Assessing the impact of feline immunodeficiency virus and bovine tuberculosis co-infection in African lions M. Maas^{1*}, D.F. Keet^{2,3*}, V.P.M.G. Rutten^{3,4}, J.A.P. Heesterbeek¹, M. Nielen¹ - * Both authors contributed equally - ¹ Division of Epidemiology, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands Author for correspondence: M.Maas1@uu.nl - ² Function at the time of conducting the research: Directorate of Veterinary Services, Kruger National Park, Skukuza, South Africa. Currently: Specialist Wildlife Veterinarian - ³ Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa - ⁴ Division of Immunology, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands #### **Abstract** Bovine tuberculosis (BTB), caused by *Mycobacterium bovis* (*M. bovis*), is a disease that was introduced relatively recently into the Kruger National Park (KNP) lion population. Feline immunodeficiency virus (FIV_{ple}) is thought to have been endemic in lions for a much longer time. In humans, co-infection between *M. tuberculosis* and human immunodeficiency virus increases disease burden. If BTB were to reach high levels of prevalence in lions and if similar worsening effects would exist between FIV_{ple} and BTB as for their human equivalents, this could pose a lion conservation problem. We collected data on lions in KNP from 1993-2008 for spatio-temporal analysis of both FIV_{ple} and BTB, and to assess whether a similar relation between the two diseases exists in lions. We found that BTB prevalence in the south was higher than in the north (72% vs 19% over the total study period) and increased over time in the northern part of the KNP (0% to 41%). No significant spatio-temporal differences were seen for FIV_{ple} in the study period, in agreement with the presumed endemic state of the infection. Both infections affected haematology and blood chemistry values, FIV_{ple} in a more pronounced way than BTB. The effect of co-infection on these values, however, was always less than additive. Though a large proportion (31%) of the lions was co-infected with FIV_{ple} and *M. bovis*, there was no evidence for a synergistic relation as in their human counterparts. Whether this results from different immunopathogeneses remains to be determined. Key index words: feline immunodeficiency virus, bovine tuberculosis, *Mycobacterium bovis*, lion, co-infection, prevalence #### Introduction Both feline immunodeficiency virus (FIV_{ple}) and *Mycobacterium bovis (M. bovis)*, causing bovine tuberculosis (BTB), are found in the lion (*Panthera leo*) population in the Kruger National Park (KNP), South Africa. Feline immunodeficiency virus is an endemic pathogen in many lion populations in eastern and southern Africa [1-5], and its presence may even date back as far as the species divergence of the genus *Panthera* [6,7]. Differences have been found recently in the CD4+/CD8+ T-cell subset [4] and the prevalence of AIDS-defining conditions [8] in FIV_{ple}-infected lions compared to non-infected lions, contradicting studies that did not find pathologic effects associated with FIV_{ple} infection [7,9-11]. This may also depend on differences in pathogenicity between FIV_{ple} subtypes [12]. Common haematological and blood chemistry changes that are found in FIV infected domestic cats are lymphopenia, leucopenia, neutropenia, anaemia, hyperproteinaemia and hyperglobulinaemia [13-17]. In lions, FIV_{ple} was associated with dehydration and abnormal red blood cell parameters, e.g. anaemia, depressed serum albumin and elevated liver enzymes, total protein, globulin and gamma globulin [8]. Mycobacterium bovis was introduced in the southeast corner of the KNP in the 1960's [18], spreading from infected cattle to buffaloes. The first case of lion BTB was found in 1995, likely resulting from consumption of infected buffalo carcasses [19]. A prevalence of almost 80% in the lion population in the south of the KNP was reported in 2000 [20]. Limited information is available about the effect of (B)TB on haematologic and blood chemistry values, but in humans with minimal active tuberculosis a significant rise in the gamma globulin fraction with a corresponding decrease in albumin was found. In far advanced cases, all globulins were increased, but the mean total protein did not differ from the normal value [21]. In a report of a BTB infected lion, leukocytosis, monocytosis, anaemia, neutrophilia, hypoalbunemia and hyperglobulinemia were found [22]. In humans, one of the most well-known pathogen-pathogen interactions is that between human immunodeficiency virus (HIV) and *Mycobacterium tuberculosis (M. tuberculosis)*. HIV is the strongest known risk factor for TB, affecting on the immunity by T-cell depletion [23]. On the other hand, TB can accelerate the progression of HIV [24]. These synergistic interactions magnify the burden of disease of both infections [23,25,26]. In animals, pathogen-pathogen interactions are also described, for example between *Babesia* and canine distemper virus in lions [27] or between various infectious agents in voles [28]. Interactions may be synergistic or antagonistic to one or both of the infectious agents [29], which may be explained by a variety of mechanisms influencing host susceptibility, pathogenicity or infectiousness in both positive and negative ways [28-31]. Lions are listed as a vulnerable species by the International Union for Conservation of Nature [32] and the relatively recent introduction of *M. bovis* in a population where FIV_{ple} is highly prevalent, could be an even more serious threat to lion conservation if the two infections would enhance each other's effects as their counterparts do in humans. Although it has been reported that 53% of the lions in the southern half of KNP is co-infected with FIV_{ple} and *M. bovis*[33], little is known about the effects of their interaction. Previous literature on FIV_{ple} and *M. bovis* infection in lions in the KNP is scarce and has often only been anecdotal, using small groups of animals. We collected data from 1993-2008, which resulted in a unique data set of 669 lions, that was used - (I) to assess what variables (area, period, age, sex, body condition) are related with FIV_{ple} and BTB infection in lions, studied by a multivariable logistic regression model, and - (II) to assess the pathogen-pathogen interaction of FIV_{ple} and BTB in lions. For the latter, we used a sub-group of 205 lions that had been subjected to diagnostic tests for both infections. Body condition and haematological and blood chemistry values, that were deemed relevant based on literature [17,22,34], were used as dependent variables in general linear models to assess this potential interaction. #### Material and methods The Kruger National Park The KNP is a partly fenced, wooded savannah covering about 20 000 km². The total KNP lion population is estimated to be about 1600-1700 [35]. For the purpose of this analysis, the KNP was divided into three regions based on the prevalence of *M. bovis* in buffaloes, namely High, Medium and Low Prevalence Zones (HPZ, MPZ, LPZ; roughly corresponding to the southern, central and northern part of the park), separated by the Sabie River (south-central) and the Olifants river (central-north). Prevalences of *M. bovis* in buffaloes in 1998 were respectively 38.2%, 16.0% and 1.5% [36]. Data obtained from lions from adjacent game reserves with open access to the KNP was included in the analyses, according their locations. Bovine tuberculosis in the KNP is not controlled. This makes the ecosystem unique, as many other ecosystems with *M. bovis* presence have a test-and-removal [37,38] or culling strategy [38]. #### The animals Most lions were captured with call-up stations in designated areas in the southern, central and northern part of the park, which were known to have lions, based on ranger information. These stations were randomly distributed as much as logistic considerations allowed (figure 1a). About 25% of the study lions was brought to the Veterinary Station as emaciated or problem lions. Before handling, all lions were immobilized with a combination of tiletamine and zolazepam (Zoletil® 100, Virbac). Venous blood samples were obtained from the Figure 1a. Capture locations of lions, covering 93% of the lions from the data set, of which exact locations were known. Multiple lions may have been captured at one location. Locations outside KNP indicate escaped lions. Figure 1b. Pie charts presenting the numbers of lions in the four co-infection groups (n=205) in the three different areas of the KNP. Size indicates the number of lions captured. $FIV_{ple}^{+}BTB^{+}=black, \ FIV_{ple}^{-}BTB^{+}=dark \ grey, \ FIV_{ple}^{+}BTB^{-}=light \ grey \ and \ FIV_{ple}^{-}BTB^{-}=off-white.$ medial saphenous vein as soon as possible after anaesthesia in heparin, EDTA and serum Vacutainer® tubes, which were kept at ambient temperature and were processed within preferably 8, but maximum 24 hours. Serum was collected and stored at -20°C. All lions in this study were aged by examining dental attrition according to Smuts et al. [39]. Body condition score (BCS) was assessed according to criteria that were determined beforehand and ranged from 5 (Excellent) to 1 (Very poor) (table 1). Lions were micro-chipped and were given a unique brand so the animals could be recognized at future captures. Due to the higher lion density in the south (compared to the north) as well as the location of the veterinary staff headquarters in the south of KNP, almost twice as many study lions originated from the south, compared to the central and northern areas. Table 1: Definitions of the different BCSs. | Body condition score | Definition | |----------------------
--| | 5. Excellent | Hindquarters well rounded and no ribs showing; general appearance in relation to posture and coat sheen excellent. | | 4. Good | Hindquarters rounded, but ribs showing slightly. | | 3. Fair | Hindquarters angular in appearance and ribs well defined. | | 2. Poor | Pelvic bones and pelvic-femoral joint prominent and ribs protruding. Tail root is sunken in. The dorsal spinae of the vertebrae becomes apparent. | | 1. Very poor | Skeletal details clearly visible and general appearance, posture and coat condition deteriorated. The dorsal and lateral processes of the vertebrae clearly visible. | ### Sample collection <u>BTB status</u>: The BTB status of individual lions was determined by performing the Single Intradermal Cervical Test (SICT/skin test) as described by Keet et al. [33]. A lion was considered BTB positive when three days after intradermal administration of bovine tuberculin, the skin swelling was 2 mm or larger, irrespective of the response to the avian tuberculin. The SICT has a sensitivity and specificity of respectively 86.5% and 81%. The SICT appears not to be influenced by FIV_{ple} , in contrast to the tuberculin skin test in humans, which is affected by HIV infection [33,40]. $\overline{\text{FIV}_{\text{ple}}\text{-status}}$: Serum samples were tested for $\overline{\text{FIV}_{\text{ple}}\text{-spec}}$ antibodies at the Department of the Veterinary Tropical Diseases, Faculty of Veterinary Science, Onderstepoort, using a protocol described by Van Vuuren et al. [41]. The sensitivity of the ELISA, when using the Western blot as the gold standard, is 78.6% and the specificity 100% [41]. <u>Haematology</u>: Haematology analysis was performed in the KNP with a Coulter AcT diff analyzer (Beckman Coulter). <u>Blood chemistry</u>: Blood chemistry analysis was conducted with a NExCT/VetEX (Bayer Health) at The Clinical Pathology Laboratory, Onderstepoort Veterinary Academic Hospital, Faculty of Veterinary Science, University of Pretoria. #### The data set From 1993-2008, a large data set has been established, consisting of 669 lions from the KNP and adjacent game reserves. Descriptions of the data set can be found in the electronic supplementary material tables and figures S1 to S5. Small, specific subsets of this extensive data set have been used in various studies in the past [1,5,20,33,42]. Not all information was available for each animal and table 2 gives an overview of the cross-sectional data that has been used for the analyses in the current study. Table 2: An overview of the lion dataset (n = 669) and the number of lions that were available for the different analyses. (A difference has been made for lions either captured at a call-up station (cal), lions that were brought to the veterinary station (vet) or lions with an unknown capture method (unk). Ht, haematocrit; WBC, white blood cell count; TSP, total serum protein; Alb, albumin; Glob, globulin; A/G ratio, albumin/globulin ratio; gamma glob, gamma globulin.) | | Number of lions | | |--|--|--| | | Total (cal.; vet.; unk) | with SICT and FIV _{ple} result (cal.; vet.) | | SICT result | 240 (191; 49; 0) | 205 (165; 40) | | FIV _{ple} result | 561 (415; 137; 9) | 205 (165; 40) | | Haematology
(Ht, WBC) | Ht:435 (320; 105; 10)
WBC: 375 (260; 105; 10) | Ht: 164 (124; 40)
WBC: 163 (123; 40) | | Blood chemistry
(TSP, Alb, Glob, A/G ratio, gamma glob) | All: 500 (358; 133; 9) | All: 172 (132; 40) | ## Data analysis As age and BCS are subjective characteristics and age is increasingly difficult to determine in the older ages classes, these nominal variables were recoded to binary variables to facilitate the modelling, resulting in the following variables: age (binary, ≤ 36 months or >36 months, reference level: ≤ 36 months), BCS (binary, BCS 1,2&3 and BCS 4&5, reference level: BCS 4&5), sex (binary, reference level: female), area (nominal, three levels (HPZ, MPZ, LPZ), reference level: MPZ) and period (nominal, three levels (1:1993-1998; 2:1999-2002; 3:2003-2008), reference level: 1). To assess which variables potentially influenced FIV_{ple} and BTB infection (both binary, reference level: negative), the following multivariable logistic regression models were used: FIV= $$\mu$$ +age +BCS +sex +area +period +e [1a] BTB= $$\mu$$ +age +BCS +sex +area +period +e [1b] where μ represents the intercept, e residual error and where the other variables are coded as mentioned above. The e^{β} was used to calculate the odds ratio [43]. A total of 205 lions that had been subjected to both FIV_{ple} and BTB-specific diagnostic tests were used to study the potential synergistic effects of the infectious agents on the body condition and seven blood parameters. To study the effects of FIV_{ple} and M. bovis and their interaction on BCS, the following multivariable logistic regression model was used: BCS= $$\mu$$ +FIV+BTB+FIVxBTB+e [2] where μ represents the intercept, e residual error and BCS, FIV and BTB are binary variables coded as defined above. Blood parameters were selected that were deemed relevant in the literature for either or both of the infections: haematocrit (Ht), white blood cell count (WBC), total serum protein (TSP), albumin (ALB), globulin, gamma globulin and albumin:globulin (A:G) ratio [17,22,34,44]. To assess the effects of FIV_{ple} and *M. bovis* and their interaction, as well as other potentially influencing variables on these parameters, the following full general linear regression model was used: blood parameter= μ +FIV+BTB+FIVxBTB+age+BCS+sex+area+e [3] with variables as defined above. The Akaike Information Criterion (AIC) was used to rank the models [45], following backward stepwise selection. Models with smaller values of the raw AIC values were preferred for each step, unless the difference between the two smallest models was less than 2. In those situations, the principle of Occam's razor was used to select the "simplest" model with the least parameters, i.e. with the highest information gain [46,47], following standard statistical methods [43]. All models were checked for normality and homoscedasticity. For data analysis R version 2.15.0 was used (including packages Hmisc and modeest)[48]. #### Results The models assessing the dependency of FIV_{ple} and BTB on the variables area, period, age, sex and BCS, showed that FIV_{ple} positivity was significantly related with sex (males were more likely to be FIV_{ple} positive), higher age and lower BCS. *M. bovis* infection was related with the area (lions were more likely to be infected in the south of the park) and the period (lions were more likely to be infected in the last time period) (table 3). Additional information can be found in the electronic supplementary material (tables and figures S7 to S10). Table 3: Results of the two final logistic regression models with dependent variables FIV_{ple} and BTB. (Odds ratios are given with their 95% confidence interval between brackets. n.s., these variables were not statistically significant in the model (based on the AIC) and were not included in the final model.) | | FIV_{ple} | ВТВ | |----------------------|------------------|-------------------| | Sex (M) | 1.5 (1.0 to 2.2) | NS | | Age (>36 months) | 3.5 (2.4 to 5.1) | NS | | BCS (1,2,3) | 1.7 (1.1 to 2.6) | NS | | Area | | | | LPZ/north | NS | 0.1 (0.0 to 0.3) | | MPZ/central | NS | 1 | | HPZ/south | NS | 2.2 (1.2 to 4.3) | | Period | | | | Period 1 (1993-1998) | NS | 1 | | Period 2 (1999-2002) | NS | 0.8 (0.4 to 1.6) | | Period 3 (2003-2008) | NS | 3.4 (1.2 to 11.1) | The 205 lions with test results for both FIV_{ple} and BTB were divided into four groups: FIV_{ple}⁺BTB⁺, FIV_{ple}⁻BTB⁺, FIV_{ple}⁺BTB⁻ and FIV_{ple}⁻BTB⁻. No significant differences were found between the observed group sizes and the expected group sizes based on the FIV_{ple} and BTB prevalences (electronic supplementary material table S7a); neither for the total KNP, nor for the three areas separately (figure 1b, for details see electronic supplementary material table S6). This may indicate there is no significant relation between the pathogens, but may also result from a balance between an increased incidence and an increased mortality caused by co-infection of FIV_{ple} and BTB, and should thus be interpreted with caution. When assessing the effects of FIV_{ple} and BTB on the BCS, the co-infected lions had a slightly higher percentage of lions with a low BCS (figure 2) compared to the other groups, but this was not statistically significant (the logistic regression model confirmed this finding)[model Figure 2. Lions (n=205) grouped according to their FIV_{ple} and BTB status and their BCS. Light grey = lions with a low BCS (BCS 1,2,3). Dark grey = lions with a high BCS (BCS 4,5). Linear regression models to determine associations with FIV_{ple} and/or M. bovis infection showed that in co-infected animals there is a statistically significant antagonistic interaction between FIV_{ple} and M. bovis for three of the seven blood parameters, resulting in less deviation than expected from the sum of the individual effects (table 4). Effects of FIV_{ple} were more pronounced, except for the hyperproteinaemia. Neither FIV_{ple} nor BTB nor their interaction had a significant influence on the white blood cell count or the gamma globulins. Comparisons with reference values from zoo lions can be found in supplementary table S11. #### **Discussion** Infectious diseases are an important issue in conservation, having the power to dramatically influence the dynamics of wildlife species and populations [27,49,50], especially in dwindling populations
[51,52]. Because it is difficult to determine their effect, it is common to deal with each infectious disease as a separate entity caused by a single pathogen [31]. However, in nature multiple pathogens are often encountered Table 4: Final multivariable models for seven haematologic and blood chemistry values. (Beta coefficients are given with their 95% confidence interval between brackets. To determine the effect of interaction, all values of a blood parameter should be added, for example, for globulin: 9.3 + 7.5 - 6.6 = 10.2. n.s., these variables were not statistically significant (based on the AIC) and were not included in the final model.) | - | | | Dep | endent va | riables | | | |---------------|-----------|-----------|------------|-----------|------------|--------------|-----------| | Explanatory | Ht (%) | WBC | TSP | Alb | Glob | Gamma | A:G | | variables | | (*10^9/L) | (g/L) | (g/L) | (g/L) | glob (g/L) | ratio | | N | 164 | 163 | 172 | 172 | 172 | 172 | 172 | | Observed mean | 34.3 | | | | | | | | values | 34.3 | 18.6 | 84.0 | 28.3 | 55.7 | 24.9 | 0.5 | | in population | | | | | | | | | FIV | -2.0 | | 6.9 | -2.4 | 9.3 | | -0.1 | | | (-3.5 to) | NS | (3.1 to) | (-3.5 to | (5.7 to) | NS | (-0.2 to | | | -0.6) | | 10.6) | -1.2) | 12.9) | | -0.1) | | BTB | | | 7.8 | | 7.5 | | -0.1 | | | NS | NS | (3.3 to) | NS | (3.3 to | NS | (-0.2 to | | | | | 12.3) | | 11.8) | | 0.0) | | FIVxBTB | | | -6.7 | | -6.6 | | 0.1 | | | NS | NS | (-12.2 to | NS | (-11.9 to) | NS | (0.0 to) | | | | | -1.1) | | -1.3) | | 0.2) | | Age | 1.7 | 2.6 | | | | 3.5 | | | | (0.2 to | (0.7 to) | NS | NS | NS | (1.9 to 5.0) | NS | | | 3.2) | 4.5) | | | | (1.9 to 3.0) | | | BCS | -6.9 | 4.8 | -4.8 | -6.7 | | 1,9 | -0.1 | | | (-8.5 to | (2.8 to | (-8.1 to - | (-8.1 to | NS | (0.2 to 3.7) | (-0.2 to | | | -5.3) | 6.9) | 1.5) | -5.4) | | (0.2 to 3.7) | -0.1) | | Sex | 1.8 | | | | | | | | | (0.4 to | NS | NS | NS | NS | NS | NS | | | 3.2) | | | | | | | | TB area | -3.3 | | -3.8 | -0.4 | -3.3 | | | | HPZ/south | (-4.9 to | NS | (-7.1 to - | (-1.8 to | (-6.4 to - | NS | NS | | | -1.8) | 110 | 0.5) | 0.9) | 0.2) | | | | MPZ/central | | | | | | | | | (reference) | | | | | | | | | | | | | | | | | | LPZ/north | 2.0 | | 4.1 | 2.3 | 1.4 | | | | | (0.0 to) | NS | (0.3 to) | (0.7 to | (-2.2 to | NS | NS | | | 3.9) | | 7.9) | 3.8) | 5.0) | | | | Intercept | 36.1 | 15.6 | 80.0 | 30.8 | 49.8 | 22.2 | 0.7 | simultaneously by individual hosts, which can lead to additive, antagonistic, or synergistic effects on hosts and pathogens [53]. It was expected that co-infection with FIV_{ple} and *M. bovis* in lions would have a synergistic effect, similar to the human counterparts [25]. However, though there was an indication that co-infected lions more often had a low body condition score (BCS), this was not statistically significant (figure 2). FIV_{ple} alone was significantly correlated with a lower BCS. However, though *M. bovis*-infected lions were noted to often have a "scruffy and unthrifty look" (DK, personal observations), BTB was not significantly correlated with BCS. This was surprising as pathologic lesions have been described in *M. bovis* infected lions with a poor condition [19,20]. In a study of BTB in buffaloes, it was found that 70% of the infected animals examined post mortem had only a mild infection and were unlikely to have shown symptoms while alive [54]. Our dataset contained several lions with necropsy results, but unfortunately their number was too small to allow statistically significant conclusions. Therefore, whether there are patterns in the clinical signs in lions, like in buffaloes, remains to be seen. Effects of both FIV_{ple} and M. bovis-infection on the various blood parameters may indicate chronic disease, such as anaemia [44,55], but could also be exaggerated by the effect of age, for example the hyperglobulinaemia, as older lions are more likely to be FIV_{ple} or BTB positive and in general show an increase in globulins [55]. The values might be slightly biased by the delay between sampling and analysis and possible temperature differences during this delay, though the majority of the blood samples was collected at night in the winter season. For all blood parameter values the interaction of the infections was shown to be less than additive. Explanations for this may be that the immune response already reaches maximum capacity for one infection, or that the body is able to keep the various parameters between homeostatic limits. Although not specific for either infection, the direction of changes in blood parameter values was comparable to that observed in previous studies on FIV in cats [13-17] and FIV_{ple} in lions [8], and to results from the less abundant literature on (B)TB [21,22]. Anaemia and hypoalbuminaemia are associated with progression to AIDS and death in human pre-AIDS patients [56,57]. In contrast to the decrease of CD4+ and CD8+ T-cell counts observed in HIV-infected humans, previously also reported for FIV_{ple} in lions [4], no decrease of white blood cells was seen in FIV_{ple}-positive lions in the present study. White blood cells were not further typed, which would be needed to determine possible changes in the numbers of the different cell types. *M. bovis* prevalence was significantly different between the three areas in the KNP, coinciding with observations on *M. bovis* prevalence in the buffaloes [58], one of the four preferential prey species of lions in the KNP [59]. Surprisingly, this did not result in an age distribution skewed to the younger ages in the high prevalence zone compared to the low prevalence zone (electronic supplementary material table and figure S5). Also, the prevalence of *M. bovis* infected animals in the northern part of KNP increased significantly with time from 0% to 41% (Fisher's exact test, two tailed, p=0.014; electronic supplementary material table S7c). These findings suggest that *M. bovis* infection in lions is caused by an external source of infection, i.e. that lions are spillover hosts, in agreement with [60,61]. This contradicts suggestions from the past about their role as maintenance host [19,62]. FIV_{ple} on the other hand shows no significant relation with the external factors measured, supporting the intraspecies transmission route. It was expected that, like HIV and M. tuberculosis in humans, a synergy between FIV_{ple} and M. bovis was to be found in lions, but this large data set shows no proof for detrimental synergy in the tested parameters. There may be various reasons for not finding a similar relation of FIV_{ple} and M. bovis like in humans. - The immunopathological characteristics of BTB can vary in different species [63] and macroscopic lesions in M. bovis positive lion have been found to be very different from those in ungulates and non-human primates [20]. This may mirror a difference in susceptibility to infection, but the knowledge on immunopathogenesis is still very limited in lions. Differences in immune response in feline and simian species have also been noted for immunodeficiency viruses, related with specific virus-host coadaptation and viral load [9,12,64]. One reason for a difference in immunopathogenesis may be that lions have co-evolved with the endemic disease FIV_{ple} , whereas M. bovis is a recently introduced pathogen, in contrast to the situation in humans, where M. tuberculosis has been in the population for many centuries, and HIV/AIDS was introduced relatively recently [64]. - It remains possible that even our extensive dataset was not suitable to detect a pathogen-pathogen interaction. In literature on the HIV-TB interaction, emphasis has been laid on the changes in CD4+/CD8+ T-cell counts, pathology and the collection of longitudinal data [25,65,66]. The present data set was not collected for the purpose of assessing FIV_{ple}- *M. bovis* interaction and therefore lacks results on these important parameters. This precludes determining the directionality of any interactions, while order of infection can be crucial in the outcome of the pathogen-pathogen interaction [67]. Also, stage of infection and time of infection for both BTB and FIV_{ple} were not known, but may affect for example blood parameter values like WBC, and this could thus be a potential source of error. Selection pressures that were not determined in this study, for example prey availability, could also be confounding the pathogen-pathogen interaction [35]. - Although the use of call-up stations is accepted for the non-lethal capture of wildlife [68], our sampling method is likely not to have been truly random. For example, relatively few young animals have been captured (electronic supplementary material S3). These are likely to be more cautious approaching a call-up station. This may also count for animals in a bad condition, since fewer animals than expected were captured at call-up stations in poor conditions. Lions that were brought to the veterinary station were collected with different efforts over the three areas. They had a lower mean BCS and higher mean age compared to lions captured at call-up stations, but the prevalence of FIV_{ple} and *M. bovis* infection for the lions (resp. 63% and 47%) brought to the veterinary station were not statistically different (χ^2 -tested, P-value resp. 0.40 and 0.82) from prevalence found for the lions sampled at call-up stations (resp. 61% and 55%), and either including or excluding the emaciated lions had little influence on the various statistics (results not shown); therefore they were included to increase the power of the analyses. Though we tried to control for bias as much as possible, field data sets like these may include unmeasured biases, and results should be interpreted with caution. Finally, we remark that the pathogen-pathogen interaction may become more important when the lions are under additional stress, for example due to high parasite load or bad nutritional status when there
is a low prey density [30,50,67,69]. This complexity of disease in general and especially the interaction of pathogens, necessitates an extensive, long-term research program requiring large sample sizes from the host population [31]. In future studies, besides CD4+/CD8+ T-cell counts, macro parasite infestation [70,71], and social interaction networks to assess the infectiousness of individual animals [72] could be valuable inclusions. With the tested parameters, no evidence was found that FIV_{ple} or *M. bovis*, or a co-infection of these, is currently causing a serious conservation threat to KNP lions. However, a significant spatio-temporal increase of BTB was found, which may impact on lion health, as previous studies have related BTB to diverse pathological lesions [73]. In buffaloes, the population growth rate was negatively affected by BTB without altering the population age distribution significantly, thus reducing the resilience of the population to disturbances [54], which may also apply to lions. With the recent creation of the Greater Limpopo Transfrontier Conservation Area and the knowledge that the co-infection of FIV_{ple} and *M. bovis* is most likely also present in lions in other African parks [7,74], it should be closely monitored how the KNP and other co-infected lion populations respond to a severe environmental perturbation compared to populations that are infected with only one or neither of these two agents. #### Acknowledgements This research was predominantly funded by the South African Veterinary Foundation and the Directorate of Veterinary Services, National Department of Agriculture, Forestry and Fisheries, South Africa. D.F. Keet was the recipient of a doctoral bursary awarded by the University of Pretoria. The work of M. Maas was supported by the Netherlands Organisation for Scientific Research (NWO/ZonMw grant 918.56.620). We are grateful to the field staff of the Directorate of Veterinary Services, Messrs. S. van Dyk, E.H. Dekker, T.K. Muchocho and J. Oosthuizen and Dr. R. Bengis whom assisted with technical execution of the project, as well as the physical assistance of Tradesman Aides: Messrs C. Masinga, E. Ubisi, K. Nkuna, E. Munyamela, P. Baloyi in the management of the lion holding facilities, and assistance with necropsies; the ranger staff of SANParks (KNP) for reporting and assisting with the capture of some of the study lions; the Bacteriology Section of the ARC-Onderstepoort Veterinary Research Institute for mycobacterial culture. Drs. W. Botha and L. du Plessis from Golden Vetpath for histological examinations of referred cases. We also acknowledge Prof. N.P.J. Kriek, Mrs. A. Lourens, H. Vernooij and J. van den Broek for valuable advice, as well as the reviewers for their thorough reviews and useful comments on the manuscript. This project was approved by the South African National Parks conservation and ethics committees as well as the Animal Use & Care Committee of the University of Pretoria. #### References - [1] Spencer, J. A., Van Dijk, A. A., Horzinek, M. C., Egberink, H. F., Bengis, R. G., Keet, D. F., Morikawa, S. & Bishop, D. H. 1992 Incidence of feline immunodeficiency virus reactive antibodies in free-ranging lions of the Kruger National Park and the Etosha National Park in southern Africa detected by recombinant FIV p24 antigen. *Onderstepoort J. Vet. Res.* **59**, 315-322. - [2] Van Vuuren, M., Stylianides, E. & Du Rand, A. 1997 The prevalence of viral infections in lions and leopards in Southern Africa. *Proceedings of a Symposium on Lions and Leopards as Game Ranch Animals, Onderstepoort, October 1997.*, 168-173. - [3] Troyer, J. L., Pecon-Slattery, J., Roelke, M. E., Johnson, W., VandeWoude, S., Vazquez-Salat, N., Brown, M., Frank, L., Woodroffe, R., Winterbach, C., Winterbach, H., Hemson, G., Bush, M., Alexander, K. A., Revilla, E. & O'Brien, S. J. 2005 Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. *J. Virol.* **79**, 8282-8294. - [4] Roelke, M. E., Pecon-Slattery, J., Taylor, S., Citino, S., Brown, E., Packer, C., Vandewoude, S. & O'Brien, S. J. 2006 T-lymphocyte profiles in FIV-infected wild lions and pumas reveal CD4 depletion. *J. Wildl. Dis.* **42**, 234-248. - [5] Alexander, K. A., McNutt, J. W., Briggs, M. B., Standers, P. E., Funston, P., Hemson, G., Keet, D. & van Vuuren, M. 2010 Multi-host pathogens and carnivore management in southern Africa. *Comp. Immunol. Microbiol. Infect. Dis.* 33, 249-265. - [6] Olmsted, R. A., Langley, R., Roelke, M. E., Goeken, R. M., Adger-Johnson, D., Goff, J. P., Albert, J. P., Packer, C., Laurenson, M. K. & Caro, T. M. 1992 Worldwide prevalence of lentivirus infection in wild feline species: epidemiologic and phylogenetic aspects. *Journal of Virology.* **66**, 6008-6018. - [7] Brown, E. W., Yuhki, N., Packer, C. & O'Brien, S. J. 1994 A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. *Journal of Virology.* **68**, 5953-5968. - [8] Roelke, M. E., Brown, M. A., Troyer, J. L., Winterbach, H., Winterbach, C., Hemson, G., Smith, D., Johnson, R. C., Pecon-Slattery, J., Roca, A. L., Alexander, K. A., Klein, L., Martelli, P., Krishnasamy, K. & O'Brien, S. J. 2009 Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions. *Virology.* **390**, 1-12. - [9] Carpenter, M. A. & O'Brien, S. J. 1995 Coadaptation and immunodeficiency virus: lessons from the Felidae. *Curr. Opin. Genet. Dev.* **5**, 739-745. - [10] Hofmann-Lehmann, R., Fehr, D., Grob, M., Elgizoli, M., Packer, C., Martenson, J. S., O'Brien, S. J. & Lutz, H. 1996 Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline - leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa. *Clinical and Diagnostic Laboratory Immunology*. **3**, 554-562. - [11] Packer, C., Altizer, S., Appel, M., Brown, E., Martenson, J., O'Brien, S. J., Roelke-Parker, M., Hofmann-Lehmann, R. & Lutz, H. 1999 Viruses of the Serengeti: patterns of infection and mortality in African lions. *J. Anim. Ecol.* **68**, 1161-1178. - [12] Troyer, J. L., Roelke, M. E., Jespersen, J. M., Baggett, N., Buckley-Beason, V., MacNulty, D., Craft, M., Packer, C., Pecon-Slattery, J. & O'Brien, S. J. 2011 FIV diversity: FIVPle subtype composition may influence disease outcome in African lions. *Vet. Immunol. Immunopathol.* **143**, 338-346. - [13] Mandell, C., Sparger, E., Pedersen, N. & Jain, N. 1992 Long-term haematological changes in cats experimentally infected with feline immunodeficiency virus (FIV). *Comparative Haematology International.* **2**, 8-17. - [14] Sparkes, A. H., Hopper, C. D., Millard, W. G., Gruffydd-Jones, T. J. & Harbour, D. A. 1993 Feline immunodeficiency virus infection. Clinicopathologic findings in 90 naturally occurring cases. *J. Vet. Intern. Med.* **7**, 85-90. - [15] Shelton, G. H., Linenberger, M. L., Grant, C. K. & Abkowitz, J. L. 1990 Hematologic manifestations of feline immunodeficiency virus infection. *Blood.* 76, 1104-1109. - [16] Shelton, G. H., Linenberger, M. L., Persik, M. T. & Abkowitz, J. L. 1995 Prospective hematologic and clinicopathologic study of asymptomatic cats with naturally acquired feline immunodeficiency virus infection. *J. Vet. Intern. Med.* **9**, 133-140. - [17] Gleich, S. & Hartmann, K. 2009 Hematology and serum biochemistry of feline immunodeficiency virus-infected and feline leukemia virus-infected cats. *J. Vet. Intern. Med.* **23**, 552-558. - [18] Bengis, R. G., Kriek, N. P., Keet, D. F., Raath, J. P., de Vos, V. & Huchzermeyer, H. F. 1996 An outbreak of bovine tuberculosis in a free-living African buffalo (Syncerus caffer--sparrman) population in the Kruger National Park: a preliminary report. *Onderstepoort J. Vet. Res.* **63**, 15-18. - [19] Keet, D. F., Kriek, N. P., Penrith, M. L., Michel, A. & Huchzermeyer, H. 1996 Tuberculosis in buffaloes (Syncerus caffer) in the Kruger National Park: spread of the disease to other species. *Onderstepoort J. Vet. Res.* **63**, 239-244. - [20] Keet, D. F., Michel, A. & Meltzer, D. G. A. 2000 Tuberculosis in free-ranging lions (Panthera leo) in the Kruger National Park. *Proceedings of the South African Veterinary Association Biennial Congress, Durban, Kwazulu-Natal, 20-22 September 2000.*, 232-241. - [21] Seibert, F. B., Seibert, M. V., Atno, A. J. & Campbell, H. W. 1947 Variation in Protein and Polysaccharide Content of Sera in the Chronic Diseases, Tuberculosis, Sarcoidosis, and Carcinoma. *J. Clin. Invest.* **26**, 90-102. - [22] Morris, P. J., Thoen, O. & Legendre, A. M. 1996 Pulmonary Tuberculosis in an African Lion (Panthera leo). *Journal of Zoo and Wildlife Medicine*. **27**, 392-396. - [23] Sharma, S. K., Mohan, A. & Kadhiravan, T. 2005 HIV-TB co-infection: epidemiology, diagnosis & management. *Indian J. Med. Res.* **121**, 550-567. - [24] Toossi, Z. 2003 Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. *J. Infect. Dis.* **188**, 1146-1155. - [25] Kwan, C. K. & Ernst, J. D. 2011 HIV and Tuberculosis: a Deadly Human Syndemic. *Clin. Microbiol. Rev.* **24**, 351-376. - [26] Kirschner, D. 1999 Dynamics of Co-infection with M. tuberculosis and HIV-1. *Theor. Popul. Biol.* **55**, 94-109. - [27] Munson, L., Terio, K. A., Kock, R., Mlengeya, T., Roelke, M. E., Dubovi, E., Summers, B., Sinclair, A. R. & Packer, C. 2008 Climate extremes promote fatal co-infections during canine distemper epidemics in African lions. *PLoS One.* **3**, e2545. - [28] Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Paterson, S. & Begon, M. 2010 Species Interactions in a Parasite Community Drive Infection Risk in a Wildlife Population. *Science.* **330**, 243-246. - [29] Pedersen, A. B. & Fenton, A. 2007 Emphasizing the ecology in parasite community ecology.
Trends in Ecology & Evolution. **22**, 133-139. - [30] Singer, M. 2010 Pathogen-pathogen interaction: a syndemic model of complex biosocial processes in disease. *Virulence.* **1**, 10-18. - [31] Petney, T. N. & Andrews, R. H. 1998 Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. *Int. J. Parasitol.* **28**, 377-393. - [32] http://www.iucnredlist.org/apps/redlist/details/15951/0, 2011. - [33] Keet, D. F., Michel, A. L., Bengis, R. G., Becker, P., van Dyk, D. S., van Vuuren, M., Rutten, V. P. & Penzhorn, B. L. 2010 Intradermal tuberculin testing of wild African lions (Panthera leo) naturally exposed to infection with Mycobacterium bovis. *Vet. Microbiol.* **144**, 384-391. - [34] Bain, B. J. 1997 The haematological features of HIV infection. *Br. J. Haematol.* **99**, 1-8. - [35] Ferreira, S. M. & Funston, P. J. 2010 Estimating lion population variables: prey and disease effects in Kruger National Park, South Africa. *Wildl. Res.* 37, 194-206. - [36] Rodwell, T. C., Kriek, N. P., Bengis, R. G., Whyte, I. J., Viljoen, P. C., de Vos, V. & Boyce, W. M. 2001 Prevalence of bovine tuberculosis in African buffalo at Kruger National Park. *J. Wildl. Dis.* 37, 258-264. - [37] Donnelly, C. A., Woodroffe, R., Cox, D. R., Bourne, J., Gettinby, G., Le Fevre, A. M., McInerney, J. P. & Morrison, W. I. 2003 Impact of localized badger culling on tuberculosis incidence in British cattle. *Nature*. **426**, 834-837. - [38] Ramsey, D., Spencer, N., Caley, P., Efford, M., Hansen, K., Lam, M. & Cooper, D. 2002 The effects of reducing population density on contact rates between brushtail possums: implications for transmission of bovine tuberculosis. *J. Appl. Ecol.* **39**, 806-818. - [39] Smuts, G. L., Anderson, J. L. & Austin, J. C. 1978 Age determination of the African Lion (Panthera leo). *Journal of Zoology, London.* **185**, 115-146. - [40] Rangaka, M. X., Wilkinson, K. A., Seldon, R., Van Cutsem, G., Meintjes, G. A., Morroni, C., Mouton, P., Diwakar, L., Connell, T. G., Maartens, G. & Wilkinson, R. J. 2007 Effect of HIV-1 Infection on T-Cell-based and Skin Test Detection of Tuberculosis Infection. *American Journal of Respiratory and Critical Care Medicine*. **175**, 514-520. - [41] Van Vuuren, M., Stylianides, E., Kania, S. A., Zuckerman, E. E. & Hardy Jr, W. D. 2003 Evaluation of an indirect enzyme-linked immunosorbent assay for the detection of feline lentivirus-reactive antibodies in wild felids, employing a puma lentivirus-derived synthetic peptide antigen. *Onderstepoort J. Vet. Res.* **70**, 1-6. - [42] Adams, H., van Vuuren, M., Bosman, A. M., Keet, D., New, J. & Kennedy, M. 2009 The epidemiology of lion lentivirus infection among a population of freeranging lions (Panthera leo) in the Kruger National Park, South Africa. *J. S. Afr. Vet. Assoc.* **80**, 151-156. - [43] Dohoo, I. R., Martin, W. & Stryhn, H. 2009 *Veterinary epidemiologic research*, 2nd edition edn, pp. 254-255; 384. Canada: VER, Inc. - [44] Jain, N. C. 1993 Chapter 21: The plasma proteins, dysproteinemias, and immune deficiency disorders. In *Essentials of veterinary hematology* (ed. N. C. Jain), pp. 380. Philadelphia: Lea & Febiger. - [45] Akaike, H. 1974 A new look at the statistical model identification. *Automatic Control, IEEE Transactions on.* **19**, 716-723. - [46] Lindsey, J. K. & Jones, B. 1998 Choosing among generalized linear models applied to medical data. *Stat. Med.* 17, 59-68. - [47] Bozdogan, H. 1987 Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. *Psychometrika*. **52**, 345-370. - [48] R Development Core Team. 2012 R: A Language and Environment for Statistical Computing **version 2.15.0**. - [49] Skerratt, L., Berger, L., Speare, R., Cashins, S., McDonald, K., Phillott, A., Hines, H. & Kenyon, N. 2007 Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. *EcoHealth.* 4, 125-134. - [50] Scott, M. E. 1988 The Impact of Infection and Disease on Animal Populations: Implications for Conservation Biology. *Conserv. Biol.* **2**, pp. 40-56. - [51] Thorne, E. T. & Williams, E. S. 1988 Disease and Endangered Species: The Black-footed Ferret as a Recent Example. *Conserv. Biol.* **2**, 66-74. - [52] Trinkel, M., Cooper, D., Packer, C. & Slotow, R. 2011 Inbreeding depression increases susceptibility to bovine tuberculosis in lions: an experimental test using an inbred-outbred contrast through translocation. *J. Wildl. Dis.* 47, 494-500. - [53] Romansic, J. M., Johnson, P. T., Searle, C. L., Johnson, J. E., Tunstall, T. S., Han, B. A., Rohr, J. R. & Blaustein, A. R. 2011 Individual and combined effects of multiple pathogens on Pacific treefrogs. *Oecologia*. **166**, 1029-1041. - [54] Jolles, A. E., Cooper, D. V. & Simon A. Levin. 2005 Hidden Effects of Chronic Tuberculosis in African Buffalo. *Ecology*. **86**, pp. 2358-2364. - [55] Eckersall, P. D. 2008 Chapter 5: Proteins, Proteomics, and the Dysproteinemias. In *Clinical biochemistry of domestic animals* (eds. J. J. Kaneko, J. W. Harvey & M. L. Bruss), pp. 117-155. California: Academic Press. - [56] Mocroft, A., Kirk, O., Barton, S. E., Dietrich, M., Proenca, R., Colebunders, R., Pradier, C., dArminio Monforte, A., Ledergerber, B. & Lundgren, J. D. 1999 Anaemia is an independent predictive marker for clinical prognosis in HIV-infected patients from across Europe. EuroSIDA study group. *AIDS*. **13**, 943-950. - [57] Shah, S., Smith, C. J., Lampe, F., Youle, M., Johnson, M. A., Phillips, A. N. & Sabin, C. A. 2007 Haemoglobin and albumin as markers of HIV disease progression in the highly active antiretroviral therapy era: relationships with gender. *HIV. Med.* **8**, 38-45. - [58] Cross, P. C., Heisey, D. M., Bowers, J. A., Hay, C. T., Wolhuter, J., Buss, P., Hofmeyr, M., Michel, A. L., Bengis, R. G., Bird, T. L. F., Du Toit, J. T. & Getz, W. M. 2009 Disease, predation and demography: assessing the impacts of bovine tuberculosis on African buffalo by monitoring at individual and population levels. *J. Appl. Ecol.* **46**, 467-475. - [59] Mills, M. G. L. 1995 Notes on wild dog *Lycaon pictus* and lion *Panthera leo* population trends during a drought in the Kruger National Park. *Koedoe*. **38**, 95-99. - [60] Renwick, A. R., White, P. C. & Bengis, R. G. 2007 Bovine tuberculosis in southern African wildlife: a multi-species host-pathogen system. *Epidemiol. Infect.* **135**, 529-540. - [61] de Lisle, G. W., Bengis, R. G., Schmitt, S. M. & O'Brien, D. J. 2002 Tuberculosis in free-ranging wildlife: detection, diagnosis and management. *Rev. Sci. Tech.* 21, 317-334. - [62] Michel, A. L., Bengis, R. G., Keet, D. F., Hofmeyr, M., Klerk, L. M., Cross, P. C., Jolles, A. E., Cooper, D., Whyte, I. J., Buss, P. & Godfroid, J. 2006 Wildlife tuberculosis in South African conservation areas: implications and challenges. *Vet. Microbiol.* **112**, 91-100. - [63] Buddle, B. M. & Young, L. J. 2000 Immunobiology of mycobacterial infections in marsupials. *Dev. Comp. Immunol.* **24**, 517-529. - [64] Hirsch, V. M. & Johnson, P. R. 1994 Pathogenic diversity of simian immunodeficiency viruses. *Virus Res.* **32**, 183-203. - [65] Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L., Khoruts, A., Larson, M., Haase, A. T. & Douek, D. C. 2004 CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. *J. Exp. Med.* **200**, 749-759. - [66] Sonnenberg, P., Glynn, J. R., Fielding, K., Murray, J., Godfrey-Faussett, P. & Shearer, S. 2005 How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. *J. Infect. Dis.* **191**, 150-158. - [67] Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. 2011 Wildlife diseases: from individuals to ecosystems. *J. Anim. Ecol.* **80**, 19-38. - [68] Munson, L. & Karesh, W. B. 2002 Chapter 8: Diseaes Monitoring for the Conservation of Terrestrial Animals. In *Conservation medicine: ecological health in practice* (eds. A. A. Aguirre, R. S. Ostfeld, G. M. Tabor, C. House & M. C. Pearl), pp. 95-103. New York: Oxford University Press. - [69] Caron, A., Cross, P. C. & du Toit, J. T. 2003; 2003 Ecological Implications of Bovine Tuberculosis in African Buffalo Herds. *Ecol. Appl.* **13**, 1338-1345. - [70] Jolles, A. E., Ezenwa, V. O., Etienne, R. S., Turner, W. C. & Olff, H. 2008 Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. *Ecology.* **89**, 2239-2250. - [71] Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. 2010 Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. *Am. Nat.* **176**, 613-624. - [72] Drewe, J. A., Eames, K. T., Madden, J. R. & Pearce, G. P. 2011 Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control. *Prev. Vet. Med.* **101**, 113-120. - [73] Keet, D. F., Kriek, N. P. J., Penrith, M. -. & Michel, A. 1997 Tuberculosis in lions and cheetahs. *Proceedings of a Symposium on Lions and Leopards as Game Ranch Animals, Onderstepoort, October 1997.*, 151-156. - [74] Cleaveland, S., Mlengeya, T., Kazwala, R. R., Michel, A., Kaare, M. T., Jones, S. L., Eblate, E., Shirima, G. M. & Packer, C. 2005 Tuberculosis in Tanzanian wildlife. *J. Wildl. Dis.* 41, 446-453. ## **Electronic Supplementary Material** - Description of the whole data set - Description of the data set for lions with results for either $\mbox{FIV}_{\mbox{\scriptsize ple}}$ and BTB or both ### Description of the whole data set To give insight in the relative proportions of the lions that were either captured at call-up stations or had been brought to the veterinary station, the data set was described with different subdivisions in the tables and
graphs, regardless of FIV_{ple} and BTB status. Results are listed in tables S1 to S4 and figures S1 to S4. Table S5 and figure S5 describe the age distribution in the different areas. ## Supplementary table and figure S1: area (a) Numbers of study lions in the three parts of the Kruger National Park (KNP) and adjacent game reserves. HPZ= high prevalence zone. MPZ= medium prevalence zone. LPZ= low prevalence zone. | | Area (n=669) | | | | | | |----------------------------------|--------------|-------------|-----------|-------|--|--| | | HPZ/south | MPZ/central | LPZ/north | Total | | | | Call-up
station
Veterinary | 233 | 97 | 154 | 484 | | | | station | 79 | 74 | 21 | 174 | | | | Unknown | 11 | 0 | 0 | 11 | | | | Total | 323 | 171 | 175 | 669 | | | (a) (b) (b) Numbers of study lions in the three parts of the KNP and from a private game reserve (n=669). White bars= lions captured at a call-up station. Grey bars= lions brought to the veterinary station. Black bars= Unknown background. # Supplementary table and figure S2: sex (a) Description of the sex of the lions in the data set. | | Sex (n=669) | | | | |--------------------|-------------|------|--|--| | | Female | Male | | | | Call-up
station | 260 | 224 | | | | Veterinary station | 85 | 89 | | | | Unknown | 4 | 7 | | | | Total | 349 | 320 | | | (a) (b) (b) Relative proportion of males and females in the data set (n=669). White bars= lions captured at a call-up station. Grey bars= lions brought to the veterinary station. Black bars= Unknown background. # Supplementary table and figure S3: age (a) Numbers of lions per age class in the data set, with the age in months. A one-month interval was chosen for ages <36 months, a two-month interval was chosen for the higher ages, as age becomes increasingly difficult to estimate. | | | | | Age class | ses (n=669 |) | | |----------------------------------|-----|-------|-------|-----------|------------|-------|-----| | | ≤12 | 13-24 | 25-36 | 37-48 | 49-72 | 73-96 | >96 | | Call-up
station
Veterinary | 36 | 64 | 69 | 56 | 141 | 84 | 34 | | station | 12 | 30 | 13 | 12 | 26 | 43 | 38 | | Unknown | 0 | 6 | 1 | 1 | 2 | 1 | 0 | | Total | 48 | 100 | 83 | 69 | 169 | 128 | 72 | (a) (b) (b) Number of lions per age class, age in months (n=669). White bars= lions captured at a call-up station. Grey bars= lions brought to the veterinary station. Black bars= Unknown background. # Supplementary table and figure S4: BCS (a) Description of the numbers of lions per body condition score (BCS) in the data set. BCS ranked from 1 (very poor) to 5 (excellent). | | | Dodyo | andition s | 00ro (n=66) | 6) | |--------------------|----|--------|------------|-------------|-----| | | | Bouy C | onunion s | core (n=66 | 0) | | | 1 | 2 | 3 | 4 | 5 | | Call-up station | 2 | 13 | 37 | 110 | 319 | | Veterinary station | 51 | 46 | 29 | 25 | 23 | | Unknown | 2 | 0 | 1 | 1 | 7 | | Total | 55 | 59 | 67 | 136 | 349 | (a) (b) (b) Number of study lions per body condition score. BCS ranked from 1 (very poor) to 5 (excellent) (n=666). White bars= lions captured at a call-up station. Grey bars= lions brought to the veterinary station. Black bars= Unknown background. # Supplementary table and figure S5: Population age distribution per KNP area (a) Number of study lions in the three different areas in the Kruger National Park divided in six age classes and the mean and median values per area. | | Area (n=669) | | | | | | |---------|--------------|-------------|-----------|--|--|--| | | HPZ/south | MPZ/central | LPZ/north | | | | | ≤12 | 25 | 9 | 14 | | | | | 13-24 | 44 | 29 | 27 | | | | | 25-48 | 77 | 43 | 32 | | | | | 49-72 | 84 | 39 | 46 | | | | | 73-96 | 61 | 37 | 30 | | | | | >96 | 32 | 14 | 26 | | | | | n total | 323 | 171 | 175 | | | | | Mean | 58.2 | 58.6 | 63.5 | | | | | Median | 60 | 56 | 66 | | | | (a) (b) (b) Proportions of study lions per age class per area. White bars= HPZ/south, grey bars= MPZ/central, black bars= LPZ/north. Visual inspection shows similar population age distributions for the three areas. # Description of the data set for lions with an $FIV_{ple}\ or\ BTB$ result All study lions with a test result for FIV_{ple} and/or BTB, were used for descriptive analysis of FIV_{ple} and BTB in the Kruger National Park regarding area, period, sex, age and BCS. Temporal changes in the areas were assessed for three periods, 1993 to 1998, 1999 to 2002 and 2003 to 2008 (resp. 152, 337, 157 lions; 25 lions had an unknown capture date), based on attaining comparable numbers of observations. # Supplementary table S6: number of lions with FIV_{ple}, BTB, with both infections or no infections | | BTB pos | BTB neg | Total | |------------------------|-----------|----------|-------| | FIV _{ple} pos | 63 | 53 | 116 | | HPZ/south | 37 | 15 | (57%) | | MPZ/central | 19 | 12 | | | LPZ/north | 7 | 26 | | | FIV _{ple} neg | 44 | 45 | 89 | | HPZ/south | 33 | 9 | (43%) | | MPZ/central | 7 | 17 | | | LPZ/north | 4 | 19 | | | Total | 107 (52%) | 98 (48%) | 205 | ## Supplementary tables and figure S7: area (a) The proportions of FIV_{ple} and BTB positive study lions over the total study period in the different parts of the KNP and their 95% confidence intervals (95% CI). The prevalence of FIV_{ple} in the three areas in the KNP found in this study compares well to smaller studies that were executed in the past [1,2]. | | FIV _{ple} (n=561) | | | | BTB (n=240 |)) | |-------------|----------------------------|-------------------------------------|-----------|-----|----------------------|-----------| | | n | FIV _{ple} pos (proportion) | 95% CI | n | BTB pos (proportion) | 95% CI | | HPZ/south | 273 | 0.63 | 0.57-0.68 | 119 | 0.72 | 0.64-0.80 | | MPZ/central | 139 | 0.61 | 0.53-0.69 | 62 | 0.50 | 0.38-0.62 | | LPZ/north | 149 | 0.58 | 0.50-0.65 | 59 | 0.19 | 0.11-0.30 | (a) (b) (b) Proportions of FIV_{ple} and BTB infected study lions in the three different KNP areas over the total study period. Grey bars= FIV_{ple} positive lions. Black bars= BTB positive lions. Line segments indicate the 95% confidence interval. (c) Proportions of $\mbox{FIV}_{\mbox{\scriptsize ple}}$ and BTB positive study lions in the HPZ and the LPZ in three time periods. The central area was not assessed, because for the last time period, data of only three lions could be collected. | | HPZ/ | south | LPZ/no | orth | |------------------|--------------|-------------|-------------|-------------| | | FIV_{ple} | BTB | FIV_{ple} | BTB | | Period 1993-1998 | 0.63 (n=64) | 0.77 (n=31) | 0.48 (n=21) | 0 (n=11) | | Period 1999-2002 | 0.66 (n=108) | 0.66 (n=69) | 0.64 (n=76) | 0.13 (n=31) | | Period 2003-2008 | 0.62 (n=81) | 0.84 (n=19) | 0.52 (n=52) | 0.41 (n=17) | | (c) | | | | | # Supplementary table and figure S8: sex (a) Proportions of FIV_{ple} and BTB positive study lions for the different sexes. No significant differences were found between males and females for either of the infections using the chi-square test. | | | FIV _{ple} (n=56 | 1) | | BTB (n=240) | | | | |--------|-----|-------------------------------------|-----------|-----|----------------------|-----------|--|--| | | n | FIV _{ple} pos (proportion) | 95% CI | n | BTB pos (proportion) | 95% CI | | | | Female | 287 | 0.59 | 0.53-0.64 | 125 | 0.49 | 0.40-0.57 | | | | Male | 274 | 0.63 | 0.57-0.68 | 115 | 0.58 | 0.49-0.67 | | | (a) (b) (b) Proportions of FIV_{ple} and BTB infected study lions per sex. Grey bars= FIV_{ple} positive lions, black bars= BTB positive lions. Line segments indicate the 95% confidence interval. ## Supplementary table and figure S9: age (a) Proportions of FIV_{ple} and BTB study positive lions in the different age classes. The youngest lions that were FIV_{ple} positive were 5 months old (4 cases). The two youngest BTB cases were 5 and 7 months old. | | | FIV_{ple} (n= 56 | 1) | BTB (n=240) | | | | |-------|-----|-------------------------------------|-----------|-------------|----------------------|-----------|--| | | n | FIV _{ple} pos (proportion) | 95% CI | n | BTB pos (proportion) | 95% CI | | | ≤12 | 47 | 0.19 | 0.10-0.33 | 17 | 0.35 | 0.17-0.59 | | | 13-24 | 82 | 0.48 | 0.37-0.58 | 29 | 0.62 | 0.44-0.77 | | | 25-48 | 127 | 0.55 | 0.46-0.63 | 66 | 0.53 | 0.41-0.65 | | | 49-72 | 134 | 0.69 | 0.61-0.77 | 65 | 0.49 | 0.37-0.61 | | | 73-96 | 113 | 0.73 | 0.64-0.80 | 48 | 0.52 | 0.38-0.66 | | | >96 | 58 | 0.84 | 0.73-0.92 | 15 | 0.80 | 0.55-0.93 | | (a) (b) (b) Proportions of FIV_{ple} and BTB infected study lions per age class. A general increase with age of the prevalences of FIV_{ple} and M. bovis was found. Grey bars= FIV_{ple} positive lions, black bars= BTB positive lions. Line segments indicate the 95% confidence interval. Little information exists about the course of infection of FIV_{ple} and *M. bovis* in a lion, and the common belief is that both infections are life long in lions. Thus, the prevalence of both infections shows an increase with age. # Supplementary table and figure S10: BCS (a) Proportions of FIV_{ple} and BTB positive study lions in the different BCS classes. | | | FIV _{ple} (n=55 | 8) | | BTB (n=240) | | | | |-------|-----|-------------------------------------|-----------|-----|----------------------|-----------|--|--| | | n | FIV _{ple} pos (proportion) | 95% CI | n | BTB pos (proportion) | 95% CI | | | | BCS 1 | 42 | 0.79 | 0.64-0.88 | 7 | 0.43 | 0.16-0.75 | | | | BCS 2 | 49 | 0.69 | 0.55-0.80 | 15 | 0.53 | 0.30-0.75 | | | | BCS 3 | 55 | 0.67 | 0.54-0.78 | 28 | 0.50 | 0.33-0.67 | | | | BCS 4 | 115 | 0.67 | 0.58-0.75 | 56 | 0.57 | 0.44-0.69 | | | | BCS 5 | 297 | 0.54 | 0.48-0.59 | 134 | 0.53 | 0.45-0.61 | | | (a) (b) (b) Proportion of FIV_{ple} and BTB infected study lions per BCS class. Grey bars= FIV_{ple} positive lions. Black bars= BTB positive lions. Line segments indicate the 95% confidence interval. ### Supplementary table S11 Comparison of the calculated lion blood parameter values from the data set with the values of the
International Species Information System (ISIS) for lions [3]. These values have been collected using zoo lions worldwide and the means and standard deviations have been given. A difference has been made between lions younger than 3 years old, and lions older than 3 years. Sample size is the number of samples, which comes from the same or from a smaller number of individuals lions (indicate as "animals"). The proportion of lions used for the calculations of the mean values for lions infected with FIV_{ple}, BTB or both, was comparable with overall infection rates. NA=Not available. | | Dependent variables | | | | | | | | |---|---------------------|------------------|--------------|--------------|---------------|---------------------|--------------|--| | Explanatory variables | Ht
(%) | WBC
(*10^9/L) | TSP
(g/L) | Alb
(g/L) | Glob
(g/L) | Gamma
glob (g/L) | A:G
ratio | | | Data set | | | | | | | | | | Mean total | 34.3 | 18.6 | 84.0 | 28.3 | 55.7 | 24.9 | 0.5 | | | Animals (n) | 164 | 163 | 172 | 172 | 172 | 172 | 172 | | | | | | | | | | | | | Mean FIV ⁺ | 33.0 | 19.6 | 85.5 | 25.7 | 59.7 | 25.9 | 0.4 | | | Mean BTB ⁺ | 33.7 | 19.4 | 84.6 | 27.7 | 56.9 | 26.0 | 0.5 | | | Mean FIV ⁺ and
BTB ⁺ | 32.9 | 19.1 | 84.7 | 26.5 | 58.2 | 26.0 | 0.5 | | | ISIS values | | | | | | | | | | Age <3 | | | | | | | | | | Mean | 35.9 | 12.4 | 67 | 34 | 33 | NA | NA | | | St. Deviation | 5.2 | 4.8 | 7 | 5 | 7 | NA | NA | | | Sample size (n) | 135 | 131 | 105 | 101 | 98 | NA | NA | | | Animals (n) | 90 | 91 | 71 | 69 | 67 | NA | NA | | | Age >3 | | | | | | | | | | Mean | 39.4 | 13.6 | 75 | 33 | 42 | 28 | NA | | | St. Deviation | 5 | 4.2 | 6 | 4 | 7 | 10 | NA | | | Sample size (n) | 538 | 514 | 481 | 424 | 417 | 6 | NA | | | Animals (n) | 248 | 241 | 215 | 193 | 186 | 6 | NA | | #### References - [1] Spencer, J. A., Van Dijk, A. A., Horzinek, M. C., Egberink, H. F., Bengis, R. G., Keet, D. F., Morikawa, S. & Bishop, D. H. 1992 Incidence of feline immunodeficiency virus reactive antibodies in free-ranging lions of the Kruger National Park and the Etosha National Park in southern Africa detected by recombinant FIV p24 antigen. *Onderstepoort J. Vet. Res.* **59**, 315-322. - [2] Adams, H., van Vuuren, M., Bosman, A. M., Keet, D., New, J. & Kennedy, M. 2009 The epidemiology of lion lentivirus infection among a population of freeranging lions (Panthera leo) in the Kruger National Park, South Africa. *J. S. Afr. Vet. Assoc.* **80**, 151-156. - [3] Teare, J. A. 1999 International Species Information System, Physiological Data Reference Values. Apple Valley, USA.