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Abstract
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1 Introduction
In this paper we are concerned with the coefficients in the three-term recurrence relations for orthogonal polynomials
with respect to the semi-classical Laguerre weight

ω(x; t) = xλ exp(−x2 + tx), x ∈ R+, (1.1)

with parameters λ > −1 and t ∈ R, which has been recently studied by Boelen and van Assche [10] and Filipuk, van
Assche and Zhang [28]. It is shown that these recurrence coefficients can be expressed in terms of Wronskians that
arise in the description of special function solutions of the fourth Painlevé equation (PIV)

d2q

dz2 =
1
2q

(
dq
dz

)2

+
3
2
q3 + 4zq2 + 2(z2 −A)q +

B

q
, (1.2)

where A and B are constants, which are expressed in terms of parabolic cylinder functions.
The relationship between semi-classical orthogonal polynomials and integrable equations dates back to the work

of Shohat [67] and later Freud [39], as well as Bonan and Nevai [11]. However it was not until the work of Fokas,
Its and Kitaev [31, 32] that these equations were identified as discrete Painlevé equations. The relationship between
semi-classical orthogonal polynomials and the (continuous) Painlevé equations was demonstrated by Magnus [53, 54]
who showed that the coefficients in the three-term recurrence relation for the Freud weight [11, 39, 73]

ω(x; t) = exp
(
− 1

4x
4 − tx2

)
, x ∈ R,

with t ∈ R a parameter, can be expressed in terms of solutions of PIV (1.2).
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A motivation for this work is the fact that recurrence coefficients of semi-classical orthogonal polynomials can
often be expressed in terms of solutions of the Painlevé equations. For example, recurrence coefficients are expressed
in terms of solutions of PII for semi-classical orthogonal polynomials with respect to the Airy weight

ω(x; t) = exp
(

1
3x

3 + tx
)
, x3 < 0,

with t ∈ R a parameter [53]; in terms of solutions of PIII for the perturbed Laguerre weight

ω(x; t) = xα exp (−x− t/x) , x ∈ R+,

with α > 0 and t ∈ R+ parameters [18]; in terms of solutions of PV for the weights

ω(x; t) = (1− x)α(1 + x)βe−tx, x ∈ [−1, 1],
ω(x; t) = xα(1− x)βe−t/x, x ∈ [0, 1],
ω(x; t) = xα(x+ t)βe−x, x ∈ R+,

with α, β > 0 and t ∈ R+ parameters [3, 4, 15, 19, 38]; and in terms of solutions of PVI for the generalized Jacobi
weight

ω(x; t) = xα(1− x)β(t− x)γ , x ∈ [0, 1],

with α, β, γ > 0 and t ∈ R+ parameters [5, 19, 25, 53].
Recurrence coefficients for orthogonal polynomials with respect to discontinuous weights which involve the Heav-

iside function H(x) have also been expressed in terms of solutions of Painlevé equations [2, 20, 35, 37], while recur-
rence coefficients for orthogonal polynomials with respect to discrete weights have been expressed in terms of solutions
of Painlevé equations [9, 8, 23, 26, 27].

This paper is organized as follows: in §2, we review some properties of orthogonal polynomials; in §3, we re-
view some properties of the fourth Painlevé equation (1.2), including its Hamiltonian structure §3.1, Bäcklund and
Schlesinger transformations §3.2 and special function solutions §3.3; in §4 we express the coefficients which arise
in the three-term recurrence relation associated with orthogonal polynomials for the semi-classical Laguerre weight
(1.1) in terms of Wronskians that arise in the description of special function solutions of PIV (1.2); in §5 we derive
asymptotic expansions for the recurrence coefficients; in §6 we discuss orthogonal polynomials with respect to the
semi-classical Hermite weight

ω(x; t) = |x|λ exp(−x2 + tx), x, t ∈ R, λ > −1,

which is an extension of the semi-classical Laguerre weight (1.1) to the whole real line, and show that the recurrence
coefficients are also expressed in terms of Wronskians that arise in the description of special function solutions of PIV

(1.2); and in §7 we discuss our results.

2 Orthogonal polynomials
Let Pn(x), n ∈ N, be the monic orthogonal polynomial of degree n in x with respect to a positive weight ω(x) on
(a, b), a finite or infinite interval in R, such that∫ b

a

Pm(x)Pn(x)ω(x) dx = hnδm,n, hn > 0,

where δm,n denotes the Kronekar delta. One of the most important properties of orthogonal polynomials is that they
satisfy a three-term recurrence relationship of the form

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), (2.1)

where the coefficients αn and βn are given by the integrals

αn =
1
hn

∫ b

a

xP 2
n(x)ω(x) dx, βn =

1
hn−1

∫ b

a

xPn−1(x)Pn(x)ω(x) dx,

with P−1(x) = 0 and P0(x) = 1. These coefficients in the three-term recurrence relationship can also be expressed in
terms of determinants whose entries are given in terms of the moments associated with the weight ω(x). Specifically,
the coefficients αn and βn in the recurrence relation (2.1) are given by

αn =
∆̃n+1

∆n+1
− ∆̃n

∆n
, βn =

∆n+1∆n−1

∆2
n

, (2.2)
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where ∆n is the Hankel determinant

∆n = det
[
µj+k

]n−1

j,k=0
=

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...
µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣ , n ≥ 1, (2.3a)

with ∆0 = 1, ∆−1 = 0, and ∆̃n is the determinant

∆̃n =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−2 µn
µ1 µ2 . . . µn−1 µn+1

...
...

. . .
...

...
µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣ , n ≥ 1, (2.3b)

with ∆̃0 = 0 and µk, the kth moment, is given by the integral

µk =
∫ b

a

xkω(x) dx. (2.4)

We remark that the Hankel determinant ∆n (2.3a) also has the integral representation

∆n =
1
n!

∫ b

a

· · ·
n

∫ b

a

n∏
`=1

ω(x`)
∏

1≤j<k≤n

(xj − xk)2 dx1 . . . dxn, n ≥ 1. (2.5)

The monic polynomial Pn(x) can be uniquely expressed as the determinant

Pn(x) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn
µ1 µ2 . . . µn+1

...
...

. . .
...

µn−1 µn . . . µ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣
,

and the normalisation constants as
hn =

∆n+1

∆n
, h0 = ∆1 = µ0. (2.6)

For further information about orthogonal polynomials see, for example [21, 47, 70].
Now suppose that the weight has the form

w(x; t) = ω0(x) exp(xt), x ∈ [a, b], (2.7)

where t is a parameter, with finite moments for all t ∈ R, which is the case for the semi-classical Laguerre weight
(1.1). If the weight has the form (2.7), which depends on the parameter t, then the orthogonal polynomials Pn(x), the
recurrence coefficients αn, βn given by (2.2), the determinants ∆n, ∆̃n given by (2.3) and the moments µk given by
(2.4) are now functions of t. Specifically, in this case then

µk =
∫ b

a

xkω0(x) exp(xt) dx =
dk

dtk

(∫ b

a

ω0(x) exp(xt) dx

)
=

dkµ0

dtk
.

Further, the recurrence relation has the form

xPn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t), (2.8)

where we have explicitly indicated that the coefficients αn(t) and βn(t) depend on t.

Theorem 2.1. If the weight has the form (2.7), then the determinants ∆n(t) and ∆̃n(t) given by (2.3) can be written
as

∆n(t) =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
, ∆̃n(t) =

d∆n

dt
, (2.9)
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whereW(ϕ1, ϕ2, . . . , ϕn) is the Wronskian given by

W(ϕ1, ϕ2, . . . , ϕn) =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ2 . . . ϕn

ϕ
(1)
1 ϕ

(1)
2 . . . ϕ

(1)
n

...
...

. . .
...

ϕ
(n−1)
1 ϕ

(n−1)
2 . . . ϕ

(n−1)
n

∣∣∣∣∣∣∣∣∣ , ϕ
(k)
j =

dkϕj
dtk

.

Proof. Since µk =
dkµ0

dtk
, the determinant ∆n(t) can be written in the form

∆n(t) =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
...

...
. . .

...
µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣∣ =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
,

as required, and the determinant ∆̃n(t), can be written in the form

∆̃n(t) =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−2 µn
µ1 µ2 . . . µn−1 µn+1

...
...

. . .
...

...
µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣∣ =W
(
µ0,

dµ0

dt
, . . . ,

dn−2µ0

dtn−2 ,
dnµ0

dtn

)

=
d
dt
W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
=

d∆n

dt
,

as required.

The Hankel determinant ∆n(t) satisfies the Toda equation, as shown in the following theorem.

Theorem 2.2. The Hankel determinant ∆n(t) given by (2.9) satisfies the Toda equation

d2

dt2
ln ∆n(t) =

∆n−1(t)∆n+1(t)
∆2
n(t)

. (2.10)

Proof. See, for example, Nakamira and Zhedanov [59, Proposition 1]; also [16, 65, 69].

Using Theorems 2.1 and 2.2 we can express the recurrence coefficients αn(t) and βn(t) in terms of derivatives of
the Hankel determinant ∆n(t) and so obtain explicit expressions for these coefficients.

Theorem 2.3. The coefficients αn(t) and βn(t) in the recurrence relation (2.8) associated with monic polynomials
orthogonal with respect to a weight of the form (2.7) are given by

αn(t) =
d
dt

ln
∆n+1(t)
∆n(t)

, βn(t) =
d2

dt2
ln ∆n(t),

with ∆n(t) is the Hankel determinant given by (2.9).

Proof. By definition the coefficients αn(t) and βn(t) in the recurrence relation (2.8) are given by

αn(t) =
∆̃n+1(t)
∆n+1(t)

− ∆̃n(t)
∆n(t)

, βn(t) =
∆n−1(t) ∆n+1(t)

∆2
n(t)

,

where the determinants ∆n and ∆̃n are given by (2.3). Hence from (2.9)

αn(t) =
∆̃n+1(t)
∆n+1(t)

− ∆̃n(t)
∆n(t)

=
1

∆n+1

d∆n+1

dt
− 1

∆n

d∆n

dt
,

and so

αn(t) =
d
dt

ln
∆n+1(t)
∆n(t)

,
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as required. By definition

βn(t) =
∆n−1(t)∆n+1(t)

∆2
n(t)

,

and so from Theorem 2.2 we have

βn(t) =
d2

dt2
ln ∆n(t),

as required. See also Chen, Ismail and van Assche [17] who also discuss applications to random matrices.

Equivalently the recurrence coefficients αn(t) and βn(t) can be expressed in terms of hn(t) given by (2.6).

Lemma 2.4. The coefficients αn(t) and βn(t) in the recurrence relation (2.8) associated with monic polynomials
orthogonal with respect to a weight of the form (2.7) are given by

αn(t) =
d
dt

lnhn(t), βn(t) =
hn+1(t)
hn(t)

,

where hn(t) is given by (2.6).

Proof. See Chen and Ismail [16].

Additionally the coefficients αn(t) and βn(t) in the recurrence relation (2.8) satisfy a Toda system.

Theorem 2.5. The coefficients αn(t) and βn(t) in the recurrence relation (2.8) associated with a weight of the form
(2.7) satisfy the Toda system

dαn
dt

= βn+1 − βn,
dβn
dt

= βn(αn − αn−1). (2.11)

Proof. See Chen and Ismail [16], Ismail [47, §2.8, p. 41] and Moser [57]; see also [8] for further details and a direct
proof in the case of a semi-classical weight of the form (2.7).

Suppose Pn(x), for n ∈ N, is a sequence of classical orthogonal polynomials (such as Hermite, Laguerre and
Jacobi polynomials), then Pn(x) is a solution of a second-order ordinary differential equation of the form

σ(x)
d2Pn

dx2 + τ(x)
dPn
dx

= λnPn, (2.12)

where σ(x) is a monic polynomial with deg(σ) ≤ 2, τ(x) is a polynomial with deg(τ) = 1, and λn is a real number
which depends on the degree of the polynomial solution, see Bochner [7]. Equivalently, the weights of classical
orthogonal polynomials satisfy a first-order ordinary differential equation, the Pearson equation

d
dx

[σ(x)ω(x)] = τ(x)ω(x), (2.13)

with σ(x) and τ(x) the same polynomials as in (2.12), see, for example [1, 7, 21]. However for semi-classical
orthogonal polynomials, the weight function ω(x) satisfies the Pearson equation (2.13) with either deg(σ) > 2 or
deg(τ) > 1, see, for example [45, 55]. For example, the Pearson equation (2.13) is satisfied for the weight (1.1) with

σ(x) = x, τ(x) = −2x2 + tx+ λ+ 1,

and so the weight (1.1) is indeed a semi-classical weight function. Filipuk, van Assche and Zhang [28] comment that

“We note that for classical orthogonal polynomials (Hermite, Laguerre, Jacobi) one knows these recur-
rence coefficients explicitly in contrast to non-classical weights”.

In §4 we show that, in the case of the semi-classical Laguerre weight (1.1), the determinants ∆n(t) and ∆̃n(t) can
be explicitly written as Wronskians which arise in the description of special function solutions of PIV (1.2) that are
expressed in terms of parabolic cylinder functions Dν(z) when λ 6∈ Z, or error functions erf(z) when λ = n ∈ Z.
Consequently the recurrence coefficients αn(t) and βn(t) (2.2) associated with orthogonal polynomials for the semi-
classical Laguerre weight (1.1) can also be explicitly written in terms of these Wronskians.
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3 Properties of the fourth Painlevé equation
The six Painlevé equations (PI–PVI) were first discovered by Painlevé, Gambier and their colleagues in an investigation
of which second order ordinary differential equations of the form

d2q

dz2 = F

(
dq
dz
, q, z

)
, (3.1)

where F is rational in dq/dz and q and analytic in z, have the property that their solutions have no movable branch
points. They showed that there were fifty canonical equations of the form (3.1) with this property, now known as
the Painlevé property. Further Painlevé, Gambier and their colleagues showed that of these fifty equations, forty-four
can be reduced to linear equations, solved in terms of elliptic functions, or are reducible to one of six new nonlinear
ordinary differential equations that define new transcendental functions, see Ince [46]. The Painlevé equations can be
thought of as nonlinear analogues of the classical special functions [22, 30, 43, 48, 72], and arise in a wide variety of
applications, for example random matrices, cf. [34, 64].

3.1 Hamiltonian structure
Each of the Painlevé equations PI–PVI can be written as a Hamiltonian system

dq
dz

=
∂HJ

∂p
,

dp
dz

= −∂HJ

∂q
, (3.2)

for a suitable Hamiltonian functionHJ(q, p, z) [49, 60, 62]. The function σ(z) ≡ HJ(q, p, z) satisfies a second-order,
second-degree ordinary differential equation, whose solution is expressible in terms of the solution of the associated
Painlevé equation [49, 61, 62].

The Hamiltonian associated with PIV (1.2) is

HIV(q, p, z;ϑ0, ϑ∞) = 2qp2 − (q2 + 2zq + 2ϑ0)p+ ϑ∞q, (3.3)

with ϑ0 and ϑ∞ parameters [49, 60, 61, 62], and so from (3.2)

dq
dz

= 4qp− q2 − 2zq − 2ϑ0, (3.4a)

dp
dz

= −2p2 + 2qp+ 2zp− ϑ∞. (3.4b)

Solving (3.4a) for p and substituting in (3.4b) yields

d2q

dz2 =
1
2q

(
dq
dz

)2

+ 3
2q

3 + 4zq2 + 2(z2 + ϑ0 − 2ϑ∞ − 1)q − 2ϑ2
0

q
,

which is PIV (1.2) with A = 1 − ϑ0 + 2ϑ∞ and B = −2ϑ2
0. Analogously, solving (3.4b) for q and substituting in

(3.4a) yields
d2p

dz2 =
1
2p

(
dp
dz

)2

+ 6p3 − 8zp2 + 2(z2 − 2ϑ0 + ϑ∞ + 1)p− ϑ2
∞

2p
.

Then letting p = − 1
2w yields PIV (1.2) with A = −1 + 2ϑ0 − ϑ∞ and B = −2ϑ2

∞.
An important property of the Hamiltonian, which is very useful in applications, is that it satisfies a second-order,

second-degree ordinary differential equation.

Theorem 3.1. Consider the function

σ(z;ϑ0, ϑ∞) = 2qp2 − (q2 + 2zq + 2ϑ0)p+ ϑ∞q,

where q and p satisfy the system (3.4), then σ satisfies the second-order, second-degree ordinary differential equation(
d2σ

dz2

)2

− 4
(
z

dσ
dz
− σ

)2

+ 4
dσ
dz

(
dσ
dz

+ 2ϑ0

)(
dσ
dz

+ 2ϑ∞

)
= 0. (3.5)

Conversely, if σ is a solution of (3.5), then solutions of the Hamiltonian system (3.4) are given by

q =
σ′′ − 2zσ′ + 2σ
2 (σ′ + 2ϑ∞)

, p =
σ′′ + 2zσ′ − 2σ

4 (σ′ + 2ϑ0)
, ′ =

d
dz
.
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Proof. See Jimbo and Miwa [49] and Okamoto [60, 61, 62].

Remarks 3.2.

1. Equation (3.5), which is often known as SIV (or the PIV σ-equation), is equivalent to equation SD-I.c in the
classification of second order, second-degree ordinary differential equations with the Painlevé property by Cos-
grove and Scoufis [24], an equation first derived and solved by Chazy [14] and subsequently by Bureau [12, 13]
by expressing the solution in terms of solutions of PIV.

2. Theorem 3.1 shows that solutions of equation (3.5) are in a one-to-one correspondence with solutions of the
Hamiltonian system (3.4), and so are in a one-to-one correspondence with solutions of PIV (1.2).

3. Equation (3.5) also arises in various applications, for example random matrix theory [36, 37, 50, 71].

3.2 Bäcklund and Schlesinger transformations
The Painlevé equations PII–PVI possess Bäcklund transformations which relate one solution to another solution either
of the same equation, with different values of the parameters, or another equation (see [22, 29, 43] and the refer-
ences therein). An important application of the Bäcklund transformations is that they generate hierarchies of classical
solutions of the Painlevé equations, which are discussed in §3.3.

Bäcklund transformations for PIV (1.2) are given as follows.

Theorem 3.3. Let q0 = w(z;A0, B0) and q±j = w(z;A±j , B
±
j ), j = 1, 2, 3, 4 be solutions of PIV (1.2) with

A±1 = 1
4 (2− 2A0 ± 3

√
−2B0), B±1 = − 1

2 (1 +A0 ± 1
2

√
−2B0)2,

A±2 = − 1
4 (2 + 2A0 ± 3

√
−2B0), B±2 = − 1

2 (1−A0 ± 1
2

√
−2B0)2,

A±3 = 3
2 −

1
2A0 ∓ 3

4

√
−2B0, B±3 = − 1

2 (1−A0 ± 1
2

√
−2B0)2,

A±4 = − 3
2 −

1
2A0 ∓ 3

4

√
−2B0, B±4 = − 1

2 (−1−A0 ± 1
2

√
−2B0)2.

Then

T ±1 : q±1 =
q′0 − q20 − 2zq0 ∓

√
−2B0

2q0
, (3.6a)

T ±2 : q±2 = − q′0 + q20 + 2zq0 ∓
√
−2B0

2q0
, (3.6b)

T ±3 : q±3 = q0 +
2
(
1−A0 ∓ 1

2

√
−2B0

)
q0

q′0 ±
√
−2B0 + 2zq0 + q20

, (3.6c)

T ±4 : q±4 = q0 +
2
(
1 +A0 ± 1

2

√
−2B0

)
q0

q′0 ∓
√
−2B0 − 2zq0 − q20

, (3.6d)

valid when the denominators are non-zero, and where the upper signs or the lower signs are taken throughout each
transformation.

Proof. See Gromak [41, 42] and Lukashevich [52]; also [6, 43, 58].

A class of Bäcklund transformations for the Painlevé equations is generated by so-called Schlesinger transforma-
tions of the associated isomonodromy problems. Fokas, Mugan and Ablowitz [33], deduced the following Schlesinger
transformationsR1–R4 for PIV.

R1 : q1(z;A1, B1) =

(
q′ +
√
−2B

)2
+
(
4A+ 4− 2

√
−2B

)
q2 − q2(q + 2z)2

2q
(
q2 + 2zq − q′ −

√
−2B

) , (3.7a)

R2 : q2(z;A2, B2) =

(
q′ −
√
−2B

)2
+
(
4A− 4− 2

√
−2B

)
q2 − q2(q + 2z)2

2q
(
q2 + 2zq + q′ −

√
−2B

) , (3.7b)

R3 : q3(z;A3, B3) =

(
q′ −
√
−2B

)2 − (4A+ 4 + 2
√
−2B

)
q2 − q2(q + 2z)2

2q
(
q2 + 2zq − q′ +

√
−2B

) , (3.7c)

R4 : q4(z;A4, B4) =

(
q′ +
√
−2B

)2
+
(
4A− 4 + 2

√
−2B

)
q2 − q2(q + 2z)2

2q
(
q2 + 2zq + q′ +

√
−2B

) , (3.7d)
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where q ≡ q(z;A,B) and

(A1, B1) =
(
A+ 1,− 1

2

(
2−
√
−2B

)2)
, (A2, B2) =

(
A− 1,− 1

2

(
2 +
√
−2B

)2)
, (3.7e)

(A3, B3) =
(
A+ 1,− 1

2

(
2 +
√
−2B

)2)
, (A4, B4) =

(
A− 1,− 1

2

(
2−
√
−2B

)2)
. (3.7f)

Fokas, Mugan and Ablowitz [33] also defined the composite transformationsR5 = R1R3 andR7 = R2R4 given by

R5 : q5(z;A5, B5) =

(
q′ − q2 − 2zq

)2 + 2B
2q {q′ − q2 − 2zq + 2 (A+ 1)}

, (3.8a)

R7 : q7(z;A7, B7) = −
(
q′ + q2 + 2zq

)2 + 2B
2q {q′ + q2 + 2zq − 2 (A− 1)}

, (3.8b)

respectively, where
(A5, B5) = (A+ 2, B), (A7, B7) = (A− 2, B). (3.8c)

We remark thatR5 andR7 are the transformations T+ and T−, respectively, given by Murata [58].

3.3 Special function solutions
The Painlevé equations PII–PVI possess hierarchies of solutions expressible in terms of classical special functions, for
special values of the parameters through an associated Riccati equation,

dq
dz

= f2(z)q2 + f1(z)q + f0(z), (3.9)

where f2(z), f1(z) and f0(z) are rational functions. Hierarchies of solutions, which are often referred to as “one-
parameter solutions” (since they have one arbitrary constant), are generated from “seed solutions” derived from the
Riccati equation using the Bäcklund transformations given in §3.2. Furthermore, as for the rational solutions, these
special function solutions are often expressed in the form of determinants.

Solutions of PII–PVI are expressed in terms of special functions as follows (see [22, 43, 56], and the references
therein): for PII in terms of Airy functions Ai(z) and Bi(z); for PIII in terms of Bessel functions Jν(z) and Yν(z); for
PIV in terms of parabolic cylinder functions functions Dν(z); for PV in terms of confluent hypergeometric functions
1F1(a; c; z) (equivalently Kummer functionsM(a, b, z) and U(a, b, z) or Whittaker functionsMκ,µ(z) andWκ,µ(z));
and for PVI in terms of hypergeometric functions 2F1(a, b; c; z). Some classical orthogonal polynomials arise as par-
ticular cases of these special function solutions and thus yield rational solutions of the associated Painlevé equations:
for PIII and PV in terms of associated Laguerre polynomials L(m)

k (z); for PIV in terms of Hermite polynomialsHn(z);
and for PVI in terms of Jacobi polynomials P (α,β)

n (z).
Special function solutions of PIV (1.2) are expressed in in terms of parabolic cylinder functions.

Theorem 3.4. PIV (1.2) has solutions expressible in terms of parabolic cylinder functions if and only if either

B = −2(2n+ 1 + εA)2, (3.10)

or
B = −2n2, (3.11)

with n ∈ Z and ε = ±1.

Proof. See [40, 42, 43, 44, 51, 52].

For PIV (1.2) the associated Riccati equation is

dq
dz

= ε(q2 + 2zq) + 2ν, ε2 = 1, (3.12)

with PIV parameters A = −ε(ν + 1) and B = −2ν2. Letting w(z) =
d
dz

lnϕν(z) in (3.12) yields

d2ϕν

dz2 − 2εz
dϕν
dz

+ 2ενϕν = 0. (3.13)

The solution of this equation depends on whether ν ∈ Z or ν 6∈ Z, which we now summarize.
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(i) If ν 6∈ Z then equation (3.13) has solutions

ϕν(z; ε) =

{{
C1Dν(

√
2 z) + C2Dν(−

√
2 z)
}

exp
(

1
2z

2
)
, if ε = 1,{

C1D−ν−1(
√

2 z) + C2D−ν−1(−
√

2 z)
}

exp
(
− 1

2z
2
)
, if ε = −1,

(3.14)

with C1 and C2 arbitrary constants, where Dν(ζ) is the parabolic cylinder function which satisfies

d2Dν

dζ2 = ( 1
4ζ

2 − ν − 1
2 )Dν , (3.15)

and the boundary condition

Dν(ζ) ∼ ζν exp
(
− 1

4ζ
2
)
, as ζ → +∞.

(ii) If ν = 0 then equation (3.13) has the solutions

ϕ0(z; ε) =

{
C1 + C2 erfi(z), if ε = 1,
C1 + C2 erfc(z), if ε = −1,

with C1 and C2 arbitrary constants, where erfc(z) is the complementary error function and erfi(z) is the imagi-
nary error function, respectively defined by

erfc(z) =
2√
π

∫ ∞
z

exp(−t2) dt, erfi(z) =
2√
π

∫ z

0

exp(t2) dt. (3.16)

(iii) If ν = m, for m ≥ 1, then equation (3.13) has the solutions

ϕm(z; ε) =


C1Hm(z) + C2 exp(z2)

dm

dzm
{

erfi(z) exp(−z2)
}
, if ε = 1,

C1(−i)mHm(iz) + C2 exp(−z2)
dm

dzm
{

erfc(z) exp(z2)
}
, if ε = −1,

with C1 and C2 arbitrary constants, where Hm(z) is the Hermite polynomial defined by

Hm(z) = (−1)m exp(z2)
dm

dzm
exp(−z2). (3.17)

(iv) If ν = −m, for m ≥ 1, then equation (3.13) has the solutions

ϕ−m(z; ε) =


C1(−i)m−1Hm−1(iz) exp(z2) + C2

dm−1

dzm−1

{
erfc(z) exp(z2)

}
, if ε = 1,

C1Hm−1(z) exp(−z2) + C2
dm−1

dzm−1

{
erfi(z) exp(−z2)

}
, if ε = −1,

with C1 and C2 arbitrary constants.

If ϕν(z; ε) is a solution of (3.13), then the “seed solutions” of PIV (1.2) are given by

q
(
z;−ε(ν + 1),−2ν2

)
= −ε d

dz
lnϕν(z; ε), q

(
z;−εν,−2(ν + 1)2

)
= −2z + ε

d
dz

lnϕν(z; ε).

Hierarchies of special function solutions can be generated from these solutions using the Bäcklund transformations
given in §3.2. However there is an alternative approach.

Determinantal representations of special function solutions for PIV (1.2) and SIV (3.5) are discussed in the follow-
ing theorem.

Theorem 3.5. Let τn,ν(z; ε) be given by

τn,ν(z; ε) =W
(
ϕν(z; ε),

dϕν
dz

(z; ε), . . . ,
dn−1ϕν

dzn−1 (z; ε)
)
, n ≥ 1, (3.18)
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with τ0,ν(z; ε) = 1, where ϕν(z; ε) is a solution of (3.13) andW(ϕ1, ϕ2, . . . , ϕn) is the Wronskian. Then for n ≥ 0,
special function solutions of PIV (1.2) are given by

q[1]n,ν

(
z;A[1]

n,ν , B
[1]
n,ν

)
= −2z + ε

d
dz

ln
τn+1,ν(z; ε)
τn,ν(z; ε)

, A[1]
n,ν = ε(2n− ν), B[1]

n,ν = −2(ν + 1)2, (3.19a)

q[2]n,ν

(
z;A[2]

n,ν , B
[2]
n,ν

)
= ε

d
dz

ln
τn,ν(z; ε)
τn,ν+1(z; ε)

, A[2]
n,ν = ε(2ν − n), B[2]

n,ν = −2(n+ 1)2, (3.19b)

q[3]n,ν

(
z;A[3]

n,ν , B
[3]
n,ν

)
= ε

d
dz

ln
τn,ν+1(z; ε)
τn+1,ν(z; ε)

, A[3]
n,ν = −ε(n+ ν), B[3]

n,ν = −2(ν − n+ 1)2, (3.19c)

and special function solutions of SIV (3.5) are given by

σ[1]
n,ν(z;ϑ0, ϑ∞) =

d
dz

ln τn,ν(z; ε), ϑ
[1]
0 = ε(ν − n+ 1), ϑ[1]

∞ = −εn, (3.20a)

σ[2]
n,ν(z;ϑ0, ϑ∞) =

d
dz

ln τn,ν(z; ε)− 2εnz, ϑ
[2]
0 = εn, ϑ[2]

∞ = ε(ν + 1), (3.20b)

σ[3]
n,ν(z;ϑ0, ϑ∞) =

d
dz

ln τn,ν(z; ε) + 2ε(ν − n+ 1)z, ϑ
[3]
0 = −ε(ν + 1), ϑ[3]

∞ = −ε(ν − n+ 1), (3.20c)

Proof. See Okamoto [62]; also Forrester and Witte [36].

4 Semi-classical Laguerre weight
In this section we consider monic orthogonal polynomials Pn(x; t), for n ∈ N, with respect to the semi-classical
Laguerre weight (1.1), where these polynomials satisfy the three-term recurrence relation (2.8), i.e.

xPn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t), (4.1)

Boelen and van Assche [10, Theorem 1.1] prove the following theorem.

Theorem 4.1. Let αn(t) and βn(t) be the coefficients in the recurrence relation (4.1) associated with the semi-
classical Laguerre weight (1.1). Then the quantities

xn =
√

2
t− 2αn

, yn = 2βn − n− 1
2λ, (4.2)

satisfy the discrete system

xn−1xn =
yn + n+ 1

2λ

y2
n − 1

4λ
2
, yn + yn+1 =

1
xn

(
t√
2
− 1
xn

)
. (4.3)

Boelen and van Assche [10] also show that the system (4.3) can be obtained from an asymmetric discrete PIV

equation by a limiting process. However, from our point of view, it is more convenient to have the discrete system
satisfied by αn and βn, which is given in the following Lemma.

Lemma 4.2. The coefficients αn(t) and βn(t) in the recurrence relation (4.1) associated with the semi-classical
Laguerre weight (1.1) satisfy the discrete system

(2αn − t)(2αn−1 − t) =
(2βn − n)(2βn − n− λ)

βn
, (4.4a)

2βn + 2βn+1 + αn(2αn − t) = 2n+ λ+ 1. (4.4b)

Proof. Substituting (4.2) into (4.3) yields the discrete system (4.4).

Since the semi-classical Laguerre weight (1.1) has the form ω0(x) exp(xt) and the moments are finite for all t ∈ R,
with t a parameter, then the coefficients αn(t) and βn(t) in the recurrence relation (4.1) satisfy the Toda system, recall
Theorem 2.5.

We are now in a position to prove the relationship between the coefficients αn(t) and βn(t) in the recurrence
relation (4.1) associated with the semi-classical Laguerre weight (1.1) and solutions of PIV (1.2).
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Theorem 4.3. The coefficients αn(t) and βn(t) in the recurrence relation (4.1) associated with the semi-classical
Laguerre weight (1.1) are given by

αn(t) = 1
2qn(z) + 1

2 t, (4.5a)

βn(t) = − 1
8

dqn
dz
− 1

8q
2
n(z)− 1

4zqn(z) + 1
2n+ 1

4λ, (4.5b)

with z = 1
2 t, where qn(z) satisfies

d2qn

dz2 =
1

2qn

(
dqn
dz

)2

+ 3
2q

3
n + 4zq2n + 2(z2 − 2n− λ− 1)qn −

2λ2

qn
, (4.6)

which is PIV (1.2), with parameters
(A,B) = (2n+ λ+ 1,−2λ2). (4.7)

Proof. Solving the discrete system (4.4) for αn−1 and βn+1 yields

αn−1 = 1
2 t+

(2βn − n)(2βn − n− λ)
2(2αn − t)βn

,

βn+1 = −βn − 1
2 (2n+ λ+ 1)− αn(αn − 1

2 t),

and then substituting these into (2.11) gives

dαn
dt

= −αn(αn − 1
2 t)− 2βn + 1

2 (2n+ λ+ 1), (4.8a)

dβn
dt

= (αn − 1
2 t)βn −

(2βn − n)(2βn − n− λ)
2(2αn − t)

. (4.8b)

Solving (4.8a) for βn yields

βn = 1
2

dαn
dt

+ 1
2αn(αn − 1

2 t)−
1
4 (2n+ λ+ 1), (4.9)

and then substituting this into (4.8b) yields

d2αn

dt2
=

1
2αn − t

(
dαn
dt
− 1

2

)2

+ 3
2α

3
n − 5

4 tα
2
n + 1

4 (t2 − 4n− 2− 2λ)αn + 1
4 t(2n+ λ+ 1)− λ2

4(2αn − t)
,

Making the transformation (4.5a) in this equation yields equation (4.6), which is PIV (1.2) with parameters given by
(4.7). Finally making the transformation (4.5a) in (4.9) yields (4.5b), as required.

Remarks 4.4.

1. Filipuk, van Assche and Zhang [28], who considered orthonormal polynomials rather than monic orthogonal
polynomials, proved the result (4.5a) for αn(t). However Filipuk, van Assche and Zhang [28] did not give an
explicit expression for αn(t), which we do below.

2. From Theorem 3.4 we see that the parameters (4.7) satisfy (3.10) with ε = −1, and therefore satisfy the
condition given in Theorem 3.4 for PIV to have solutions expressible in terms of parabolic cylinder functions.

3. If qn is a solution of equation (4.6) then the solutions qn+1 and qn−1 are given by

qn+1 =

(
q′n − q2n − 2zqn

)2 − 4λ2

2qn
(
q′n − q2n − 2zqn + 4n+ 2λ+ 4

) , qn−1 = −
(
q′n + q2n + 2zqn

)2 − 4λ2

2qn
(
q′n + q2n + 2zqn − 4n− 2λ

) ,
where ′ ≡ d/dz, which are special cases of the Schlesinger transformations R5 (3.8a) and R7 (3.8b), respec-
tively.

4. From Theorem 3.5, we see that the parabolic cylinder function solutions of equation (4.6) are given by

qn(z) = −2z +
d
dz

ln
τn+1,λ(z)
τn,λ(z)

,
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where

τn,λ(z) =W
(
ψλ,

dψλ
dz

, . . . ,
dn−1ψλ

dzn−1

)
, τ0,λ(z) = 1,

and ψλ(z) satisfies
d2ψλ

dz2 − 2z
dψλ
dz
− 2(λ+ 1)ψλ = 0,

which is equation (3.13) with ν = −λ− 1 and ε = 1. This equation has general solution

ψλ(z) =


{
C1D−λ−1

(√
2 z
)

+ C2D−λ−1

(
−
√

2 z
)}

exp
(

1
2z

2
)
, if λ 6∈ N,

C1(−i)mHm(iz) exp(z2) + C2
dm

dzm
{

erfc(z) exp(z2)
}
, if λ = m ∈ N,

with C1 and C2 arbitrary constants, where Dν(ζ) is the parabolic cylinder function, Hm(ζ) the Hermite poly-
nomial (3.17), and erfc(z) the complementary error function (3.16).

The system (4.8) satisfied by the recurrence coefficients αn(t) and βn(t) is equivalent to the Hamiltonian system
(3.4) associated with PIV, as shown in the following Theorem.

Theorem 4.5. The system (4.8) is equivalent to the Hamiltonian system (3.4) associated with PIV.

Proof. If in the system (4.8) we make the transformation

αn(t) = 1
2qn(z) + 1

2 t, βn(t) = − 1
2qn(z)pn(z) + 1

2 (n+ λ), z = 1
2 t,

then qn(z) and pn(z) satisfy the system

dqn
dz

= 4qnpn − q2n − 2zqn − 2λ, (4.10a)

dpn
dz

= −2p2
n + 2pnqn + 2zpn − n− λ, (4.10b)

which is the system (3.4) with ϑ0 = λ and ϑ∞ = λ+ n. Conversely making the transformation

qn(z) = 2αn(t)− t, pn(z) = −2βn(t)− n− λ
2αn(t)− t

, t = 2z,

in the system (4.10) yields the system (4.8).

Our main objective is to obtain explicit expressions for the coefficients αn(t) and βn(t) in the recurrence relation
(4.1). First we derive an explicit expression for the moment µ0(t;λ).

Theorem 4.6. For the semi-classical Laguerre weight (1.1), the moment µ0(t;λ) is given by

µ0(t;λ) =


Γ(λ+ 1) exp

(
1
8 t

2
)

2(λ+1)/2
D−λ−1

(
− 1

2

√
2 t
)
, if λ 6∈ N,

1
2

√
π

dm

dtm
{

exp
(

1
4 t

2
) [

1 + erf( 1
2 t)
]}
, if λ = m ∈ N,

(4.11)

with Dν(ζ) the parabolic cylinder function and erf(z) the error function. Further µ0(t;λ) satisfies the equation

d2µ0

dt2
− 1

2 t
dµ0

dt
− 1

2 (λ+ 1)µ0 = 0. (4.12)

Proof. The parabolic cylinder function Dν(ζ), with ν 6∈ Z, has the integral representation [63, §12.5(i)]

Dν(ζ) =
exp(− 1

4ζ
2)

Γ(−ν)

∫ ∞
0

s−ν−1 exp(− 1
2s

2 − ζs) ds, <(ν) < 0.

For the semi-classical Laguerre weight (1.1), the moment µ0(t;λ), with λ 6∈ N, is given by

µ0(t;λ) =
∫ ∞

0

xλ exp(−x2 + xt) dx

= 2−(λ+1)/2

∫ ∞
0

sλ exp
(
− 1

2s
2 + 1

2

√
2 t s

)
ds

=
Γ(λ+ 1) exp

(
1
8 t

2
)

2(λ+1)/2
D−λ−1

(
− 1

2

√
2 t
)
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as required. If m ∈ N, then the parabolic cylinder function D−m−1(ζ) is given by

D−m−1(ζ) =
√
π

2
(−1)m

m!
exp(− 1

4ζ
2)

dm

dζm
{

exp( 1
2ζ

2) erfc
(

1
2

√
2 ζ
)}

,

with erfc(z) the complementary error function [63, §12.7(ii)]. Since erfc(−z) = 1 + erf(z), then µ0(t;m), with
m ∈ N, is given by

µ0(t;m) = 1
2

√
π

dm

dtm
{

exp
(

1
4 t

2
) [

1 + erf( 1
2 t)
]}
,

as required. Further, the parabolic cylinder function Dν(ζ) satisfies equation (3.15) and so from (4.11) it follows that
the moment µ0(t;λ) satisfies equation (4.12), as required.

Corollary 4.7. If µ0(t;λ) is given by (4.11) and ϕν(z; ε) by (3.14), then

µ0(t;λ) = ϕ−λ−1( 1
2 t; 1),

with C1 = 0 and C2 = Γ(λ+ 1)/2(λ+1)/2.

Proof. The result is easily shown by comparing (4.11) and (3.14).

Having obtained an explicit expression for µ0 we can now derive explicit expressions for the Hankel determinant
∆n(t) and the coefficients αn(t) and βn(t) in the recurrence relation (4.1).

Theorem 4.8. The Hankel determinant ∆n(t) is given by

∆n(t) =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
, (4.13)

with µ0 given by (4.11).

Proof. This is an immediate consequence of Theorem 2.1.

Theorem 4.9. The coefficients αn(t) and βn(t) in the recurrence relation (4.1) associated with monic polynomials
orthogonal with respect to the semi-classical Laguerre weight (1.1) are given by

αn(t) =
d
dt

ln
∆n+1(t)
∆n(t)

, βn(t) =
d2

dt2
ln ∆n(t),

where ∆n(t) is the Hankel determinant given by (4.13), with µ0 given by (4.11).

Proof. This is an immediate consequence of Theorems 2.1 and 2.3.

Furthermore we can relate the Hankel determinant ∆n(t) given by (4.13) to the τ -function τn,ν(z; ε) given by
(3.18).

Theorem 4.10. If ∆n(t) is given by (4.13) and τn,ν(z; ε) by (3.18), with

ϕ−λ−1(z) =
Γ(λ+ 1) exp

(
1
2z

2
)

2(λ+1)/2
D−λ−1

(
−
√

2 z
)
,

then

∆n(t) =
τn,−λ−1(z; 1)

2n(n−1)

∣∣∣∣
z=t/2

. (4.14)

Proof. The result is easily shown by comparing (4.13) and (3.18).

Theorem 4.11. The function Sn(t) =
d
dt

ln ∆n(t), with ∆n(t) given by (4.13), satisfies the second-order, second-
degree equation

4
(

d2Sn

dt2

)2

−
(
t
dSn
dt
− Sn

)2

+ 4
dSn
dt

(
2

dSn
dt
− n

)(
2

dSn
dt
− n− λ

)
= 0. (4.15)
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Proof. Setting ν = −λ− 1 and ε = 1 in (3.20c) gives

σ(z;λ, n+ λ) =
d
dz

ln τn,−λ−1(z; 1)− 2(n+ λ)z,

and so if Sn(t) =
d
dt

ln ∆n(t) then from (4.14) we see that

σ(z;λ, n+ λ) = 2Sn(t)− (n+ λ)t, z = 1
2 t.

Making this transformation in SIV (3.5) with ϑ0 = λ and ϑ∞ = n+ λ, i.e.(
d2σ

dz2

)2

− 4
(
z

dσ
dz
− σ

)2

+ 4
dσ
dz

(
dσ
dz

+ 2λ
)(

dσ
dz

+ 2n+ 2λ
)

= 0,

yields (4.15), as required.

Remark 4.12. Differentiating (4.15) and letting Sn(t) =
d
dt

ln ∆n(t) yields the fourth-order, bi-linear equation

∆n
d4∆n

dt4
− 4

d3∆n

dt3
d∆n

dt
+ 3

(
d2∆n

dt2

)2

− ( 1
4 t

2 + 4n+ 2λ)

[
∆n

d2∆n

dt2
−
(

d∆n

dt

)2
]

+ 1
4 t∆n

d∆n

dt
+ 1

2n(n+ λ)∆2
n = 0,

as is easily verified.

Theorem 4.13. Suppose Ψn,λ(z) is given by

Ψn,λ(z) =W
(
ψλ,

dψλ
dz

, . . . ,
dn−1ψλ

dzn−1

)
, Ψ0,λ(z) = 1,

where

ψλ(z) =

D−λ−1

(
−
√

2 z
)

exp
(

1
2z

2
)
, if λ 6∈ N,

dm

dzm
{[

1 + erf(z)
]

exp(z2)
}
, if λ = m ∈ N,

with Dν(ζ) is parabolic cylinder function and erfc(z) the complementary error function (3.16). Then coefficients
αn(t) and βn(t) in the recurrence relation (4.1) associated with the semi-classical Laguerre weight (1.1) are given by

αn(t) = 1
2qn(z) + 1

2 t,

βn(t) = − 1
8

dqn
dz
− 1

8q
2
n(z)− 1

4zqn(z) + 1
4λ+ 1

2n,

with z = 1
2 t, where

qn(z) = −2z +
d
dz

ln
Ψn+1,λ(z)
Ψn,λ(z)

,

which satisfies PIV (1.2), with parameters (A,B) = (2n+ λ+ 1,−2λ2).

In Appendix 1 we give the first few recurrence coefficients for the semi-classical Laguerre weight (1.1) and the
first few monic polynomials generated using the recurrence relation (4.1).

5 Asymptotic expansions
In this section we derive asymptotic expansions for the the moment µ0(t;λ), see Lemma 5.1 below, the Hankel
determinant ∆n(t), see Lemma 5.2 below, and the recurrence coefficients αn(t) and βn(t), see Lemma 5.3 below.

Lemma 5.1. As t→∞, the moment µ0(t;λ) has the asymptotic expansion

µ0(t;λ) ∼
√
π ( 1

2 t)
λ exp

(
1
4 t

2
) ∞∑
n=0

Γ(λ+ 1)
Γ(λ− n+ 1)n! t2n

. (5.1)
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Proof. Since the parabolic cylinder function Dν(ζ) has the asymptotic expansion

Dν(ζ) ∼
√

2π (−1)ν+1

Γ(−ν)ζν+1
exp( 1

4ζ
2)
∞∑
n=0

(ν + 1)2n
n! (2ζ2)n

, as ζ → −∞,

with (β)n = Γ(β + n)/Γ(β) the Pochhammer symbol, then

µ0(t) =
Γ(λ+ 1) exp

(
1
8 t

2
)

2(λ+1)/2
D−λ−1

(
− 1

2

√
2 t
)

∼
Γ(λ+ 1) exp

(
1
8 t

2
)

2(λ+1)/2

√
2π tλ exp

(
1
8 t

2
)

Γ(λ+ 1)2λ/2

∞∑
n=0

(−λ)2n
n! t2n

=
√
π ( 1

2 t)
λ exp

(
1
4 t

2
) ∞∑
n=0

Γ(λ+ 1)
Γ(λ− n+ 1)n! t2n

,

as required, since

(−λ)2n =
Γ(2n− λ)

Γ(−λ)
= λ(λ− 1) . . . (λ− 2n+ 1) =

Γ(λ+ 1)
Γ(λ− n+ 1)

.

Lemma 5.2. As t→∞, the Hankel determinant ∆n(t) has the asymptotic expansion

∆n(t) = cnπ
n/2( 1

2 t)
nλ exp

(
1
4nt

2
){

1 +
nλ(λ− n)

t2
+O

(
t−4
)}

, (5.2)

with cn a constant, and Sn(t) has the asymptotic expansion

Sn(t) =
nt

2
+
nλ

t
+

2nλ(n− λ)
t3

+O
(
t−5
)
. (5.3)

Proof. To prove (5.2) we shall use Mathematical induction. Since ∆n satisfies the Toda equation (2.10) then

∆n+1 =
1

∆n−1

{
∆n

d2∆n

dt2
−
(

d∆n

dt

)2
}
. (5.4)

By definition ∆0 = 1 and from (5.1)

∆1 = µ0 =
√
π ( 1

2 t)
λ exp

(
1
4 t

2
){

1 +
λ(λ− 1)

t2
+O

(
t−4
)}

. (5.5)

as t→∞, and so (5.4) with n = 1 gives

∆2 =

{
∆1

d2∆1

dt2
−
(

d∆1

dt

)2
}

= 1
2π( 1

2 t)
2λ exp

(
1
2 t

2
){

1 +
2λ(λ− 2)

t2
+O

(
t−4
)}

,

as t→∞. Assuming (5.2) then{
∆n

d2∆n

dt2
−
(

d∆n

dt

)2
}

= 1
2nc

2
nπ

n( 1
2 t)

2nλ exp
(

1
2nt

2
){

1 +
2λ(nλ− n2 − 1)

t2
+O

(
t−4
)}

,

as t→∞, and so

∆n+1 =
1

∆n−1

{
∆n

d2∆n

dt2
−
(

d∆n

dt

)2
}

=
nc2n

2cn−1
π(n+1)/2( 1

2 t)
(n+1)λ exp

{
1
4 (n+ 1)t2

}
×
{

1 +
2λ(nλ− n2 − 1)

t2
+O

(
t−4
)}{

1− (n− 1)λ(λ− n+ 1)
t2

+O
(
t−4
)}

= cn+1π
(n+1)/2( 1

2 t)
(n+1)λ exp

{
1
4 (n+ 1)t2

}{
1 +

(n+ 1)λ(λ− n− 1)
t2

+O
(
t−4
)}
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as t→∞, where cn+1 = 1
2nc

2
n/cn−1, as required. Solving the recurrence relation

cn+1cn−1 = 1
2nc

2
n, c0 = 1, c1 = 1,

gives

cn =
1

2n(n−1)/2

n−1∏
k=0

k!.

Since Sn =
d
dt

ln ∆n then the asymptotic expansion (5.3) is easily derived from (5.2).

Lemma 5.3. As t→∞, the recurrence coefficients αn(t) and βn(t) have the asymptotic expansions

αn(t) =
t

2
+
λ

t
+

2λ(2n− λ+ 1)
t3

+O
(
t−5
)
,

βn(t) =
n

2
− nλ

t2
− 6nλ(n− λ)

t4
+O

(
t−6
)
.

Proof. By definition

αn(t) =
d
dt

ln
∆n+1(t)
∆n(t)

= Sn+1(t)− Sn(t), βn(t) =
d2

dt2
ln ∆n(t) =

dSn
dt

,

and so

αn(t) =
t

2
+
λ

t
+

2λ(2n− λ+ 1)
t3

+O
(
t−5
)
, βn(t) =

n

2
− nλ

t2
− 6nλ(n− λ)

t4
+O

(
t−6
)
,

as t→∞, as required. Consequently

lim
t=∞

αn(t) = 1
2 t, lim

t=∞
βn(t) = 1

2n.

6 Semi-classical Hermite weight
In this section we are concerned with the semi-classical Hermite weight

ω(x; t) = |x|λ exp(−x2 + tx), x, t ∈ R, λ > −1, (6.1)

which is an extension of the semi-classical Laguerre weight (1.1) to the whole real line, where we have ensured that
the weight is positive by using |x|λ rather than xλ. Monic orthogonal polynomials associated with the semi-classical
Hermite weight (6.1) satisfy the recurrence relation

xPn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t), (6.2)

and our interest is in obtaining explicit expressions for the coefficients αn(t) and βn(t) in (6.2).
First we evaluate the moment µ0(t;λ).

Theorem 6.1. For the semi-classical Hermite weight (6.1), the moment µ0(t;λ) is given by

µ0(t;λ) =



Γ(λ+ 1) exp( 1
8 t

2)
2(λ+1)/2

{
D−λ−1

(
− 1

2

√
2 t
)

+D−λ−1

(
1
2

√
2 t
)}
, if λ 6∈ N,

√
π
(
− 1

2 i
)2m

H2m

(
1
2 it
)

exp
(

1
4 t

2
)
, if λ = 2m,

√
π

d2m+1

dt2m+1

{
erf( 1

2 t) exp
(

1
4 t

2
)}
, if λ = 2m+ 1,

(6.3)

with m ∈ N, where Dν(z) is the parabolic cylinder function, Hn(z) is the Hermite polynomial and erf(z) is the error
function.
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Proof. If λ 6∈ N, then the moment µ0(t;λ) is given by

µ0(t;λ) =
∫ ∞
−∞

ω(x; t) dx =
∫ ∞
−∞
|x|λ exp(−x2 + tx) dx

=
∫ ∞

0

xλ exp(−x2 + tx) dx+
∫ ∞

0

xλ exp(−x2 − tx) dx

=
Γ(λ+ 1) exp( 1

8 t
2)

2(λ+1)/2

{
D−λ−1

(
− 1

2

√
2 t
)

+D−λ−1

(
1
2

√
2 t
)}
,

as required. If λ = 2m, with m ∈ N, then

µ0(t; 2m) =
∫ ∞
−∞

x2m exp(−x2 + tx) dx =
√
π
(
− 1

2 i
)2m

H2m( 1
2 it) exp

(
1
4 t

2
)
,

as required, since the Hermite polynomial, Hn(z), has the integral representation

Hm(z) =
2m√
π

∫ ∞
−∞

(z + ix)m exp(−x2) dx.

Finally if λ = 2m+ 1, with m ∈ N, then

µ0(t; 2m+ 1) =
∫ ∞
−∞

x2m|x| exp(−x2 + tx) dx

=
d2m

dt2m

(∫ ∞
0

x exp(−x2 + tx) dx+
∫ ∞

0

x exp(−x2 − tx) dx
)

=
d2m+1

dt2m+1

(∫ ∞
0

exp(−x2 + tx) dx−
∫ ∞

0

exp(−x2 − tx) dx
)

=
d2m+1

dt2m+1

(
1
2

√
π
{

1 + erf( 1
2 t)
}

exp
(

1
4 t

2
)
− 1

2

√
π
{

1− erf( 1
2 t)
}

exp
(

1
4 t

2
))

=
√
π

d2m+1

dt2m+1

{
erf( 1

2 t) exp
(

1
4 t

2
)}
,

as required, since ∫ ∞
0

exp(−x2 + tx) dx = 1
2

√
π
{

1 + erf( 1
2 t)
}

exp
(

1
4 t

2
)
.

Next we obtain an explicit expression for the Hankel determinant ∆n(t).

Theorem 6.2. The Hankel determinant ∆n(t) is given by

∆n(t) =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
, (6.4)

where µ0(t;λ) is given by (6.3).

Proof. By definition the moment µk(t;λ) is given by

µk(t;λ) =
∫ ∞
−∞

xk|x|λ exp(−x2 + tx) dx

=
dk

dtk

(∫ ∞
−∞
|x|λ exp(−x2 + tx) dx

)
=

dkµ0

dtk
,

and so we obtain

∆n(t) = det
[
µj+k(t)

]n−1

j,k=0
≡ W

(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
,

as required.

Finally we obtain explicit expressions for the coefficients αn(t) and βn(t).
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Theorem 6.3. The coefficients αn(t) and βn(t) in the recurrence relation (6.2) associated with monic polynomials
orthogonal with respect to the semi-classical Hermite weight (6.1) are given by

αn(t) =
d
dt

ln
∆n+1(t)
∆n(t)

, βn(t) =
d2

dt2
ln ∆n(t),

where ∆n(t) is the Hankel determinant given by (6.4), with µ0(t;λ) given by (6.3).

Proof. This is an immediate consequence of Theorem 2.3.

Theorem 6.4. Suppose Ψ̃n,λ(z) is given by

Ψ̃n,λ(z) =W

(
ψ̃λ,

dψ̃λ
dz

, . . . ,
dn−1ψ̃λ

dzn−1

)
, Ψ0,λ(z) = 1,

where

ψ̃λ(z) =


{
D−λ−1

(√
2 z
)

+D−λ−1

(
−
√

2 z
)}

exp
(

1
2z

2
)
, if λ 6∈ N,

H2m(iz) exp(z2), if λ = 2m, m ∈ N,
d2m+1

dz2m+1

{
erf(z) exp(z2)

}
, if λ = 2m+ 1, m ∈ N,

withDν(ζ) is parabolic cylinder function,Hm(ζ) the Hermite polynomial (3.17), and erfc(z) the complementary error
function (3.16). Then coefficients αn(t) and βn(t) in the recurrence relation (6.2) associated with the semi-classical
Hermite weight (6.1) are given by

αn(t) = 1
2qn(z) + 1

2 t,

βn(t) = − 1
8

dqn
dz
− 1

8q
2
n(z)− 1

4zqn(z) + 1
4λ+ 1

2n,

with z = 1
2 t, where

qn(z) = −2z +
d
dz

ln
Ψ̃n+1,λ(z)

Ψ̃n,λ(z)
,

which satisfies PIV (1.2), with parameters given by (A,B) = (2n+ λ+ 1,−2λ2).

In Appendix 2 we give the first few recurrence coefficients for the semi-classical Hermite weight (6.1), in the case
when λ = 2 (so the recurrence coefficients are rational functions of t), and the first few monic polynomials generated
using the recurrence relation (6.2).

7 Discussion
In this paper we have studied semi-classical Laguerre polynomials which are orthogonal polynomials that satisfy
three-term recurrence relations whose coefficients depend on a parameter. We have shown that the coefficients in
these recurrence relations can be expressed in terms of Wronskians of parabolic cylinder functions. These Wronskians
also arise in the description of special function solutions of the fourth Painlevé equation and the second-order, second-
degree equation satisfied by the associated Hamiltonian function. Further we have shown similar results hold for semi-
classical Hermite polynomials. The link between the semi-classical orthogonal polynomials and the special function
solutions of the Painlevé equations is the moment for the associated weight which enables the Hankel determinant to
be written as a Wronskian. In our opinion, this illustrates the increasing significance of the Painlevé equations in the
field of orthogonal polynomials and special functions.
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Appendix 1. Recurrence coefficients and polynomials for the semi-classical Laguerre weight
For the semi-classical Laguerre weight the first few recurrence coefficients are given by

α0(t) = 1
2 t−

D−λ
(
− 1

2

√
2 t
)

D−λ−1

(
− 1

2

√
2 t
) ≡ Ψν(t),

α1(t) = 1
2 t−Ψν(t)− Ψν(t)

2Ψ2
ν(t)− tΨν(t)− λ− 1

,

α2(t) = 1
2 t+

2λ+ 4
t

+
Ψν(t)

2Ψ2
ν(t)− tΨν(t)− λ− 1

,

− 2[(λ+ 1)t2 + 4(λ+ 2)(2λ+ 3)]Ψ2
ν(t)− (λ+ 1)t[t2 + 2(4λ+ 9)]Ψν(t)− (λ+ 1)2[t2 + 8(λ+ 2)]

2t
[
2tΨ3

ν(t)− (t2 − 4λ− 6)Ψ2
ν(t)− 3(λ+ 1)tΨν(t)− 2(λ+ 1)2

] ,

β1(t) = −Ψ2
ν(t) + 1

2 tΨν(t) + 1
2 (λ+ 1),

β2(t) = −2tΨ3
ν(t)− (t2 − 4λ− 6)Ψ2

ν(t)− 3(λ+ 1)tΨν(t)− 2(λ+ 1)2

2
[
Ψ2
ν(t)− 1

2 tΨν(t)− 1
2 (λ+ 1)

]2 ,

and the first few monic orthogonal polynomials are given by

P1(x; t) = x−Ψν

P2(x; t) = x2 − 2tΨ2
ν − (t2 + 2)Ψν − (λ+ 1)t

2
[
Ψ2
ν − 1

2 tΨν − 1
2 (λ+ 1)

] x− 2(λ+ 2)Ψ2
ν − (λ+ 1)Ψν − (λ+ 1)2

2
[
Ψ2
ν − 1

2 tΨν − 1
2 (λ+ 1)

]
P3(x; t) = x3 −

{
4(t2 + 2λ+ 4)Ψ3

ν − 2t(t2 − λ− 1)Ψ2
ν − (λ+ 1)(5t2 + 4λ+ 6)Ψν − 3(λ+ 1)2t

2
[
2tΨ3

ν − (t2 − 4λ− 6)Ψ2
ν − 3(λ+ 1)tΨν − 2(λ+ 1)2

] }
x2

+

{
2t(t2 + 2λ+ 4)Ψ3

ν −
[
t4 + 4(2λ+ 5)(λ+ 2)

]
Ψ2
ν − 2(λ+ 1)t(t2 − λ− 5)Ψν − (λ+ 1)2(t2 − 4λ− 12)

4
[
2tΨ3

ν − (t2 − 4λ− 6)Ψ2
ν − 3(λ+ 1)tΨν − 2(λ+ 1)2

] }
x

+
2
[
(λ+ 1)t2 + 4(λ+ 2)2

]
Ψ3
ν − (λ+ 1)t(t2 + 2λ+ 8)Ψ2

ν − 2(λ+ 1)2(t2 + 2λ+ 5)Ψν − (λ+ 1)3t
4
[
2tΨ3

ν − (t2 − 4λ− 6)Ψ2
ν − 3(λ+ 1)tΨν − 2(λ+ 1)2

]
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Appendix 2. Recurrence coefficients and polynomials for the semi-classical Hermite weight
For the semi-classical Hermite weight x2 exp(−x2 + tx) the first few recurrence coefficients are given by

α0(t) = 1
2 t+

2t
t2 + 2

,

α1(t) = 1
2 t+

4t3

t4 + 12
− 2t
t2 + 2

,

α2(t) = 1
2 t+

6t(t4 − 4t2 + 12)
t6 − 6t4 + 36t2 + 72

− 4t3

t4 + 12
,

α3(t) = 1
2 t+

8t3(t4 − 12t2 + 60)
t8 − 16t6 + 120t4 + 720

− 6t(t4 − 4t2 + 12)
t6 − 6t4 + 36t2 + 72

,

α4(t) = 1
2 t+

10t(t8 − 24t6 + 216t4 − 480t2 + 720)
t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200

− 8t3(t4 − 12t2 + 60)
t8 − 16t6 + 120t4 + 720

,

α5(t) = 1
2 t+

12t3(t8 − 40t6 + 600t4 − 3360t2 + 8400)
t12 − 48t10 + 900t8 − 6720t6 + 25200t4 + 100800

− 10t(t8 − 24t6 + 216t4 − 480t2 + 720)
t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200

,

β1(t) = 1
2 −

2(t2 − 2)
(t2 + 2)2

,

β2(t) = 1− 4t2(t2 − 6)(t2 + 6)
(t4 + 12)2

,

β3(t) = 3
2 −

6(t4 − 12t2 + 12)(t6 + 6t4 + 36t2 − 72)
(t6 − 6t4 + 36t2 + 72)2

β4(t) = 2− 8t2(t4 − 20t2 + 60)(t8 + 72t4 − 2160)
(t8 − 16t6 + 120t4 + 720)2

,

β5(t) = 5
2 −

10(t6 − 30t4 + 180t2 − 120)(t12 − 12t10 + 180t8 − 480t6 − 3600t4 − 43200t2 + 43200)
(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)2

,

and the first few monic orthogonal polynomials are given by

P1(x; t) = x− t(t2 + 6)
2(t2 + 2)

,

P2(x; t) = x2 − t(t4 + 4t2 + 12)
t4 + 12

x+
t6 + 6t4 + 36t2 − 72

4(t4 + 12)
,

P3(x; t) = x3 − 3t(t6 − 2t4 + 20t2 + 120)
2(t6 − 6t4 + 36t2 + 72)

x2 +
3(t8 + 40t4 − 240)

4(t6 − 6t4 + 36t2 + 72)
x− t(t8 + 72t4 − 2160)

8(t6 − 6t4 + 36t2 + 72)
,

P4(x; t) = x4 − 2t(t8 − 12t6 + 72t4 + 240t2 + 720)
t8 − 16t6 + 120t4 + 720

x3 +
3(t10 − 10t8 + 80t6 + 1200t2 − 2400)

2(t8 − 16t6 + 120t4 + 720)
x2

− t(t10 − 10t8 + 120t6 − 240t4 − 1200t2 − 7200)
2(t8 − 16t6 + 120t4 + 720)

x

+
t12 − 12t10 + 180t8 − 480t6 − 3600t4 − 43200t2 + 43200

16(t8 − 16t6 + 120t4 + 720)
,

P5(x; t) = x5 − 5t(t10 − 26t8 + 264t6 − 336t4 + 1680t2 + 10080)
2(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)

x4

+
5(t12 − 24t10 + 252t8 − 672t6 + 5040t4 − 20160)
2(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)

x3

− 5t(t12 − 24t10 + 300t8 − 1440t6 + 5040t4 − 100800)
4(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)

x2

+
5(t14 − 26t12 + 396t10 − 2520t8 + 5040t6 − 50400t4 − 100800t2 + 201600)

16(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)
x

− t(t14 − 30t12 + 540t10 − 4200t8 + 10800t6 − 151200t4 − 504000t2 + 3024000)
32(t10 − 30t8 + 360t6 − 1200t4 + 3600t2 + 7200)

.
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[53] A. Magnus, Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials, J.

Comput. Appl. Math., 57 (1995) 215–237.
[54] A. Magnus, Freud’s equations for orthogonal polynomials as discrete Painlevé equations, in: Symmetries and Integrability of
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