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Abstract

The number of size classes in a cumulative rates model of a grinding mill circuit is reduced to determine the minimum
number required to provide a reasonably accurate model of the circuit for process control. Each reduced size class set is
used to create a non-linear cumulative rates model which is linearised to design a linear model predictive controller. The
accuracy of a model is determined by the ability of the corresponding model predictive controller to control important
process variables in the grinding mill circuit as represented by the full non-linear cumulative rates model.

Results show that a model with 25 size classes that provides valuable information for plant design and scale-up, can be
reduced to a model containing only a small number of size class sets and still be suitable for process control. Although
as few as 3 size classes can be used to obtain a fairly accurate model for process control, the distribution of these 3 size
classes influences the accuracy of the model. For a model to be useful for process control, the model should at least
provide the directions in which the process variables change.
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1. Introduction

When modelling a grinding mill circuit with a popu-
lation balance model, the question arises how many and
which size classes should be used to characterize the ma-
terial in the circuit. The studies of Amestica et al. (1996)
and Apelt et al. (2002) use 27 size classes in their models,
the model of le Roux et al. (2013) uses only 3 size classes
and the model of Bascur and Herbst (1985) uses only 2
size classes to characterize ore. The latter two models were
developed for process control purposes and the model in
le Roux et al. (2013) has been used in a robust nonlin-
ear model predictive controller for a grinding mill circuit
(Coetzee et al., 2010). The advantage of a model with
fewer size classes is that it is simpler to incorporate in a
model-based controller scheme. However, a model-based
controller is dependent on an accurate and reliable process
model. Therefore, it is of interest to determine the mini-
mum number of size classes that yields a good model for
process control purposes.

It can be argued that a model should have a minimum of
four or five size classes. The size classes should account for
the usually bimodal size distributions of run-of-mine ore
feed, mill discharge and hold-up. The size classes should
therefore reflect the following:
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e Slimes from zero to a few microns that have transport
behaviour that follows that of water. The model of
Apelt et al. (2002) assumes that the specific discharge
rate function is constant up to about 1 mm.

e Fines from a few microns to around 13-25 mm that
should obey normal breakage behaviour and would be
the typical feed for a conventional ball mill.

e Critical size material from 13-25 mm to 50-100 mm
that exhibits abnormal breakage behaviour. This ma-
terial does not self-break, is difficult to grind and is
inefficiently broken by coarse rock and steel grinding
media. This is particularly true for fully-autogenous
(FAG) and semi-autogenous (SAG) mills.

e Rocks coarser than about 100 mm that self-breaks to
form pebble grinding media, but leads to critical size
problems.

This article investigates how many size classes are nec-
essary to accurately simulate a grinding mill circuit with
a cumulative rates model for process control purposes.
The study uses the sampling campaign data of an op-
timisation study of an industrial circuit treating Meren-
sky ore (Hinde, 2009). A base set of 25 size classes is
reduced to smaller sets and each reduced set is used to
model the circuit. Since the cumulative rates model is
non-linear, each model is linearized before it is used to de-
sign a linear model-based controller. The controllers are
implemented on a grinding mill circuit simulated by the
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Figure 1: A single-stage closed grinding mill circuit where the ma-
nipulated variables are MIW, MFS, SFW, and CFF, and the con-
trolled variables are PSE, SLEV and JT.

non-linear model with 25 size classes. The controller per-
formance is used as a measure of the accuracy with which
a size class set models the circuit. Because the controllers
are model-based, the performance also indicates the least
number of size classes that should be included in a model
for process control.

2. Grinding Mill Circuit Description

According to the survey by (Wei and Craig, 2009)
ball mills are most common in industrial plants, followed
closely by FAG and SAG mills. A ball mill is usually fed
with crushed ore, whereas SAG and FAG mills are fed with
ROM ore. In FAG mills the grinding media consists only
of ore, whereas ball and SAG mills are fed with steel balls
to assist with ore breakage (Stanley, 1987). A ROM ore
SAG mill with a high ball load and an end-discharge screen
in a single-stage closed circuit configuration, as shown in
Fig. 1, is considered for this study.

The three main elements in Fig. 1 are the mill, the sump
and the hydrocyclone. The mill receives four streams:
mined ore (MFS), water (MIW), steel balls and under-
flow from the hydrocyclone. The ground ore in the mill
mixes with the water to create a slurry. The fraction of the
mill volume filled with charge is represented by J7T. The
slurry is then discharged to the sump. The slurry from
the mill can be discharged either by overflow or through an
end-discharge screen. In the case of the screen, the particle
size of the discharged slurry from the mill is limited by the
aperture size of the screen. The slurry level in the sump is
represented by SLEV. The slurry in the sump is diluted
with water (SFW) before it is pumped to the cyclone for
classification. The outflow of the pump is the classifier
feed flow CFF. The hydrocyclone is responsible for the
separation of the in-specification and out-of-specification
ore discharged from the sump. The lighter, smaller and
in-specification particles of the slurry pass to the overflow

Table 1: Description of circuit variables.

Variable Description
Manipulated Variables
CFF  flow-rate of slurry to the cyclone [m3/h]
MFS  feed-rate of ore to the mill [t/h]
MIW  flow-rate of water to the mill [m3/h]
SFW  flow-rate of water to the sump [m?/h]
Controlled Variables
JT fractional volumetric filling of mill [%]
PSE product particle size estimate [fraction <
75 pm]
SLEV  slurry level in sump [m)]

of the hydrocyclone, while the heavier, larger and out-of-
specification particles pass to the underflow. The under-
flow is passed to the mill for further grinding. The overflow
contains the final product, measured in terms of the frac-
tion of particles smaller than the specification size (PSE),
that is passed to a downstream process (Coetzee et al.,
2010; Stanley, 1987).

A description of the variables in Fig. 1 and their re-
spective units can be found in Table 1. These variables
are commonly controlled and manipulated in grinding mill
circuits (Wei and Craig, 2009).

3. The Cumulative Rates Model

The cumulative rates model in Hinde and Kalala (2009)
is a simple population balance model based on the assump-
tion that only one function is necessary to describe grind-
ing kinetics inside the mill, as illustrated in Bascur and
Herbst (1985). This function is the cumulative breakage
rate function, which is defined as the rate per unit mass
that a given species coarser than a given size breaks to
below that size (Austin et al., 1993). This assumption
gives an advantage over the population balance model of
Whiten (1974) and Apelt et al. (2002) which require two
functions, the breakage rate and the appearance function,
to describe the grinding kinetics. The parameters of the
breakage function in the cumulative breakage rate model
can be back calculated from plant measurements (Hinde
and Kalala, 2009).

The cumulative rates model has been successfully used
to simulate a SAG grinding mill circuit in Amestica et al.
(1993, 1996). A dynamic simulator based on the cumula-
tive rates model was coupled to an on-line parameter es-
timator and validated in simulation with industrial plant
data in Salazar et al. (2009). The cumulative rates model
was also used by Hinde and Pearson (2001) and Hinde
(2009) to improve the operating performance of industrial
grinding mill circuits. A discussion of the application of
this model to SAG mills can be found in Hinde and Kalala
(2009).

A drawback in the cumulative breakage rate model is
the assumption that the cumulative rates of breakage of



ore above a given size z; is unaffected by the grinding en-
vironment and the structure of the size distribution above
x;. This drawback also holds for the parameters of the
breakage rate and appearance function of the models of
Whiten (1974) and Apelt et al. (2002). If grinding con-
ditions depart significantly from those used to derive the
cumulative breakage rate parameters, it is possible to get
negative flow rates in some of the size classes - especially
the smaller size classes. This implies that the parame-
ters need to be adjusted according to the changes in the
grinding conditions. Including the effect of grinding envi-
ronment changes on the cumulative breakage rate function
is a possible improvement of the model, but does not form
part of this study. It can be assumed that for a SAG mill
the values for the cumulative breakage rate function re-
main fairly constant as long as the ball filling and internal
charge level remain fairly constant (Amestica et al., 1993).

3.1. Cumulative Rates Model Description

The circuit shown in Fig. 1 with variables described in
Table 1, is considered in this study. The cumulative rates
model of Hinde and Kalala (2009), as it defines the mill,
the sump and the hydrocyclone in Fig. 1, is described
here. The nomenclature of the model can be seen in Table
2.

8.1.1. Mill model

For the cumulative rates model particle sizes are re-
ported as the cumulative percentage of ore smaller than
size x; (mm). The first and largest size x1 is selected to be
larger than the largest particles likely to be encountered in
the feed stream. The sink size class n represents all par-
ticles with sizes between zero and z,, (Hinde and Kalala,
2009).

The specific cumulative breakage rate function K; is
the fractional rate at which particles above a given size
x; in the mill break to below that size per unit time.
The energy-normalised cumulative breakage rate function
is given by K¥ = (M/P) K; and is generally insensitive to
scale-up (Amestica et al., 1993). M (t) is the ore hold-up
in the mill and P (kW) is the net mill power. The unit for
KF is [kWh/t] L.

The mill model considers a continuously fed mill and
treats it as a single fully mixed reactor. The population
balance equation with respect to time for size class 1 is:

% :flfglwlfwngQE (1)
where w; (t) is the absolute mass retained in size class i,
fi (t/h) is the absolute mass flow-rate for the mill feed for
size class i and g; (h™!) is the specific discharge rate for
size class . Since there are no particles larger than xq,
K¥ is undefined and K¥ is used in eq. (1) to describe the
breakage of ore in size class 1 to smaller sizes.

Table 2: Nomenclature for cumulative rates model.

Parameter Description
Otspeed Fraction of critical mill speed
D Inside diameter of mill [m]
Ec Effective static porosity of the charge
fo Absolute mass flow of water in the feed
stream [t/h]
fi Absolute mass flow of ore in size class i
in the feed stream [t/h]
90 Specific discharge rate for water [h™!]
Gi Specific discharge rate for size class 4
h1]
Imaz Specific discharge rate for water and ore
sizes up to z,, [h™}]
Jr Static fractional volumetric filling for
total charge
JB Static fractional volumetric filling of
mill for balls
KE Energy-normalised cumulative breakage
rate [kWh/t] !
L Inside length of mill [m)]
M Ore hold-up [t]
P Net mill power kW]
PB Density of balls [t/m?]
ps Density of ore [t/m?]
Vil Internal mill volume [m3]
wo Absolute mass of water in the mill [t]
wp Mass of balls inside the mill [t]
We Weight of ore as fraction of total mass
of ore and water in the mill
w; Absolute mass of ore retained in size
class 4 in the mill [t]
Zg Effective mesh size of the grate above
which discharge is zero [mm]
x5 Size of size class i [mm)]
10} Volume percentage solids in the cyclone
feed pulp
T Flow-rate of material in size class ¢ into
the sump [m?/h]
S0 Flow-rate of water out of the sump
/1]
S; Flow-rate of material in size class ¢ out
of the sump [m?/h]
Upulp Total volume of pulp in the sump [m3]

The rate of change of the hold-up of material coarser
than x; is given by:

aw;

P
=F -G —W;—KF 2
dt ¢ M @

where W; (t) is the mass of material coarser than size x;
inside the mill, F; and G; (t/h) are the cumulative mass
flow-rates of material coarser than size x; for the mill feed
and product streams respectively.

A similar equation to eq. (2) can be constructed for



material coarser than x;1:

dWiit1 p
# =Fiy1 —Gip1 — Wi+1MK£,1 (3)

The accumulation of material within size x; (i =

2,3,...,n — 1) is given by the difference between eq. (3)
and eq. (2):

P
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dwi
dt
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The mass balance for particles in the sink size class n is:

dwn o P E
dt *fn gnwn+WnMKn (5)

The water mass balance is given by:

dwo

dt = fo — gowo (6)

where the flow of water into the mill is fo (m?3/h), the
hold-up of water in the mill is wy (m?3) and the discharge
rate of water out of the mill is go (h™1).

The final cumulative breakage rate population balance
model for the grinding mill is given by eqgs. (1), (4), (5)
and (6).

Cumulative Breakage Rate Function The cumulative
breakage rate function can be represented by a simple
equation with parameters that can be back-calculated
from sampling campaign data (Austin and Klimpel, 1984;
Hinde and Kalala, 2009).

At steady-state, the derivatives of eq. (1), (4) and (5)
are zero and the specific cumulative breakage rate func-
tion values can be determined from the remaining variables
which can be measured on a plant or pilot plant:

Kf — fl*g}:”wl

w17
E fi—giwi+W; £ KF .
Ki+1 = gt S M i (;1;W1;§ L N 122,3,...,7’1,—1 (7)
E n—=gnWn
KE = f 9n]

Wn a1

Once KF for all size classes (i = 2,3, ...,n) has been back
calculated from plant measurements, the values of K can
be fitted to the following equation from Hinde and Kalala
(2009):

N 1

K,LE = K1 (W+KI2$?2> N i=2,3,...,n (8)
where k1, kg, a1, as, p and A are model parameters to
be fitted. The value of KF for a specific size class (say
0.6 mm) will remain the same irrespective whether or not
the size class is part of a set of 5, 9 or 25 size classes.
However, the estimation of the parameters in the function
above may differ depending on the size class set used and
the distribution of the size class set. If 5 size classes were
used to calculate the values of K, the function will be
able to fit the 5 values of KF. Care should be taken to

interpolate from 5 size classes to 9 or more size classes.
Only if there is a high degree of confidence that the dis-
tribution of the 5 size classes capture the non-linearity of
the breakage rate function, can such an interpolation be
made with confidence.

Discharge Rate Function The discharge rate function,
which describes the rate at which slurry passes through
the discharge grate, can be approximated by:

9i = gmaz ; Ti < T,
Inz;—Inx
9i = Imax 1, w,ilfln wgg ;T <@y < Zg (9)
9i=0; xz; >z

where gmae (h™1) is the specific discharge rate for water
and fines up to size x,,. Size x4 is the effective mesh size
of the grate above which discharge is zero.

Power Draw Function The power draw of the mill is a
function of the hold-up of water, ore and grinding media
in the mill. A number of models are available in literature
to estimate the power draw of SAG mills (Austin, 1990;
Morrell, 2004). The cumulative rates model as described
in Hinde and Kalala (2009) makes use of the power draw
model of Austin (1990), which will also be used in this
study:

P =10.6D>L (1 — 1.03J7) (1 - Mﬁ) Qspeed”

|:(1 — EC) (%i) Jr +0.6Jp (pB — %‘i)}

(10)
where Jr and Jp are the static fractional volumetric filling
of the mill for the total charge and for the balls respec-
tively, €. is the porosity of the charge, w, is the weight
of ore expressed as a fraction of the total mass of ore and
water in the mill, pp and pg (t/m?) are the density of the
balls and the density of the ore respectively, aspeeq is the
mill speed expressed as a fraction of the critical speed (the
speed at which the material in the mill centrifuges) and D
and L (m) are the internal diameter and length of the mill
respectively.

The static fractional volumetric filling of the mill for the
total charge Jr can be approximated by:

JT(wvaMJr S (warM))/vmm (11)

ps  ps  l—e.\pp  ps

where w; (t) is the mass of balls and v,,; (m3) is the
internal volume of the mill.

The Austin power model is based on what can be mea-
sured directly in practice. The fractional volume filling of
a mill is usually expressed as the static fractional filling of
the mill measured after a crash stop. If the mill is filled
only with balls, it is assumed that the static porosity is
around 0.4. However, if the mill is filled with a mixture
of rocks, pebbles, fines and balls, some of the fines will fill
the voids between the rocks, pebbles and balls to give an
overall porosity that is less than 0.4. In Austins power
equation for SAG mills, a default value of 0.3 is assumed.
If the water is taken into consideration, after a crash stop



it can either partially fill the remaining voids, exactly fill
the voids, or overfill the voids (slurry pooling). The model
assumes that the ratio of ore solids mass to ore plus wa-
ter has a default value of 0.8. Of course, under dynamic
conditions the solids porosity will be much larger than the
static porosity, as revealed in DEM/CFD simulations, but
the technology of measuring the dynamic porosity is not
well developed and that is why it customary to use the
static charge levels as the independent variables in most
mill power models (Hinde, 2013).

3.1.2. Sump model

The sump is treated as a perfectly mixed vessel and the
residence time in the piping and hydrocyclone is assumed
to be small compared to that of the sump. The accumu-
lation of material in the sump is given by the difference in
input and output flows:

=7r;— 8 =1; —
dt VUpulp

(12)

where z; (m?) is the volume of material in size class i in the
sump, r; (m3/h) is the flow-rate of material in size class i
into the sump, s; is the flow-rate of material in size class i
out of the sump, vy, (m?) is the total volume of pulp in
the sump and CFF (m3/h) is the cyclone feed flow. The
level to which the sump is filled with slurry is given by
SLEV [m].
The flow-rate of water out of the sump sg is given by:

so = CFF (1 — $/100) (13)

where ¢ is the volume percentage solids in the cyclone feed
pulp.

3.1.3. Hydrocyclone model

The hydrocyclone model used in this study is the Plitt
model (Plitt, 1976; Flintoff et al., 1987). Although this
model is commonly used to model hydrocyclones, the
model cannot accommodate high recoveries of solids to
underflow as well as wide variations in feed size. Also,
changes in the cyclone feed solids concentration and size
distribution have a severe impact on the performance of
the hydrocyclone model. Care should be taken when ex-
trapolating this model outside the range of conditions used
to estimate the model parameters. If the Plitt model uses
parameters determined from pilot plant tests, the model
cannot be guaranteed to operate correctly on industrial
scale (Napier-Munn et al., 1999).

The fraction of particles in the overflow of the cyclone
smaller than the specification size (usually 75 pm) is given
by the product particle size estimate PSFE.

4. Model Reduction

The largest size class set considered in this study to
model the grinding mill circuit by means of the cumula-
tive rates model is 25 size classes. It is assumed that 25

Table 3: Size class sets in [mm)]. (1: Log-Linear Separation; c: Chosen
Separation)

#  25(Ref) 91 9¢ 51 5¢ 3l 3c
1 3072 307.2 307.2 307.2 307.2 307.2 307.2
2 2172

3 153.6 153.6

4 108.6 108.6

5 76.8

6 54.3 54.3 54.3

7 384 384 384 384

8 27.2

9 19.2

10 13.6 13.6

11 9.6

12 6.8

13 4.8 4.8 4.8 4.8

14 34

15 24

16 1.7 1.7 1.7

17 1.2

18 0.85 0.85

19 0.60 0.6 0.6 0.6 0.6
20 0.42

21 0.30 0.3

22 0.21 0.21 0.21

23 0.15 0.15

24 0.106

25 0.075 0.075 0.075 0.075 0.075 0.075 0.075

Table 4: Breakage rate and Rosin-Rammler function parameters.

Parameter Value Uncertainty
K1 1.13 5%
Ko 3.0e-6 5%
o 1.11 5%
o2 2.55 3%
A 1.16 5%
I 0.33 3%
B 0.36 20%
Des.2 41.1 20%

size classes give a more accurate representation of the ore
distribution and the non-linear cumulative breakage rate
function K¥ than fewer size classes. Therefore, the cu-
mulative rates model with 25 size classes is the reference
model against which models with smaller size class sets are
compared. The reference size class set is named 25(Ref).
The smallest size class considered is x, = 75 pm. This
is also the specification size for the product. This size
class is increased 25 times by a factor of \/i, the usual
difference in aperture size for sieves (Stanley, 1987), until
the largest size class 1 = 307.2 mm is reached. The sizes
in set 25(Ref) are shown in the second column of Table 3.
A large set of size classes can be reduced by lumping size
classes together with a constant factor separating sizes. If
size class set 25(Ref) is reduced in this manner to 9 size
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Figure 2: (a) Cumulative breakage rate function represented by the
reference size class set 25(Ref) and the reduced size class sets 91, 51
and 3l. The sizes in the latter three sets are distributed log-linearly.
(b) Cumulative breakage rate function represented by the reference
size class set 25(Ref) and the reduced size class sets 9¢, 5¢ and 3c.
The sizes in the latter three sets were chosen to best represent the
non-linearity of the curve log (KZE)

classes where the largest size remains x; = 307.2 mm and
the smallest z,, = 75 um, the sizes differ by a factor of
(v/2)3. For 5 size classes the sizes differ by (v/2)¢, and for
3 size classes by (v/2)'2. These three reduced size class
sets are shown in Table 3 and are called 91, 5/ and 3l
respectively. The [ indicates that the sizes in the reduced
sets are log-linearly distributed.

The sampling campaign in the optimisation study of
Hinde (2009) used a sink size class of 38 ym. Because
the study described in this paper aims to compare the
product particle size estimate (PSE) for various size class
sets, the product specification size class of 75 um should
appear in each size class set. The simplest way to achieve
this is to use a sink size class of 75 pym. If the sink size
class is 38 pm and the reference set of 25 size classes is
reduced to 9 or 5 size classes log-linearly distributed, the
75 pm size class would fall away and the PSE would have
to be determined by interpolation which is not advisable.

The parameter values for the breakage rate function in
eq. (8) are shown in Table 4 . These parameter values were
estimated in an optimisation study based on the cumula-
tive rates model of an industrial plant (Hinde, 2009). The
cumulative breakage rate function KF in eq. (8) repre-
sented by the three aforementioned size class sets is shown
in Fig. 2a. From this figure it can be seen that size class
sets 5 and 3l do not capture the non-linearity of log(K¥)
below size 0.85 mm and above size 38.4 mm. Since K{ is
undefined (see eq. (1)), only n — 1 points appear in Fig. 2
when KP is represented with n size classes.

In terms of the variable rates model described in Apelt

et al. (2002), a plot of the breakage rate of ore r; (defined
as the breakage rate for particles in size class x;) for all size
classes will usually produce a dip at the critical size range
for a ROM ore SAG mill with a high ball load (Napier-
Munn et al., 1999). This dip is not apparent in Fig. 2
because KZ is defined differently - it is the cumulative
breakage rate of particles above size x; to below that size.

The sizes in the reduced size class sets do not need to
be log-linearly distributed. Reduced size class sets can be
specified in such a way that the shape of KF remains well
defined by the sizes in the size class sets excluding the
largest size x1. Thus, three new reduced size class sets of
9, 5 and 3 sizes are chosen such that the non-linear nature
of the breakage rate function is captured as best possible.
The sizes in these three sets are chosen from the sizes in the
reference set 25(Ref). The breakage rate function rather
than the distribution of the mill charge is used to choose
the smaller size class sets. The mill charge is a function of
the breakage rate function and will reflect the shape of the
breakage rate function. The three new reduced size class
sets are shown in Table 3 and are called 9¢, 5¢ and 3c.
The ¢ indicates that the size classes where chosen to best
fit KF. The procedure to choose these sizes is described
below.

The reference size class set 25(Ref) consists of
N = 25 size classes and is represented by X =
{307.2,217.2,...,0.075} mm. For the reduced size class
set S of M sizes, the largest size class is 1 = s7 = 307.2
mm and the smallest is 95 = sp; = 75 pm. Thus, there
remains M — 2 sizes to choose from set X to complete
set S. The set m contains the size class numbers from
set X included in the reduced size class set S, e.g. if
M = 3, then m = {1,19,25} and S = {307.2,0.6,0.075}
mm. The function f below determines the squared sum of
the distances between the curve log(K¥) represented by
the 25 size classes in set X and straight lines connecting
the points on log(KF) represented by the M size classes in
set S. In other words, function f determines the distance
between log(KF) represented by set X and the straight
line approximation of log(KZ) with M —1 lines. The com-
bination of sizes that gives the minimum value of function
f is regarded as the best representation of KF by M size
classes:

f=3n e log K —log KE )
log KE . —log KE .
- gxzzji—xi(jifjﬂ) (Xi - Xm(j+1))]2
+ S log KF — log K)o

log K —log KE(Q) 2
T XXy (Xk - Xm(2))}

(14)

The representation of the breakage rate function by size
class sets 9c¢, bc and 3c is shown in Fig. 2b.
5. System Identification

The seven size class sets shown in Table 3 are used to
create seven non-linear cumulative rates models. These



Table 5: Grinding mill circuit parameters.

Parameter Description Value  Unit
Q. Fraction of critical 0.71 -
mill speed
D Internal mill diameter 4.20 m
ce Effective static 0.3 -
porosity of the charge
Imaz Specific discharge rate 27.5 h—!

for water and fines

JB Static fractional 0.24 -
volumetric filling of
the mill for balls

L Internal mill length 4.27 m
Ps Ore density 3.2 t/m?
Pb Ball density 7.85  t/m3
Vmill Mill internal volume 59.12 m?
Wy, Ball mass in the mill 66.8 t
Zg Effective mesh size of 12 mm
grate for zero
discharge
T Maximum fines size in 1 mm

discharge rate function

Table 6: Operating point, variable constraints and MPC weights.

Variable Min Max OP  Weight Unit
Manipulated Variables
CFF 100 450 288 1.8e-7 m?/h
MFS 0 150 69 1.0e-6 t/h
SFW 0 200 90 5.6e-7 m3/h
MIW 0 20 3.7  5.6e-3 m?/h
Controlled Variables
PSE 0.5 0.85 0.69 1.75 Fraction
JT 0.2 0.5 032 8.3e2 Fraction
SLEV 0.2 2 0.92 1 m
P - - 1095 - kW

non-linear models are all linearized around the same oper-
ating point by means of a standard system identification
procedure (Soderstrom and Stoica, 1989). The seven lin-
ear models are used to design seven separate linear model
predictive controllers to control the grinding mill circuit
shown in Fig. 1 as represented by the non-linear cumula-
tive rates containing the reference set of 25 size classes.
The performance of each controller should give an indi-
cation of the accuracy of the model used to design the
controller.

5.1. Parameter values and operating point

The grinding mill circuit parameter values are shown
in Table 5. The operating point of the circuit during lin-
earization is shown in Table 6. The empirical model pa-
rameters and circuit’s operating point used in this study
were determined from an industrial scale plant during the
optimisation study of Hinde (2009).
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Figure 3: Cumulative distribution for solids feed, mill charge and
sump charge represented by 25, 9, 5 and 3 size classes. (Ref - the
reference size class set, [ - size classes are log-linearly separated, c¢ -
separation between size classes is chosen.

The cumulative distribution of the solids feed and the
cumulative distributions of the hold-up of ore in the mill
and sump during linearization are shown in Fig. 3. The
cumulative distribution of the solids feed to the mill as
measured during the optimisation study of Hinde (2009)
was fitted to the truncated Rosin-Rammler distribution

function:
n B
Praf@) =1~ exp (- (1) (15)
763.2

— and € = Z/x;. The largest size class is

given by x1, the vector containing all size classes from 1
to 25 is  and the measure of the spread in particle sizes is
given by 3. The size Dgs o is the size where the cumulative

distribution of solids feed is at 63.2% of its maximum;
De3.2/x1
1—Dgs.2/x1
function are shown in Table 4. These parameter values
were determined by fitting the Rosin-Rammler equation
to the feed size distribution data from the report of Hinde

(2009).

where 1 =

therefore ng3.0 = . The parameter values for this

5.2. Linearized models

The System Identification Toolbox! in MATLAB was
used to linearize the non-linear cumulative rates model for
each of the seven different size class sets. The 7 non-linear
models, each based on a different size class set, were fitted
to the 12 elements in the linear transfer function matrix
below. The same data set consisting of randomized steps
in the manipulated variables of 10 h each for 120 h around

ISystem Identification Toolbox”™

The Mathworks, Inc.

is a registered trademark of



the operating point of the circuit was used to identify the
different linear models.

CFF

PSE G G2 Giz Gu MFS

JT = | Ga1 G Gaz Gog SFW

SLEV Ga1 Gz G333 G MIW
(16)

The transfer function element G1; in eq. (16) has the form:

K11 (STZM + 1)

G =
H (STpln + 1) (STP211 + 1)

e Tans (17)

The transfer function elements Gi2-14,21,2324 have the
form: K

G — i ~Tuys 18

] STpij + 1 J ( )

The transfer function element G5 has the form:

Koo

G = -
- STPzz + 1

(19)

The transfer function elements G3; 33 have the form:

K
Gij = TJ (20)

The transfer function elements G334 have the form:

Kii o .
Gij = Sje i (21)

For the equations above, Kj; is a proportional gain, Ty,
is a time delay, T}, is a pole time constant and T, is a
zero time constant.

The difference in the model parameter values shown in
Table 7 are as a result of the different number of size
classes from which these models were derived. Tables 7
and 8 show the values of the transfer function parameters
for the log-linear and the chosen size class set distribu-
tions respectively. The time delays and the time constants
are given in hours. The linearized model of the circuit
modelled with 25 size classes is regarded as the reference
model.

Table 7 show very little difference between the transfer
function parameter values for reference set 25(Ref) and
size class set 91. A larger difference in transfer function
parameter values occurs between size class set 25(Ref) and
size class set 5l. For Table 8 the difference between the
transfer function parameter values for set 25(Ref) and size
class sets 9c and 5c are relatively small.

The fit of the transfer function Gy; in eq. (17) to the
response of the circuit modelled with size class set 3 pro-
duced a transfer function that responded too slow to cap-
ture the dynamics between CF'F and PSE. A first order
plus time delay transfer function provided a better fit and
was therefore used for the linearized model of size class
set 3l. As shown in Table 7, the gains of the linearized
model for set 3] are all in the correct directions, but differ
significantly in magnitude from the gains of the model for

Table 7: Transfer function parameters of log-linearly distributed size
class sets.

Function Size class set
PSE 25(Ref) 9l 51 3l
K -1.7e-3  -1.7e-3  -2.2e-3 -3.4e-3
G111 ST 0.84 0.87 0.89 2.4
- Tpo1, 4.3e-2 5.5e-4 0.3 -

CFF T,, -016  -0.19  -0.05 -
Ty,  0.01 001 001 001
37¢-3 -3.8¢-3 -4.4e-3 -b.5e-3
- T,, 0.76 075  0.74 1.9
MFS Ty,  0.05 0.05 005  0.05
10e-3  4.1e-3 523 893
- Ty,  0.96 097  0.96 2.8
SFW Ty,  0.01 001 001 001
41e-3 4.2e3 b54e3  0.01
- Ty, 041 040  0.35 2.0
MIW Ty,  0.02 0.02 002  0.02

JT 25(Ref) 9l 51 3l
5.0e-4 5.le-4  5.3e-4  2.1e-3
- sy 0.27 0.28 0.24 1.4
CFF 1y, 0.01 0.01 0.01 0.01
1.1e-3 1.1e-3 1.1e-3  3.3e-3

MFS T, 0.30 0.29 0.26 1.2
Gas Ks3  -b.le-d -b.le-d -4.6e-4 -2.1e-3
- Ty 0.91 0.93 1.1 1.4
SFW T4, 0.02 0.02 0.02 0.02
-5.3e-4 -5.4e-4 -4.8¢-4 -2.6e-3
- Tpos 0.39 0.40 0.44 1.3
MIW Ty, 0.05 0.05 0.05 0.05

SLEV 25(Ref) Ol 51 3l
Gsi Ksi 013 -0.13  -0.13  -0.12
Gs2 Kz 011 011 011  0.11

MFS Ty, 0.1 0.1 0.1 0.1

Gss  Ks3 025 025 025 023
Gss  Ksi 025 025 025 023
MIW Ty, 004 004 004 004

the reference set 25(Ref). In contrast to set 3l, the dif-
ference in transfer function parameter values between the
linear model of set 25(Ref) and the linear model of set 3¢
is much smaller.

For the sump level SLEV, the transfer function param-
eter values are almost identical irrespective of the size class
set.

6. Model Predictive Control

The control objectives for a grinding mill circuit are to
improve the quality of the product (by increasing the fine-
ness of the grind or reducing the product size fluctuations),
to maximise the throughput, to decrease the power con-
sumption, to reduce the usage of grinding media such as
balls and to improve process stability. These objectives are



Table 8: Transfer function parameters of chosen size class sets.

Function Size class set
PSE 25(Ref) 9c 5¢c 3c
K1 -1.7¢-3  -1.7e-3 -1.7e-3 -2.1e-3
G111 To1,, 0.84 0.80 0.81 0.81
- Tpo., 4.3e-2 4.4e-4  6.3e-4 0.27
CFFr 1T,, -0.16 -0.17 -0.18 -0.06
Ty, 001 0.01 001 001
G12 K12 -3.7e-3 -3.8e-3  -3.8e-3 -4.4e-3

- T,,  0.76 0.65  0.67 0.6l
MFS Ty,  0.05 005 005  0.05
1063 4.0e3 4.0e3 5.le3

- T,.,  0.96 085  0.88  0.77
SFW T, 0.1 001 00l 001
11e-3 4.1e3 4.le3 53e3

- Tp, 041 034 027 028
MIW Ty,  0.02 002 002  0.02

JT 25(Ref) 9¢ 5¢ 3c
5.0e-4 5.le-4  5.3e-4  b5.4e-4
- Tpsy 0.27 0.30 0.33 0.32
CFF Ty, 0.01 0.01 0.01 0.01
1.1e-3 1.1e-3 1.2e-3 1.2e-3
MFS T,, 0.30 0.26 0.26 0.23
Gos K3  -5.le4 -5le4d -53e4 -4.4e-4
0.91 0.80 0.80 0.98

P23
SFW Ty,  0.02 0.02 0.02 0.02
Gay Koy -5.3e-4  -5.3e-4 -b5.be-4 -4.Te-4
- Tp,,  0.39 0.34  0.31 0.32

MIW T,;, 005 005 005 005

SLEV 25(Ref) 9c 5c 3c
G31 K3 -0.13 -0.13 -0.13 -0.13
G2 Kso 0.11 0.11 0.11 0.11

MFS Ty, 0.1 0.1 0.1 0.1

Gss  Ks3 025 025 025 025
Gsi  Kss 025 025 025 025
MIW Ty, — 0.04 004 004  0.04

interrelated and necessitates trade-offs to be made (Craig
and MacLeod, 1995).

The main challenges when controlling a grinding process
are the strong coupling between variables, the existence of
large time delays, the variation of parameters over time
and the non-linearities in the process. Model Predictive
Control (MPC) is ideal for the grinding process because
it has the ability to handle pairing problems in multivari-
able systems, to handle processes with large time delays
and to impose constraints on manipulated and controlled
variables. The disadvantages of an MPC scheme are the
computational burden for large processes with long con-
trol and prediction horizons, the dependency on a reliable
and accurate process model and the deterioration in con-
troller performance in the presence of strong external dis-
turbances (Chen et al., 2009).

The study of Ramasamy et al. (2005) indicated improve-

ments in the performance of a laboratory grinding mill cir-
cuit controlled by means of a MPC scheme compared to a
multi-loop detuned PI(D) control scheme. MPC has also
been successfully used to control industrial grinding mill
circuits (Chen et al., 2007, 2008; Wei and Craig, 2009). A
survey of commercial MPC technologies can be found in
Qin and Badgwell (2003).

6.1. Overview

A linear MPC scheme is a model-based control strat-
egy that utilizes a linear model of the plant to predict
future behaviour of the plant. At each sampling interval
the controller attempts to calculate a series of C' control
moves that will optimize the future behaviour of the plant
for the next P sampling intervals. Because a new series
of control moves is calculated at every sampling interval,
only the first control move in the series is implemented. A
performance index defines the optimal future behaviour of
the plant and aims to prevent violations of manipulated
and controlled variable constraints, to prevent excessive
manipulated variable changes and to drive controlled vari-
ables to their optimal set-points (Qin and Badgwell, 2003).

The control action taken at time k is obtained by select-
ing an input sequence u that minimizes the scalar perfor-
mance index J:

T(k) = 35, [0k +5) = r(k+ )] QLok + ) — r(k + )]
+ X [Bulk+§ = D" R [Auk + 5~ 1)]

(22)
where §(k), r(k) and Au(k) are the vectors of predicted
outputs, set-point trajectories and changes in the inputs
at time k respectively, P and C are the prediction and
control horizon respectively, @ = diag[q1, gz2...qp] and R =
diag [r1,rq...r¢] are the error and input weighting matrices
respectively. The magnitude and rate constraints on the
manipulated and controlled variables are given by:

Umin S 'I.L(k) S Umax s k= 0, 1, LC =1
Atpin < Au(k) < Atpay, £=0,1,..C -1  (23)
Ymin Sy(k) Symax> k:071,...,P—1

Tighter control of controlled variables can be achieved by
choosing larger weights in matrix () and excessive varia-
tions in manipulated variables can be avoided by choosing
appropriate values for matrix R (Chen et al., 2007, 2008).

6.2. Controller design

The Model Predictive Control Toolbox? of MATLAB
was used to create seven controllers from the seven lin-
earised plant models of the grinding mill circuit. All seven
controllers use a sampling time of 10 s, a prediction hori-
zon of 200 samples and a control horizon of 3 samples.
The constraints imposed by the controller for each vari-
able and the weights for the R and @) matrices in eq. (22)

2Model Predictive Control Toolbox™™ is a registered trademark
of The Mathworks, Inc.



are shown in Table 6. The weighting matrices, calculated
during the tuning of the controller, are shown below for
further clarification:

Q = diag[1.75,0.083, 1]

R = diag[1.8e-7,1.0e-6, 5.6e-7, 5.6e-3] (24)

It is important to note that the relative values of the @
and R weighting matrices and not the absolute values of
these matrices determine the performance of the controller.
Because the inputs and outputs of the models have not
been scaled, the weights have been scaled according to the
ranges of the manipulated variables. The controller aims
to control PSFE tightly, while allowing JT and SLEV to
vary around their set-points and within their constraints.
It is important to maintain J7T and SLEV within their
constraints as these variables are open loop unstable. The
controller makes equal use of CFF, MFS and SFW, but
less use of MIW to drive the controlled variables to their
set-points.

7. Simulation, Results and Discussion

7.1. Simulation

A simulation platform was created in Simulink® to sim-
ulate the single-stage grinding mill circuit in Fig. 1 mod-
elled by the non-linear cumulative rates model with 25
size classes. Each one of the seven model predictive con-
trollers was implemented on the non-linear model. There-
fore, there are seven simulations where each simulation
makes use of a different controller to control the non-linear
model with 25 size classes. The performance of the con-
trollers based on the reduced size class sets is compared to
the performance of the controller based on the reference
size class set of 25 sizes.

The equilibrium of a grinding mill is perturbed when the
feed-rate, feed ore distribution and hardness varies. The
effect of these variations on the behaviour of the grind-
ing mill requires time to decay. Although it is desirable
to manipulate all three of these variables, only feed-rate
can be manipulated. A grinding mill circuit has to contend
with the other two variables as disturbances (Olivier et al.,
2012). Changes in the feed hardness and size distribution
will result in changes in the grinding media size distribu-
tion, which will affect the breakage characteristics in the
mill (Napier-Munn et al., 1999; Coetzee et al., 2010).

During simulation, the feed ore distribution was altered
every 13 h by adjusting the Rosin-Rammler function pa-
rameters in eq. (15). The feed ore hardness was altered
indirectly by adjusting the breakage rate function parame-
ters in eq. (8) every 8 h. The parameters in both functions
were randomly varied according to a uniform distribution
where the minimum and maximum of the distribution are
given by:

min = p(1 — A,/100); max =p(1+ A,/100)  (25)

3Simulink is a registered trademarks of The MathWorks Inc.
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Figure 4: Manipulated variables MFS and MIW for each controller
of the seven size class sets shown in Table 3.

- | ——25(Ref)

Figure 5: Manipulated variables SFW and CFF for each controller
of the seven size class sets shown in Table 3.

where A is the uncertainty of parameter p. The uncer-
tainties for the parameters in both functions can be seen
in Table 4.

Measurement noise was added to variables PSE, JT
and SLEV. The noise was normally distributed with a
variance of 2% for SLEV and a variance of 3% for PSFE
and JT. Given the ranges of the three controlled variables,
the noise on PSE and J7T is significantly larger than the
noise on SLEV.

During simulation, the set-points for J7T' and SLEV
were kept constant. The set-point for PSE was adjusted
every 20 h: PSE = {0.69,0.64,0.58,0.62}.

7.2. Results and Discussion

The manipulated variables are shown in Figs. 4 and 5.
All the controllers, except the controller based on size class
set 3, adjusted the manipulated variables at similar rates
and degrees of magnitude.

The fraction of the mill filled (JT') is shown in Fig. 6,
the sump level (SLEV) is shown in Fig. 7, the fraction of



0.5 T

0.45 4

0.4+ ~

JT [Fraction]
o
&

0.31- b

0.25 b

0.2 I I I
0

.
20 30 40 70 80
t[h]

50 60
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Figure 7: Simulation results of sump level (SLEV) for all size class
sets.

the cyclone overflow that passes 75 ym (PSE) is shown
in Fig. 8, and the mill power draw is shown in Fig. 9.
The figures indicate that the controller allowed J7T and
SLEV to vary within their constraints in order to have
tight control of PSE. Neither JT nor SLEV violates its
constraints.

Figures 6 to 9 show that the controllers based on reduced
size class sets 91, 9c and 5¢ cause the controlled variables to
follow almost the same path as the controlled variables for
the controller based on the reference size class set 25(Ref).
This is to be expected since the linearized models for sets
25(Ref), 91, 9¢ and 5¢ have almost identical transfer func-
tion parameter values.

Although the controllers based on reduced size class sets
50 and 3c do not cause the controlled variables to follow
the exact same path as the controlled variables for the
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Figure 8: Simulation results of fraction of cyclone overflow that
passes 75 um (PSE) for all size class sets.
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Figure 9: Simulation results of mill power draw (P,,;;;) for all size

class sets.

controller based on set 25(Ref), the rate and magnitude
of changes remain similar. The figures indicate that con-
trollers based on 5! and 3c are almost identical, which is
too be expected since the linearized model parameters for
these size class sets in Tables 7 and 8 are almost identical.

The controller based on size class set 3] does not cause
the controlled variables JT and SLEV to follow a similar
path as the other controllers. Because PSFE was given a
high priority, the controller for set 3[ is able control PSE
in an almost identical fashion to the reference controller
for set 25(Ref).

During the simulation, the feed ore hardness varies at
intervals of 8 h and the feed ore distribution at intervals of
13 h. The first disturbance occurs at time 0 h, as seen in
Fig. 8. This figure shows that the controller is not able to
suppress large disturbances very quickly. The disturbances
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Table 9: Percentage NRMSE between reference model and reduced
models’ controlled and manipulated variables.

91 9c¢ 51 5c 3l 3c

CFF 139 15.0 36.1 178 251 43.9
MFS 225 315 104 324 39.5 13.7
SFW 142 157 36.6 18.4 257 44.1
MIW 176 20.1 53.2 339 107 64.5
PSE 091 195 8.01 173 129 104

JT 7.80 8.45 21.8 9.83 133 27.5
SLEV 239 189 44.1 23.0 120 55.2
P,iu 525 6.38 154 6.87 455 21.9

cause a mismatch between the plant and the model used
by the controller (Olivier and Craig, 2013). However, the
controller is able to return PSFE back to its set-point in
the presence of the disturbances. It should be remembered
that the size of the sump has an influence on the ability to
reject disturbances in PSE. A large sump acts as a large
buffer and provides more leeway to reject disturbances.

The analysis of the performance of the controllers is il-
lustrated in Fig. 10. The difference between the controlled
or manipulated variables of the circuit with the reference
size class set controller and the same variables of the cir-
cuit with a reduced size class set controller can be quanti-
fied by means of the normalised root mean squared error
(NRMSE) expressed as a percentage:

(26)
where y5(rey) is a time-signal for the reference size class
set and ¢ is a time-signal for a reduced size class set. The
results of the comparison between signal 25(Ref) and the
other signals in each of the Figures 4-9 are shown in Ta-
ble 9.

Table 9 affirms that the controllers for sets 91, 9¢ and
5c give approximately equal responses. These sets give
a fairly accurate description of the grinding mill circuit

[y25(rep) = 9l
||y25(Ref) - mean(y25(Ref))H2

BNRMSE = 100 (
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modelled by 25 size classes. According to the table, the
controller for set 5/ is slightly more accurate than the con-
troller for set 3c. These two sets define models which are
reasonably similar to the model of the grinding mill circuit
with the reference set. Finally, set 3] cannot describe the
grinding mill circuit as accurately as 25 size classes. Yet,
because this set correctly indicates the direction each vari-
able will change, the linear controller for this set is able to
provide reasonable control for the non-linear circuit mod-
elled by 25 size classes.

8. Conclusion

Whereas a model with a large size class set provides
valuable information for plant design and scale-up, a model
with a small size class set may be more suited for process
control. When modelling a grinding mill circuit, it is im-
portant to clearly identify the aim of the model.

Simulating a model with only a few size classes presents
a much smaller computational burden than simulating
the model with large size class set. This is because
less size classes require less differential equations to be
solved. Thus, the minimization of the cost function in
MPC schemes should take less time because less time is
necessary to predict the future behaviour of the plant with
the model. An example of a robust nonlinear MPC frame-
work with a reduced size class set can be found in Coetzee
et al. (2010). Even though a reduced size class set was
used, the computational time was too long for the con-
troller to be implemented on a plant in real-time. Yet,
future processors should be able to easily deal with non-
linear models with large size class sets since computational
power should increase according to Moore’s law.

If only a few size classes are used to characterize the
inflow and outflow of each unit in the milling circuit, less
sieves are required during a sampling campaign to obtain
data to fit a model for process control. Since a subset of
available standard sieves can be used, it is not necessary
to construct special sieves for such a sampling campaign.
Although this will reduce the sampling campaign time, it
is possible that the sieves will not be able to handle the
weight of slurry samples. A sampling campaign with only
a few sieves will require careful planning to make sure that
a representative slurry sample is used which the sieves will
be able to handle.

When estimating the parameters of the cumulative
breakage rate function it is not necessary to use 25 size
classes. As seen from the linearized models, when the cu-
mulative breakage rate K7 is represented by a reduced size
class set the linear model of the grinding mill circuit re-
mains almost as accurate as the linear model based on the
full size class set. With fewer size classes calculation of the
parameters in eq. (8) can be done more easily since more
degrees of freedom are available to fit the function. How-
ever, if only a few size classes are used more care should
be taken to make sure that the size class set captures the



non-linear behaviour of K”. Otherwise it is not recom-
mended to interpolate the breakage rate function from 5
size classes to 9 or more size classes.

Model accuracy does not necessarily depend on the num-
ber of size classes, but rather on their distribution. The
cumulative rates model with 3 (or 5) size classes chosen
according to the shape of the curve log K¥, produced the
same response as the cumulative rates model with 5 (or
9) size classes log-linearly distributed. (In other words,
sets 3¢ and 5l, and sets 5¢ and 9] produce similar model
responses. )

Even when a model can only give an estimate of the di-
rections of changes in the controlled variables for changes
in the manipulated variables, the model can still prove
useful for control purposes. The grinding mill circuit mod-
elled with 3 size classes log-linearly distributed produced
responses in the correct directions, but with incorrect mag-
nitudes. Even though there was considerable mismatch
between the plant model and the controller model, MPC
was able to control PSE and maintain the other controlled
variables within their constraints. Results achieved in this
paper indicate that an MPC controller, which is designed
based on a simple plant model, can potentially control
grinding circuits with relatively large disturbances, large
parameter variations and considerable model-plant mis-
match.
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