2

s

σ2
n
, (A.8)

where σ2
s is the average signal power and σ2

n is the average noise power. Since the SNR is meaningless

unless the noise equivalent bandwidth is specified [96], it is instructive to use a normalized measure

of the SNR, namely the energy per bit to noise spectral density ratio Eb/N0. Following the derivation

in [96], the value by which the Gaussian random number generator output is scaled, is expressed

as

kη =

√√√√ σ2
s . fsamp

2. fbit .10
Eb

10.N0

, (A.9)

where fsamp is the frequency at which Gaussian noise samples are generated, fbit is the frequency

of uncoded bits per transmitted symbol and Eb/N0 is the signal strength (in dB) where the system

is evaluated. By scaling the output of the zero mean, unit variance Gaussian noise generator by kη ,

Guassian noise samples with variance σ2
n are produced, which are then added to the ISI-corrupted

symbols in the receiver.

A.3.4 Doppler Frequency

Doppler frequency shifts are encountered when there is a change in the relative velocity between the

transmitter and the receiver. If the relative velocity increases, the Doppler frequency is positive and

when the relative velocity decreases, the Doppler frequency is negative. As the Doppler frequency

increases, there is a corresponding increase in the fading rate. The Doppler frequency is determined

by [93]

fD =
v fc

c
θD, (A.10)

where v is the relative velocity between the transmitter and the receiver, fc is the carrier frequency.

θD is the incident angle of the received signal and c is the transmission speed in the medium,

which is commonly assumed to be equal to the speed of light, c = 3× 108m/s for wireless com-

munication through the atmosphere. A number of parameters are associated with the Doppler fre-

quency [93]:
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• The Doppler spread BD is a measure of the expansion of the spectral band of the signal being

transmitted and is given by BD ≈ 1/Tc, where Tc is the coherence time.

• The coherence time Tc specifies the period during which the CIR remains time-invariant and is

approximated as Tc ≈ 1/BD.

• The coherence bandwidth Bc is the minimum separation of frequencies for which the CIR is

independent and is given by Bc ≈ 1/τmax, where τmax is the channel delay spread, i.e. the

duration between the first and the last arrival of the same signal component.

A.3.5 Power Delay Profiles

The power delay profile (PDP) represents the average power associated with a given multipath delay

[93]. The PDP is a continuous function of time, but in the receiver the channel delay profile is

segmented according to the number of resolvable multipath elements. Two multipath components are

said to be resolvable if the difference between their respective delays is less than the inverse of the

signal bandwidth [93]. In other words, since the symbol period

Ts =
1+α

B
, (A.11)

where α is the roll-off factor5 and B is the signal bandwidth, two multipath components are resolvable

if the difference between their respective delays is equal to or greater than the symbol period, assum-

ing that α = 0. When the multipath elements are not resolvable, these nonresolvable components are

combined into a single multipath component with delay approximately equal to the delays of those

elements, with amplitude and phase corresponding to the sum of the different components [93].

A number of PDPs are used in this thesis to evaluate the performance of the system for various channel

conditions. The PDP models are described in turn below:

5The roll-off factor is a parameter of the square-root Nyquist filter which determines the cut-off rate of the filter.
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A.3.5.1 Exponential PDP

The exponential PDP coefficients are determined by

hl = exp
(−lτmax

Lτe

)
(A.12)

where k = 0,1,2, ...,L−1, τmax is the channel delay spread duration, and τe is the time constant of the

profile, determined by

τe =
−τmax

ln
(

10
Pdrop

10

) , (A.13)

where Pdrop is the relative power drop between t = 0 and t = τmax, with a value of −30 dB [96]. The

normalized exponential PDP coefficients are shown in Fig. A.5 for L = 20.

A.3.5.2 Linear PDP

The linear PDP coefficients are determined by

hl =
L− l

L
, (A.14)

where l = 0,1,2, ...,L−1. The normalized linear PDP is shown in Fig. A.6 for L = 20.

A.3.5.3 Uniform PDP

The uniform PDP coefficients are determined by

hl = 1, (A.15)

where l = 0,1,2, ...,L−1. Fig. A.7 shows a normalized uniform PDP for L = 20.
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Figure A.5: Exponential power delay profile for L = 20.
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Figure A.6: Linear power delay profile for L = 20.
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Figure A.7: Uniform power delay profile for L = 20.

A.3.5.4 Energy Normalization

Disregarding fading, it is assumed that the received energy is equal to the transmitted energy. In a

system transmitting information through a multipath channel, the transmitted energy is spread among

the various independent fading channels. Since it is assumed that the received energy is equal to

the transmitted energy, the nominal channel weights h = {h0,h1, · · · ,hL−1}T are normalized such

that

hT h = 1. (A.16)

To achieve this, irrespective of the power delay profile of the channel, the nominal tap weights are

divided by the norm of the nominal channel weight vector. That is,

h =
h0

‖h‖
,

h1

‖h‖
, · · · , hL−1

‖h‖
(A.17)

where the norm ‖h‖ is expressed as

‖h‖=
√

h2
0 +h2

1 + ...+h2
L−1. (A.18)

The normalized nominal tap weights are then used to scale the respective Rayleigh fading vectors for

each corresponding CIR tap, which will ensure that no energy is added during transmission.
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A.3.6 Frequency Hopping

Frequency hopping is applied in a wireless communication system in order to aid the receiver to better

detect the received signal. Based on the coherence bandwidth (Bc) of the communication system,

explained in Section A.3.4, the frequency at which a given data block is transmitted is changed, or

hopped, to ensure that the detrimental effects of fading is combated. Frequency hopping provides a

mean to artificially create temporal diversity in order to improve the performance. Figure A.8 through

Figure A.11 shows three uncorrelated fading vectors, corresponding to a system with a CIR length

of L = 3, for a duration of N = 1200 data symbols transmitted at a mobile speed of 50 km/h, where

F = 1, F = 2, F = 4 and F = 8 frequencies were respectively utilized for frequency hopping. With

each frequency hop, a unique uncorrelated fading vector is obtained, which minimizes the chance

of the entire transmitted data block being in a deep fade, where the signal might be unrecoverable.

Thus, by applying frequency hopping, signal fidelity is improved, which leads to performance gains.

One detrimental aspect of frequency hopping, however, is that channel estimation will have to be

performed for each frequency that was hopped to in the data block. This will add computational

complexity, and it will also require the addition of more training symbols in each frequency hopped

section of the data block for channel estimation.
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Figure A.8: Uncorrelated fading vectors for no frequency hopping.
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Figure A.9: Uncorrelated fading vectors for frequency hopping (F = 2).
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Figure A.10: Uncorrelated fading vectors for frequency hopping (F = 4).
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Figure A.11: Uncorrelated fading vectors for frequency hopping (F = 8).

A.4 CHANNEL ESTIMATION

In a digital communication system, the channel estimator is used at the receiver to estimate the im-

pulse response of the overall channel between the transmitter and the receiver. As described earlier,

the received signal suffers from multipath, resulting in ISI at the receiver, necessitating equalization in

an attempt to mitigate the effect of ISI in the received symbols. To invert the effect of the channel on

the transmitted symbols effectively , some measure thereof is needed. The channel estimator provides

an estimate of the channel in the form of a discrete impulse response.

In short, the channel estimator works as follows: the receiver has knowledge of a number of the sym-

bols that are transmitted in every data block. This series of symbols is agreed upon by the transmitter

and the receiver and are commonly known as the pilot or training symbols. The channel estimator

examines these pilot symbols to determine how they interfered with each other during transmission.

Because it is assumed that the channel is static, or time-invariant for the duration of a data block, it

is also assumed that the ISI experienced by the pilot symbols will also have been experienced by the

other symbols in that data block. The channel estimator module produces a vector known as the CIR

that contains the coefficients of a finite impulse response filter. The CIR reprensents the channel by
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which the transmitted symbols were filtered during transmission. Channel estimation is performed

for each data block that arrives at the receiver.

In this thesis least squares (LS) approximation is used to perform channel estimation. Assuming a

static channel for the duration of one data block, channel estimation can easily be formulated in the

LS sense. The explanation is closely related to the derivation in [56, 57].

The channel estimator receives K ISI-corrupted pilot symbol observations r = {r1,r2, ...,rK+1}T ,

where K is the number of pilot symbols and the channel impulse response is denoted by h =

{h0,h1, ...,hL−1}, where the observations are described by

r = Qh+n. (A.19)

The matrix Q is fully populated by K known pilot symbols, corresponding to the ISI-corrupted re-

ceived pilot symbols r, and n contains Gaussian noise samples from the distribution N (0,σ2). The

matrix Q is given by

Q =



tn tn−1 . . . tn−L+1 tn−L

tn+1 tn
. . . tn−L tn−L+1

...
. . . . . . . . .

...

tn+(K−1) tn+(K−2)
. . . tn−L+K tn−L+(K−1)

tn+K tn+(K−1) . . . tn−L+K+1 tn−L+K


(A.20)

To estimate the CIR c, the squared error between r and Qh is

ε
2 = tr[(r−Qh)H(r−Qh)] = nHn. (A.21)

which is differentiated with respect to c to obtain

∂ε2

∂c
= 2QH(r−Qh). (A.22)

Equating the gradient to zero produces the LS estimate

c̃ = (QHQ)−1QHr. (A.23)

The pilot sequence must be chosen such that its autocorrelation approaches the Delta Dirac function.

This will ensure that the Grammian Matrix (QHQ) is diagonally dominant and therefore invertible,

which will simplify calculation of c̃ in (A.23).
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A.5 CONCLUDING REMARKS

In this appendix the most important aspects of the simulation environment used in this thesis were

discussed, and it was also explained how the communication systems considered in this thesis will

be simulated. Although the discussion is not exhaustive, the concepts relevant to this thesis were

discussed at length.
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