ORIGINAL PAPER

Molecular characterization of two homoeologous elicitorresponsive lipin genes in cotton

Sonia M Phillips . Ian A Dubery . Henriette van Heerden

S.M. Phillips . I.A. Dubery . H. van Heerden

Department of Biochemistry, University of Johannesburg, Kingsway Campus, P.O. Box 524, Auckland Park, 2006, South Africa

Present Address:
S.M. Phillips

Department of Plant Science, University of Pretoria, Hatfield, Pretoria, 0001, South Africa
H. van Heerden

Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
I.A. Dubery (\triangle)

Department of Biochemistry, University of Johannesburg, Kingsway Campus, P.O. Box 524, Auckland Park, 2006, South Africa

Abstract

The identification and molecular characterization of two lipin-like gene copies (GhLIPN) in cotton, Gossypium hirsutum, an allotetraploid derived from two progenitor diploid Gossypium species, is described. Sequence analyses of the GhLIPN copies, designated GhLIPN-1 and -2, revealed that they contain 11 exons, separated by 10 introns. They each have a 2643 bp open reading frame that encodes 880 aa proteins, and share a 97.7% and 95.5% sequence similarity at the translated nucleotide and amino acid level, respectively. The GhLIPN genes have a distinct domain architecture consisting of an archetypical N-terminal lipin domain, followed by a haloacid dehalogenase (HAD) domain towards the C-terminus. A Southern blot did not distinguish between the two gene copies, which suggest that they may be homoeologs rather than paralogs. GhLIPN-2 is more similar to a homologous sequence from G. raimondii, representing the ancestral D-genome, compared to GhLIPN-1 that matches G. herbaceum and that represents the A-genome. Our data indicates that GhLIPN-1 and GhLIPN-2 are homoeologs that derive from the A- and the D-diploid genomes respectively. The promoter sequences of GhLIPN-1 and -2 differ by 56%, as a result of multiple indels. In silico analysis of the promoter regions revealed that both genes both contain numerous putative defence-related and elicitor-responsive cis-elements that supports a role for GhLIPN in defence responses. Relative quantification real-time PCR confirmed the up-regulation in response to a cell wall-derived V. dahliae elicitor, which supported the association of $G h L I P N$ with defence signalling. The results add a new dimension to the proposed roles of lipins in plants by suggesting that lipins may have a role in defence signalling.

Keywords Allotetraploid . Gossypium hirsutum . haloacid dehalogenase . homoeologs . lipin . phosphatidate phosphatase . Verticillium dahliae

Introduction

The fungal phytopathogen Verticillium dahliae is widespread, occurring on a variety of economically important crops, including cotton (Klosterman et al. 2009), where infection is characterized by wilting (Göre et al. 2009) and results in significant cotton crop losses (Bolek et al. 2005; Aguado et al. 2010). Differential display transcriptome analysis was previously used to identify changes in gene expression of V. dahliae-resistant G. hirsutum cells challenged with a cell-wall derived (CWD) V. dahliae elicitor, to identify defence-related genes. An up-regulated lipin-like expressed sequence tag (EST) (designated C1B10) was identified (Zwiegelaar 2003). This study is the first report of lipin genes in cotton and provides a foundation for the further investigation of the role(s) of plant lipins.

Lipins are recently identified phosphatidate phosphatases (PAPs) which have a crucial function in the lipid metabolism of eukaryotes (Reue and Zhang 2008). Owing to their PAP activity (Type $1, \mathrm{Mg}^{2+}$-dependent), lipins convert phospholipase D (PLD)-derived phosphatidic acid (PA) to diacylglycerol (DAG) and phosphate, in the presence of Mg^{2+}. DAG is further metabolized to produce integral membrane components such as phospholipids and galactolipids, in addition to triacylglycerol (TAG), for lipid storage (Reue and Zhang 2008; Carman and Han 2009). Lipin orthologues have been found in distant eukaryotic species and lipin mutants of diverse species have illustrated the vast implications of lipin activity, which ranges from fat metabolism in mammals to dynamic membrane remodelling in yeast (Han et al. 2007), nematodes (Gorjánácz and Mattaj 2009), plants (Nakamura et al. 2009; Eastmond et al. 2010) and mice (Péterfy et al. 2001; Donkor et al. 2009). The mediation of lipid metabolism by lipins is clearly a dynamic process, which allows the organism to adapt to its ever-changing environment (Csaki and Reue, 2010).

Two lipin orthologs (AtPAH1 and AtPAH2) were identified in the model plant Arabidopsis thaliana (Nakamura et al. 2009). AtPAH1 and $A t P A H 2$ encode functional PAP1 enzymes, which are responsible for the eukaryotic pathway of DAG synthesis (Mietkiewska et al. 2011). These lipins mediate membrane lipid remodelling, which occurs exclusively through the eukaryotic endoplasmic reticulum (ER)-mediated supply of DAG. Nakamura et al. (2009) proposed that plants employ lipin-mediated lipid remodelling to overcome phosphate shortage stress and pah1/2 A. thaliana double mutant studies by Eastmond et al. (2010), suggests that AtPAH1/2 function indirectly to repress phospholipid biosynthesis and that this regulation likely occurs at the transcript level for many enzymes.

Commercially cultivated cotton, Gossypium hirsutum, is an allotetraploid that derived from a genomic hybridization event between diploid cotton species from Africa (A-genome) and America (D-genome). The
genomic merger occurred approximately 1-2 million years ago (Mya), and prior to this event, the A- and Ddiploid species had evolved in isolation for approximately 5-10 million years (Senchina et al. 2003; Wendel and Cronn 2003). Consequently, G. hirsutum has two fully differentiated co-resident genomes, described as $\mathrm{A}_{\mathrm{T}} \mathrm{D}_{\mathrm{T}}$, (Udall et al. 2006), and at each given locus there are two copies each from the maternal ancestral parent (Agenome) and two from the paternal parent (D-genome) (Wendel and Cronn 2003; Adams et al. 2009). The progenitor A- and D-genomes are represented by the extant species G. herbaceum (A_{1}-genome), G. arboreum (A_{2}-genome) and G. raimondii (D-genome) (Cronn et al. 1999; Udall et al. 2006; Adams et al. 2009). Many gene copies arising from the A_{T} and D_{T} subgenomes have recently been mapped to the A - and D-genomes from these diploid Gossypium species (van Deynze et al. 2009; Flagel and Wendel 2010). In polyploids, the allele pairs are called homoeologs, since they derived from the genomic merger of two different species (Wendel 2000; Flagel et al. 2009). Evidence has shown that homoeologs evolved independently following polyploid formation in cotton (Cronn et al. 1999; Small and Wendel 2002). However, Salmon et al. (2010) demonstrated that the co-resident genomes have undergone between 1.8-1.9\% nonreciprocal homoeologous exchanges, or gene conversions, since the genomic merger 1-2 Mya.

Although polyploidy is prevalent among angiosperms (Flagel et al. 2009; Flagel and Wendel 2010), with $>70 \%$ having undergone one or more episodes of polyploidy at some point (Moore and Purugganan 2005), and $>75 \%$ of these resulted in allopolyploids (Jackson and Chen 2009), the vast genetic implications of polyploidy on plant diversification and adaptive evolution have only recently become apparent due to large-scale investigations into comparative genomics, transcriptomics and epigenomics (Flagel and Wendel 2009; Ainouche and Jenczewski 2010). Many molecular changes arise immediately following allopolyploid formation, of which the most notable involve changes in gene expression (Adams and Wendel 2005; Dong and Adams 2011).

Materials and methods

Plant material, elicitor preparation and induction of cell suspension cultures

Cotton (Gossypium hirsutum) cv OR_{19} (V. dahliae resistant cultivar) cell suspension cultures were established from callus tissue and grown in the dark at $25 \pm 3^{\circ} \mathrm{C}$ on a continuous rotary shaker at 120 rpm (Phillips et al. 2012). All experiments were performed on cells in the logarithmic growth phase, 2-3 days after sub-cultivation. The V. dahliae elicitor was prepared from the heat-released fraction of the mycelial cell walls (Dubery and Slater
1997). Cotton cell suspensions (25 ml) were treated with $5 \mu \mathrm{~g} / \mathrm{ml} \mathrm{CWD} V$. dahliae elicitor, or only culture media for the controls. The suspensions were incubated for 24 h at $25^{\circ} \mathrm{C}$ (Phillips et al. 2013).

Genome walking

Genomic DNA was isolated using a CTAB method (Murray and Thompson 1980). DNA ($6 \mu \mathrm{~g}$) was digested with $2.5 \mathrm{U} / \mu \mathrm{g}$ DNA of the following restriction enzymes: StuI, DraI, PvuII, EcoRV, SnaB, SspI, PdiI, Eco47III, SacI, XbaI, EcoRI and HindIII (Fermentas, St. Leon-Rot, Germany). The reaction was incubated for 16 h at 37 ${ }^{\circ} \mathrm{C}$. Adaptors 1 (5^{\prime}-GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT-3') and 2 (5^{\prime}-ACCAGCCC-3') from a GenomeWalker ${ }^{\text {TM }}$ Universal kit (Clontech, Madison, WI, USA) were annealed together to yield a $25 \mu \mathrm{M}$ genome walker adaptor using an initial incubation at $94^{\circ} \mathrm{C}$ for 5 min , after which the temperature was reduced every min by $1{ }^{\circ} \mathrm{C}$, until the temperature reached $4^{\circ} \mathrm{C}$. The ends of each of the digested genomic library fragments ($10 \mu \mathrm{l}$) were ligated to $25 \mu \mathrm{M}$ genome walker adaptor with 3 U T4 DNA ligase (Bioline, London, UK) at $16^{\circ} \mathrm{C}$ for 16 h . The reaction was diluted 5 times with $\mathrm{ddH}_{2} \mathrm{O}$ and primary and secondary/nested PCR were performed on the adaptor-ligated, restriction-digested cotton DNA. Gene-specific primers (GSPs) were designed to amplify genomic sequences upstream and downstream of the 213 bp EST, named C1B10. The primary PCRs $(25 \mu \mathrm{l})$ contained 1 x Ex Taq ${ }^{\mathrm{TM}}$ buffer, 0.2 mM dNTPs (Takara, Madison, WI, USA), $0.2 \mu \mathrm{M}$ adaptor primer 1 (AP1) (5^{\prime}-GTAATACGACTCACTATAGGGC-3'), $0.2 \mu \mathrm{M}$ GSP (Additional file 1: Table S1), 1.25 U TaKaRa Ex $\mathrm{Taq}^{\mathrm{TM}}$ (Takara Bio Inc.), and 0.1-1 $\mu \mathrm{g}$ adaptor-ligated, digested DNA template. The PCR conditions consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , then 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $55^{\circ} \mathrm{C}$ for 30 s , and elongation at $72^{\circ} \mathrm{C}$ for 4 min , followed by a final elongation step at $72^{\circ} \mathrm{C}$ for 15 min . The primary PCRs were diluted $1: 49$ in $\mathrm{ddH}_{2} \mathrm{O}$ and $0.5 \mu \mathrm{l}$ of the diluted primary PCR products were used as a template for the secondary (nested) PCR with $0.2 \mu \mathrm{M}$ adaptor primer 2 (AP2) (5'-ACTATAGGGCACGCGTGGT-3') and an internal GSP (Additional file 1: Table S1). The same cycling conditions were used for the secondary PCRs, except the annealing temperature was increased to 60$65^{\circ} \mathrm{C}$ to improve sensitivity. The PCR products were purified, cloned into a pGEM ${ }^{\circledR}-\mathrm{T}$ Easy vector (Promega, Fitchburg, WI, USA) and sequenced.

Rapid amplification of cDNA ends (RACE)

The 5' and 3' RACE reactions were performed with a $5^{\prime} / 3$ ' RACE kit, 2nd Generation (Roche Diagnostics, Mannheim, Germany) in order to obtain the full-length cDNA sequence of each gene copy. The protocol was carried out according to the manufacturer's instructions with minor modifications. Briefly, total RNA was isolated from cotton cell suspensions with an RNeasy ${ }^{\circledR}$ Plant Mini Kit (Qiagen, Hilden, Germany) and mRNA was isolated from the total RNA with an Oligotex mRNA Mini Kit (Qiagen). mRNA ($250-500 \mathrm{ng}$) was reverse transcribed to cDNA with $0.5 \mu \mathrm{M}$ GSP (Additional file 1: Table S1), and 25 U Transcriptor Reverse Transcriptase (Roche Diagnostics) in $10 \mu 1$ reaction. The 5^{\prime}, single-stranded cDNA molecule was purified with a Nucleospin® Extract kit (Macherey-Nagel, Düren, Germany) or DNA Clean and Concentrator ${ }^{\text {TM }}$ kit (Zymo Research, Freiburg, Germany). A homopolymeric A-tail was then added to the 3^{\prime} end of the cDNA strand with a recombinant Terminal Transferase (Roche Diagnostics) and dATP. Primary PCRs were performed with $0.2 \mu \mathrm{M}$ oligo dT-anchor primer (5^{\prime}-GACCACGCGTATCGATGTCGACT ${ }_{16} \mathrm{~V}-3^{\prime} \mathrm{V}=\mathrm{A}, \mathrm{C}$ or G), and $0.2 \mu \mathrm{M}$ of a second GSP (Additional file 1: Table S1). The PCR cycling conditions consisted of denaturation at $95^{\circ} \mathrm{C}$ for 2 min, followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $55^{\circ} \mathrm{C}$ for 30 s , extension at $72^{\circ} \mathrm{C}$ for 2 min , followed by a final extension at $72^{\circ} \mathrm{C}$ for 7 min . The primary 5^{\prime} RACE reaction products were diluted 1:49 with $\mathrm{ddH}_{2} \mathrm{O}$ and used as the templates in secondary 5^{\prime} RACE reactions. The secondary 5^{\prime} RACE reactions were performed with $0.2 \mu \mathrm{M}$ oligo dT-anchor primer and $0.2 \mu \mathrm{M}$ of a third internal GSP (Additional file 1: Table S1). The same cycling parameters were used for the secondary 5^{\prime} RACE PCR, except the annealing temperature was raised to $60-65^{\circ} \mathrm{C}$ to improve sensitivity. The 5^{\prime} RACE products were purified, cloned into a pGEM ${ }^{\circledR}-\mathrm{T}$ Easy vector and sequenced.

For 3' RACE, $1 \mu \mathrm{l}(40-80 \mathrm{ng}) \mathrm{mRNA}$ was reverse transcribed to cDNA with $0.5 \mu \mathrm{M} 3$ ' RACE adapter (5'-GCGAGCACAGAATTAATACGACTCACTATAGGT ${ }_{12} \mathrm{VN}-3^{\prime} \mathrm{V}=\mathrm{A}, \mathrm{C}$ or $\mathrm{G}, \mathrm{N}=$ any base) from an Ambion FirstChoice ${ }^{\circledR}$ RLM-RACE kit (Ambion, Naugatuck, CT, USA) and 25 U Transcriptor Reverse Transcriptase (Roche Diagnostics) in a $10 \mu 1$ reaction according to the manufacturer's instructions. A primary PCR was performed with $0.2 \mu \mathrm{M}$ 3' RACE outer primer (5'-GCGAGCACAGAATTAATACGACT-3') (Ambion) and $0.2 \mu \mathrm{M}$ GSP (Additional file 1: Table S1). The PCR cycling conditions consisted of denaturation at $95^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $55^{\circ} \mathrm{C}$ for 30 s , extension at $72^{\circ} \mathrm{C}$ for 30 s , final extension at $72^{\circ} \mathrm{C}$ for 7 min . The primary 3^{\prime} RACE reaction products were diluted $1: 49$ with $\mathrm{ddH}_{2} \mathrm{O}$ and used as templates in the secondary 3^{\prime} RACE reaction, performed with $0.2 \mu \mathrm{M} 3$ ' RACE inner
primer (5^{\prime}-CGCGGATCCGAATTAATACGACTCACTATAGG-3' (Ambion) and $0.2 \mu \mathrm{M}$ third internal GSP (Additional file 1: Table S1). The cycling conditions were the same as the primary 3' RACE PCR, except the annealing temperature was raised to $60-65^{\circ} \mathrm{C}$ to increase specificity. The 3 ' RACE products were purified, cloned into a pGEM ${ }^{\circledR}$ - T Easy vector and sequenced.

Obtaining the full-length GhLIPN sequence

Three PCR reactions were performed to obtain genomic sequences not covered by the genome walking reactions. Each PCR contained 0.04 U ExSel high fidelity DNA polymerase (JMR Holdings, Kent, UK), 1 X reaction buffer that provided 2 mM MgSO 44 final concentration (f.c.), 0.2 mM dNTPs (Bioline), $0.2 \mu \mathrm{M}$ of each GSP (Additional file 1: Table S1) and 50-135 ng DNA template. The PCR cycling parameters included an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , then 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $60^{\circ} \mathrm{C}$ for 30 s and elongation at $70^{\circ} \mathrm{C}$ for 2.5 min , followed by a final elongation step at $70^{\circ} \mathrm{C}$ for 7 min . The PCR products were purified, cloned into a pGEM ${ }^{\circledR}$ - T^{-2} Easy vector and sequenced.

A RT-PCR was performed to obtain cDNA sequence not covered by the RACE reactions. PCR was performed with $0.5 \mu 1 \mathrm{cDNA}$ template, 0.08 U ExSel high fidelity DNA polymerase (JMR Holdings), 1 X reaction buffer (at a 2 mM MgSO 4 f.c.), 0.2 mM dNTPs (Bioline) and $0.2 \mu \mathrm{M}$ of each primer (LiD 1F (5'-CCTTAGTTGGAAGGGATTGGA-3') and RR3 (5^{\prime}-TTCCTTACAAGATGAACCCCAAC-3'). The PCR cycling parameters consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , then 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $60^{\circ} \mathrm{C}$ for 30 s and elongation at $70^{\circ} \mathrm{C}$ for 1 min , followed by a final elongation step at $70^{\circ} \mathrm{C}$ for 7 min . The PCR products were purified, cloned into a pGEM ${ }^{\circledR}$-T Easy vector and sequenced.

Obtaining the full-length genomic sequences of each GhLIPN gene copy

Primers were designed to distinguish between two gene copies based upon the GhLIPN sequence data. The putative homoeologs were designated GhLIPN-1 and GhLIPN-2 based on a 13 bp insertion/deletion site in intron 6 , which was initially the main distinguishing feature between the genomic sequences obtained ($\mathbf{1}=$ No insert , $\mathbf{2}$ $=$ Insert present). The insert sequence was present in the primer used to amplify GhLIPN-2 and absent in the primers used to amplify GhLIPN-1 (Additional file 1: Table S1). Each PCR contained 1 X reaction buffer (at 2 mM MgSO 44 f.c.), 0.2 mM dNTPs (Bioline), $0.2 \mu \mathrm{M}$ of each homoeolog-specific primer (HSP), 0.04 U ExSel

DNA polymerase (JMR Holdings) and 133 ng DNA template. The PCR cycling parameters were an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , then 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $60^{\circ} \mathrm{C}$ for 30 s and elongation at $70^{\circ} \mathrm{C}$ for 4 min , followed by a final elongation step at $70^{\circ} \mathrm{C}$ for 7 min . The PCR products were purified, cloned into a $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy vector and sequenced.

Amplification of each GhLIPN promoter

Primers were designed to distinguish between the promoter regions of both gene copies. A 17 bp indel was absent in the reverse primer used to amplify the GhLIPN-2 promoter and present in the reverse primer used to amplify the GhLIPN-1 promoter (Additional file 1: Table S 1). The PCR reaction was identical to above mentioned, except 0.08 U ExSel DNA polymerase (JMR Holdings) was added. The cycling parameters consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , then 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 s , annealing at $50-60^{\circ} \mathrm{C}$ for 30 s and elongation at $70^{\circ} \mathrm{C}$ for 2 min , followed by a final elongation step at $70^{\circ} \mathrm{C}$ for 7 min . The PCR products were purified, cloned into a pGEM ${ }^{\circledR}-\mathrm{T}$ Easy vector and sequenced.

Sequence analyses, assembly and alignments

The possibility of introduced errors in PCR amplification and sequencing was kept to a minimum by using a high-fidelity Taq polymerase in all the PCRs, and sequencing three or more clones from each single single PCR. DNA sequencing was performed according to the manufacturer's protocol (Applied Biosystems, Foster City, CA, USA). Sequences were analysed and assembled with ChromasPro (Technelysium, Brisbane Australia), whereas DNAssist (Version 5.1) and CLC Main Workbench was utilized for routine genomic sequence alignments. Homologous protein sequences were identified and compared to characterized gene products with the blastp (basic local alignment search tool - BLAST) search algorithm provided by the NCBI/NIH (http://www.ncbi.nlm.nih.gov.BLAST). Alignments between homologous protein sequences were performed with ClustalW in ChromasPro.

A phylogenetic tree showing the relationship between the lipin homologs and their ancestral representatives from G. rainmondii and G. herbaceum was constructed with neighbourhood joining analysis using MEGA5 (Tamura et al. 2011). The 811 bp sequence from G. herbaceum was amplified with Herb_lip_F1
(5^{\prime}-GCTTTGTTTATGTAGGATGG-3') and Herb_lip_R1 (5'-GTTCAATGGATGAGGTTG-3') (Additional file 1, Table S1) and sequenced (Inqaba Biotech, Pretoria, South Africa).

PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) and PLACE (http://www.dna.affrc.go.jp/PLACE), two web-based software programs, were used to identify putative ciselements in the promoter regions. Several bioinformatics web-based software programs were used for complementary prediction and/or analysis of the domain architecture of the gene products and identification of signature motif regions. These included: InterPro (www.ebi.ac.uk/interpro), Pfam (http://pfam.sanger.ac.uk), ExPASy proteomics server (expert protein analysis system) from the Swiss Institute of Bioinformatics (SIB) (http://au.expasy.org), PROSITE (http://ca.expasy.org/prosite), ProtParam (protein identification and analysis tool) (http://au.expasy.org/tools/protparam.html) PANTHER (protein analysis through evolutionary relationships) (www.pantherdb.org), SMART (simple modular architecture research tool) (http://smart.emblheidelberg.de), PRODOM (protein domain) (http://prodom.prabi.fr/prodom/current/html), My Hits - Motif Scan using hidden Markov models (HMMs) (http://myhits.isb-sib.ch/cgi-bin/motif_scan) and GO (gene ontology) (www.geneontology.org).

Southern blot

Genomic DNA was extracted from cotton cell suspensions using a CTAB protocol (Sambrook et al. 1989). DNA $(30 \mu \mathrm{~g})$ was restriction-digested (3 U restriction enzyme $/ \mu \mathrm{g}$ DNA) overnight at $37^{\circ} \mathrm{C}$ with XbaI , EcoRI, and HindIII (Fermentas, St. Leon-Rot, Germany) in a total volume of 200μ l. The restriction digests were purified with a sodium acetate precipitation to remove contaminants and reduce the volume of the digested DNA. The purified DNA $(20 \mu \mathrm{~g})$ was electrophoresed at $4^{\circ} \mathrm{C}$ on a $0.8 \%(\mathrm{w} / \mathrm{v})$ TAE (40 mM Tris-acetate; 1 mM EDTA) agarose gel at 20 V and DNA was transferred to a Hybond- N^{+}nylon membrane (Amersham, Little Chalfont, UK) using an upward transfer system (Sambrook et al. 1989). The membrane was baked at $80^{\circ} \mathrm{C}$ for 2 h , to immobilize the DNA. The 123 bp probe targeting the third exon was prepared with a PCR digoxygenin (DIG) Probe Synthesis Kit (Roche Diagnostics), according to the manufacturer's instructions using forward (RTF2) and reverse (RTR2) primers (Additional file 1: Table S1). The membrane was hybridized with 20 pM (final concentration) of the heat-denatured DIG-labelled probe in pre-warmed ULTRAhyb ${ }^{\text {TM }}$ Ultrasensitive Hybridization Buffer (Ambion) for 20 h at $42^{\circ} \mathrm{C}$ with constant agitation. Detection of the membrane was carried out with a DIG Luminescence Detection Kit (Roche Diagnostics), according to the manufacturer's instructions.

Time study of gene expression in cotton cell suspensions induced with the CWD V. dahliae elicitor

Cotton cell suspensions (cv OR_{19}) were treated with $5 \mu \mathrm{~g} / \mathrm{ml}$ CWD V. dahliae elicitor. RNA was isolated from the suspensions at 0 (calibrator), 2, 4, 6, 8, and 10 h with an RNeasy ${ }^{\circledR}$ Plant Mini Kit (Qiagen). Total RNA was digested with an RNase-free DNase (Promega) to remove any carry-over DNA contamination. The RNA concentration and quality was assessed by spectrophotometry and 1.2% agarose gel electrophoresis, respectively. A Transcriptor Reverse Transcriptase (25 U) (Roche Diagnostics) was used to reverse transcribe $1 \mu \mathrm{~g}$ RNA to cDNA in a $10 \mu \mathrm{l}$ RT-PCR reaction according to the manufacturer's instructions. Relative qRT-PCR was performed with $18 S$ as a reference gene using a LightCycler ${ }^{\circledR}$ FastStart DNA Master ${ }^{\text {PLUS }}$ SYBR Green I kit (Roche Diagnostics) on a RotorGene 3000 (Corbett Research, Sydney, Australia), using $2 \mu \mathrm{l}$ cDNA as the template and $0.2 \mu \mathrm{M}$ of forward (RTF2) and reverse (RTR2) primers (Additional file 1: Table S1). The cycling conditions were $95^{\circ} \mathrm{C}$ for 10 min , followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for $8 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 10 s . The experiment was performed in duplicate with two technical PCR repeats. The qRT-PCR data was processed according to the standard curve method (Larionov et al. 2005). A non-treated, 0 h calibrator was used to normalize the expression of GhLIPN (designated as 1-fold), with all experimentally-derived quantities reported as an n-fold difference relative to the calibrator, as described in Wong and Medrano (2005).

Results

Analysis of the full-length GhLIPN sequences

The full genomic sequence containing the GhLIPN gene was identified and characterized from the C1B10 EST using genome walking, PCR, $5^{\prime} / 3^{\prime}$ RACE and RT-PCR. The genomic sequence contained untranscribed regions at both the 5' (upstream) and 3' (downstream) ends (Additional file 2: Figures S1 and S2). The transcribed GhLIPN sequences were identified from $5^{\prime} / 3^{\prime}$-RACE and RT-PCR, and translated to reveal that GhLIPN encodes a lipin phosphatidate phosphatase (PAP). During GhLIPN sequence assembly, it became apparent that two copies of the gene (designated GhLIPN-1 and -2) were amplified. Homoeolog-specific PCR amplification of GhLIPN, using homoeolog-specific gene primers (HSPs) (Additional file 1: Table S1), was subsequently performed to obtain the full genomic sequence of each gene copy. The sizes of the genomic sequences containing the GhLIPN gene copies were 8423 and 6704 bp, for GhLIPN-1 (Genbank: HQ630674) and GhLIPN-

2 (Genbank: HQ630675), respectively and their genomic sequences had an overall sequence divergence of 2.5% (ungapped).

The putative GhLIPN transcription start site (TSS) (Additional file 3: Figure S3) was determined from a 5, RACE reaction that produced a 1846 bp fragment (results not shown). The transcription end site was determined from the longest of two 3' RACE products (a 448 bp fragment, results not shown), which matched GhLIPN-1. The size of the GhLIPN-1 3'-untranslated region (UTR) was 351 bp and poly(A) signal sequences were identified downstream of the 3 '-end (Additional file 2: Figure S1). Due to the preferential amplification of GhLIPN-1 in the 3' RACE and downstream genome walking reactions, the experimentally obtained GhLIPN-1 genomic sequence included the 3^{\prime} 'UTR, as well as genomic sequence following the transcription end site (obtained from a 1402 bp fragment) (Additional file 2: Figure S1). In contrast, the genomic sequence obtained for GhLIPN-2 did not contain the full 3'-UTR, but ended at the same site as the C1B10 EST, after the translation stop site (Additional file 2: Figure S2).

Sequences obtained from the RACE and RT-PCRs were assembled and aligned with the genomic DNA sequences to obtain the full cDNA sequence of each GhLIPN gene copy and to identify intron splice junctions. The homoeologs each contain 11 exons, separated by 10 introns at the same intron-exon splice junctions (Figure 1). Unusually, the first exon is in the 5^{\prime} 'UTR and is therefore non-coding. There are therefore 10 coding exons in the GhLIPN-1 and -2 open reading frames (ORFs), separated by 9 introns. The intron sequences differ by 2.97% and the exons differ by 2.27% (ungapped). The sizes of the full-length cDNA transcripts are 4467 and 4479 bp , for GhLIPN-1 and -2 , respectively, and the ORF sequence is 2643 bp for both GhLIPN gene copies. The translation start and end sites were determined by translation of the spliced GhLIPN transcripts from the first ATG codon to the first in-frame stop codon (TAA) (Additional file 2: Figures S1 and S2). The ATG translation start site is located 715 and 695 bp downstream from the predicted TSSs in the genomic sequences of GhLIPN-1 and -2 , respectively, due to the intron in the 5^{\prime} 'UTR. The ATG start site is, however, only 204 and 186 bp downstream from the predicted TSSs of the GhLIPN-1 and -2 spliced transcripts, respectively (Additional file 2: Figures S1 and S2).

GhLIPN amino acid sequence comparison and physico-chemical properties

The deduced GhLIPN-1 and -2 amino acid sequences have a length of 880 aa, an estimated molecular mass of 96.72 kDa and 96.94 kDa respectively and a calculated pI of 4.70 (deduced from DNAssist and ExPASy). A

ClustalW alignment between the GhLIPN-1 and -2 amino acid sequences revealed 40 mismatches (4.50% of the total length), of which 16 and 5 are conserved and semi-conserved, respectively (Additional file 3: Figure S3). A 5 aa DxDxT/V HAD domain catalytic motif and 17 aa bipartite nuclear localization signal (NLS) are conserved in both proteins (Figure 1A and Additional file 3: Figure S3). Four amino acid mismatches are evident in the Nterminal lipin domains of the GhLIPN proteins, of which two are conserved (S / T and Q / E) and two are semiconserved (A / P and A / V). Only one (unconserved) mismatch occurs in the HAD domains of the GhLIPN proteins (where GhLIPN-2 has an Arg in place of an Ile at position 824).

Domain and post-translational modification analysis

The GhLIPN-1 and -2 genes were confirmed to code for lipin proteins, based on the results of several motif scans. The lipin domain occurs at the N -terminus of the proteins and a HAD-like domain is found towards the C terminus within a region loosely referred to as the C-terminal lipin (C-LIP) domain. Figure 1A displays the various motifs graphically and indicates where on the protein sequences they are located. GhLIPN-1 and -2 were analysed further to examine potential post-translational modification sites (Additional file 4: Table S2).

GhLIPN homology

The GhLIPN amino acid sequences were used in a Position-Specific Iterated (PSI)-BLAST of the non-redundant (nr) Viridiplantae NCBI database to compare them with currently available homologous lipin domain-containing protein sequences in plants (hereon referred to as lipin-like). Of the eleven identified Viridiplantae species with homologous lipin-like proteins seven were from seed plants, three from green algae and one from a moss (Table 1). The lipin-like proteins with the greatest homology to the GhLIPN homoeologs had E-scores of 0 . These were from Vitis vinifera (XP_002274246), with a percentage identity of 61-62\%, and A. thaliana AtPAH1 (At3g09560, NP_187567), with percentage identity of 53\%. AtPAH2 (At5g42870, NP_199101), an ortholog of AtPAH1 had an E-score of $2 \mathrm{e}^{-153}$ and $4 \mathrm{e}^{-155}$ and a percentage identity of 57% to GhLIPN-1 and -2 , respectively.

An alignment between the GhLIPN homoeologs and the lipin-like proteins from V. vinifera (XP_002274246) and A. thaliana (NP_187567, representing AtPAH1) is shown in Additional file 5, Figure S4. The HAD domains are found within C-LIP domains, which were identified from an alignment of lipins from different taxonomic groups (Péterfy et al. 2001). Overall, a higher degree of similarity is evident within the
conserved N - and C-terminal lipin domains compared to the sequences between the two domains. The DxDxT/V catalytic signature motifs of the HAD domain and the NLS are highly conserved among the plant lipin-like proteins. The same high degree of conservation was evident when the HAD domains of the GhLIPN homoeologs were aligned to those of lipin-like proteins in other plant species.

Ancestral genome prediction of GhLIPN homoeologs

In an attempt to determine which ancestral genome (A or D) each of the GhLIPN homoeolog copies are derived from, a BLAST search of the official cotton EST database (http://www.agcol.arizona.edu/cgibin/pave/Cotton/index.cgi) was performed to find sequences representing GhLIPN orthologs from G. arboreum /G. herbaceum and G. raimondii (extant species representing the ancestral A- and D-genomes, respectively). An orthologous EST (Genbank: CO087195), comprised of 5^{\prime} and 3^{\prime} mRNA, from G. raimondii (D-genome) had an E-score of 0 to the GhLIPN homoeologous cDNA sequences. No sequences representing orthologous lipin genes were identified from G. arboreum / G. herbaceum (A-genome) on NCBI at the time of the study so a portion of the gene was amplified from G. herbaceum genomic DNA for sequence comparisons. The spliced nucleotide GhLIPN sequences (transcribed sequence from 1-210 nt and genomic sequence from 211-1021 nt in the alignment) were aligned with the G. raimondii CO087195 EST and an 811 bp genomic region amplified from G. herbaceum (Additional file 6: Figure S5A). The translated amino acid sequences were also compared (Figure S5B). A phylogenetic tree was constructed based on a 500 bp region where all four sequences were aligned in the nucleotide alignment (from the beginning of the G. herbaceum sequence to the end of the G. raimondii sequence) to predict the genomic ancestry of the homoeologs (Figure 2). It is clear from the multiple sequence alignments and the phylogenetic analysis that the GhLIPN-2 homoeolog derived from the ancestral D-genome (represented by the CO087195 EST from G. raimondii) and that the GhLIPN-1 homoeolog derived from the ancestral A-genome (represented by the 811 bp amplified fragment from G. herbaceum).

Copy number determination

A Southern blot with genomic DNA from G. hisutum digested with XbaI, EcoRI, and HindIII was performed to determine the copy number of GhLIPN. High stringency hybridization of the DIG-labelled probe, targeting the
third exon (Figure 1B), each produced a single band (Figure 3). A single band is consistent with the gene sequences as there are identical resitiction sites for the enzymes used in both the two gene copies.

Promoter analyses and GhLIPN expression in response to the cell wall-derived Verticillium dahliae elicitor

Promoter sequences corresponding to each gene copy were obtained by PCR, performed upstream of an identified 17 bp indel in the 5^{\prime}-untranslated region (5^{\prime} 'UTR) of GhLIPN with HSPs. The obtained GhLIPN-1 promoter sequence was 1464 bp compared to the 1289 bp obtained for GhLIPN -2 (Additional file 7, Figure S6). The alignment of the promoter regions shows a large number of SNPs between the GhLIPN promoters, as well as many indels. The largest indel is a 437 bp fragment, present only in the GhLIPN-1 promoter. The GhLIPN-1 and -2 promoters were examined for cis-acting elements, associated with the binding of specific regulatory transcription factors (TFs). The length of the analysed promoter sequence was restricted to 1 kb from the TSSs $(+1)$ for GhLIPN-2, however, to facilitate the alignment between the promoters, 1441 bp of the GhLIPN-1 promoter was included in the analysis. A canonical TATA-box was not identified in the analysed promoter sequences of either gene. Despite the substantial difference in length between the analysed portions of the promoters, most of the identified putative cis-elements related to defense -, stress - and hormone responses were present in both the GhLIPN-1 and -2 promoters (Table 2 and Additional file 7, Tables S3A-C).

To confirm the up-regulation of the GhLIPN transcripts by the CWD V. dahliae elicitor, and to investigate the time period of the elicitation, cotton cell suspensions from the resistant $\mathrm{OR}_{19} \mathrm{cv}$ were treated with the elicitor over a 10 h period and transcription of GhLIPN was monitored with qRT-PCR. Transcription of GhLIPN increased up to 6 h , whereby the maximum average fold-change (FC) was more than at four times higher than the control at 0 min (Figure 4). Transcription of GhLIPN increased only slightly after 2 h induction with the elicitor, but had more than doubled between 2 and 4 h post-elicitation. The induced response was transient as after a maximal FC was observed at $6 \mathrm{~h}, G h L I P N$ transcription levels decreased to a level comparable to 4 h at 8 h post-elicitation. Although a slight increase in transcription was observed between 8 and 10 h post-treatment, it was not significant enough to verify a second marked up-regulation of GhLIPN .

Discussion

This is the first study that describes the genomic architecture of lipin homoeologs in a polyploid plant, allotetraploid cotton. We describe the structure of the promoter regions, complete cDNA structure, exon-intron
organization, copy number and the up-regulation of GhLIPN in response to a CWD V. dahliae elicitor. Based on our findings, we propose that in addition to their purported roles in lipid metabolism, lipins may also be involved in a defence role in cotton against V. dahliae.

GhLIPN-1 and -2 are lipin genes

During the sequence acquisition and alignments of the genomic GhLIPN sequences, it became clear that two highly homologous sequences (designated GhLIPN-1 and -2) were being differentially amplified. The possibility of the gene copies representing paralogs (i.e. members of a gene family) is unlikely since the Southern blot, produced only a single band (Figure 3) for each of three digests. A single band is consistent with the gene sequences as there are identical resitiction sites for the enzymes used in both the two gene copies. The gene copies in G. hirsutum can thus be represented as AADD, since both copies from each parent are generally homozygous (Wendel and Cronn 2003; van Deynze et al. 2009). This suggests that the GhLIPN gene copies are likely homoeologs that derive from the two separate ancestral genomes within G. hirsutum. In contrast, most non-polyploid plant species have two paralogous copies of lipin genes (Nakamura et al. 2009).

The GhLIPN homoeologs contain complex intron-exon structures, with a high level of conservation in both the size and position of the introns, and conformed to GT-AG splice junctions (Breathnach and Chambon 1981). The first GhLIPN intron interrupts the 5^{\prime} '-UTR of the homoeologs, and consequently, the first exon is in the 5^{\prime}-UTR and is therefore noncoding. An examination of the gene structure of sequenced lipins in the NCBI database revealed that a noncoding exon in the 5^{\prime} 'UTR appears to be a conserved feature in the lipins of more evolved eukaryotes. Peterfy et al., (2005) reported alternatively spliced lipin isoforms in mouse adipocytes that exhibit distinct expression patterns, subcellular localization, and complementary roles (Csaki and Reue, 2010). In this study, with undifferentiated cultured cotton cells, no indication of alternative splicing of the GhLIPN homoeologs were observed.

An investigation of the degree of sequence divergence between homoeologous genes provides insight into the evolutionary dynamics at play between duplicated loci since reciprocal recombination, gene conversion, and other forms of non-independence among homoeologues remain evolutionary possibilities (Small and Wendel 2002; Salmon et al. 2010). An alignment of the GhLIPN-1 and -2 genomic sequences indicated multiple putative homoeo-SNPs (Salmon et al. 2010), and several indels, varying in size from between 1-3, to 13 and 17 bp. None of the indels occur in the coding exons, and the translated nucleotide sequences of both homoeologs
have an equal number of amino acids. Overall, the sequence divergence between the ungapped genomic DNA of the homoeologs was 2.5%. Most of the putative homoeo-SNPs in the translated GhLIPN gene sequences resulted in non-synonymous mutations (40), while comparatively fewer non-synonymous mutations were observed (18) (Additional file 3: Figure S3), which suggests that the homoeologs may have undergone differential selection during evolution.

The results of this study reveal a high sequence conservation in the ungapped GhLIPN genomic sequences (97.50%). Additionally, the putative homoeo-SNPs differentiating the GhLIPN gene copies were distributed fairly evenly across the A_{T} and $\mathrm{D}_{\mathrm{T}} G h L I P N$ genomic sequences, indicating that sequence conservation is high in both introns and exons alike. However, a comparison of the sequence divergence of the ungapped regions spanning the introns and exons within the GhLIPN ORFs indicates that the sequence diversity of the introns (2.97%) is slightly more than that of the coding exons (2.27%) as expected. Further, genomic sequences averaged across six amplicons between G. raimondii (D-genome) and G. arboreum (A-genome) have previously been reported to show ~ 3.7-fold more polymorphisms in introns than exons (Chee et al. 2004).

Genomic origin analysis

The analysis and genome designation of homoeologous gene pairs provides information on the differential evolutionary pressures imposed upon each subgenome (Small et al. 1999). However, due to the shortage of sequence information for both diploid and allotetraploid Gossypium species, relatively few homoeologous genes from allotetraploid Gossypium have been classified as belonging to either A_{T} or D_{T} genomes. The extant species, G. arboreum (or G. herbaceum) and G. raimondii, best represent the ancestral A- and D-genome progenitors, respectively (van Deynze et al. 2009), and sequences from these diploid species are therefore used to determine the parentage of homoeologous sequences from allotetraploids. Given that the A- and D-genomes have undergone little evolution since the polyploidization event 1-2 Mya (Wendel 2000; Salmon et al. 2010) and because they are divergent enough in both diploids and allotetraploids (van Deynze et al. 2009), individual homoeo-SNPs are sufficient to determine genome ancestry (e.g. Small et al. 1999; Senchina et al. 2003; Udall et al. 2006; Udall, 2008; van Deynze et al. 2009; Salmon et al. 2010).

The genomic ancestry of the homoeologs was determined by comparing their sequences to a homologous EST from G. raimondii (CO087195), representing the D-genome diploid ancestor and an 811 bp product amplified from G. herbaceum genomic DNA, representing the A-genome diploid ancestor. The homoeo-

SNPs from theGhLIPN-2 homoeolog generally agree with the G. raimondii sequence, while those from GhLIPNl consistently (except in one instance) agree with the G. herbaceum sequence (Additional file 8: Figure S5A and B). The phylogenetic tree supports these results (Figure 3) and suggests that the GhLIPN-2 homoeolog belongs to the D_{T}-genome and GhLIPN-1 to the A_{T}-genome of G. hirsutum. The D_{T} genome is consistently more divergent to the D -genome from G. raimondii compared to the A_{T} genome and the A -genome from G. arboreum or G. herbaceum (Senchina et al. 2003, van Deynze et al. 2009). G. arboreum and G. herbaceum are therefore better representatives of the A-genome ancestor than G. raimondii is of the D-genome ancestor (Senchina et al. 2003). Moreover, the evolutionary rate of divergence in the D_{T} genome is often significantly higher than that of the A_{T} genome, although the specific divergence rate does appear to be gene-specific (Small and Wendel 2002; Senchina et al. 2003, van Deynze et al. 2009).

In silico protein analysis

The GhLIPN homoeologs contain an N -terminal lipin domain (N-LIP) and a HAD domain within their C-LIP, which are distinctive features of lipins (Figure 1A). These domains are highly conserved among plant lipin orthologs (Additional file 5, Figure S4) and this conservation is maintained across diverse eukaryotic species (Péterfy et al. 2001; Reue and Zhang 2008). Mutations within these domains are linked to various metabolic diseases in mammals (Péterfy et al. 2001; Donkor et al. 2009), signifying their functional importance (Reue and Zhang 2008). The HAD domain of the GhLIPN homoeologs contains a catalytic active site with a distinctive signature sequence, DxDxT/V (Carman and Han, 2009), indicating that they are functional PAPs. This highly conserved site is usually present as DVDGT in plants and DIDGT in mammals, and classifies lipins as members of the HAD-like superfamily (Burroughs et al. 2006; Reue and Zhang, 2008). Mutating either or both of the Asp (D) residues renders the PAP activity of lipins inactive (Han et al. 2007; Mietkiewska et al. 2011). Other conserved amino acid residues within the N-LIP and HAD domains have also been identified as crucial for PAP activity in mammals. These residues are a Gly in the N-LIP domain (Gly ${ }^{83}$ in the GhLIPN aa sequences) and a Ser in the HAD domain (Ser ${ }^{729}$ in the GhLIPN aa sequences) (Donkor et al. 2009).

Lipins are primarily soluble proteins occurring in the cytoplasm, although they localize in the membrane fractions (ER and nucleus) under specific circumstances (Péterfy et al. 2005; Liu and Gerace 2009). When expressed in yeast, AtPAH1 is found predominantly in the cytoplasm. However, upon elicitation with oleic acid, AtPAH1 migrates to the nucleus, suggesting that it has a role in regulating gene expression
(Mietkiewska et al. 2011). The bipartite NLS reportedly plays a role in the nuclear localization of lipins (Péterfy et al. 2010). The position of the NLS varies between the eukaryotic taxonomic groups. In mammals it is typically found towards the N-terminus, following the lipin domain, whereas in plants it is located towards the Cterminus, within the HAD domain (Figure 1A and Figure S4). In addition to the HAD active site motif, some mammalian C-LIP domains also contain an leucine-rich LxxIL motif reported to be involved in transcriptional coactivator functions (Reue and Zhang, 2008). This was not present in the GhLIPN homoeologs and the V. vinifera and A. thaliana proteins, although leucine- rich sequences (LLFLS, LLNL, LFPSL and LHTL) do occur downstream of the DVDGT motif (Additional file 5, Figure S4).

Promoter analyses

The determined promoter sequences of the GhLIPN homoeologs differ significantly, mostly due to indels (Additional file 7, Figure S6). Most notably, the GhLIPN-2 promoter (predicted to be from the D_{T} genome) lacks a 437 bp insert that is present in the GhLIPN-1 promoter (predicted to be from the A_{T} genome).

The promoters of homoeologous genes frequently exhibit a certain degree of cis-regulatory divergence (Chaudhary et al. 2009). However, despite the sequence discrepancies between the GhLIPN promoters, the majority of the putative cis-elements identified in the analyzed promoter regions occur in both promoters, although their relative positions to the TSS and frequency of occurrence generally differ (Additional file 7, Figure S6). The GhLIPN homoeologs contain numerous cis-elements, suggesting that they respond to a large and diverse repertoire of TFs (Additional file 7, Tables S3A-C). There is a positive correlation between genes that respond to diverse stimuli and the amount of cis-elements in their promoters, with genes functioning in transcriptional regulation, stress responses and signalling processes containing the most cis-elements (Walther et al. 2007). This is in line with the recently suggested role of plant lipins functioning in the regulation of gene expression (Mietkiewska et al. 2011). A distinctive feature of the GhLIPN promoters was the number of potential stress-responsive cis-elements, particularly those involved in plant defence and elicitation (Table 2 and Additional file 7: Table S3), which suggests that they have a defence-associated gene expression.

Two archetypical defence-related cis-elements found in both GhLIPN promoters are the W-boxes (TTGAC[C/T]), which bind WRKY TFs, and GCC boxes (AGCCGCC), which bind ethylene-response factors (ERFs). WRKY TFs have become iconic defence-associated TFs since they are over-represented in defencerelated gene promoters (van den Burg and Takken 2009). Furthermore, several studies have shown that systemic
acquired resistance (SAR)-induced genes, co-regulated with $P R-1$, have an over-representation (~ 4.30) of Wbox or W-box-like motifs in their promoters (Maleck et al. 2000; Eulgem 2005). The GhLIPN-1 and -2 homoeologs fulfil this criterion with six and three non-overlapping W-boxes in their promoters. The promoters also each contain two conserved ERF-binding GCC boxes which play a key role in elicitor-induced activation of defence genes during plant-pathogen interactions (Rushton et al. 2002). ERF TFs are regulated by ethylene signalling, typically as part of the plant-defence response (Ohme-Takagi et al. 2000). However, other defencesignalling hormones, mostly jasmonic acid, but also salicylic acid, are also reportedly involved in ERF regulation (Lorenzo and Solano 2005; Leon-Reyes et al. 2009). In addition, both GhLIPN promoters contain ciselement sites for several other defence-associated TF families, namely, MYB, MYC, DOF and GT1 TFs. Several members of these TF families regulate defence-related genes (Jalali et al. 2006).

Several abiotic stress-responsive cis-elements were also detected in the GhLIPN promoters (Additional file 7: Table S3C). These cis-elements are mostly dehydration- and cold-responsive, and hormonally regulated by ABA. There is ample evidence that demonstrates the complicated networks of TFs involved in regulating and integrating multiple stress stimuli of both a biotic and abiotic nature (Cheong et al. 2002; Wyrick and Young 2002). This elaborate cross-talk between diverse regulatory pathways (Koorneef and Pieterse 2008; Huang et al. 2012) results in considerable overlap with regards to the different cis-elements, and their corresponding TFs, regulating the different stress signalling pathways.

Expression dynamics of GhLIPN in response to elicitation with the cell wall-derived Verticillium dahliae elicitor and the potential role of GhLIPN in plant defence signalling

Transcriptional bias is frequently observed among the homoeologs of polyploids due to subfunctionalization (Chaudhary et al. 2009; Flagel and Wendel 2010.) Howcever, stress conditions can exert differential effects on homoeolog gene expression, which varies according to the gene, stress and organ type (Dong and Adams 2011).

The up-regulation of GhLIPN transcription in response to the V. dahliae elicitor was confirmed using qRT-PCR (Figure 4). The transcription was significantly up-regulated after 4 h , and peaked at 6 h post-elicitation with an approximate 4.4 fold-induction. This transient expression pattern is similar to that of an early-response defence gene and supports the observations made on the presence of cis elements involved in elicitor- and defense responses. Due to the highly homologous nucleotide sequences, the primer pair used was not able to distinguish between the transcripts from the two homoeologs. Although recent results indicate that genome-
wide expression level dominance between homeologs in AADD allotetrapoid cotton is biased towards the Agenome (Yoo et al. 2013), and thus GhLIPN-1, the co-amplification of transcripts originating from the GhLIPN2 homoeolog cannot be excluded.

Plant lipins perform key roles in the reorganisation of glycerolipids by hydrolysing phospholipase D (PLD) generated phosphatidic acid (Nakamura et al. 2009; Eastmond et al. 2010). PA is a phospholipid signalling molecule and its levels constantly fluctuate in response to various stimuli (Testerink and Munnik 2005). Both PA and PLD have been implicated in various biotic and abiotic plant stress responses which include pathogen infection and oxidative stress (de Torres Zabella et al. 2002; Testerink and Munnik 2005). In addition, PA and certain classes of PLDs are up-regulated in response to various elicitors (den Hartog et al. 2003; Yamaguchi et al. 2005; Li et al. 2009). PA and PLD activity often mediate hormonal signalling and have been reportedly associated with ABA and ET-triggered stress responses (Fan et al. 1997; Jacob et al. 1999). The specific timing of PLDs and subsequent PA production does, however, differ depending on the class of PLD, the specific elicitor, the type of plant material assayed and the conditions of elicitation (de Torres Zabella et al. 2002; den Hartog et al. 2003; Testerink and Munnik, 2005; Li et al. 2009).

It is vital for signalling molecules to be rapidly down-regulated to pre-stimulation levels following signal transduction, in order to tightly couple their response to the stress stimuli (Munnik 2001). Therefore, the concomitant transcriptional up-regulation of a PA attenuating gene is expected following PA signal transduction. The timing of the transcriptional up-regulation of GhLIPN in response to elicitation suggests that the PAP activity may be responsible for the attenuation of PLD-derived PA in defence signalling. This possibility is consistent with the observed up-regulation of $A t P A H 1$ and $A t P A H 2$ in early defence responses to Pseudomonas syringae, Blumeria graminis and salicylic acid treatment (https://www.genevestigator.com).

Conclusions

Previous studies have shown that lipins from A. thaliana are involved in ER-mediated lipid remodelling and it is likely that the GhLIPN homoeologs perform similar functions in cotton. However, the results obtained in the present study add a new dimension to the proposed roles of lipins in plants by suggesting that lipins may have a role in defence signalling. Specifically, we suggest that, based on prevalence of defence-related cis-elements in its promoter, and its expression profile in response to elicitation, GhLIPN may play a role in the defence signalling responses of cotton against V. dahliae, possibly through attenuation of the PLD-derived PA stress
signal. This intriguing aspect warrants further investigation and together with further studies involving the genome-specific expression of GhLIPN will add much needed information to the changes in the cotton transcriptome in response to pathogens.

Acknowledgements

This work was supported by the South African National Research Foundation and the University of Johannesburg.

References

Adams K, Wendel J (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539-543
Adams K, Flagel L, Wendel J (2009) Responses of the cotton genome to polyploidy. In: Paterson A (ed) Genetics and Genomics of Cotton. Springer, New York, pp 419-429

Aguado A, de Los Santos B, Gamane D, García del Moral L, Romero F (2010) Gene effects for cotton-fiber traits in cotton plant (Gossypium hirsutum L.) under Verticillium conditions. Field Crop Res 116:209-217

Ainouche M, Jenczewski E (2010) Focus on polyploidy. New Phytol 186:1-4
Bolek Y, El-Zik K, Pepper A, Bell A, Magill C, Thaxton P, Reddy O (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci 168:1581-1590

Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50:349-383

Burroughs A, Allen K, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003-1034

Carman G, Han G-S (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284:2593-2597

Chaudhary B, Flagel L, Stupar R, Udall J, Verma N, Springer N, Wendel J (2009) Reciprocal silencing, transcriptional bias and functional divergence of homoeologs in polyploid cotton (Gossypium). Genetics 182:503-517

Chee P, Rong J, Williams-Coplin D, Schulze S, Paterson A (2004) EST derived PCR-based markers for functional gene homologues in cotton. Genome 47:449-462

Cheong Y, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661-677

Cronn R, Small R, Wendel J (1999) Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96:14406-14411

Csaki LS, Reue K (2010) Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutrition 30: 257-272
den Hartog M, Verhoef N, Munnik T (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol 132:311-317
de Torres Zabella M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808-816

Donkor J, Zhang P, Wong S, O'Loughlin L, Dewald J, Kok B, Brindley D, Reue K (2009) A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem 284:29968-29978

Dong S, Adams KL (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190:1045-1057

Dubery I, Slater V (1997) Induced defence responses in cotton leaf discs by elicitors from Verticillium dahliae. Phytochemistry 44:1429-1434

Eastmond PJ, Quettier A-L, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphoryhydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidposis. Plant Cell 22:2796-2811

Eulgem T (2005) Regulation of the Arabidopsis defence transcriptome. Trends Plant Sci 10: 71-78.
Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D α retards abscisic acid- and ethylenepromoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183-2196

Flagel L, Chen L, Chaudhary B, Wendel J (2009) Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487-490

Flagel L, Wendel J (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557-564
Flagel L, Wendel J (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184-193

Göre M, Caner O, Altin N, Aydin M, Erdogan O, Filizer F, Büyükdögerlioglu A (2009) Evaluation of cotton cultivars for resistance to pathotypes of Verticillium dahliae. Crop Prot 28:215-219

Gorjánácz M, Mattaj IW (2009) Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J Cell Sci 122:1963-1969

Han G-S, Siniossoglou S, Carman G (2007) The cellular functions of the yeast lipin homologue Pah1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 51:37026-37035

Huang J-C, Piater LA, Dubery IA (2012) Identification and characterization of a differentially expressed NAC transcription factor gene in MAMP-treated Arabidopsis thaliana. Physiol Molec Plant Pathol 80:1927

Jackson S, Chen Z (2009) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13:1-7
Jacob T, Ritchie S, Assmann S, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA 96:12192-12197

Jalali B, Bhargava S, Kamble A (2006) Signal transduction and transcriptional regulation of plant defence responses. Phytopathology 154:65-74

Klosterman S, Atallah Z, Vallad G, Subbarao K (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39-62

Koorneef A, Pieterse C (2008) Cross talk in defence signaling. Plant Physiol 146:839-844
Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62-77

Leon-Reyes A, Spoel S, de Lange E, Abe H, Kobayashi M, Tsuda S, Millenaar F, Welschen R, Ritsema T, Pieterse C (2009) Ethylene modulates the role of nonexpressor of pathogenesis-related genes1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797-1809

Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927-935

Liu G-H, Gerace L (2009) Sumoylation regulates nuclear localization of lipin-1 α in neuronal cells. PLoS ONE 4:e7031 doi:10.1371/journal.pone. 0007031

Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532-540

Maleck K, Levine A, Eulgem T, Morgan A, Schmidt J, Lawton K, Dangl J, Dietrich R (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature 26:403-410

Mietkiewska E, Siloto RMP, Dewald J, Shah S, Brindley DN, Weselake RJ (2011) Lipins from plants are phosphatidate phosphatases that restore lipid synthesis in a pahld mutant strain of Saccharomyces cerevisiae. FEBS J 278:764-775

Moore R, Purugganan M (2005) The evolutionary dynamics of plant duplicate genes Curr Opin Plant Biol 8:122-128

Munnik T (2001) Phosphatidic acid an emerging plant lipid second messenger. Trends Plant Sci 6:227-233
Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-4325

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk M, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci USA 106:20978-20983

Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of ethylene-induced transcription of defence genes. Plant Cell Physiol 41:1187-1192

Péterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nature Genet 27:121-124

Péterfy M, Phan J, Reue K (2005) Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem 280:32883-32889

Péterfy M, Harris T, Fujita N, Reue K (2010) Insulin-stimulated interaction with 14-3-3 promotes cytoplasmic localization of lipin-1 in adipocytes. J Biol Chem 285:3857-3864

Phillips SM, Dubery IA, van Heerden H (2012) Molecular characterization of an elicitor- responsive Armadillo repeat gene from cotton. Mol Biol Rep 39:8513-8523

Phillips SM, Dubery IA, van Heerden H (2013) Molecular characterization of an elicitor-responsive lectin receptor-like kinase gene (GhLec-RK2) from cotton, Gossypium hirsutum. Plant Mol Biol Rep 31: 9-20

Reue K, Zhang P (2008) The lipin family: dual roles in lipid biosynthesis and gene expression. FEBS Lett 582:90-96

Rushton P, Reinstädler A, Lipka V, Lippok B, Somssich I (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound -induced signalling. Plant Cell 14:749-762

Salmon A, Flagel L, Ying B, Udall J, Wendel J (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123-134

Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour

Senchina D, Alvarez I, Cronn R, Liu B, Rong J, Noyes R, Paterson A, Wing R, Wilkins T, Wendel J (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633-643

Small R, Ryburn J, Wendel J (1999) Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16:491-501

Small R, Wendel J (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19:597-607

Tamura K, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739

Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368-375

Udall J, Swanson J, Nettleton D, Percifield R, Wendel J (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173:1823-1827

Udall J (2008) The Gossypium transcriptome. In: Genetics and Genomics of Cotton. Paterson A (ed) Springer, New York, pp 157-186
van den Burg H, Takken F (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286-294
van Deynze A, Stoffel K, Lee M, Wilkins T, Kozik A, Cantrell R, Yu J, Kohel R, Stelly D (2009) Sampling nucleotide diversity in cotton. BMC Plant Biol 9:125

Walther D, Brunnemann R, Selbig J (2007) The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 3:e11

Wendel J (2000) Genome evolution in polyploids. Plant Mol Biol 42:225-249
Wendel J, Cronn R (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139-186
Wong M, Medrano, J (2005) Real-time PCR for mRNA quantification. Biotech 39:75-85
Wyrick J, Young R (2002) Deciphering gene expression regulatory networks. Curr Opin Genet Dev 12:130-136
Yamaguchi T, Minami E, Ueki J, Shibuya N (2005) Elicitor-induced activation of phospholipases plays an important role for the induction of defence responses in suspension-cultured rice cells. Plant Cell Physiol 46:579-587

Yoo M-J, Szadkowski E, Wendel JH (2013) Homeoelog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171-180

Zwiegelaar M (2003) DDRT-PCR analysis of defence-related gene induction in cotton. Dissertation. RAU University

Figure legends

Figure 1 A: Exon-intron structure of GhLIPN. Both gene copies contain 11 exons (labelled 1-11 with sizes) and same the same exon-intron junctions. The C1B10 expressed sequence tag (EST) is represented by \longmapsto. The location of the probe used for Southern blot analysis is indicated with an arrow. B: Predicted domain structure of the GhLIPN homoeologs. Analysis of the GhLIPN-1 and -2 domain structures reveals that they contain a conserved lipin domain at the N -terminus and a haloacid dehalogenase (HAD)-like domain in the C-LIP, towards the end of the protein. A bipartite nuclear localization signal (BNLS) occurs within the HAD-like domain.

Figure 2: Phylogenetic tree showing the relationship between the GhLIPN-1 and GhLIPN-2 gene copies and their ancestral genomic representatives from Gossypium raimondii and Gossypium herbaceum. The tree was constructed with neighbourhood joining analysis from MEGA5 of a 500 bp multiple nucleotide sequence alignment (Additional file 6: Figure S5A).

Figure 3: Southern blot analysis to determine the copy number of GhLIPN. Cotton genomic DNA ($30 \mu \mathrm{~g}$) was digested with: (1) XbaI, (2) EcoRI and (3) HindIII. The approximate sizes of the bands are shown.

Figure 4: Real-time relative quantitation PCR analysis to confirm induction of GhLIPN following elicitation with the V. dahliae-derived elicitor. Cotton cell suspensions were treated with $5 \mu \mathrm{~g} / \mathrm{ml} V$. dahliae elicitor and RNA was isolated from treated suspensions at the given time points. Error bars represent the SEM of two biological repeats and two technical repeats $(n=4)$. Significant differences at $P<0.05$ between the treated samples and the 0 h control (calibrator, designated as 1 -fold) are indicated with asterisks.

Description of additional data files

Additional file 1: Supplementary Table S1: GhLIPN gene-specific primers used in the genome walking reactions, 5' and 3' RACE reactions, and internal PCRs to characterize the GhLIPN gene copies and their promoter regions. A description of all the gene-specific primers used the study is provided.

Additional file 2: Supplementary Figure S1: Genomic sequence containing the GhLIPN-1 transcript and promoter. This file contains the full genomic sequence containing the GhLIPN-1 gene and promoter sequence obtained from genome walking and homoeolog-specific PCR amplification. The putative transcription and
translation start and end sites, and exon-intron structure is indicated. The 17 bp insert in exon 1 (not present in the GhLIPN-2 transcript) that was used for homoeolog-specific amplification of the GhLIPN-1 promoter is also shown.

Supplementary Figure S2: Genomic sequence containing the GhLIPN -2 transcript and promoter. This file contains the full genomic sequence containing the GhLIPN-2 gene and promoter sequence obtained from genome walking and homoeolog-specific PCR amplification. The putative transcription and translation start and end sites, and exon-intron structure is indicated. The 13 bp insert located in intron 6 (not present in the GhLIPN1 transcript) that was used for homoeolog-specific amplification of GhLIPN-2 is also shown

Additional file 3: Supplementary Figure S3: Comparison of the full-length cDNAs and deduced amino acid sequences of GhLIPN-2 and GhLIPN-1 encoded lipin proteins in Gossypium hirsutum.

Additional file 4: Supplementary Table S2: Predicted putative post-translational modification sites in the translated GhLIPN gene copies. Potential post-translational modification sites were predicted from bioinformatic analyses, as described in the Materials and Methods.

Additional file 5: Supplementary Figure S4: ClustalW alignment of the GhLIPN gene copies with proteins from Vitis vinifera and Arabidopsis thaliana, the top scoring lipin domain-containing proteins from a NCBI PHIBLAST.

Additional file 6. Supplementary Figure S5: Alignment of the GhLIPN gene copies with a homologous partial mRNA sequence (Genbank: CO087195) from Gossypium raimondii and an amplified region from Gossypium herbaceum, to determine their genomic origin. A: nucleotide alignment. B: amino acid alignment.

Additional file 7: Supplementary Table S3: In silico analysis of putative cis-elements in the GhLIPN-1 and -2 promoter sequences.

Figure 1

A

B

Figure 2: Phylogenetic tree of the GhLIPN gene copies and their ancestral representatives from Gossypium raimondii and Gossypium herbaceum, to determine their putative genomic origin. The tree was constructed with neighbourhood joining analysis in MEGA5 of a 500 bp multiple nucleotide sequence alignment (Additional file 6: Figure S5A).

C

Figure 3

Table 1:
Lipin domain-containing proteins from various plant species that exhibit the most homology to the GhLIPN homoeologs $\mathbf{- 1}$ and $\mathbf{- 2}$, identified from a NCBI PSI-BLAST. Only one lipin-like protein (with the highest E-score in an alignment with the GhLIPN homoeologs) is shown for each of the 11 plant species that had lipin proteins with the highest homology to the GhLIPN homoeologs.

Plant species	Accession number	E-value		Identity	
	$\mathbf{- 1}$	$\mathbf{- 2}$	$\mathbf{- 1}$		
Vitis vinifera	XP_002274246	0	0	$568 / 919(61 \%)$	$574 / 919(62 \%)$
Arabidopsis thaliana	NP_187567 (AtPAH1)	0	0	$480 / 922(52 \%)$	$483 / 932(51 \%)$
Populus trichocarpa	XP_002323436	$4 \mathrm{e}^{-179}$	$4 \mathrm{e}^{-180}$	$301 / 400(75 \%)$	$302 / 400(75 \%)$
Sorghum bicolor	XP_002441227	$6 \mathrm{e}^{-166}$	$1 \mathrm{e}^{-166}$	$276 / 415(66 \%)$	$277 / 415(66 \%)$
Zea mays	NP_001146282	$7 \mathrm{e}^{-166}$	$1 \mathrm{e}^{-166}$	$275 / 415(66 \%)$	$276 / 415(66 \%)$
Oryza sativa	EAY98334	$1 \mathrm{e}^{-164}$	$3 \mathrm{e}^{-165}$	$276 / 415(66 \%)$	$276 / 419(65 \%)$
Ricinus communis	XP_002510239	$1 \mathrm{e}^{-139}$	$8 \mathrm{e}^{-141}$	$241 / 423(56 \%)$	$243 / 434(55 \%)$
Physcomitrella patens	XP_001751742	$5 \mathrm{e}^{-116}$	$4 \mathrm{e}^{-116}$	$212 / 373(56 \%)$	$212 / 376(56 \%)$
Micromonas pusilla	EEH58259	$5 \mathrm{e}^{-77}$	$5 \mathrm{e}^{-76}$	$132 / 267(49 \%)$	$130 / 267(48 \%)$
Ostreococcus tauri	CAL54337	$4 \mathrm{e}^{-72}$	$5 \mathrm{e}^{-72}$	$151 / 402(37 \%)$	$151 / 406(37 \%)$
Chlamydomonas reinhardtii	XP_001691011	$2 \mathrm{e}^{-52}$	$6 \mathrm{e}^{-52}$	$91 / 155(58 \%)$	$91 / 155(58 \%)$

Table 2: In silico analysis of W-box cis-elements in the promoters of the GhLIPN homoeologs. The promoter regions were obtained by genome walking upstream from the GhLIPN-1 and-2 transcription start sites. Homoeolog-specific promoter amplification was used to distinguish between the two promoters of GhLIPN-1 and -2 . The analysed promoter sequences were limited to 1 kb from the predicted TSSs. Identical cis-elements occurring in the same positions in the promoters of the two homoeologs are indicated by the position number in bold font.

GhLIPN-1 and GhLIPN-2						
Name of cis-element	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
WBOXATNPR1	+	$\begin{aligned} & -882^{2} \\ & -306^{2},-291^{1} \end{aligned}$	TTGAC	Binding site for pathogen-induced WRKY transcription factors, in promoter of SAR-regulated NPR1 gene	Arabidopsis thaliana	PLACE, PlantCARE
WBOXHVISO1	+	$\begin{aligned} & \mathbf{- 2 9}^{\mathbf{B}} \\ & -307^{2},-292^{1} \end{aligned}$	TGACT	Sugar signalling, binds to a novel sugar-responsive WRKY transcription factor, SUSIBA2	Hordeum vulgare	PLACE
WBOXNTCHN48	+	$-30{ }^{\text {B }}$	CTGACY	Specifically binds elicitor-induced WRKY transcription factors, involved in elicitor-responsive transcription of defence genes	Nicotiana tabacum	PLACE
WBOXNTERF3	+	$\begin{aligned} & -881^{2}, \mathbf{- 2 9}^{\mathbf{B}} \\ & -307^{2},-292^{1} \end{aligned}$	TGACY	Involved in activation of ethylene response factor 3 (ERF3), a transcriptional repressor, by wounding	N. tabacum	PLACE
WRKY710S	+	$\begin{aligned} & \mathbf{- 2 9}^{\mathbf{B}},-881^{2} \\ & -788^{1},-454^{1},- \\ & 306^{2},-291^{1},- \\ & 124^{1} \end{aligned}$	TGAC	Binds WRKY71, a transcriptional repressor of the gibberellin signalling pathway, specifically binds WRKY proteins within the Pathogenesis-Related Class 10 genes in parsley	Oryza sativa, Petroselinum crispum	PLACE
WBBOXPCWRKY1/ Box-W1	+	$-883{ }^{2}$	TTTGAC Y	"WB box" specifically binds elicitor-induced WRKY transcription factors, involved in fungal elicitor-responsive transcription of defence genes	A. thaliana, Avena fatua, H. vulgare, P. crispum, Triticum aestivum	PLACE, PlantCARE

Additional file 1

Supplementary Table S1: GhLIPN gene-specific primers used in the genome walking reactions, 5^{\prime} and 3^{\prime} RACE reactions, and internal PCRs to characterize the GhLIPN gene, its homoeologs and their promoter regions.

Name	Sequence (5' - 3')	Details	Tm	GC \%	Length (nt)
Genome Walking primers					
First upstream Genome Walk					
R1	CCCCAACAGACCATTTCAAGGTC	primary PCR	65	52	23
R2	CCGTATTCTTTAGGCAATCAAGC	secondary PCR	61	44	23
Second upstream Genome Walk					
GWR1	ACGACGAGAATTGTGGGAAA	primary PCR	58	45	20
GWR2	TTCCCGCGATGAACGAATCT	secondary PCR	60	50	20
Downstream Genome Walk					
F1	ACCAAGGAGATGATCAGTAGC	primary PCR	61	48	21
F2	GGTCTGTTGGGGTTCATCTTG	secondary PCR	63	52	21
5' and 3' RACE primers					
First 5' RACE					
RR3	TTCCTTACAAGATGAACCCCAAC	cDNA synthesis	61	44	23
RR2	CCCCAACAGACCATTTCAAGGTC	primary PCR	65	52	23
RR1	GCTACTGATCATCTCCTTGGT	secondary PCR	61	48	21
Second 5' RACE					
LiDR1	GGAAACAAACCGTCAGGAGA	cDNA synthesis	60	50	20
LiDR2	GAAACTTCTGGTTAGATATGCCTGA	primary PCR	61	40	25
LiDR3	GAAGCTGATACCCGTTCCCCTTA	secondary PCR	65	52	23
Third 5' RACE					
LiDR1	GGAAACAAACCGTCAGGAGA	cDNA synthesis	60	50	20
LiDR2	GAAACTTCTGGTTAGATATGCCTGA	primary PCR	61	40	25
RTR2	CCAGAACCCTGGAGAAGAAA	secondary PCR	60	50	20
Fourth 5' RACE					
LiDR1	GGAAACAAACCGTCAGGAGA	cDNA synthesis	60	50	20
LiDR2	GAAACTTCTGGTTAGATATGCCTGA	primary PCR	61	40	25
5'cDNAR	TCCGAGAACAACAGGAGCAG	secondary PCR	63	55	20
3' RACE					
RF1	GAATGGAATTTTTGGAAAGTGC	primary PCR	57	36	22
RF2	GGAAAGTGCCATTGCAAGATATTGA	secondary PCR	61	40	25
Internal PCR primers					
First PCR					
RTF2	GGATTGAATCTCCTGGCAA	forward	58	45	19
LipinUP2	AATGGATGAGGTTGGTGGAA	reverse	59	43	20
Second PCR					
DNAF	AGCTGCTCCTGTTGTTCTCG	forward	63	55	20
Exon4R	TCATGAGGTGTTCTTCTTATCACTG	reverse	61	40	24
Third PCR					
5'DNAF2	TCAAAGCTACCAGAGAATCCTAACA	forward	61	40	25
5'cDNAR	TCCGAGAACAACAGGAGCAG	reverse	63	55	20
Internal RT-PCR primers					
Lid 1F	CCTTAGTTGGAAGGGATTGGA	Forward	61	48	21
RR3	TTCCTTACAAGATGAACCCCAAC	Reverse	61	44	23

Name	Sequence (5' - 3')	Details	Tm	GC \%	Length (nt)
Homoeolog-specific gene primers ${ }^{\text {a }}$					
GhLIPN homoeolog -2					
LipinGW promF1	CACCCCCTATTTTCTCTTTT	Forward	56	40	20
Lipin-2 promR	GATTCTCTTTACTATACAACGATCC	Reverse	60	36	25
GhLIPN homoeolog -1					
LipinGW promF2	TTCACTGTCTTTTCCCTCAC	Forward	58	45	20
Lipin-1 promR	ATGAATGATGATACAACGATCC	Reverse	57	36	22

Homoeolog-specific promoter primers ${ }^{\text {b }}$				
GhLIPN homoeolog -2 promoter				
5'DNAF2 TCAAAGCTACCAGAGAATCCTAACA	forward 5' PCR	61	40	25
AlleleIR TCACTAATGCCTTTTTGCTTCC	reverse5' PCR	59	41	22
AllelelF GGAAGCAAAAAGGCATTAGTGA	forward 3' PCR	59	41	22
RR3 TTCCTTACAAGATGAACCCCAAC	reverse3' PCR	61	44	23
GhLIPN homoeolog -1 promoter				
5'DNAF2 TCAAAGCTACCAGAGAATCCTAACA	forward 5' PCR	61	40	25
AlleleNR CTCTTTGGTTAAACCTTTTTGCTTC	reverse 5' PCR	60	36	25
Allele NF GAAGCAAAAAGGTTTAACCAAAGAG	forward 3' PCR	60	36	25
RR3 TTCCTTACAAGATGAACCCCAAC	reverse 3^{\prime} PCR	61	44	23
RT-qPCR and Southern blot probe primers				
RT F2 GGATTGAATCTCCTGGCAA	forward	58	45	19
RT R2 CCAGAACCCTGGAGAAGAAA	reverse	60	50	20
G. herbaceum primers				
F1 GCTTTGTTTATGTAGGATGG	forward	56	40	20
R1 GTTCAATGGATGAGGTTG	reverse	58	44	18

[^0]Figure S1

-1394	gtgaaaaaggggagatgatgatgtaacgtaattaggcaaagagtggataggctaatgaggtttattttat
-1324	tttgaccagaatgggccgcctttaaaagtagaatggagtatgatataagtaggagttgcgatatgaagca
-1254	ggggatgaatgtgtaataagaaagaaaataaaattcatggcttctcctcatctcaactcaacccgtaagg
-1184	taaacataaaaccaactaaatatagttaagttaataatctaaatgaattagtggtgatcatggttgt
-1114	
-10	tataatgtttaattcaatgctcaccgtcttaaacaccggaattaaatctaaattcacttttgtttctta
-9	tctattattacaaaattttgtcgcatttaattttaatcatttcttttcttttccaaaacaagctcaatat
-90	ttggtatgtttgaattaagcttttagttgtttcaaacacttacaaaaataacagaattttatgttggttc
-834	actggaaagtgtatcactaacactcattttttatttttgttattttgtcacatgtaagatttgaaatata
-764	caagtttcaaggtttttattattcaatcagaataaatatgaataattttcactaatatgatagaaaatac
-694	tcctgaataatgtcttttatttcgatctcattatagaatgattagatttttgaatttcaattttagatat
-224	gtaggaaaatataaaatgtaagggaggaatttttgaggaaaactaacaaattagatgttagactttgatg
-5	tttgagatagattataatctacatttaaaaaaaaaaargaaaaagaaaaagaatttcgacttctttttaa
-484	acaaaagttgattagtgttagtgatacactgtcattctcaggaggttacttttctaagtgtttgaaacaa
-	ctgaaagcttaattcaaacataacaaatattgagcttgttttggaaaagaaatgatttaaattatatgcg
-3	acaaaattttctaataatatataagaaacaaaagtgaaatgaagggtaatttagtcaatttagaagttaa
-274	taatttttttctttttttcggaataaaactcaagtttcaataattataatgtttcttcatcccggcggct
-204	ctaccatccttaagaccggaaaaagcgggacaatatttcaaatatccaaaattacccttccattaatcac
-	aatttacacgtcatatttctcgtatttttaagcaaaactaagggacctatttatgtcttttcgcattgc
-64	atggcggttgcggttaggtcgccgttgccaacttctgactcg
+1	CCAAAAAATAACAAAATAAAAATTCAAAGCTACCAGAGAATCCTAACAGCGTCGGATCGTTGTATCATCA 1
71	TTCATCGATCATAGTAAAGAGAATCTTACAATTGTTTTGATTTCGAGCTGCCAGGTTCGTTCATCCCGGG
14	AATTTTCTTCTTTGTGCAGTTCTTAATCTGTAAGTTTACTGACTTTGGCTGTATAGTTATATTTTAGTTC $\underline{1}$
21	AATTTTGAAATTAGAAAGTTCGATTTTTTCTCCACAATTCTCGTCGTTTAATCTGTATGTTATCGATCTT
281	GTTTGATTGCTTTTACCGTATACTGGACATTTATTTTATGTTTGGTTGCTGAGAAAATTGGAGGTTTTTT
351	TCCCTTTCTTGTGTTTCTAAAGTTTAAGCTTTTCTTCTTTTATGAGAAATATGTTTTAGCATTCTATATT
421	GGGATCATACTTCATATAATATTCGTTAAACTTGGATTTCTATATTTGGTTCCAAGTGACAGCTTATAGA
491	TTCCCATACATGCTTTCTTCCTTTTTTTTACCCCATTTTATTTTCTCGCTGAGCAAAAGGGAACATGTTA
561	TGGTTTAAGTTGGCTTCGTTTAATTTTGAACTGAACGCAGATAACTGAAAGTAAAGAACAAAGATCCTTG
631	ATTAGAACGATTTTGGATGTTTATATTGATTTGTGGATTCATTTTTGATAGAATTAAAGGAAACTGCAGA 2
701	AgGATTTTTGTTAATCTAAGGAAGGTTTAATTTTGACAAATGAATGTGGTTGGCAAAGTTGGGAGTTTAA
71	TTTCACAAGGTGTATATTCTGTTGCTACTCCTTTCCATCCTTTCGGTGGAGCGGTTGATATAATTGTTGT
84	TCGGCAAGCAGATGGGACTTTTCGGAGCTCGCCTTGGTATGTTCGTTTTGGGAAGTTTCAGGGTGTCTTG
91	AAAGGGGCTGAAAAGGTCGTTCGTATAACTGTTAATGGCATTGAAGCAGATTTTCATATGTATCTTGATA
981	ACTCTGGGCAAGCATATTTTTTAAAGGAGGTTGAATCTGGTAAAGGATTTCAGACAAATGGAGATTTGAA
1051	GGATTCTGATGGTGAAGTTGTTTCAGATTCCTCGGTGGCTCAATTGAGGGATGAATGTGATGCCACAAAT
1121	CACAAACAGCTTGAAAGGGCAGAATCTGATACTAGGTTCTATGATTTTCAAGATGATCAGTTTTATCAAG
1191	AGGGTCTGGTTAATTTTTCAGAATATGGGTCCGACCGATATGGGGGTTTAGATAGTGAGTGTTTTGGGGA
1261	AGCACAAGGTTTAGATTCAGTTGTCTTCTTCAGTAAGGATGGCCATATTCTCACAGCCCCTGTTTTGGCA
1331	TCAGACAGGAGTGCTGAAAATGTGCAACTAAGCACACCTCTGTTCCATATAGGCGCAGGTGAAGGACCTG
1401	ACTTTTGTGACGGTAATGGGGAATTTAGTCCAGGTGGCAATGAATCAGATGCTGACTATATAGGTAAGCT
1471	CAATGCTGCGGCACCTAAGAATTCCTCTGATATTGTTTGCAGCTTGGACAATGATTCTACTGCTTTGAGA
1541	CACCATCTAGAAGTTTGTGAAAGAGGGGGGGAACATGCCTGTCATACTGAAGAAACTCGAAACCTTTTCA
1611	AGCATGAAAATGAATTTATCAGGCAAAGTGACATTGAAGATGCATCCATGCATATTAAGGATGATGTTTT
1681	TAAGAGCAGTCTTGAACTATCTGAATTGGGCAGACACGAAGAGAACACCAATTCTGAAGGAATAGATAGC
1751	CCACTGCAAGCTCAGATTTCACAAGATAAGCGTTCTTGCAGCCCCCCAGAAGTTGGTGAAACTGAAGATG
1821	GAGCTATTGGTGGCTCCAGAAATAAAGATGTGTTGTCTTCCTCTTGTATTCCCAATTATTCCAATGAAAT
1891	TGGGTCTCCTGATTTACCAGTTGAAAAGACAATGTTGGCTACAGATAATAAGGGTTCTAACAATGCATCT
1961	GTTGATTTGGTTGTTAATGACCCTGAATTGAGAGATGAACAGTTCGATACATCAGCAGCAACTGAGGGGA
2031	TGAATAGCAGTCTGCAAAGTCCTCCACCTGAGGACAAGAGTAGCATAAGTGAGACTGTGGAAACTGAAAC
2101	AAGTTGTGCTAAAGAGATAGATGTTAGTGCTAGCCTGGGTAAGGAACTAAGTGCTTTTCCTCCTTGAATT $\underline{\mathbf{2}}$
2171	ACTTAACTTCCCTTATTCTTGCTCTGATTCTCGCCTTAAATTTCCAGGGTTTGAGATCTCACTCTGTGGC $\mathbf{3}$
2241	AATGAACTTTATGTGGGTATGGGCTCAGATGCTGCAGCAGAAGTCTTTGAAGCACATCGGATATCAATGG
2311	AGGAATACAAAAATAATGCAATTTCAATTATTAAGAATACAAACCTAATCATCCGATTTGGAGAGATGTA
2381	CTTCACATGGGAAAAAGCTGCTCCTGTTGTTCTCGGAATGGCTGCATTTGGTTTAGAATTAGCTATTGAG
2451	CCCCAGGATGCAATCCCTGTTGAAAAGGATGAGTCACCAAAGCCTAAGGGTGCTGCTTCTGGTGTCACTT
2521	CTGCACCTTCTGGCTGCAGATGGAGGCTTCGGTCTATTCCCTTAAAAAGGGTCAAAACACTTGAGAAGAC
2591	CGGTAGCAATTTATCTAGTGAAGAGGTATTTCTTGATACTGAATCTTCTCTACAAAATTCACCAGCAGAT

2731 ACGAGCAGATTGCTTCCTTGAATCTGAAAAATGGTCAAAACATGATTACTTTCAGTTTCTTCTCCAGGGT
2801 TCTGGGAACACAACAGGTATCAATTTTTTCTTTACACAATTCTTCTGGTAGGTTCGCAAGGTTTGTGTTC $\mathbf{3}$
2811 TGCTTAAATTTTAGCCTAAAAATCTGTGTATCTTTAACAGGTTGAAGCTCATCTTTACTTGTGGAAATGG
2941 AACGCAAAGATTGTAATTTCAGATGTGGATGGAACTATTACCAAGTAAGGATTTATCTCCTGATATTGTT $\underline{4}$
3011 GCTCTGCAGTATTTAAAATTTTCCTGTTTCACCCATTTATGGACCTGTCTAAACTAGCTCTGAATCTTAT 3081 TATGATATTATTATGGAACAGAGAAATTAAACCATATATTCGCATTTGATGCTGAAATTATAACTTCCA 3151 TTATGGTCTTTAGTATTAGAGCAGCAGTGAGCATTCTAGAAGCAGTCATACCCTAATTGATTTGGTGTGA 322 AATCTTTCTTTCGAATATGTTTTAGTCATGTATAGTGTAATACAAGATGCATGTTTCAAAAACCTTAACA 3291 TATTTCTTTCAGGTCTGATGTCTTAGGCCAGTTTATGCCTTTAGTTGGAAGGGATTGGACACAATCTGGT 5 3361 GTAGCTAATCTTTTCTCAGCTATTAAGGTATGCTTTTCTCAATTGTTTCTTTGTTCAACTTGACTTGACT 5 3331 GAGAAGTTTTTCTTTTCTGGACTATCATGCAAAACTAGATCTAGTAAATTGCTCCACCATTTTTTAGTTT 3501 CACCACAACAGAAATCAAAACTTGTCTCATGTTTCCCTTGCGCTTTACTTTTACTAGTTCTTTATAAAAT 3511 tCCCCACTGATGTAAGTGATGATAAATTTTTTAATGCAAGTTTATAGAGTAACTTTTGATAACCTTAGTA 3611 tCAAGATtATGTGAGCATTATCCTGTCACCATtATGCCCCTCAACATTTATTTTTCTGTTGTGAAATGTA
 3781 TATTCATCCCTCCTGTAACATGTGTGCATGCACAAACACAATATTGTTTGTAGAGAACAATATCAAACAG 3851 tGTGGCTCTTCTATtTATTCCATTAACCAACATATtTTGGCATGCATATTAACCAATTATTTTCTTGGGT 3921 GTCCGATGTCCAACACTAACTGTATGTTCACAACAGGAGAACGGATATCAGCTTCTATTTCTCAGTGCAC 6 3991 GTGCAATTGTTCAGGCATATCTAACCAGAAGTTTCTTACTTAACCTGAAACAGGTAATGGAATAGCCTGA 6 4061 ATACACTTTTTTACATTTCCCTAATGGAAGCAAAAAGGTTTAACCAAAGAGAAAAGCTAACATTTGGAAA 4131 CCATCTTGTTAAAAGACTTTAAAATCACAAATTTGTAACCGATTTTAACTGATATAGCTTTGTTTATGTA 4201 GGATGGAAAAGCTTTACCCTCTGGACCTGTTGTGATTTCTCCTGACGGTTTGTTTCCCTCATTGTACCGT 7
 4341 TAGTTTGCTTCACAATTTTGAGGCTCCAGCTACATGAGAGGAAAAAGAATTCTTATTGTATTCCATCACA 4411 AAACCTTTAAATGATAAACGTGGCATTATTTGTTGTCTTGGCCTTTTCTTTATATCAGAATCATTAGGCT 481 tTATCATCAAGTTACATTGCTTTTCTTCTTTTACTTCCTTTTTAATTATTTATGGGTTCCATTCTAATAA 4551 ACTATACTTGGCAGTGATAAGAAGAACACCTCATGAATTCAAAATAGCTTGTTTAAAGGTGAATTCTGAA 8 4621 ATATTCAACCTTGTTTCTAAATATACAACGGAACTATTACTGCATCCAGATCAGTCTTTTCACCTATGAT
 4761 GCTTTGGAAACAGAGACACAGATGAACTCAGTTATAAAGAAATTGGCATCCCAAAGGGAAAAATATTTAT
4831 TATTAATCCAAAGGTACATGTTTTTCATGTCCTACTTATGAGAAATCTATATTGCAATTACCATATCAAA 9 4001 tTtATAACAATCGGGCTCAAAACTGGCAGGGTGAGGTGGCTGTAAGTTATtGTATGAACACGAGGTCATA 10
4971 CACATCATTGCATACTCTTGTAGAAGAGATGTTTCCACCAACCTCATCCATtGAACTGGTAAGGCATCAA 10
5041 TTTCTCGCCTGTTTATATATGATGCAAAAGACAATTGAAAATTTATCTACAACTGTCTCTTATTTGTTT 5111 tgGAGCCTtCTtGATATCCTtGATATtTtAATACGTtTGCAGGAAGATtATAACGAATGGAATtTTTGGA 11
5181 AAGTGCCATTGCAAGATATTGAGTAACATAGTTGATTGCCTAAAGAATACGGTTTAGTTATACCAAGGAG
5251 ATGATCAGTAGCGTAATTTGTCCCATAGGTAAGAAATTGTTATGATATTCTTCAAGTTCTTAAACTCGCT
532 TCCTCACTGACATTCATATTCTTTGGTGACCTTGAAATGGTCTGTTGGGGTTCATCTTGTAAGGAATAAA
5391 TAATTCAAGTGGATAAAATCAAAGCCATTGCCTACAATAGCTATATCTATCTTTAGAGATTAAAATATTC
5461 TCCCCAATTATAAAGTTCAGTAAAAATGATAGCATTTCATACGTAGTTTTCTTTATTATATTCATCCATC
5531 ATTTATAAATGTGGGGTTCATAGAAAAttttaatagatctcacgtggatctattgtgcttacataattgt
5601 tgtataataattataagtaatatcgttcacaaaatggttcctctttagtaaccatttttaacaatttcat
5611 tttgcgggataagaaataaatgcaacttatgtgtatatgtttaaaaccaagctgttctcagtgttcttca 5741 ggctactaacagtgacctaagaaaagcttgtataggtctttaatggacttatattagaaaagctctgaaa 5811 acccaataaatgattgtaataatttcaaactactgtagactgtaatggtaccaatcttatctggaatcct 5881 gaaatattacattcaaacctgcattcaaaccaatagtactaacaggtgtgtatctatgacacaaaacaaa 5951 aacaactttttgaaggttagtaccataaatccacttgtaaaaggtgtttctgagggcgactcccctgaga 6021 cattggccgcaactattctggggttgggtcgtgtcggactcttgatttatttttttcattcacatgactt 601 gaattgagatattgcttaaaagacattaaattgtttatcactcagctcaatagatagggcttggtcttg 6161 acttgtagatatcaggttggagttgtaattgcaactttgagtcattgtaacagtggctcggttggaaag 231 cctgagaaggtacatgatgcagccatgcccccatgcagacgcgggctggcatgagagttaaaaagtgaaa 6301 aagctaattgcccttcagaaagtgagaactgtggtgtacatgaacaaagcttagggtgctcagaccagca 6311 tcacgtgatcacctctgcttcatttcttgcagtaaattcgactttaccogtatttcagagcagtgatttg 6411 ggttttggatatgggatccttctttcgcatctttatcaatattgtttcatttttcatcattttacccctt 6511 ggttaagatttacatctcaaaaactcttatacactactagatattattaccaatcagcaaaagattgacc 6581 ccgatcacaaggtgacaatataataaatatcagtctatgttaaatccaaactgttacttaagacagcta 6651 attattatattttccttgttcattaatttgttgctcttaggttaggtcttagctgatgtgaaacaaaaac 672 acttggaatctaggtgcaatgttgttattgaatattgcggctggtcttggatcagtgttgtagaattgga 6711 caaagctcaaaagtaaacagttactgcaagaggagacaagctaaaaaagaaaaaccctcgagccttggga 6861 taaactgcatcccaacaccaaaatattggagcttatacttgttttctattttttggggggatgactctag 6931 tttatgtttgtttttagtgaggtcaacag

Figure S1: Genomic sequence containing the GhLIPN-1 transcript and promoter. The genomic sequences preceding and following the putative GhLIPN-1 transcription start and end sites are in lowercase and the 1 kb promoter sequence analysed for cis-elements is underlined. The 11 exons are shaded and numbered 1-11 and the 10 introns are numbered 1-10, with the numbers underlined. The C1B10 EST is indicated with an orange wavy underline (\quad). Translation start and end codons are in large, underlined bold font and putative poly(A) transcript termination signals are double-underlined. A 17 bp insert in exon 1, not present in the GhLIPN-2 transcript, which was used for homoeolog-specific amplification of the GhLIPN-1 promoter is in upper case red font.

Figure S2

```
-1289 gtaggctcttcttcctcttcccatcaccccctattttctcttttactctcccaaagcatttcactgtctt
-1219 ttccctcacaccttctttccttgaaaacctgtaactcctcaggtacatctgcctacacgagaaactgtcc
-1149 accactctactcggtcggcctgagctccttgacctcaaaaactcagcatccgattctggccacttgtata
-1079 gattcacgtatgttgccctaacagggaccagagggtccgtagcatcggacaagcacctagaaatgcacac
-1009 agagctcattttcttaacgctgattatgagattgtgagagaacgagtatatatagagtgaaaaaagagag
-939 atgatgatgtaacgtaattaggcaacgagtggataggctaacgaggtttattttattttgaccagaaggg
-869 gccgcctttaaaagtagattggagtatgatataagtaggagttgcgatgtgaagcaggggatgaatgtgt
-799 aataaaaaagaaagtaaaattcctgccttctcctcatctcaaccagtcgggtaaaacataaaatctaaat
-729 tatttagtatttatttaaatgagatttggttggtgatcatggtattatagttttggtagaagaagatggg
-69 tcttacaaaaaacaaacatcccaaactataatttagattttaatttctattaattacgtgttaaatgcca
-589 tcttagccacgacacagagcatgatatcttaaacacgggaattaaatctttacttctaaattcacttatt
-519 tggtcgcatttaattttaatcatttcttttcttttccaaaacaagctcaatatttgttatgtttgaatta
-449 agctcaggaggtttcttttcacgtgtttgaaacaactaacagcttaattcaaacctaacaaatattgagc
-379 ttgttttggaattatatgcgaccaaattttctaataatagacaagaaacaaatgtgaaatgaagggtaat
-309 ttagtcaatttagatgtaaagatttttttttagcattactgtagaagtttcaataattataatgtttgtt
-239 cattccggcggctctaccatcottaagcotgaaaaagcgggacaatatttcaaatatcctaaattaccct
-169 tccattaatcacaaatttacacctcatatttctcgcttcgtagagtctttctaagcaaaactaagggacc
-99 tatttatgtcttttcacaaggttacttgtttattgcatggcggttgcggttagtcgccgttgccaacttc
-29 tgactcgttttcaaaatttccattttttt
    CCAAAAAATAAAAAAATAAAAATTCAAAGCTACCAGAGAATCCTAACAGCGTCGGATCGTTGTATAGTAA 1
    AGAGAATCTTACAATTGTTTCGATTTCGAGCTGCCAGATTCGTTCATCGCGGGAATTTTCTTCTTTGCGC
    AATTCTTAATCTGTAAGCTTACCGACTTTGACTGTATAGTTATATTTTAGTTAAATTTTGAAATTAGAAA 1
    GTTCGATTTTTTTTCCCACAATTCTCGTCGTTTAATCTGTATGTTATCAATCTTGTTTGATTGCTTTTAC
    TGTATACTGGACATTTATTTTATGTTTGGTTGCTGAGAAAATTGGAGGTTTTTTTTCCCTTGTGTTTCTA
    3 5 1 ~ A A G T T T A A G C T T T T C T T C T T T T A C G A T A A A T A T G T T T T A G C A T T C T A T A T T G G G A T C A T A C T T C A T A T A A ~
    221 TATTCGTTAAACTTGGATTTCTATATTTGGTTCCAAGTGGCAGCTTATAGATTCCCATACATGCTTTCTT
    4 9 1 ~ C C T T T T T T T C C C C A T T T T A T T T T C T T G C T G A G C T A A A G G G A A C A T G T T A T G G T T T A A G T T G G C T T C G T T T ~
    5 6 1 ~ A A T T T T G A A C T G A A C G C A G A T A C C T G A A A G T A A A G A A C A A A G A T C C T T G A T T A G A A C G A T T T T G G A T G T T ~
    6 3 1 ~ T A T A T T G A T T T G T G G A T T C A T T T T T T G A T A G A A T T A A G G A A A C T G C A G A A G G A T T T T T G T T A A T C T A A G A ~ 2 , ~
    701 AAGGTTTAATTTTGACAAATGAATGTGGTTGGCAAAGTTGGGAGTTTAATTTCACAAGGTGTATATTCTG
    71 TTGCTACTCCTTTCCATCCTTTCGGTGGAGCGGTTGATATAATTGTTGTTCGGCAACCAGATGGGACTTT
    841 TCGGAGCACACCTTGGTATGTTCGGTTTGGGAAGTTTCAGGGTGTCTTGAAAGGGGCTGAGAAGGTCGTT
    911 CGTATAACTGTTAATGGCATTGAAGTAGATTTTCATATGTATCTTGATAACTCTGGGCAAGCATATTTTT
    9 8 1 ~ T A A A G G A G G T T G A A T C T G G T A A A G G A T T T G A G A C A A A T G G A G A T T T G A A G G A T T C T G A T G G T G A A G T T G T '
1051 TTCAGATTCCTGGGTGGCTCAATTGAGGGATGAATGTGATGCCACAAATCAAAAACAGCTTGAAAGGGCA
121 GAATCTGATACTAGGTTCTATGATTTTCAAGATGATCAGTTTTCTCAAGAGGGTCTGGTTAATTTTTCAG
1121 AATATGGGTCCAACCGATATGAGGGTTTAGATAGTGAGTGTTTTGGGGAAGCAAAAGGTTTAGATTCAGT
1261 TGTCTTCTTCAGTGAGGATGGCCATATTCTTACTGCCCCTGTTTTGGCATCAGACAGGAGTGCTGAAAAT
1331 GTGCAACTAAGCACACCTCTGTTCCATATAGGAGCAGGTGAAGGGCCTGACTCTTGTGACGGTAATGGGG
1401 AATTTAGTCCAGGTGGCAATGAATCAGATGCTGACTATATAGGTAAGCTCAATGCTGCGGCACCTAAGAA
1471 TTCCTCTGATATTGTTTGCAGCTTGGACAATGATTCTACTGCTTTGAGACACCATCTAGAAGTTTGTGAA
1541 AAAGGGGGGGAACATGCTTGTCAAACTGAAGAAACTCGAAACCTTTTCAAGCATGAAAATGAATTTATCA
1611 GGCAAAGTTACAGTGAAGATGCATCCGTGCATATTAAGGATGATGTTTTTAAGAGCTGTCTTGAACTATC
1681 TGAATTGGGCAGACACGATGAGAACACCAATTCTGAAGAAATAGATAGCCCACTGCAAGCTCAGATTTCA
1751. CAAGATAAGCCTTCTTGCAGCCCCCCAGAAGTTGGTGAAACTGAAAATGGAGCTATTGGTGGCTCCAGAA
1821 ATAAAGATGTGTTGTCTTCCTCTTGTAGTCCCAATTATTCCAATGAAAATGGGTCTCCTGATTTACCAGT
189. TGAAAAGACAATGTTGGCTACAGATAATATGGGTTCTAACAATGCATCTGTTGATTTGGTTGTTAATGAC
1961 CCTGAATTGAGAGATGAACAGTTCAATACTTCAGCAGCAACTGAAGGGATGAATAGCAGTCTGCAAAGTC
2031 CTCCACCTGAGGACAAGAGTAGCATAAGTGAGACTGTGGAAACTGAAACAAGTTGTGCTAAAGAGATAGA
```

2101 TGTTCGTGCTAGCCTGGGTAAGGAACTAAGTGCTTTTCCTCCTTTAATTACTTAACCTCCCTTATTCTTG $\underline{2}$
2171 CTCTGATTCTCGCCTTAAATTTCCAGGATTTGAGATCTCACTCTGTGGCAATGAACTTTATGTGGGTATG 3
2241 GGTTCAGATGCTGCAGCAGAAGTCTTTGAATCACATCGGATATCAATGGAGGAATACAAAAATAATGCAA
2311 TGTCAATTATTAAGAATACAAACCTAATCATCCGATTTGGAGAGATGTACTTCACATGGGAAAAAGCTGC
2381 TCCTGTTGTTCTCGGAATGGCTGCATTTGGTTTAGAGTTAGCTATTGAGCCCCAGGATGCAATCCCTGTT
2451 GAAAAGGATGAGTCATCAAAGCCTAAgGGTGGTGCTTCTGGTGTCACTTCTGCACCTTCTGGCCGCAGAT
2521 GGAGGCTTTGGTCTATTCCCTTAAAAAGGGTCAAAACACTTGAGAAGACCGGTAGCAATTTATCTAGTGA
2591 AGAGGTATTTCTTGATACTGAATCTTCTCTACAAAATTCACCAGAAGATTTAATTCCAACATCCAGTGGA
2661 AGGATTGAATCTCCTGGCAAACAATTTGTGAGGACAAATATTCCCACCAACGAGCAGATTGCTTCCTTGA
2731 ATCTGAAAAATGGTCAAAATATGATTACTTTCAGTTTCTCCTCCAGGGTTCTGGGAATACAACAGGTTTC 3
2871 ATCTGTGTATCTTTAACAGGTTGAAGCTCATCTTTACTTGTGGAAATGGAACGCAAAGATTGTAATTTCA 4
2941 GATGTGGATGGAACTATTACCAAGTAGGGATTTATCTCCTGATATTGTTGCTCTGCTGTATTTAAAATTT $\underline{4}$
3011 tCCCGTtTCACCCATtTATGGACCTGTCTAAACTAGCTCTGAATCTTATtATGATATtATtATGGAACA
3081 GAGAAATTAAACCATATATTCGCATTTGATGCTGAAATTATAACTTCCATTATGATCTTTAGTATTAGAG
CAGCAGMGAGAY
3221 GTAGTTATGTATAGTGTAATACAAGATGCATGTTTCAATAACCTTAACATATTTCTTTCAGGTCTGATGT 53221 CTTAGGCCAGTTTATGCCTTTAGTTGGAAGGGATTGGACACAATCTGGTGTAGCTAATCTTTTCTCAGCT3361 ATtAAGGTATGCTTTTCTCAATTGTTTCTTTGTTCAGCTTGACTTGACTGAGAAGTTGTTCTTTTCTGGA $\underline{5}$3431 CTATCATGCAAAACTAGATCTAGGAAATTGCTCCACCGTTTTTTAGTTTCACCACAACTGAAATCAAAAC3501 ttgTCTCATGTtTCCCTTGCGCTtTACTTTTACTAGTTCTTTATAAAATtCCCCACTGATGTAAGTGATG3571 ATAAATTTTTTAATGCAAGTTTATAGAGTAACTTTTGATAACCTTAGTATCAAGATTATTTGAGCATTAT3641 CCTGTCACCATTATGCCCCTtAACATTTATTTTTCTGTTGCGAAATGTATtTTTGCACTCCTTAGTTTAT3 311 ATATGGGTAGTGATGAAATTCTTCTCATAAGTTGCATTTATGTCATCTTTATCCATCCCTCCTGTAACAT
3781 GTGTGCATGCACAAACACAATATTGTTTGTAGGGAACAATATCAAACTGTGTGGCTCTTCTATTTATTCC
3351 ATTAACCAACATATTTTGGCATGCATATTAACCAAATGATTTCCTTGGGTGTCTATGTCCAACACTAACT
392 GTATGTTCACAACAGGAGAATGGGTATCAGCTTCTATTTCTCAGTGCACGTGCAATTGTTCAGGCATATC 6
3991 TAACCAGAAGTTTCTTACTTAACCTGAAACAGGTAATGGAATAGCCTGAATACAAATTTTTAAATTTCCC $\underline{6}$
4061 TTATGGAAGCAAAAAGGCATTAGTGAAAGTGTTAACCAAAGAGAAAAGCTAACATTTGGAAACCATCTTG
4131 TTAAAAGACTTTGAAATCACGATTTGTAACCGATTTTAACTGATATAGCTTTGTTTATGTAGGATGGAAA 7
4201 AGCTTTACCCTCTGGACCTGTTGTTATTTCTCCTGACGGTTTGTTTCCCTCATTGTACCGTGAGGGTGAG $\mathbf{7}$
4271 ATCTTTCATtCTTTATTTTCTCTTACATTGTtTGTCTATTGAAGTAATCTAGCTGTTTTTTTAGTTTGCT
4341 TCACAATTTTGAGGCTTCAGCTACATGAGAGGAAAAAGAATTCTTATTGCATTCCATCACAAAACCTTTA
4411 AATGATAAACGTAGCAATATTTGTTGTCTTGGCCTTTTCTTTATATCAGAATCATTAGGCTTTATTATCA
4481 AGTTACATTGCTTTTCTTCTTTTACTTCCTTTTTAATTATTTATAGGTTCCATTCTAATAAACTATACTT
4551 GGCAGTGATAAGAAGACACCTCATGAATCAAAATAGCTTGTTTAAAGGTGATTCTGAAATATtCAAC $\mathbf{8} \underline{8}$
4621 CTTGTTTCTAAATGTACAACGGAACTATTACTGCATCCGGATCAGTCTTTTCACCTACGATTTCTTCCTT
4691 ATACGTGCGTTGCAGAATATCAGGAAGCTTTTCCCTTCGGACTACAATCCATTTTATGCAGGCTTTGGAA 9
4761 ACAGAGACACAGATGAACTCAGTTATAAAGAAATTGGCATCCCAAAGGGAAAAAGGTTTATTATTAATCC
4831 AAAGGTACATGTTTTTCATGTCCTATTTATGAGAAATCTATATTGCAATTACCATATCAAATTTATAACA $\underline{9}$
4901 ATCGGACTCAAAACTGGCAGGGTAAGGTGGCTGTAAGTTATTGTATGAACTCGAGGTCATACACATCATT 10
4971 GCATACTCTTGTAGAAGAGATGTTTCCACCAACCTCATCCATTGAACCGGTAAGGCATCCATTTCTCGCC $\mathbf{1 0}$
5041 TCTTTATATATGATGCAAAAAAACAATTGAAAATTTATCTACAACTGTCTCTTATTTGTTTTGGAGCCTT
5111 CTTGATATCCTTGATATTTTAATACGTTTGCAGGAAGATTATAACGAATGGAATTTTTGGAAAGTGCCAT 11
5181 TGCAAGATATTGAGTAACATAGTTGATTGCCTAAAGAATACGGTTTAGTTATACCAAGGAGATGATCAGT
5251 AGCTTAATTTGTCCCATAGGTAAGAAATTGTTCTGAGATTCTTCAAGTTCTTAAACTCGCTTCCTCACTG
5321 ACATTCATATTCTTTGGTGACCTTGAAATGGTCTGTTGGGGTTCATCTTGTAAGGAATAAATAATTCAAG
5391 TGGATAAAATCAAAGCCATTGCCTA

Figure S2: Genomic sequence containing the GhLIPN-2 transcript and promoter. The genomic sequences preceding the putative GHLIPN-2 transcription start site (TSS) is in lowercase and the 1 kb promoter sequence analysed for cis-elements is underlined. The 11 exons are shaded and numbered 1-11 and the 10 introns are numbered 1-10, with the numbers underlined. The C1B10 EST is indicated with a wavy underline (___). Translation start and end codons are in large bold font and underlined. A 13 bp insert located in intron 6 (6) and not present in the GhLIPN-1 transcript, which was used for homoeolog-specific amplification of GhLIPN-2 is in upper case red font.

Figure S3

GhLIPN-2 GhLIPN-1

GhLIPN-2
GhLIPN-1

GhLIPN-2
GhLIPN-1

GhLIPN-2 GhLIPN-1

GhLIPN-2 GhLIPN-1

GhLIPN-2 GhLIPN-1

GGTAAGCTCAATGCTGCGGCACCTAAGAATTCCTCTGATATTGTTTGCAGCTTGGACAATGATTCTACTGCTTTGAGACACCATCTAGAAGTTTG 1027 GGTAAGCTCAATGCTGCGGCACCTAAGAATTCCTCTGATATTGITTGCAGCTIGGACAATGATICTACTGCTTTGAGACACCATCTAGAAGTTTG 1027
 TGAAAAAGGGGGGGAACATGCTTGTCAAACTGAAGAAACTCGAAACCTTTTCAAGCATGAAAATGAATTTATCAGGCAAAGTTACAGTGAAGATG 1122

 AGCCCACTGCAAGCTCAGATTTCACAAGATAAGCCTTCTTGCAGCCCCCCAGAAGTTGGTGAAACTGAAAATGGAGCTATTGGTGGCTCCAGAAA 1312
 TAAAGATGTGTTGTCTTCCTCTTGTAGTCCCAATTATTCCAATGAAAATGGGTCTCCTGATTTACCAGTTGAAAAGACAATGTTGGCTACAGATA 1407

 ATATGGGTTCTAACAATGCATCTGTTGATTTGGTTGTTAATGACCCTGAATTGAGAGATGAACAGTTCAATACTTCAGCAGCAACTGAAGGGATG 1502

 AATAGCAGTCTGCAAAGTCCTCCACCTGAGGACAAGAGTAGCATAAGTGAGACTGTGGAAACTGAAACAAGTTGTGCTAAAGAGATAGATGTTCG 1597
 TGCTAGCCTGGGATTTGAGATCTCACTCTGTGGCAATGAACTTTATGTGGGTATGGGTTCAGATGCTGCAGCAGAAGTCTTTGAATCACATCGGA 1692

Figure S3: Comparison of the full-length cDNAs and deduced amino acid sequences of GhLIPN - 2 and GhLIPN-1 encoding lipin proteins in Gossypium hirsutum. Conserved, semi-conserved and radical (non-conserved) nonsynonymous amino acid substitutions are indicated in blue, red and black font, respectively. The N -terminal and C-terminal lipin domains are shaded in pink and yellow, respectively. The HAD domains are shaded in green and the bipartite nuclear localization signals (BNLS) are shaded in red. The DxDxT/N haloacid dehalogenase catalytic motif involved with phosphatase activity is double-underlined.

Supplementary Table S2:

Predicted putative post-translational modification sites in the GhLIPN homoeologs.

Modification/site	Position on aa sequence	Sequence (in order of appearance)
Protein kinase C (PKC) phosphorylation sites	$\begin{aligned} & 40-42,93-95,161-163,198- \\ & 200,492-494^{\prime}, 556-558,571- \\ & 573^{\prime}, 620-622,658-660^{\prime} \\ & 729-731,813-815 \end{aligned}$	TFR, SGK, SNR ${ }^{1} /$ SDR 2, SDR, SHR', SSK ${ }^{1} /$ SPK ${ }^{2}$, SGR', SGR, SSR ${ }^{1}$, SAR, SYK
Casein kinase II (CKII) phosphorylation sites	$\begin{aligned} & 99-102,106-109,236-239, \\ & 300-303,316-319,330-333, \\ & 351-354,445-448,496-499 \\ & 596-599,611-614,683-686, \\ & 690-693,777-780,813-816, \\ & 849-852,859-862 \end{aligned}$	TNGD, SDGE, SDAD, SYSE ${ }^{1} /$ SDIE 2, SCLE $/$ SSLE ${ }^{2}$, TNSE, SPPE, SISE, SMEE, SSEE, SPED ${ }^{\prime} /$ SPAD 2, SDVD, TKSD, TPHE, SYKE, TLVE, SSIE
Tyrosine kinase phosphorylation sites	133-141, 807-814	RAEsDTRfY, RDTdELSY
N-Glycosylation sites	$\begin{aligned} & \hline 155-158,234-237,251-254, \\ & 261-264,379-382,405-408 \\ & 423-426^{1}, 432-435,594-597 \end{aligned}$	NFSE, NESD, NSSD, NDST, NYSN, NASV, NTSA', NSSL, NLSS
N-Myristoylation sites	$\begin{aligned} & \hline 8-13,39-44,55-60,165-170^{2} \\ & 232-237,276-281,361-366, \\ & 402-407,430-435,482-487, \\ & 538-543,561-566,592-597, \\ & 764-769,805-810,818-823 \end{aligned}$	GSLISQ, GTFRST ${ }^{1} /$ GTFRSS 2, GVLKGA, GGLDSE ${ }^{2}$, GGNESD, GGEHAC, GAIGGS, GSNNAS, GMNSSL, GSDAAA, GLELAI, GGASGV $/$ GAASGV ${ }^{2}$, GSNLSS, GLFPSL, GNRDTD, GIPKGK

Homeoelog specific sites: ' GhLIPN-1 only, ${ }^{2}$ GhLIPN-2 only.

Additional file 5.

Supplementary Figure S4: ClustalW alignment of the GhLIPN gene copies with proteins from Vitis vinifera and Arabidopsis thaliana, the top scoring lipin domain-containing proteins from a NCBI PHI-BLAST. Identical amino acids (*), conserved substitutions (:), semi-conserved substitutions (.) and gaps (-) are indicated in the alignment. Amino acids that are conserved among representatives across all eukaryotic kingdoms, based on a PANTHER (protein analysis through evolutionary relationships, www.pantherdb.org) multiple alignment of the lipin family (PTHR12181), are indicated in large bold font. The N -terminal and C-terminal lipin domains are shaded in pink and yellow, respectively. The HAD domains (672-829 aa) are shaded in green and the BNLSs are shaded in red. The DxDxT/V HAD catalytic motif involved with phosphatase activity is underlined. Amino acid differences between GhLIPN-1 and -2 homoeologs are in bold red font. Highly conserved residues, which affect the phosphatidate phosphatase (PAP) activity of lipins, are shaded in blue and a conserved phosphoserine is shaded in orange.

GhLIPN-2
 GhLIPN-1

Vitis
Arabidopsis

GhLIPN-2
GhLIPN-1
Vitis
Arabidopsis
MNVVGKVGSLISQGVYSVATPFHPFGGAVDIIVVRQPDGTFRSTPWYVRFGKFQGVLKGAEKVVRITVNGIEVDFHMYLDNSGQAYFLKEVESGKGFETNGDLKDSDGEVVSDSWINVVGKVGSLISQGVYSVATPFHPFGGAVDI IVVRQADGTFRSSPWYVRFGKFQGVLKGAEKVVRITVNGIEADFHMYLDNSGQAYFLKEVESGKGFQTNGDLKDSDGEVVSDSS-----NVVGIVGSLISQGVYSVATPFHPFGGAVDVIVVQQQDGTFRTTPWYVRFGKFQGVLKGAEKMVRISVNGVEAKFHMYLDNSGGEAYFIREVSS-EGKGTNGIIKESDGLEVIDDSSSKDNG MSLVGRVGSLISQGVYSVATPFHPFGGAIDVIVVQQQDGSFRSTPWYVRFGKFQGVLKGAEKFVRISVNGTEADFHMYLDNSGEAYFIREVDPAANDTNNLISGSENNNGNQNNG-----

-------------------VAQLRDECDATN-QKQLERAESDTRFYDFQDDQFSQEGLVNFSEYGSNRYEGLDSECFG--EAKGLDSVVFFSEDGHILTAPVLASDRSAENVQLSTPLFHI $--V A Q L R D E C D A T N-H K Q L E R A E S D T R F Y D F Q D D Q F Y Q E G L V N F S E Y G S D R Y G G L D S E C F G--E A Q G L D S V V F F S K D G H I L T A P V L A S D R S A E N V Q L S T P L F H I$ DNVTVNTCKLESSVSDPGVVQIRDECASSGGWLERVESDNDRRFYEFQDDQSSHEGSVELSEYGSNQYESFDHVGHFGESRALDSEVVLVSVDGGHILTAPISSSEGNTENLQLITPQFHL ----VTYRLEHSLSDSGTGELREGFDPLS-RLERTESDCNRRFYDFQDDPPS-----PTSEYGSARFDNLNVESYG-DSQGSDSEVVLVSIDGHILTAPVSVAEQEAENLRLNTPQFHL
. : : *: . . : .: : : ***:**** ***** : : .: : . .

GAGEGPDSCDGNGEFSPGGNESDADYIGKLN--AAAPKNSSDIVCSLDNDSTALRHHLEVCEKGGEHACOTEETRNLFKHENEFIROSYSEDASVHIK-DDVFKSCLELSELGRHDENTN GAGEGPDFCDGNGEFSPGGNESDADYIGKIN--AAAPKNSSDIVCSIDNDSTAIRHHLEVCERGGEHACHTEETRNIFKHENFFTRQSDIEDASMHTK-DDVFKSSIETSEIGRHENTN GPGEGTDFCEGNEEFSAGEGPWAAGYLNELD--SASANVDSQNVCSVNNDNSAFGHQLEVCEGEKEKASLADRTQDVATQGRGPSMQSNLEDKNISIERKDVFRSCLELTELATQVVNGD APGDGTEFCEGNTEFASSETPWDTEYIDKVEESSDTANIASDKVDAINDERNDLDSHSRDNAEKDSHDAERDLLGSCLEQSELTKTSENVKSEEPGPTFEDRNLKEGEFPLRTIMENDRS ..*:*: *:** **:. : *: : : : : : : * * : : : : : . : : : . : . .. :. . .* . *:.

SEEIDSPLQAQISQDKPSCSPPE--_-VGETENGAIGGSRNKDVLS-_-SSCSPN-_--YSNENGSPDLPVEKTMLATDNMGSNNASVDLVVNDPELRDEQFNTSAATEGMNSSLQSPPP SEGIDSPLQAQISQDKRSCSPPE----VGETEDGAIGGSRNKDVLS---SSCIPN----YSNEIGSPDLPVEKTMLATDNKGSNNASVDLVVNDPELRDEQFDTSAATEGMNSSLQSPPP IRHLNSSLKVQEGMENSQEKSPQGLRAVDDTEHGHVVQFSNDDELS---SCNPESPWNTTSPDLCVEVEPNEKNELSMEHIELDNMSVPSVRNDPEWKDEQFGMLAVEGTNGSPQRPAPE EDEVTIESIDTLVDSFESSTTQITIEEVKTTEGSRISVDSNADSECKDEQTSAETAILFNNQESSISVDSNADSECKDEQPRISAETAILINNQEGGIIESEDQDSERVSIDSTREEVDK115

GhLIPN-2
GhLIPN-1
Vitis
Arabidopsis

GhITPN-2
GhLIPN-1
Vitis
Arabidopsis

GhLIPN-2
GhLIPN-1
Vitis
Arabidopsis

GhLIPN-2

GhLIPN-1
Vitis
Arabidopsis

GhLIPN-2

GhLIPN-1
Vitis
Arabidopsis

GhLIPN-2
 GhLIPN-1

Vitis
Arabidopsis

EDKSSISETVETETSCAKEIDVRASLGFEISLCGNELYVGMGSDAAAEVFESHRISMEEYKNNAMSIIKNTNLIIRFGEMYFTWEKAAPVVLGMAAFGLELAIEPQDAIPVEKDESSKPK EDKSSISETVETETSCAKEIDVSASLGFEISLCGNELYVGMGSDAAAEVFEAHRISMEEYKNNAISIIKNTNLIIRFGEMYFTWEKAAPVVLGMAAFGLELAIEPQDAIPVEKDESPKPK DACSKSETVETQATISCEGIQTDSSIRFEISLCGKELRAGMGLVAAAEAFEAQRISEEEFKTSAPSIIKNENLIIRFREKYLTWDKAAHIVLGMAAFGLDLPVEPKDAIPVEQDETPKAR DNEDRKTVVSVGVTSSVDEGEPDTDQRYELSLCKDELRQGMGLSAAAEVFDAHMISKEEYINSATSILESENLVVRIRETYMPWTKAARIVLGKAVFDLDLDIQPDDVISVEENESPKPK

GGASGVTSAPSGRRWRLWSIPLKRVKTLEKTGSNLSSEEVFLDTESSLQNSPEDLIPTSSGRIESPGKQFVRTNIPTNEQIASLNLKNGQNMITFSFSSRVLGIQQVEAHLYLWKWNAKI GAASGVTSAPSGCRWRLRSIPLKRVKTLEKTGSNLSSEEVFLDTESSLQNSPADLIPTSSGRIESPGKQFVRTNIPTNEQIASLNLKNGQNMITFSFFSRVLGTQQVEAHLYLWKWNAKI GGDSKIAATSSGRRWRLWPIPFRRVKTLQHTDSNSSSEDVFVDSESGSQSTHVEPIPPSPGGSETPKKQLGRTNIPTTEQIASLNLKEGQNMVTFSFSTRVLGTQQVDAHIYLWKWNARI DDETTITPSSSGTRWRLWPIPFRRVKTVEHTGSNSSSEEDLFVDSEPGLQNSPETQSTTESRHESPRRQLVRTNVPTNEQIASLNLKDGQNMITFSFSTRVLGTQQVDAHIYRWRWDTKI : :: : : ** **** **::****:: : . ** ***: : : ..: . *:* :*: ***:**.********:****:*** :**** ***:**:* *:*::

VISDVDGTITKSDVLGQFMPLVGRDWTQSGVANLFSAIKENGYQLLFLSARAIVQAYLTRSFLLNLKQDGKALPSGPVVISPDGLFPSLYREVIRRTPHEFKIACLKNIRKLFPSDYNPF VISDVDGTITKSDVLGQFMPLVGRDWTQSGVANLFSAIKENGYQLLFLSARAIVQAYLTRSFLLNLKQDGKALPSGPVVISPDGLFPSLYREVIRRTPHEFKIACLKNIRKLFPSDYNPF VISDVDGTITKSDVLGQFMPLVGKDWTQSGVARLFSAIKENGYQLLFLSARAIVQAYLTRSFLLNLKQDGKALPNGPIVISPDGLFPSLYREVIRRAPHEFKIACLEDIRALFPSDYNPF VISDVDGTITKSDVLGQFMPFIGKDWTQSGVAKLFSAIKENGYQLLFLSARAIVQAYLTRNFLNNLKQDGKALPTGPVVISPDGLFPALYREVIRRAPHEFKIACLEDIRKLFPTDYNPF

YAGFGNRDTDELSYKEIGIPKGKRFIINPKGKVAVSYCMNSRS-YTSLHTLVEEMFPPTSSIEPEDYNEWNFWKVPLQDIE-
YAGFGNRDTDELSYKEIGIPKGKIFIINPKGEVAVSYCMNTRS-YTSLHTLVEEMFPPTSSIELEDYNEWNFWKVPLQDIE-
YAGFGNRDTDELSYRKIGIPKGKIFIINPKGEVAISHRIDVKS-YTSLHTLVNDMFPPTSLVEQEDFNSWNFWKMPLPDIEL
YAGFGNRDTDELSYRKLGIPKGKIFIINPKGEVATGHRIDVKKSYTSLHTLVNDMFPPTSLVEQEDYNPWNFWKLPIEEVE-
*************:: : ****** *******:** .: : : : ********: :****** :* **:* *****:*: : :

Additional file 6 Supplementary Figure S5: Alignment of the GhLIPN gene copies with a
homologous partial mRNA sequence (Genbank: CO087195) from Gossypium raimondii and an amplified region from Gossypium herbaceum, to determine their putative genomic origin. A:
nucleotide alignment. B: amino acid alignment.

B

${ }_{1}^{20}$			40		
GhLIPN＿1	KIVISDVDGT	ITKSDVLGQF	MPLVGRDWTQ	SGVANLFSAI	KENGYQLLFL 50
GhLIPN＿2	KIVISDVDGT	ITKSDVLGQF	MPLVGRDWTQ	SGVANLFSAI	KENGYQLLFL 50
G．herbaceum	－－．．．－．．．－．	－	－．．．．．．．．．．	－－．	－－－．－．－．．．－－
G．raimondii	KIVISDVDGı	ITKSDVLGQF	MPLVGRDWTQ	SGVANLFSAI	KGNGYQLLFL
	${ }_{1}^{60}$		${ }^{80}$		${ }^{100}$
GhLIPN 1	SARAIVQAYL	TRSFLLNLKQ		［F］	100
GhLIPN＿2	SARAIVQAYL	TRSFLLNLKQ	DGAFsic	vispoghe	T 100
G．herbaceum	．．．．．．．．．．．．	，－．．	－gkalpsi	VIspogip	1 30
G．raimondii	SARAIVQAYL	TRSFLLNLKQ	EGKALPsced	VISPGgmes	P 100
		${ }^{120}$		40	
GhLIPN＿1	EEFRTACLKN	TRELEPSEM	EFMAGFGNEE	T0ELSMEET	F｜c｜
GhLIPN＿2	日FFKACL	EKLEPSDYN	EFMAGFGNE	T0E	PGERE 150
G．herbaceum		R－Epsoyn	PMragane	Tpersyk	EG1F1N 80
G．raimondii	E⿴囗EMIACLKN	RKLFPSDYN	EFMagman	indicky	BKGR
	160		180		200
GhLIPN＿1	FRGEVAVSME			SSIELEDYNE	WNFWKVPLQD 200
GhLIPN＿2	Ekgkumsya	MaspyTs	HeEMFPT	SSIEPEDYNE	WNFWKVPLQD 200
G．herbaceum	ekgevansya	－TETEME	TVE日ME．	．．．．－．．．．．	．－．．－．．－． 10
G．raimondii	E	MeTESYTist	I	SSIEPEDYNE	WNFWKVPLQD

| GhLIPN＿1 | IE | 202 |
| ---: | :---: | :---: | :---: |
| GhLIPN＿2 | IE | 202 |
| G．herbaceum | - | 109 |
| G．raimondii | ME | 202 |

Supplementary Figure S5：Alignment of the GhLIPN gene copies with a homologous partial mRNA sequence （Genbank：CO087195）from Gossypium raimondii and an amplified region from Gossypium herbaceum，to determine their putative genomic origin．A：nucleotide alignment．B：amino acid alignment．

Additional file 7.

Fig S6: Alignment of the experimentally obtained promoter regions of GhLIPN-1 and -2. One 1 kb of the GhLIPN2 promoter, preceding the putative transcription start site (TSS), and 1441 bp of the GhLIPN-1 promoter are shown. Identical nucleotides are highlighted and gaps are indicated with dashes. The different classes of putative cis-elements are indicated in bold coloured font and underlined as follows: CAAT-box cis-elements (orange), gibberellin-responsive cis-elements (green), DNA-binding with one finger (DOF)-related cis-elements (pink), Wbox cis-elements (purple), plant defence-related and elicitor-responsive cis-elements (red) and abiotic stressresponsive cis-elements (blue).

GhLIPN-2_prom	TTTCTTAACGCTGATTATGAGATTGTGAGAGAACGAGTATATATAGAGTGAAAAAAGA	-943
GhLIPN-1_prom	TTGGTTCACGTTGATTATGTGATTGTGAGAAAAAGAGAATATATAGAGTGAAAAAAGG	-1383
GhLIPN-2_prom	GAGATGATGATGTAACGTAATTAGGCAACGAGTGGATAGGCTAACGAGGTTTATTTTA	-885
GhLIPN-1_prom	GAGATGATGATGTAACGTAATTAGGCAAAGAGTGGATAGGCTAATGAGGTTTATTTTA	-1325
GhLIPN-2_prom	TTTTGACCAGAAGGGGCCGCCTTTAAAAGTAGATTGGAGTATGATATAAGTAGGAGTT	-827
GhLIPN-1_prom	TTTTGACCAGAATGGGCCGCCTTTAAAAGTAGAATGGAGTATGATATAAGTAGGAGTT	-1267
GhLIPN-2_prom	GCGATGTGAAGCAGGGGATGAATGTGTAATAAAAAAGAAAGTAAAATTCCTGCCTTCT	-769
GhLIPN-1_prom	GCGATATGAAGCAGGGGATGAATGTGTAATAAGAAAGAAAATAAAATTCATGGCTTCT	-1209
GhLIPN-2_prom	CCTCATCTCA-----ACCAGTCGGGTAAAACATAAAATC----TAAATTAT--TTAG-	-723
GhLIPN-1_prom	ССТСАTСТСААСТСААСССGTAAGGTAAAACATAAAAACAAACTAAAATATAGTTAAG	-1151
GhLIPN-2_prom	-TATTTATTTAAATGAGATTTGGTTGGTGATCATGGTA-TTATAGTTTTGGTAGAAGA	-667
GhLIPN-1_prom	TTAATAATCTAAATGA-ATTAG--TGGTGATCATGGTTGTTGTAGTTTTGGTAGAAGA	-1096
GhLIPN-2_prom	AGATGGGTC---TT--ACAAAAAACAAACATCCCAAACTATAATTTAGATTTTAATTT	-614
GhLIPN-1_prom	AGATGGGTGAGTTTCAACAAAAACAAAACATCCCAAACTATAATTTAGAATTTA-	-1042
GhLIPN-2_prom	CTATTAATTACGTGTTAAATGCCATCTTAGCCACGACACAGAGCATGATATCTTAAAC	-556
GhLIPN-1_prom	TAAATG---TTTAATT CAATGCTCACCG-------TCTTAAAC	-1009
GhLIPN-2_prom	ACGGGAATTAAATC----------TTTACTTCTAA-----ATTCACTTATTTGGTCGC	-513
GhLIPN-1_prom	ACCGGAATTAAATCTAAATTCACTTTTGTTTCTTATTATTATTACAAAATTTTGTCGC	-951
GhLIPN-2_prom	ATTTAATTTTAATCATTTCTTTTCTTTTCCAAAACAAGCTCAATATTTGTTATGTTTG	-455
GhLIPN-1_prom	ATTTAATTTTAATCATTTCTTTTCTTTTCCAAAACAAGCTCAATATTTGGTATGTTTG	-893
GhLIPN-2_prom	AATTAAGCT	-446
GhLIPN-1_prom	AATTAAGCTTTTAGTTGTTTCAAACACTTACAAAAATAACAGAATTTTATGTTGGTTC	-835
GhLIPN-2_prom		-445
GhLIPN-1_prom	ACTGGAAAGTGTATCACTAACACTCATTTTTTATTTTTGTTATTTTGTCACATGTAAG	-777
GhLIPN-2_prom		-445
GhLIPN-1_prom	ATTTGAAATATACAAGTTTCAAGGTTTTTATTATTCAATCAGAATAAATATGAATAAT	-719
GhLIPN-2_prom		-445
GhLIPN-1_prom	TTTCACTAATATGATAGAAAATACTCCTGAATAATGTCTTTTATTTCGATCTCATTAT	-661
GhLIPN-2_prom		-445
GhLIPN-1_prom	AGAATGATTAGATTTTTGAATTTCAATTTTAGATATGTAGGAAAATATAAAATGTAAG	-603
GhLIPN-2_prom		-445
GhLIPN-1_prom	GGAGGAATTTTTGAGGAAAACTAACAAATTAGATGTTAGACTTTGATGTTTGAGATAG	-545
GhLIPN-2_prom		-445
GhLIPN-1_prom	ATTATAATCTACATTTAAAAAAAAAAAAGAAAAGAAAAAGAATTTCGACTTCTTTTT	-487
GhLIPN-2_prom	-CAGGAGGTTTCTTTTC-A	-429
GhLIPN-1_prom	AAACAAAAGTTGATTAGTGTTAGTGATACACTGTCATTCTCAGGAGGTTACTTTTCTA	-429
GhLIPN-2_prom	CGTGTTTGAAACAACTAACAGCTTAATTCAAACCTAACAAATATTGAGCTTGTTTTGG	-371
GhLIPN-1_prom	AGTGTTTGAAACAACTGAAAGCTTAATTCAAACATAACAAATATTGAGCTTGTTTTGG	-371
GhLIPN-2_prom	AA--------------TTATATGCGACCAAATTTTCTAATAATAGACAAGAAACAAA	-328
GhLIPN-1_prom	AAAAGAAATGATTTAAATTATATGCGACAAAATTTTCTAATAATATATAAGAAACAAA	-313
GhLIPN-2_prom	TGTGAAATGAAGGGTAATTTAGTCAATTTAGATGTAAAGATT-------TTTTTTTAG	-277
GhLIPN-1_prom	AGTGAAATGAAGGGTAATTTAGTCAATTTAGAAGTTAATAATTTTTTTCTTTTTTTCG	-255

GhLIPN-2_prom	CATTACTGTAGAAGTTTCAATAATTATAATGTTTGTTCATTCCGGCGGCTCTACCATC	-219
GhLIPN-1_prom	GAATAAAACTCAAGTTTCAATAATTATAATGTTTCTTCATCCCGGCGGCTCTACCATC	-197
GhLIPN-2_prom	CTTAAG-CCTGAAAAAGCGGGACAATATTTCAAATATCCTAAATTACCCTTCCATTAA	-162
GhLIPN-1_prom	CTTAAGACCGGAAAAAGCGGGACAATATTTCAAATATCCAAAATTACCCTTCCATTAA	-139
GhLIPN-2_prom	TCACAAATTTACACCTCATATTTCTCGCTTCGTAGAGTCTTTCTAAGCAAAACTAAGG	-104
GhLIPN-1_prom	TCACAAATTTACACGTCATATTTCTCG--------TATTTTTAAGCAAAACTAAGG	-91
GhLIPN-2_prom	GACCTATTTATGTCTTTTCACAAGGTTACTTGTTTATTGCATGGCGGTTGCGGTTAG-	-47
GhLIPN-1_prom	GACCTATTTATGTCTTTTCGCA----------TTGCATGGCGGTTGCGGTTAGG	-47
GhLIPN-2_prom	TCGCCGTTGCCAACTTCTGACTCGTTTTCAAAATTTCCATTTTTTT	-1
GhLIPN-1_prom	TCGCCGTTGCCAACTTCTGACTCGTTTTCTAAATTTCCATTTTTCC	-1

Table S3 A-C: In silico analysis of selected cis-elements in the promoters of the GhLIPN homoeologs. The promoter regions were obtained by genome walking upstream from the GhLIPN-1 and -2 transcription start sites. Homoeolog-specific promoter amplification was used to distinguish between the two promoters of GhLIPN-1 and -2. The analysed promoter sequences were limited to 1 kb from the predicted TSSs. Identical ciselements occurring in the same positions in the promoters of the two homoeologs are indicated by the position number in bold font.

Table S3.A: Analysis of hormone-responsive cis-elements in the promoters of the GhLIPN homoeologs.

Both homoeologs						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
AGCBOXNPGLB / GCC box	-	$-233^{2},-211^{1}$	AGCCGCC	Binding site for ethylene-response factors (ERFs), which act as stress signal response factors, conserved in most PR protein genes	Arabidopsis thaliana, Nicotiana plumbaginifolia, Nicotiana sylvestris, Oryza sativa	PLACE, PlantCARE
ARR1AT	+	$-989^{2},-981^{2},-854^{2},-778^{1}$, $-708^{2},-656^{1},-651^{1},-625^{2}$, $-546^{1},-476^{1},-362^{1},-290^{2}$ $-999^{1},-940^{1},-740^{1},-738^{2}$, $-545^{2},-539^{1},-502^{2},-163^{2}$, -140^{1}	NGATT	Binds cytokinin-regulated ARR1	Arabidopsis thaliana	PLACE
ERE	$+$	$\begin{aligned} & -193^{2},-170^{1} \\ & -775^{1} \end{aligned}$	ATTTCAAA	Ethylene-responsive element	Dianthus caryophyllus	PlantCARE
GARE2OSREP1	+	$-930^{2},-856^{1}$	TAACAGA	Gibberellin-responsive element (GARE) for gibberellin-up-regulated proteinase expression	Oryza sativa	PLACE

GAREAT		$\begin{aligned} & -581^{2},-394^{B} \\ & -799^{1},-467^{2} \end{aligned}$	TAACAAR	GARE for gibberellin-response	Arabidopsis thaliana	PLACE
GCCCORE		$\begin{aligned} & -869^{2} \\ & -233^{2},-211^{1} \end{aligned}$	GCCGCC	Core of GCC-box found in many pathogen-responsive genes eg: plant defensin 2.1 (PDF1.2), Thionin 2.1 (Thi2.1) and PR-4. Also an ethylene- and jasmonate-responsive element	Arabidopsis thaliana, Solanum lycopersicum	PLACE
MYBGAHV	$+$	$\begin{aligned} & -581^{1},-394^{B} \\ & -799^{1},-467^{2} \end{aligned}$	TAACAAA	Central element of gibberellin (GA) response complex (GARC), specific binding site for Gamyb	Hordeum vulgare, Oryza sativa	PLACE
GhLIPN N						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
ASF1MOTIFCAMV/ TGACG-motif	-	-125	TGACG	SA responsive, binds TGA1 in a nonexpresser of pathogenesis-related 1 (NPR1)-dependent manner for transcriptional activation of defencerelated genes during SAR	Arabidopsis thaliana, CaMV, Hordeum vulgare, Nicotiana tabacum	PLACE, PlantCARE
CGTCA-motif	+	-125	CGTCA	Involved in MeJA-responsiveness	Hordeum vulgare	PlantCARE
GhLIPN I						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
ABRE	+	-605, -430	YACGTG	Involved in ABA responsiveness	Arabidopsis thaliana	PlantCARE
CAREOSREP1	-	-831	CAACTC	Binds gibberellin up-regulated elements	Oryza sativa	PLACE
DPBFCOREDCDC3	$+$	$\begin{aligned} & -557 \\ & -430 \end{aligned}$	ACACNNG	Binds a novel class of bZIP transcription factors, DPBF-1 and 2, embryo-specific and induced by ABA	Arabidopsis thaliana, Daucus carota	PLACE
TATCCACHVAL21	-	-911	TATCCAC	Part of GARC for gibberellin response	Hordeum vulgare	PLACE
TCA-element	$+$	$\begin{aligned} & -10 \\ & -670 \end{aligned}$	CCATCT_{5}	Involved in salicylic acid responsiveness	Nicotiana tabacum	PlantCARE

${ }^{\text {B }}$ Both homoeologs, ${ }^{1}$ GhLIPN-1, ${ }^{2}$ GhLIPN-2.

Table S3.B Analysis of elicitor/defence-responsive cis-elements in the promoters of the GhLIPN homoeologs.

Both homoeologs						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
AGCBOXNPGLB / GCC box	-	$-233^{2},-211^{1}$	AGCCGCC	Binding site for ERFs, which act as stress signal response factors, conserved in most PR protein genes	Arabidopsis thaliana, Nicotiana plumbaginifolia, Nicotiana sylvestris, Oryza sativa	PLACE, PlantCARE
BOXLCOREDCPAL		$\begin{aligned} & -224^{2},-202^{1} \\ & -702^{2} \end{aligned}$	ACCWWCC	Binds DCMYB1 transcription factor in the core promoter region of PAL1 in response to elicitation	Daucus carota	PLACE
GCCCORE		$\begin{aligned} & -869^{2} \\ & -233^{2},-211^{1} \end{aligned}$	GCCGCC	Core of GCC-box found in many pathogenresponsive genes eg: PDF1.2, Thi2.1 and PR4, also an ethylene- and jasmonate responsive element	Arabidopsis thaliana, Solanum lycopersicum	PLACE
GT1GMSCAM4	+	$\begin{aligned} & -951^{2},-516^{1}, \\ & -510^{1},-186^{1}, \\ & -29^{2} \\ & -269^{1},-261^{1},-7^{1} \end{aligned}$	GAAAAA	"GT-1 motif" Plays a role in pathogen- and salt-induced SCaM-4 (CaM isoform) gene expression	Glycine max	PLACE
HSE	+	$\begin{aligned} & -507^{1} \\ & -357^{2} \end{aligned}$	AAAAAATTTC	Involved in heat stress-responsiveness	Brassica oleracea	PlantCARE
MYB1LEPR	-	$-584^{1},-416^{2}$	GTTAGTT	Regulates defence-related gene expression, binds tomato transcription factor Pti4	Arabidopsis thaliana, Solanum lycopersicum	PLACE

GhLIPN N						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
ASF1MOTIFCAMV/ TGACG-motif	-	-125	TGACG	Essential for SAR, binds TGA1 in a NPR1dependent manner for transcriptional activation of defence-related genes	Arabidopsis thaliana, CaMV, Hordeum vulgare, Nicotiana tabacum	PLACE, PlantCARE
BIHD10S	+	-789, -455	TGTCA	Binding site of OsBIHD1, a rice BELL homeodomain transcription factor - in disease resistance responses.	Oryza sativa	PLACE
SEBFCONSSTPR10A	+	-790	YTGTCWC	Binds the single-stranded DNA binding protein SEBF, causes repression of the defence gene PR-10a	Solanum tuberosum	PLACE
GhLIPN I						
Name of ciselement	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
ABRERATCAL	+	-430	MACGYGB	"ABRE-related sequence", Calciumresponsive	Arabidopsis thaliana	PLACE
Box-W1	+	-882	TTGACC	Fungal elicitor-responsive element	Petroselinum crispum	PlantCARE
CACGTGMOTIF	+ and -	-430	CACGTG	G-box, binds G-box-binding factors (GBFs), involved in phytochrome Aregulated and elicitor-inducible gene expression	Antirrhinum majus, Arabidopsis thaliana, Brassica napus, Catharanthus roseus, Phaseolus vulgaris, Solanum lycopersicum, Triticum aestivum, Zea mays	PLACE
MYB26PS	+	$\begin{aligned} & -394 \\ & -467 \end{aligned}$	TAACAAA	MYB26 binding site, present in promoter regions of several phenylpropanoid biosynthetic genes	Pisum sativum	PLACE
MYBPLANT	+ -	$\begin{aligned} & -398 \\ & -702 \end{aligned}$	MACCWAMC	Binds AmMYB308 and AmMYB330, which regulate phenylpropanoid and lignin biosynthesis	Antirrhinum majus, Arabidopsis thaliana, Petroselinum crispum, Petunia hybrida, Phaseolus vulgaris, Zea mays	PLACE

${ }^{\text {B }}$ Both homoeologs, ${ }^{1}$ GhLIPN-1, ${ }^{2}$ GhLIPN-2

Table S3.C: Analysis of abiotic stress-responsive cis-elements in the promoters of the GhLIPNhomoeologs.

Both homoeologs						
Name of cis-element	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
ABRELATERD1	$+$	$\begin{aligned} & -604^{2},-429^{2} \\ & -430^{2},-127^{1} \end{aligned}$	ACGTG	ABRE-like sequence required for etiolationinduced expression of early responsive to dehydration 1 (erd1)	Arabidopsis thaliana	PLACE
ACGTATERD1	+ and -	$\begin{aligned} & -928^{2},-604^{2}, \\ & -429^{2},-126^{1} \end{aligned}$	ACGT	Required for etiolation-induced expression of erd1	Arabidopsis thaliana	PLACE
ANAERO1CONSENSUS		$\begin{aligned} & -650^{2},-486^{1} \\ & -334^{2},-319^{1} \\ & -985^{1} \end{aligned}$	AAACAAA	Consensus sequence found in cis-elements of genes involved with anaerobic fermentation	Arabidopsis thaliana, Hordeum vulgare, Solanum lycopersicum, Oryza sativa, Petunia hybrida, Pisum sativum, Zea mays	PLACE
EECCRCAH1	$+$	$\begin{aligned} & -831^{2},-643^{1}, \\ & -504^{1} \\ & \hline \end{aligned}$	GANTTNC	Binding site of CO_{2}-responsive MYB transcription factor LCR1	Chlamydomonas reinhardtii	PLACE
HSE	$+$	$\begin{aligned} & -507^{1} \\ & -357^{2} \end{aligned}$	AAAAAATTTC	Involved in heat stress-responsiveness	Brassica oleracea	PlantCARE
MYBCORE	$+$	$\begin{aligned} & -60^{1},-59^{2}, \\ & -54^{1},-53^{2},- \\ & 43^{B} \\ & -856^{1},-417^{1}, \\ & -413^{2} \end{aligned}$	CNGTTR	Binding site for all animal MYB and at least two plant MYB proteins, ATMYB1 and ATMYB2	Arabidopsis thaliana, Petunia hybrida	PLACE
MYB2CONSENSUSAT		$\begin{aligned} & -417^{1} \\ & -43^{B} \end{aligned}$	YAACKG	MYB recognition site in the promoters of dehydration-responsive gene rd22 and other genes in Arabidopsis	Arabidopsis thaliana	PLACE
MYCCONSENSUSAT	+ and -	$\begin{aligned} & -786^{1},-430^{2}, \\ & -417^{1},-331^{2} \end{aligned}$	CANNTG	Dehydration and cold-responsive, binds to ATMYC2	Arabidopsis thaliana	PLACE

GhLIPN N						
Name of cis-element	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
LTRE1HVBLT49	-	-259	CCGAAA	Core of low temperature responsive element (LTRE)	Hordeum vulgare	PLACE
MBS	$+$	-417	CAACTG	MYB binding site involved in droughtinducibility	Arabidopsis thaliana	PlantCARE
MYCATERD1	-	-786	CATGTG	Water stress, MYC recognition sequence necessary for expression of erd1	Arabidopsis thaliana	PLACE
MYCATRD22	+	-786	CACATG	Binding site for MYC (rd22BP1) in promoter of dehydration-responsive gene, $r d 22$	Arabidopsis thaliana	PLACE
PREATPRODH	+	-813	ACTCAT	Hypoosmolarity-responsive element	Arabidopsis thaliana	PLACE
LTR	-	-259	CCGAAA	Involved in low-temperature responsiveness	Hordeum vulgare	PlantCARE
GhLIPN I						
Name of cis-element	Strand	Position/s	Sequence	Predicted function	Organism/s	Database
LTRECOREATCOR15	-	-754	CCGAC	Core of LTRE involved in cold-, drought- and ABA-regulated gene expression	Arabidopsis thaliana, Brassica napus	PLACE

${ }^{B}$ Both homoeologs, ${ }^{1}$ GhLIPN-1, ${ }^{2}$ GhLIPN-2.

[^0]: ${ }^{\text {a }}$ The reverse primers are specific for a 13 bp indel which distinguishes between the homoeologs. The nucleotides in red font include 13 bp insert sequence and the sequences surrounding the 13 bp insertion site are in bold font.
 ${ }^{\text {b }}$ The reverse 5 ' and forward 3^{\prime} PCR primers are specific for a 17 bp indel which distinguishes between the promoter regions of the homoeologs. The nucleotides in red font include 17 bp insert sequence and the sequences surrounding the 17 bp insertion site are in bold font.

