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Summary 
 

 

Numerous nonparametric or distribution-free control charts have been proposed and studied in 

recent years; see, for example, the overview articles by Chakraborti et al. (2001), Chakraborti and 

Graham (2007) and Chakraborti et al. (2010). Among the various nonparametric charts, the basic 

Shewhart-type sign chart for case K (i.e. when the process parameters are known) proposed by Amin 

et al. (1995) and the basic Shewhart-type precedence chart for case U (i.e. when the process 

parameters are unknown) proposed by Chakraborti et. al. (2004) have received a lot of attention. For 

example, Human et al. (2010) and Chakraborti et al. (2009a) extended the basic Shewhart-type sign 

and precedence charts (which signals when the first plotting statistic plots on or outside the control 

limits), respectively by incorporating runs-rules. 

 

In this dissertation the focus is specifically on the nonparametric Shewhart-type sign and 

precedence control charts. The goal is to further generalize these two charts by introducing improved 

runs-rules in an attempt to enhance the out-of-control performance of these charts; specifically for 

large (or larger) shifts. To evaluate the benefits of these new improved runs-rules sign and precedence 

charts, their in-control and out-of-control run-length distributions are evaluated and studied; this is 

done predominantly by using a Markov chain approach (for both case K and case U) coupled with the 

idea of conditioning by expectation and the unconditioning (for case U, see, for example the work of 

Chakraborti et al. (2009a), Chakraborti et al. (2004) and Chakraborti (2000)). 

 

 

The dissertation consists of five chapters, a brief description of the contents is provided below: 

 

Chapter 1 provides a brief introduction to Statistical Process Control. This will aid in familiarizing 

the reader with concepts and terminology that are helpful to the following chapters. 

 

Chapter 2 is dedicated to a discussion on the different methods to calculate the run-length 

distribution of a control chart. The focus is on the Markov chain approach, since the Markov chain 

approach is used in this dissertation to calculate the run-length distribution of the sign and precedence 

charts with improved runs-rules incorporated. 
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Chapter 3 provides signalling rules and graphical illustrations of the signalling rules. The 

transition probability matrices are constructed and explained that are used in the formulas that are used 

to calculate run-length distribution and the characteristics of the run-length distribution. 

 

Chapter 4 introduces the sign control chart with the improved runs-rules incorporated. All the 

results and transition probability matrices derived and constructed in Chapters 2 and 3 are used to 

calculate the run-length distribution and properties of the run-length distribution of the new charts. 

 

Chapter 5 introduces the precedence control chart with improved runs-rules incorporated. 

Similarly, all the results and transition probability matrices derived and constructed in Chapters 2 and 

3 are used to calculate the run-length distribution and properties of the run-length distribution of the 

new charts. 

 

Finally Chapter 6 provides some conclusions and recommendations for future research. 
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Chapter 1 
 

Brief introduction to Statistical Process Control 
 

 

1.0  Chapter 1 overview and objective 

 

Chapter 1 provides a basic yet broad introduction to Statistical Process Control (SPC). In 

particular, general notation, terminology, definitions and key concepts are introduced that are essential 

for the developments in Chapters 2, 3, 4 and 5. 

 

After reading this chapter the reader should be familiar with: 

 The different types of variation in a process, 

 The concept of the control chart, 

 The different types of control charts, 

 The concept of a rational subgroup, 

 What a plotting statistic is and what the function of the control limits is, 

 What a signaling event is, 

 The three distributions that are of interest in SPC, 

 The strengths and weaknesses of the Shewhart, the Exponentially Weighted Moving Average 

(EWMA) and the Cumulative Sum (CUSUM) control charts, 

 The differences and/or similarities between Phase I and Phase II control charts, 

 The difference and/or similarities between a parametric and nonparametric control chart, and 

 How the average run length and the operating characteristic are used as performance measures 

for a control chart. 
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1.1  Statistical Process Control 

 

SPC is a collection of statistical procedures and problem-solving tools that are used to control, 

monitor and improve the quality of the output of a production process, including  the output of 

services, through the reduction of variability within a process to the extent that is economically 

feasible (Montgomery (2005), p.148 and Kotz et al. (2006) p.6678). 

 

A process, from a SPC point of view, essentially refers to any repetitive procedure where the same 

action or the same task is performed over-and-over with the intention to obtain identical “outcomes” or 

similar “results” on each trial. Examples of processes where SPC plays a key role, range from a typical 

high-volume manufacturing process (e.g. the production of engine valves) to the service industry 

where the quality characteristics are less tangible and not easily quantified numerically (e.g. 

monitoring the time it takes a call centre operator to answer an incoming call). 

 

 

1.2  Types of variation 

 

The type of variation in a process plays a major role in SPC seeing that not all types of variation 

can be detected and reduced (or eliminated) to the same extent. There are two major types of variation 

that are pointed out. 

 

The first type is inherent or natural variation. This type of variation is also labeled chance or 

common causes of variation and always forms part of the “background noise” in a process, no matter 

how well the process is maintained and controlled. When a process is operating with only inherent or 

natural variation at, or around some acceptable target, it is said to be in statistical control, or just in-

control (hereafter denoted IC) (Montgomery (2005), p.148). 

 

The second important type of variation does not form part of the natural variation of a process and 

is thought to be caused by assignable (special) causes of variation; these are typically triggered by 

external factors that can be controlled, minimized or removed by taking the necessary corrective 

action. When a process is operating in the presence of an assignable cause, the process is said to be 

out-of-control (hereafter abbreviated OOC) (Montgomery (2005), p.149). 

 

Ideally a process should operate without any assignable causes of variation; this ensures, for 

example that the maximum number of items that conform to the specified standards. To ensure the 

accomplishment of this goal a tool is needed that is able to detect assignable causes as quickly as 
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possible, and at the same time, not be influenced by the natural variation within the process. The best 

tool for the job is a control chart. In the next few paragraphs a description of a control chart is given 

and its application is illustrated. 

 

 

1.3  The control chart 

 

A typical Shewhart control chart (Walter. A. Shewhart developed the statistical control-chart 

concept in 1924) is shown in Figure 1.1. This is probably the simplest and most well-known of the 

different types of control charts. Consequently, the Shewhart chart is chosen to introduce the reader to 

the basic concepts and then discuss more advanced types of control charts in the next section. 

 

 

 

 

Figure 1.1: A graphical illustration of a typical Shewhart control chart. 
 

 

A control chart is a display of a statistic corresponding to a parameter of interest (a quality 

characteristic) of a process output on the vertical axis versus the sample number or time plotted on the 

horizontal axis. A quality characteristic corresponds to a parameter of interest of the process output, 

which is some measure of quality of the process output (Montgomery (2005), p.6). A quality 

characteristic is a statistic calculated from a sample of observations obtained from the process output. 

The point that is plotted on the chart is typically referred to as a plotting statistic or charting statistic. 

Examples of plotting statistics are the sample mean, the sample variance and the fraction of 
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nonconforming items (i.e. the fraction of items not conforming to the specified standards within a 

sample). A set of control limits and a center line ( CL ) are typically added to the control chart and 

provide easy checks on the stability of the process (i.e. whether any special causes are present). The 

center line represents the typical or average value of the charting statistic corresponding to the in-

control state. The upper and the lower control limits are placed on both sides of the center line. The 

line above the center line is called the upper control limit (UCL ) and the line below the center line is 

labeled the lower control limit ( LCL ). The control limits define a control chart and, as mentioned 

earlier, help the user to make an informed and objective decision regarding the state of the process. 

Typically the decision whether the process is IC or OOC is based on the pattern of the points on the 

control chart and/or the position of the plotting statistics with respect to the control limits. For 

example, in the usual operation of a Shewhart control chart, when a single plotting statistic plots 

between the control limits the process is said to be IC and if the plotting statistic plots on or above the 

UCL  or on or below the LCL , the process is said to be OOC; in the latter case a search for assignable 

causes should be initiated to eliminate the root cause of the problem. It is customary to join successive 

points on the control chart with a line so that it is easier to visualize the status of the process over time. 

A control chart with both upper and lower control limits is called a two-sided control chart. When the 

detection of only an upward (downward) shift in the process is of interest, a control chart with only an 

upper (lower) control limit is needed. A control chart with only an upper or only a lower control limit 

is called an upper or a lower one-sided control chart, respectively. 

 

 

1.4  Types of control charts 

 

There are three main types of control charts and these are: (i) the Shewhart charts, (ii) the 

exponentially weighted moving average (EWMA) charts and (iii) the cumulative sum (CUSUM) 

charts. The Shewhart chart typically utilizes only the information at the last time point i.e. the most 

recent plotting statistic (calculated from a sample of observations obtained from the process output) to 

determine if the process is IC or OOC (Montgomery (2005), p.153). Technically more sophisticated 

control charts are also available and widely used in practice. The EWMA (Montgomery (2005), p.406) 

and the CUSUM (Montgomery (2005), p.390) control charts are two such charts. The EWMA and 

CUSUM charts are “memory-based” control charts in the sense that they combine historical 

information from past plotting statistics with the information from the latest (most recent) sample in 

the decision making process. 
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Another type of control chart that has received lots of attention in the SPC literature is the so-called 

Q-chart. Q-charts use the classical probability integral transformation and the inverse probability 

integral transformation to transform the sample statistic to a unit less real number (that retains the 

information from the original sample statistic) but has the advantage that the points may all be plotted 

on “standardized” Shewhart charts. For more details on Q-charts see, for example, the papers by 

Quesenberry (1991a), Quesenberry (1991b), Quesenberry (1991c), Quesenberry (1995a), Quesenberry 

(1995b), Quesenberry (1995c) and Quesenberry (1995d). 

 

 

1.5  Rational subgroups, plotting statistic, control limits and decision rules 

 

The construction of the various types of control charts differs considerably. Hence, a brief 

discussion regarding the “building blocks” and the assumptions underlying the Shewhart, the EWMA 

and the CUSUM charts is given next. The building blocks of a control chart are: (i) the rational 

subgroups (or the random samples), (ii) the plotting statistics or the charting statistics, (iii) the control 

limits, (iv) the center line, and (v) the decision rule or the signaling rule. 

 

 

1.5.1  Rational subgroup 

 

A rational subgroup consists of individual process units from the process output. From each unit a 

“measurement” is typically obtained; this measurement can be, for example, in the form of a numerical 

measurement on a continuous numerical scale such as length, width, diameter, volume etc. or a 

classification such as “conforming” (i.e. the items meet the requirements or specification) or 

“nonconforming” (i.e. the items do not meet the requirements or specification). The exact nature of the 

measurement depends on the type of process or the type of quality characteristic that is monitored, or a 

combination of the process and the quality characteristic of interest. 

 

The method of obtaining rational subgroups is critical, since it is desired to obtain the rational 

subgroups in such a way, as to be able to effectively detect if an assignable cause is present in the 

process. Usually, the requirement is that the rational subgroups should be selected in such a way as to 

maximize the chance of detecting any assignable causes between subgroups, while the likelihood that 

there are any differences within any of the rational subgroups should be minimized (see e.g. 

Montgomery (2005), p.245 and Farnum (1994), p.165). This requirement implies that a rational 

subgroup is not a random sample, as it is typically used in the statistical literature (see e.g. 

Montgomery (2005), p.87). However, for the developments in this dissertation both terms i.e. rational 
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subgroup and random sample, are used interchangeably and it is assumed (for the purposes of this 

dissertation) that they mean the same. For more information on the different methods of obtaining 

rational subgroups and the recommended size of rational subgroups see e.g. Montgomery (2005), 

p.162, Farnum (1994), p.165 and Kotz et al. (2006), p.6678. 

 

 

1.5.2  Plotting statistic 

 

Let niii XXX ,...,, 21  denote a random sample of size 1n  from the output of some process at time 

,...3,2,1i  and let iT  denote the statistic calculated from it. The statistic iT  is typically referred to as 

the plotting statistic or the charting statistic and is plotted on the vertical axis of a control chart versus 

the sample number or time on the horizontal axis. 

 

Typical plotting statistics that are used to monitor the location of a process include the sample 

mean ( X ), the sample median, the sign statistic and the Wilcoxon signed-rank (SR) statistic etc. The 

sample mean is used to monitor the average of the process, the SR statistic is used to monitor the 50th 

percentile (the median) and the sign statistic can be used to monitor any process percentile of interest; 

all of these statistics are used to monitor the location of the process. The sample range, sample 

standard deviation and the sample variance, on the other hand, are statistics used to monitor the 

variation of a process (see e.g. Montgomery (2005), p.106). 

 

When the quality characteristic of the process output is not measurable or easily measurable on a 

numerical scale the p, np, c or u control charts are typically used to monitor the process (see e.g. 

Chapter 6 of Montgomery (2005)). The p and np charts measure the proportion and number of items in 

a random sample or rational subgroup respectively that are nonconforming to the specified standards. 

Where the c and u charts measure the count of non-conformances in the random sample and count of 

non-conformances per observation unit respectively. 

 

Control charts based on statistics such as the mean, the range, the standard deviation and the 

variance are called parametric control charts and are typically designed with a specific underlying 

process distribution in mind. However, when the underlying distribution deviates from the conditions 

under which it was designed, the properties and/or the performance of the chart may be adversely 

affected, which could mean loss of time and resources (see e.g. Chakraborti et al. (2004)). Thus, when 

monitoring, for example the location of a process where the underlying process distribution is 

unknown the conventional parametric control charts should not be used blindly; in these cases 
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nonparametric control charts may be used, which are not developed with a specific underlying 

distribution in mind. Examples of nonparametric charts include the Shewhart-type sign and signed-

rank charts which are based on the well-known nonparametric sign and Wilcoxon signed-rank 

statistics, respectively. 

 

 

1.5.3  Control limits and the center line 

 

The control limits are placed on the control chart to aid the user in making an objective and 

informed decision regarding the state of a process i.e. whether the process is IC or OOC. The exact 

placement of the control limits depends on a number of key elements. These elements are for example: 

(i) the distribution of the individual observations (the distribution of the individual observations 

influences the distribution of the plotting statistic, since the plotting statistic is a function of the 

individual observation); (ii) the natural variability in the process (see e.g. Montgomery (2005), p.206), 

(iii) the distribution of the plotting statistic iT , (iv) the type of control chart (since, for instance, the 

EWMA and the Shewhart charts have varying and constant control limits over time, respectively) and 

(v) the specified performance criteria of the control chart (narrower control limits are required to detect 

smaller shifts), to name but a few. 

 

 

1.5.4  Signaling rule and signaling event 

 

A control chart signals following a sequence (or pattern) of plotting statistics on the control chart 

that correspond to a signaling rule, this event is known as a signaling event. Thus a signaling rule 

describes a specific event on a control chart and once the event occurs it is labeled as a signaling event. 

At each point in time, the signaling rule(s) is (are) used to determine whether the process is declared 

IC or OOC. The simplest signaling rule is based only on the last plotting statistic i.e. if the last plotting 

statistic plots on or outside one of the control limits the process is declared OOC otherwise the process 

is deemed IC. 

 

Because the simplest or basic signaling rule uses information only from the last sample to decide if 

the process is IC or OOC (known as the 1-of-1 signaling rule), the 1-of-1 signaling rule is relatively 

insensitive to small shifts in the process and consequently other signaling rules were developed. These 

rules include, for example, the rule that declares the process OOC if the last two plotting statistics plot 

on or outside the control limits (i.e. the 2-of-2 signaling rule) and the rule that declares the process 

OOC if two of the last three plotting statistics plot on or outside the control limits (i.e. the 2-of-3 
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signaling rule). The 2-of-2 and the 2-of-3 signaling rules are also known as runs-rules. Note that, in 

general, k-of-w runs-rules can be defined (where wk 1 ); however, for simplicity the focus is on the 

2-of-2 and the 2-of-3 signaling rules. 

 

By incorporating runs-rules into a Shewhart-type control chart, not only the last plotting statistic 

but also some historic information about the process is used in determining the IC or OOC state of the 

process. This is similar in spirit (but not exactly the same) as the EWMA and the CUSUM control 

charts in that they are memory-based control charts. For example, by incorporating signaling rules in 

the operation of a Shewhart-type control chart the last two or three plotting statistics (which are the 

sample statistics) are considered in determining the state of the process, whereas the EWMA and 

CUSUM control charts only consider the last plotting statistic (but, which is a function of all the 

sample statistics from start-up) in determining the state of the process. 

 

 

1.6  Three important distributions 

 

In SPC there are three distributions of interest and these are: (i) the underlying process distribution, 

(ii) the distribution of the plotting statistic (which is affected by the process distribution), (iii) the 

distribution of the run-length (which is in turn affected by both the distribution of the process and the 

distribution of the plotting statistic). These three distributions and their associated notations are 

introduced and discussed in the next section. 

 

 

1.6.1  The process distribution 

 

The sample of measurements taken from the process output is a set of random variables denoted by 

njiX ij ,...,2,1 and  ,...3,2,1   where   and X  is labeled the process random variable. Note that, 

the ijX ’s are, for example, typically obtained from some key quality characteristic of the manufactured 

product. 

The probability density function (pdf) and the cumulative distribution function (cdf) of X  are 

denoted by Xf  and XF , respectively where the subscript X  indicates that the functions are related to 

the random variable X ; similar notation is used for other random variables. The mean and variance of 

the process is denoted by X  and 2
X  respectively. 
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1.6.2  Distribution of the plotting statistic 

 

The plotting statistic or charting statistic is denoted by iT  for ,...3,2,1i  and is calculated from the 

corresponding sample measurements ijX . Because each iT  is a function of the ijX ’s (which are 

random variables) it follows that iT  is a random variable. The distribution of the plotting statistic, 

especially its mean and variance, is crucial in the determination of the control limits of the control 

chart (see e.g. Section 1.5.3), because the control limits are typically functions of the characteristics of 

the distribution of the plotting statistic. 

 

The pdf and cdf of iT  are denoted by Tf  and TF , whereas the mean and the variance of iT  are 

denoted by T  and 2
T , respectively. Note that, as long as the distribution of the ijX ’s remain 

unchanged (process is IC) the distribution of all the iT ’s are exactly the same; hence, the pdf and cdf of 

iT  is not indexed by an “i”. 

 

 

1.6.3  The run-length distribution 

 

“The number of rational subgroups to be collected or the number of charting statistics to be plotted 

on a control chart before the first OOC signal is observed is the run-length of a chart” Human and 

Graham (2007), which is denoted by N. The distribution of the run-length is of particular interest 

because it conveys information regarding the properties and/or the performance of a control chart. The 

pdf and cdf of the run-length random variable are denoted by Nf  and NF , respectively. The mean, 

variance and standard deviation of N are known as the average run-length (denoted ARL), the variance 

of the run-length (denoted VRL) and the standard deviation of the run-length (denoted SDRL). 

 

Table 1.1 summarizes the notation used for the pdf, cdf, mean and variance of the process 

distribution, the distribution of the plotting statistic and the run-length distribution, respectively. Note 

that arrows are added to Table 1.1 to emphasize that the run-length distribution is influenced/affected 

by the distribution of the plotting statistic, which in turn is influenced by the underlying process 

distribution. 

 

Since the focus in this dissertation is on nonparametric charts, it is worth noting that the 

distribution of a nonparametric statistic (plotting statistic of a nonparametric chart) is unaffected by the 

underlying distribution of the process ( Xf ). Consequently the IC run-length distribution of a 
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nonparametric control chart does not depend on the underlying process distribution ( Xf ) (Chakraborti 

et al. (2004)). 

 

 

Table 1.1: Summary of the notation of the Process distribution, Plotting statistic and Run-length 

random variable. 

Process distribution 

xxf X ),(  pdf 

 xXPxFX )(  cdf 

 XEX   mean 

2)var( XX   variance 

 

 

Distribution of the plotting statistic 

)(tfT
 pdf 

 tTPtFT )(  cdf 

 iT TE  mean 

2)var( TiT   variance 

 

 

Run-length distribution 

  ,...3,2,1)(  jjNPjfN  pdf 

  ,...3,2,1)(  jjNPjFN  cdf 

 NEARL   Mean: labeled average run-length (ARL) 

2)var( NNVRL   
Variance: labeled the variance of the run-length 

(VRL) 

 

1: In this dissertation the underlying process distribution )(xf X  is assumed to be continuous, 

2: Accordingly )(tfT  is also continuous, and 
3: The run-length random variable N  is discrete. 
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In the following chapter the Markov chain technique is described, which is used to calculate the 

run-length distribution and some associated characteristics of the run-length distribution as is done in 

this dissertation. Formulas are derived and these are used to calculate the run-length distribution and 

some associated characteristics of the run-length distribution in specific cases. 

 

 

1.7  The Shewhart, the CUSUM and the EWMA control charts  

 

The control limits are one of the key building blocks/elements of any control chart and their 

position on the chart directly influences the chart’s performance (see e.g. Montgomery (2005), p.156). 

In this section, the control limits of the Shewhart, the EWMA and the CUSUM charts are discussed. 

 

 

1.7.1  Shewhart chart 

 

The founding father of the Shewhart control chart is Walter. A. Shewhart who developed the 

statistical control chart concept in 1924 while working at Bell Telephone Laboratories (see e.g. 

Montgomery (2005), p.8) 

 

To describe the Shewhart chart in more detail, assume that inii XXX ,...,, 21  denote a random sample 

(i.e. measurements from some quality characteristic) of size 1n  from process at time ,...3,2,1i , 

with known process mean 0  and known process standard deviation 0 . 

 

Let ,...3,2,1iTi  denote the plotting statistics (calculated from each random sample i.e. the 

ijX ’s) and suppose that the mean and standard deviation of the plotting statistic, as mentioned in Table 

1.1, are denoted by T  and T , respectively. Then, the center line ( CL ), the upper control limit 

(UCL ) and the lower control limit ( LCL ) are given by: 

TT

T

TT

LLCL

CL

LUCL










                                                                              (1.1) 

where the constant 0L  is the charting constant which is a design parameter that determines the 

width of the control limits expressed in standard deviation units (Montgomery (2005), p.153). The 

plotting statistic iT  is plotted on the vertical axis versus the sample number or time on the horizontal 

axis of the control chart. Once a point plots on or outside the control limits, the process is declared to 

be OOC and the charting procedure stops (1-of-1 signaling rule). Typically, a search for assignable 
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causes is then started. In this dissertation, a sequence of the plotting statistics is considered and not 

only a single plotting statistic when determining the state of the process (i.e. IC or OOC). 

 

 

1.7.2  EWMA chart 

 

The Exponentially Weighted Moving Average (EWMA) chart was introduced by Roberts (1959) 

and is more effective than the 1-of-1 Shewhart-type chart in detecting small process shifts 

(Montgomery (2005), p.386). For a more in-depth discussion on the EWMA chart than what is given 

below, the reader may refer to Montgomery (2005), p.406-p.419, Crowder (1987, 1989) and Lucas and 

Saccucci (1990). 

 

To describe the EWMA chart in more detail, assume that ,...,, 321 XXX  denote independent and 

identically distributed observations from a process (distribution) with a known mean 0  and a known 

standard deviation 0 . The plotting statistic of the EWMA control chart for individual observations is 

defined as: 

1)1(  iii TXT       for  ...3,2,1i                                                          (1.2) 

 

where iX  is the current observation and the constant 10    is the smoothing parameter. The 

starting value of the plotting statistic (which is required for the first observation at time 1i ) is 

typically taken to be the process mean so that 00 T . 

 

The expected value and the variance of iT  in (1.2) are: 

     i
iTiT TVarTE

ii

222
0 )1(1

2
and 


 









   (see Appendix 1 for the derivation) (1.3) 

 

The exact upper and lower control limits and the center line of the EWMA chart are: 

 
0

2
00 )1(1

2
/















CL

LLCLUCL i

                                                 (1.4) 

where 0L  and   are suitably chosen constants. For large values of i  the term ])1(1[ 2i  

approaches unity so that the exact control limits approach their so-called steady-state values. The 

steady-state EWMA control limits are: 
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2

/ 00 LLCLUCL                                                                       (1.5) 

 

The EWMA plotting statistics are plotted on the vertical axis of the control chart versus the sample 

number or time (i) on the horizontal axis with the UCL  and LCL  in either (1.4) or (1.5) (Montgomery 

(2005), p.407). Once a point exceeds (i.e. plots on or outside) the control limits, the process is declared 

to be OOC and the charting procedure stops. Typically, a search for assignable causes is then initiated. 

 

The two constants L  and   are known as the design parameters of the EWMA chart. The constant 

10    is the smoothing parameter. “A rule of thumb is to use smaller values of   to detect smaller 

shifts” (Montgomery (2005), p.411). The constant L  determines the width of the control limits i.e. for 

larger (smaller) values of L  the wider (narrower) the control limits are and the longer (sooner) it will 

be before the chart signals. Montgomery (2005), p.411-p.412 gives a discussion on the design of the 

EWMA control chart i.e. the choice of L  and  . 

 

The preceding discussion focused on the EWMA chart for individual observations. The EWMA 

chart can be adapted or extended for the case where rational subgroups of size 1n  are considered 

(see e.g. Montgomery (2005), p.413). 

 

 

1.7.3  CUSUM charts  

 

The cumulative sum (CUSUM) chart is similar in spirit to the EWMA chart in that it is memory-

based and is able to detect small process shifts better than the 1-of-1 Shewhart control chart 

(Montgomery (2005), p.386). The CUSUM chart was first proposed by Page (1954) and subsequently 

studied in detail by numerous researchers. For an in-depth coverage of the CUSUM chart the books by 

Hawkins and Olwell (1998) and Montgomery (2005) may be consulted. Below a brief introduction is 

given on the CUSUM chart. 

 

The tabular CUSUM chart uses two plotting statistics to monitor the process: One plotting statistic 

is sensitive to upward shifts and is used to detect upward shifts in the process, and the second plotting 

statistic is sensitive to downward shifts and is thus used to detect downward shifts in the process. 

 

To describe the tabular CUSUM chart in more detail, assume that ,...,, 321 XXX  denote 

independent and identically distributed observations from a process with a known process mean 0  

and a known process standard deviation 0 . 
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Let C  be the statistic that is calculated by accumulating the deviations from 0  that are above 0  

and let C  be the statistic that is calculated by accumulating the deviations from 0  that are below 

0 ; these statistics are defined (calculated) as: 

 

])(,0max[

])(,0max[

10

10















iii

iii

CXKC

CKXC




                                                                 (1.6) 

 

where C  and C  are known as the one-sided upper and one-sided lower CUSUMs respectively, the 

starting values are 000   CC  and K is the reference value; the value of K is usually chosen to be the 

value halfway between 1  and 0  i.e. 

2

|| 01  
K                                                                                                 (1.7) 

where 1  is that value of the process mean that is of interest to be detected quickly (Montgomery 

(2005), p.390). 

 

The process is declared to be OOC if either C  or C  exceed the decision interval H  i.e. the 

control limit of a tabular CUSUM chart, which is usually chosen to be five times the process standard 

deviation 0  (Montgomery (2005), p.391). 

 

Note that, the tabular CUSUM defined above is for individual observations but can be extended 

and used in settings where rational subgroups of size 1n are obtained from the process (Montgomery 

(2005), p.402) 

 

 

Note that, for a one-sided Shewhart, EWMA and CUSUM chart (where only an upward or only a 

downward shift is of interest) the control limit that is not of interest is simply discarded, and the 

remaining control limit is adjusted appropriately so that the control chart has desirable properties 

(Montgomery (2005), p.400). 
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Example 1.1 

 

A Shewhart, two EWMA and a CUSUM control chart is created from the dataset given in Table 

1.2 and are displayed in Figures 1.2, 1.3, 1.4 and 1.5, respectively. 

 

Consider the example from the book by Farnum (1994) p.185 where the groove dimensions of keys 

(which are important quality characteristics in the manufacturing of keys) are monitored. Table 1.2 

displays the groove dimensions of 20 rational subgroups each of size 5. The mean ( 0  is unknown) of 

the groove dimensions are monitored by calculating the average of the groove dimension 

measurements in each subgroup of keys. A Shewhart, two EWMA and a CUSUM control chart is 

constructed with these subgroup averages as plotting statistics. 

 

Note that in Table 1.2 the second row, columns two, three, four, five and six 1ix , 2ix , 3ix , 4ix  and 

5ix  refer to the groove dimension measurements. The first value of the subscript of these five 

measurements ( i ) indicate the number of the subgroup, where the second value of the subscript 

indicate the number of the measurement of the subgroup in consideration. 
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Table 1.2 Groove dimension measurements from the manufacturing of keys. 

 

Subgroup Measurements Subgroup Mean 
i X(i,1) X(i,2) X(i,3) X(i,4) X(i,5) X-bar(i)  
1 0.0061 0.0084 0.0076 0.0076 0.0044 0.00682 
2 0.0088 0.0083 0.0076 0.0074 0.0059 0.0076 
3 0.008 0.008 0.0094 0.0075 0.007 0.00798 
4 0.0067 0.0076 0.0064 0.0071 0.0088 0.00732 
5 0.0087 0.0084 0.0088 0.0094 0.0086 0.00878 
6 0.0071 0.0052 0.0072 0.0088 0.0052 0.0067 
7 0.0078 0.0089 0.0087 0.0065 0.0068 0.00774 
8 0.0087 0.0094 0.0086 0.0073 0.0071 0.00822 
9 0.0074 0.0081 0.0086 0.0083 0.0087 0.00822 
10 0.0081 0.0065 0.0075 0.0089 0.0097 0.00814 
11 0.0078 0.0098 0.0081 0.0062 0.0084 0.00806 
12 0.0089 0.009 0.0079 0.0087 0.009 0.0087 
13 0.0087 0.0075 0.0089 0.0076 0.0081 0.00816 
14 0.0084 0.0083 0.0072 0.01 0.0069 0.00816 
15 0.0074 0.0091 0.0083 0.0078 0.0077 0.00806 
16 0.0069 0.0093 0.0064 0.006 0.0064 0.007 
17 0.0077 0.0089 0.0091 0.0068 0.0094 0.00838 
18 0.0089 0.0081 0.0073 0.0091 0.0079 0.00826 
19 0.0081 0.009 0.0086 0.0087 0.008 0.00848 
20 0.0074 0.0084 0.0092 0.0074 0.0103 0.00854 
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In Figure 1.2 the Shewhart control chart for the sample mean or x-bar ( X ) is created by choosing 

the design parameter 3L ; these are the well-known 3  control limits. Given that the process has an 

underlying Normal distribution the ARL will be 370 (Montgomery (2005), p.237). The control limits 

are constructed using equations (1.1). The plotting statistic iT  in this case is the subgroup mean. The x-

bar control chart is a chart that monitors the location of a process. Note that the process is IC since 

none of the plotting statistics plotted on or outside the control limits. Therefore it can be concluded that 

there is no shift in the location of the process. 

 

 

 

 

Figure 1.2: Shewhart X-bar control chart. 
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The EWMA control chart in Figure 1.3 for x-bar is created by choosing the design parameters as 

follows: 1.0  and  703.2  L ; given these parameters and a Normal underlying process distribution 

the ARL is 370 (Montgomery (2005), p.413). The exact control limits are constructed using equations 

(1.4). Note that equations (1.4) are for individual observations and in this case they are applied to 

rational subgroups (refer to the end of Section 1.7.2 for a brief discussion on rational subgroups). The 

plotting statistic plotted on the chart is given in equation (1.2), again equation (1.2) is for individual 

observations. Appropriate adjustments are made since rational subgroups are considered in this case. 

The x-bar EWMA control chart is also a chart that monitors the location of the process and is more 

sensitive to small shifts compared to the Shewhart control chart. Note that the process is IC since none 

of the plotting statistics plotted on or outside the control limits. 

 

 

 

 

Figure 1.3 EWMA control chart with exact control limits. 
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Note that the EWMA control chart in Figure 1.4 has steady-state control limits. The design 

parameters are chosen as follows: 1.0  and  703.2  L . Since the control limits in this case are 

wider at start-up than the EWMA control chart with exact control limits, the ARL will be greater than 

370. The steady-state control limits are constructed using equations (1.5). The plotting statistic plotted 

on the chart is given in equation (1.2). Note that since rational subgroups are considered, equations 

(1.5) and (1.2) are adjusted accordingly. None of the plotting statistics plot on or outside the control 

limits therefore it can be concluded that the process is IC. 

 

 

 

Figure 1.4: EWMA control chart with steady-state control limits. 
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A CUSUM control chart that monitors x-bar is illustrated in Figure 1.5. This chart is constructed 

for illustration purposes by choosing the design parameters as follows: 

0002.0  and  002449947.0  KH . H is chosen to be five times the standard deviation of the process 

mean where the process mean is estimated by X . For illustration purposes the out-of-control mean to 

be detected is chosen to be 000889989.01 u . Consequently from equation (1.7) it follows that 

0002.0K . Note that the process is IC since none of the plotting statistics plotted on or outside the 

decision interval H. The plotting statistics are defined in equations (1.6). Since rational subgroups are 

considered, equations (1.6) are adjusted accordingly. 

 

 

 

 

Figure 1.5: CUSUM control chart. 
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1.8  Strengths and weaknesses of the Shewhart, the EWMA and the CUSUM charts 

 

The plotting statistics of the Shewhart chart are calculated using only the last (i.e. latest) random 

sample or rational subgroup, which causes the chart to be relatively insensitive to small process shifts 

i.e. shift of order 05.1   units or less (Montgomery (2005), p.388). However, the CUSUM and EWMA 

charts consider historic values of the plotting statistic, and are consequently more effective in detecting 

small process shifts (Montgomery (2005), p.386). 

 

The traditional Shewhart, EWMA and CUSUM charts are parametric control charts; this means 

that they are typically designed with a specific distribution in mind (such as the Normal distribution). 

Hence, their run-length distribution is affected by the underlying process distribution (see e.g. Human 

et al. (accepted) regarding the effect of non-Normality of the underlying process distribution on the 

EWMA chart’s performance). This can be a drawback in some practical situations since these charts 

will be less useful when the underlying process does not follow a specific distribution. 

 

 

1.9  Phase I and Phase II charts 

 

There are two distinct phases in the application of a control chart, these are: Phase I and Phase II, 

respectively (see e.g. Woodall (2000), Woodall et al. (2004) and Chakraborti et al. (2009b) for a 

discussion of Phase I and Phase II control charts). As stated by Chakraborti et al. (2009b), in “Phase I, 

the primary interest is to better understand the process and assess process stability” whereas in Phase 

II, the process is assumed to be IC and needs to be monitored for the possible occurrence of an 

assignable cause(s). 

 

In order to apply a Phase II chart some knowledge is needed concerning the location and variability 

of the underlying process distribution to determine the control limits. If this knowledge is unavailable a 

Phase I analysis needs to be done to find an IC reference sample from which the control limits can be 

estimated. The general methodology of a Phase I analysis can be described as follows: 

In Phase I the process is assumed to be OOC. Typically 20 to 25 samples of size 5 each are 

obtained from which trial control limits are estimated/calculated. Note that the control limits in Phase I 

are referred to as trial limits since they may change as the Phase I analysis progresses. The Plotting 

statistics and trial control limits are calculated from the same values of the process output, these 

plotting statistics are then plotted on the control chart with the trial control limits. All the plotting 

statistics plotting on or outside the control limits are investigated for potential assignable causes. If an 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 33

assignable cause is found in the process, the output values associated with the presence of an 

assignable cause is discarded. New revised trial control limits are then calculated with the remaining 

process values that are associated with the plotting statistics that have all plotted IC. This trial and 

error process is repeated until all plotting statistics plot inside the control limits or until there are no 

more assignable causes present in the process. Eventually, the remaining set of values is assumed to be 

from an IC process. The ultimate goal in Phase I is to familiarize oneself with the process, to stabilize 

the process and to obtain a set of IC process samples. 

 

In Phase I the shifts in the process could be large since the process is assumed to be OOC 

(Montgomery (2005), p168) i.e. in the presence of assignable causes. Shewhart-type control charts are 

popular Phase I control charts since they are affective in detecting large shifts in the process 

(Montgomery (2005), p168). In Phase II the process shifts are expected to be smaller compared to 

Phase I since the process is already brought into control. CUSUM and EWMA control charts are 

popular Phase II control charts since they are effective in detecting small process shifts (Montgomery 

(2005), p.386). Note that it is not implied that Shewhart charts can only be applied in a Phase I 

analysis; similarly it is not implied that CUSUM and EWMA charts can only be applied in a Phase II 

analysis. 

 

There are different objectives in the design and operation of Phase I and Phase II control charts. In 

Phase II a control chart with a large in-control average run length (IC ARL) and a small out-of-control 

average run length (OOC ARL) is desirable. Whereas in Phase I the ARL is not a reasonable 

performance measure, since “the problem of simultaneous comparison of a number of (charting) 

statistics to the same set of control limits is similar to that encountered in the ‘multiple testing’ 

literature. Under these motivations, the false alarm probability (FAP), which is the (overall) probability 

of at least one false alarm, is used to construct (design) and evaluate Phase I control charts in the 

literature” (Chakraborti et al. (2009b)). 

 

 

1.10  Nonparametric or Distribution-free control charts 

 

A nonparametric control chart is defined in terms of its in-control run-length distribution i.e. if the 

in-control run-length distribution of the control chart is the same for every continuous distribution, the 

chart is said to be nonparametric or distribution-free (see Chakraborti et al. (2004)). Note that the terms 

nonparametric and distribution-free are used interchangeably, as for the purpose in this dissertation 

they mean the same. Since non-Normal process distributions are frequently encountered in practice, 
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there exists a demand for control charts that do not depend on the underlying process distribution i.e. 

nonparametric charts. 

 

The performance (as reported in the literature) of the Shewhart, the EWMA and the CUSUM 

control charts are typically for the Normal distribution and can be misleading to the unsuspected and 

ill-informed quality practitioner. Non-normal distributions can markedly affect a parametric control 

chart’s performance and can lead to an increase in false alarms, which in turn, will lead to a loss of 

time and resources (see e.g. Chakraborti et al. (2004)). When a process follows a Normal distribution, 

the traditional Shewhart, EWMA and CUSUM charts (which are all developed with the Normal 

distribution in mind) will perform very well compared to nonparametric control charts. Conversely, 

when the process follows a skew or heavy tailed distribution, nonparametric control charts will most 

likely outperform their parametric counterparts (see e.g. the performance comparisons of Human et al. 

(2009)). A thorough review of the literature on nonparametric charts can be found in Chakraborti et al. 

(2001), Chakraborti and Graham (2007) and Chakraborti et al. (2010). 

 

 

1.11  Variables and Attributes control charts 

 

Control charts can be classified into two general categories i.e. variables and attributes charts (see 

e.g. Montgomery (2005), p.156). 

 

Variables charts are used when the quality characteristic of a process is measurable on a numerical 

or some continuous scale. Some examples of variables charts that are often used are: (i) the X  control 

chart which measures/monitors the central tendency or location of a process, and (ii) the S  chart, 

which is based on the standard deviation ( S ), and used to monitor the variation or spread of a process. 

For more details, see Chapter 5 of Montgomery (2005) which gives a discussion on variables control 

charts. 

 

Sometimes a process quality characteristic is not measurable on a continuous or even a quantitative 

scale. If this is the case, a unit of product is usually classified as conforming or nonconforming, based 

on whether it possesses certain attributes, or sometimes it is possible to count the number of 

nonconformities in a unit of production. Control charts that are used to monitor such quality 

characteristics are called attribute control charts. Examples of attribute control charts are: the p charts, 

u charts and c charts. Chapter 6 of Montgomery (2005) gives a discussion on attribute control charts. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 35

1.12  Performance of a control chart 

 

The performance of a control chart is affected by the design of the chart. The design of the chart 

consists of a number of “building blocks” (refer, for example, to Section 1.5 and Montgomery (2005), 

p.156). 

 

The most popular performance measures of a control chart include the IC and the OOC ARL, and 

the operating characteristic (OC) curve (see e.g. Montgomery (2005), p.110 and p.160). Both the ARL  

and the OC effectively measure how quickly the control chart signals following a shift in the process. 

So, these performance measures can be used when comparing different control charts. 

 

When implementing a control chart, it is desired that the number of plotting statistics, plotting on 

or outside the control limits when the process is IC, to be a minimum (so that the FAR is small) and the 

control chart has the ability to detect a shift in the process as quickly as possible (i.e. small OOC ARL). 

A control chart with these properties is said to have good performance. Note that there is a sacrifice 

that has to be made between the FAR and the OOC ARL. In order to obtain a small FAR the OOC ARL 

deteriorates (OOC ARL increase), conversely when obtaining a small OOC ARL the FAR deteriorates 

(FAR increase). Consequently a balance needs to be found between a small OOC ARL and a small 

FAR. 

 

Note that in this dissertation the OOC ARL is used in performance comparisons. The OC curve is 

also a performance comparisons measure and is briefly discussed, as it is well-known and widely used 

in the literature. 

 

 

1.12.1  Operating characteristic 

 

The OC curve is a tool used to measure the performance of a control chart, for a discussion on OC 

curves consider Human and Graham (2007). The OC curve is the probability that no signal will be 

given by the chart on the first subsequent sample following a shift in the process i.e. the chart failed to 

detect the shift. Let   denote the probability of a non-signaling event, this probability is also referred 

to as the  -risk. The  -risk can be calculated given a shift in the process i.e. the probability of a non-

signaling event given the process is OOC. An OC curve has the  -risk on the y-axis and the shift in a 

process parameter on the x-axis. 
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When comparing control charts using OC curves, the design parameters of the charts are chosen 

such that their no signal probabilities (given the process is IC) are equal. The control chart with the 

“lower” OC curve is declared to be the better chart i.e. the chart has superior performance. To declare 

a control chart superior over a competing control chart could be more ambiguous; for instance for a 

certain range of shifts one chart’s OC curve can be lower while at a different range of shifts another 

chart’s OC curve can be lower. In this case it is not always clear which control chart is the best. “For a 

detailed discussion on the use of operating-characteristic curves, refer to Montgomery and Runger 

(2003)” (Montgomery (2005), p111). 

 

 

1.12.2  Run-length distribution 

 

“The number of rational subgroups to be collected or the number of charting statistics to be plotted 

on a control chart before the first OOC signal is observed is the run-length of a chart.” Human and 

Graham (2007). The run-length random variable is denoted by N. The distribution of the run-length 

random variable is denoted by Nf  and called the run-length distribution. Characteristics of the run-

length distribution that are typically calculated and used as measures of a control chart’s performance 

are: 

 Average Run Length (ARL), 

 Standard deviation of the run-length (SDRL), 

 Variance of the run-length (VRL), 

 Median of the run-length (MRL), 

 The quartiles ( 321 ,, QQQ ), 

 The percentiles, and 

 Inter quartile range (IQR) 

 

All of these run-length distribution characteristics give the user more insight into the performance 

of the chart. For example, the ARL, 321 ,, QQQ  and MRL are measures of the run-length’s location, 

where as the SDRL and IQR is a measure of the run-length’s variation.  

 

When there is no shift in the process i.e. there are no assignable causes present in the process, it is 

said that N  follows an IC run-length distribution. If assignable causes are present in the process, N  

has an OOC run-length distribution. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 37

As stated previously, the characteristics of the run-length distribution can be used as performance 

measures. The ARL is a measure of central tendency of the run length distribution. A control chart with 

good performance has a large in-control average run length (IC ARL) i.e. given there are no assignable 

causes present in the process the chart has a low FAR. It is also desirable for a control chart to have a 

small out-of-control average run length (OOC ARL) i.e. the chart signals quickly in the presence of an 

assignable cause or in the presence of a shift in the process. 

 

When performing performance comparisons between two competing control charts, their in-control 

average run-length (IC ARL) is usually fixed at an acceptable high level. Then, the chart with the 

smallest out-of-control average run-length (OOC ARL) is declared to be the better chart. 

 

 

1.13  Summary of Chapter 1 

 

A brief introduction to SPC is presented in this chapter. A solid foundation regarding general 

notation, terminology, definitions and key concepts in SPC is laid down, namely: 

 The different types of variation in a process, 

 The concept of the control chart, 

 The different types of control charts, 

 The concept of a rational subgroup, 

 What a plotting statistic is and what the function of the control limits is, 

 What a signaling event is, 

 The three distributions that are of interest in SPC, 

 The strengths and weaknesses of the Shewhart, the Exponentially Weighted Moving Average 

(EWMA) and the Cumulative Sum (CUSUM) control charts, 

 The differences and/or similarities between Phase I and Phase II control charts, 

 The difference and/or similarities between a parametric and nonparametric control chart, and 

 How the average run length and the operating characteristic are used as performance measures 

for a control chart. 

 

This will aid the reader in comprehending the means and goals in the following chapters. 
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1.14  Following chapter 

 

Chapter 2 focuses on the three methods to calculate the run-length distribution and the 

characteristics of the run-length distribution. The three methods are: (i) computer simulations or Monte 

Carlo simulations, (ii) the Markov chain approach, and (iii) the exact or integral equation approach. 

The emphasis falls on the Markov chain approach to calculate the run-length distribution and the 

characteristics of the run-length distribution, since it is the approach used in this dissertation to 

calculate the run-length distribution of the sign and precedence charts. 
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Chapter 2 
 

Methods to calculate the run-length 

distribution 
 

 

2.0  Chapter 2 overview and objective 

 

There are three methods to calculate (or at least approximate) a control chart’s run-length 

distribution. These methods are: (i) computer simulations or Monte Carlo simulations, (ii) the Markov 

chain approach, and (iii) the exact or integral equation approach. The objective in Chapter 2 is to 

provide a discussion on the Markov chain approach, as this is the approach used in this dissertation to 

calculate the run-length distribution of the sign and precedence charts. For completeness, a brief 

discussion is given on the Monte Carlo simulation and the exact approach. 

 

 

After reading this chapter the reader should be familiar with: 

 The three different approaches that can be used to calculate the run-length distribution and 

some of the characteristics of the run-length distribution, and 

 The formulas, when using the Markov chain approach to calculate the run-length distribution 

and some of the characteristics of the run-length distribution. 
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Example 2.1 

 

This example is provided to aid in illustrating the key concepts of the Markov chain approach. 

Throughout Chapter 2 references are made to Example 2.1. 

 

The weights of 1kg (1000g) packets of sweets are monitored for quality purposes. Suppose that the 

standard deviation of the weight of a packet of sweets is 20g and that the distribution of the weight of a 

packet of sweets is Normally distributed. A Shewhart-type chart is used to monitor the process where 

the UCL  and LCL  are three standard deviation units above and below the center line respectively i.e. 

gUCL 106020310003 00    and the gLCL 94020310003 00   . Note 

that individual units (packets of sweets) are monitored and not rational subgroups. 

 

From the information above the following probabilities can be calculated: 
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00266796.0  ppFAR  

 

The run-length of this (traditional) Shewhart-type control chart has a Geometric distribution (see 

Montgomery (2005), p.218) with parameter equal to the probability of a point plotting OOC i.e. 

00266796.0  pp . 
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Therefore: 
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Figure 2.1: Graphical illustration of the chart that monitors the weights of the packets of sweets. 

 

 

In the following section (Section 2.1) the Markov chain technique that is used to calculate the run-

length distribution and the characteristics of the run-length distribution is introduced and discussed. 

Section 2.1 is concluded by calculating the run-length distribution and the characteristics of the run-

length distribution of Example 2.1, using the Markov chain approach. This illustrates, firstly how to 

apply the Markov chain approach in a practical example, and secondly to illustrate that the results are 

consistent with what was calculated here. 
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2.1  The Markov chain approach 

 

2.1.1  Introduction 

 

A simple and unified method, which is based on a finite Markov chain, can be used to calculate the 

run-length distribution and the characteristics of the run-length distribution of various types of control 

charts; hence these include the Shewhart-type chart (see e.g. Human et al. (2009), Klein(2000), 

Antzoulakos and Rakitzis (2008), Khoo (2003) and Koo and Ariffin (2006)), the EWMA-type chart 

(see e.g. Borror et al. (1998), Borror et al. (1999), Saccucci and Lucas (1990) and Graham et al. 

(2009)) and the CUSUM-type chart (see e.g. Brook and Evans (1972), Woodall (1984) and Crosier 

(1986)). In this chapter definitions, results and theorems are provided that give the necessary 

background to lay a solid foundation, that ultimately leads to the derivation of the run-length 

distribution and formulas, that are used to calculate the characteristics of the run-length distribution via 

the Markov chain approach. The theorems and results are critical to the following chapters, in 

calculating the run-length distribution and the associated characteristics of the run-length distribution, 

of the sign and precedence control charts. 

 

Brook and Evans (1972) were of the first to make use of a Markov chain approach to calculate the 

run-length distribution of a CUSUM control chart. Since then there were numerous applications of the 

Markov chain approach in analyzing the run-length distribution of other control charts (see e.g. Borror 

et al. (1999), Koo and Ariffin (2006) and Human et al. (2009). The manner in which the Markov chain 

approach is used in this dissertation to calculate the run-length distribution differs from the way the 

Markov chain approach was used by Brook and Evens (1972). This is due to the advances in the area 

of distribution theory of runs and patterns, its application and the dissemination of the results by 

especially Fu and Lou (2003) and Fu, Spiring and Xie (2002); their research is mainly used here, since 

it fits neatly into the spectrum of this dissertation. 
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2.1.2  Definitions 

 

First, the focus falls on some basic definitions to assist in deriving the run-length distribution and 

characteristics of the run-length distribution in the following sections; these definitions are given in a 

Markov chain context. 

 

 

Definition 2.1 

 

A stochastic process is a collection of random variables TtYt : . 

All possible values that can be attained by  TtYt , , are called the states of the stochastic process 

and the set of all possible states is called the state space, denoted by  . The set of all indexing 

parameters T  is called the parameter space. If the parameter t is time, the value of  tY  is called the 

state the process is in at time t  (Ross (1997), p.77). 

 

 

Definition 2.2 

 

The sequence  tY  is called a Markov chain if, for any sequence  

  ,...,3,2,1,,,...,, 111100   tYYYY tttt   

it follows that 

   110011 |,...,|   tttttttt YYPYYYP   

where   t ,...,,, 210   

 

Thus, the sequence  tY  is a Markov chain if the probability that the system enters the state t  at 

time t , depends only on the immediately preceding state 1t  at time 1t  (Fu and Lou (2003), p.5). 

 

In a SPC context the sequence  tY  is a Markov chain if the probability that the process enters the 

state t  at time t , depends only on where the process was at time 1t . 

 

 

For the purposes in this dissertation, only finite Markov chains are considered, i.e. the Markov 

chain  tY  has a finite state space  , since it is shown later in this chapter and in the next chapter that 

the control chart is divided into a finite number of “zones” (the control limits divide the chart into the 

zones). The zones and combinations of multiple zones are associated with the states of the Markov 
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chain. Let   be a finite state space with m  states  m , and let    ,...,, 210 YYYYt   be a sequence 

of random variables defined on  , i.e. the stochastic process  tY  is a finite Markov chain (Fu and 

Lou (2003), p.5). 

 

 

One of the challenges in calculating the run-length distribution is to create or define the state space 

  for the Markov chain  tY  (with finite state space). In the following chapter, illustrations are 

provided on how to create or choose the state spaces of the Markov chains for the charts considered. 

 

 

Definition 2.3 

 

At each step (i.e. point in time) the process  ,...3,2,1, tYt  may remain in the current state or 

move to another state according to some probability distribution. The state changes are called 

transitions and the probabilities associated with these transitions are called transition probabilities 

and denoted by: 

   tpYYP jiitjt ,1|    , where ij  ,  

at time t. The transition probabilities   mjitp ji  ,1,, , may be represented as an mm  matrix 

             
     
 

     
mmmmmm

m
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tptptp
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tptptp
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,2,1,

1,2

,12,11,1

,

...

............

.........

...

M  

,...3,2,1, ttM , are the one-step transition probability matrices. Note that this transition probability 

matrix depends on time; this implies that  tp ji,  is not necessarily equal to  wp ji ,  for wt  . 

However, if    wptp jiji ,,   for all wt   then a major simplification occurs; this is looked at next (Fu 

and Lou (2003), p.5). 

 

 

Definition 2.4 

 

A Markov chain  ,...,, 210 YYY  is homogeneous if the transition probabilities are constant over time 

(i.e. independent of time), i.e.   jiitjt pYYP ,1|     for any ji  , , and all ,...,3,2,1t  

where the transition probabilities jip ,  are independent of the time index t  (Fu and Lou (2003), p.6). 
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Definition 2.5 

 

State i  of a Markov chain is called an absorbing state if, once the system enters state i , it 

can never leave state i ; i.e. 1, 
ii

p   and 0, 
ji

p   for any ji   (Fu and Lou (2003), p.18). 

 

 

Definition 2.6 

 

State j  of a Markov chain is called a transient state if, given the process is in state j , 

there is a positive probability that the process will never return to state j  (Fu and Lou (2003), p.18). 

 

 

Interpreting absorbing and transient states on the control chart 

 

The Markov chain’s transitions between the transient state(s) are associated with the plotting 

statistic moving in a stochastic manner on the control chart without causing the chart to signal; this 

indicates that the process is IC and the state(s) associated with the process being IC are the transient 

state(s). There is a positive probability of the plotting statistic plotting OOC at any point in time, with 

the result that the chart signals. This is equivalent to the stochastic process  tY  moving to an 

absorbing state (the process can then not move back to any of the transient states). 

 

 

Remark 2.1 

 

Zones are created on a chart as illustrated in Figure 2.2 (for the two-sided 1-of-1 chart). Note that 

zones are simply used as an indicator variable, in other words to indicate in which area/zone the 

plotting statistic iT  plotted on the control chart. The states of the Markov chain  tY  consist of the 

zones and can also consist of a combination of multiple zones, for instance a two-sided 2-of-2 chart has 

the absorbing state  88  i.e. the absorbing state consists of a combination of zones. Zones are simply 

tools to aid in applying the Markov chain approach that is used to calculate the run-length distribution 

and the characteristics of the run-length distribution. 

 

 

To better understand the previous discussion, Example 2.1 is revisited. The control chart in Figure 

2.1 can be divided into 3 zones, as illustrated in Figure 2.2. The zone numbers may seem illogical; for 

clarity on the choice of zones numbers refer to Chapter 3. 
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Let Zi, i=1,2,3,… be a sequence of random variables that keeps track of the classification of the 

plotting statistics Ti’s, i=1,2,3,… in the different zones on the chart. 

 

 

Table 2.1: Defining the Zi, i=1,2,3,… random variables for the 1-of-1 Shewhart chart. 

 

The sZi '  are defined as follows: 

                  8iZ  if UCLTi   

                  9iZ  if LCLTi   

                  3iZ  if UCLTLCL i   

 

 

Table 2.2: Defining the probabilities for the 1-of-1 Shewhart chart. 

 

The probabilities that the plotting statistics ,...3,2,1,' isTi  plot 

inside the zones are denoted by: 

                 pUCLTPZPp ii 88  

                 pLCLTPZPp ii 99  

                )(133
  ppUCLTLCLPZPp ii  

 

 

The Markov chain  tY  has the following three states namely state 8, state 3 and state 9. 

 

If the plotting statistic moves (plots) in a stochastic manner between the UCL  and LCL , it is 

equivalent to transitions of the Markov chain between state 3 and state 3 (since there is only a single 

transient state). 

 

When the plotting statistic plots above (below) the UCL  ( LCL ) the control chart signals which is 

equivalent to the Markov chain entering state 8 (9) which is an absorbing state. 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 47

 

 

Figure 2.2: Illustration of the “zones” on the control chart. 

 

 

2.1.3  The run-length distribution 

 

The run-length is the number of points (plotting statistics) that plot on the chart until the chart 

signals (Montgomery (2005), p.160). In SPC one of the main goals is to calculate the run-length 

distribution, since the run-length distribution and its characteristics (such as the average run-length 

(ARL), standard deviation of the run-length (SDRL), median (MDRL) etc.) provide important 

information regarding the performance of the chart (see e.g. Human and Graham (2007)). In the 

Markov chain setting the run-length is the number of transitions until the Markov chain enters an 

absorbing state for the first time, i.e. the chart signals (which would typically occur/happen when the 

first plotting statistic plots on or outside the control limits). 

 

The Markov chain technique is used to calculate the run-length distribution, or, the distribution of 

the waiting time until a certain pattern or sequence of plotting statistics ,...3,2,1, iTi  (on the control 

chart) occur. The pattern in the ,...3,2,1,' isTi  could be the first occurrence of a single plotting 

statistic plotting on or outside a control limit, or it could be the first occurrence where the last two 

plotting statistics plot on or outside the control limits etc. Each plotting statistic iT  can be classified 

into a zone, where a zone is defined as an area on the control chart divided by horizontal lines (control 

limits). A new sequence of random variables ,...,, 321 ZZZ  is created that keeps track of the 
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classification of the sTi '  in the different zones on the control chart. The sZi '  are then used to aid in 

applying the Markov chain approach to calculate the run-length distribution. 

 

An approach is followed to properly imbed (fit together or fit inside) the run-length random 

variable  N  into a finite Markov chain  jY , so that the probability of  diii ZZZ  ,...,, 1  (where d 

is the sequence or pattern length of interest or number of plotting statistics that is kept track of), can be 

expressed in terms of the probability that the Markov chain outcome  jY  resides in a subset   of the 

state space  , i.e.       jdiii YPZZZP ,...,, 1  (where jdi  ). Note that  ; the 

notation is used interchangeably where   is used to indicate  is an element or subset of elements of 

the state space  , where  jYP  can be computed with relative ease using the Markov chain 

transition probability matrices (Fu and Lou (2003), p.2). The run-length distribution is of interest, i.e. 

the waiting time of the event  diii ZZZ  ,...,, 1  or  jY , where   in this case would be an 

absorbing state. Note that in more general terms   may be a collection of patterns or sequences, i.e. 

w ...21 , where w is the number of patterns or sequences of the plotting statistic that 

cause the chart to signal. The run-length of the control chart then becomes the waiting time until the 

first occurrence of one of the patterns w or  ,...,, 21 . Note that w  ,...,, 21  are the absorbing 

states of the Markov chain  jY . Using the Markov chain approach, the representation of the run-length 

distribution, or the waiting time distribution of the event    djjj ZZZ ,...,, 1 , or  jY  is 

compact, easy to compute, and amenable to further analysis (Fu and Lou (2003), p.3). The method is 

largely dependent on being able to construct a proper Markov chain associated with the random 

variables sZi ' . Once the Markov chain is constructed, the linearity of the Markov chain reduces the 

computational complexity of the run-length distribution and its properties, often associated with 

combinatorial and generating-function techniques for computing the exact run-length distribution of 

the control chart (Fu and Lou (2003), p.3). For this reason the application of the Markov chain 

approach in SPC to calculate the run-length distribution and its characteristics, are utilized in this 

dissertation. 
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Remark 2.2 

 

To be noted is that there is a difference between the run-length in an SPC environment and in the 

Markov chain setting. The states of the Markov chain are associated with plotting statistics, or 

sequences of plotting statistics plotting in associated zones on the control chart. The run-length in a 

Markov chain setting are the number of transitions between the states until an absorbing state is 

entered into for the first time, and not the number of times that states are visited until an absorbing 

state is entered into for the first time. More discussions will follow regarding this point in Chapter 3 

Section 3.3. 

 

 

2.1.4  Transition probability matrix of a finite Markov chain 

 

Let  hm  ,...,, 21  be the subset of   containing all absorbing states of a Markov chain  tY  

with transition probability matrix denoted by M . A dummy state “ ” is added in the state space  . 

The initial distribution of the Markov chain  tY  is:   10  YP . The reason for the inclusion of the 

dummy state “ ” in the state space  , is so that the process starts IC with certainty and that the 

difference between the run-length in an SPC and Markov chain setting is overcome; more detail can be 

found in Chapter 3 Section 3.3. The transition probability matrix M  can always be written in the 

following form: 
















)()()(

)(

hmhmhhm

hmhhh
mm I0

CQ
M                                                               (2.1) 

where m  and  hm   are the number of states in   and   respectively, i.e. the Markov chain  jY  

has a total of m  states in its state space  , where  hm   of the states are absorbing states; h  is the 

number of transient states and one of the transient states is the dummy state “ ” (Fu and Lou (2003), 

p.18). The matrix Q  is referred to as the essential transition probability submatrix of the Markov chain 

(Fu and Lou (2003), p.18). Let ξ be the initial distribution, where  0,...,0,0,11 hξ  i.e. the process 

always start in the dummy state “ ” with probability one. Note that it must always be true that 





h

i
i

1

1 , which is the case here. 
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2.1.5  Results 

 

In this section the results are provided that are used to derive the run-length distribution and the 

associated characteristics of the run-length distribution; the proofs of the results are provided in 

Appendix 2. 

 

Assume that the states of the Markov chain can be ordered, i.e. 

 mhh    ...... 1321 , 

where  1  is the dummy state,  h ,...,, 21  are the transient states and  mhh  ,...,, 21   are the 

absorbing states respectively. Then some general results are as follows: 

 

 

Result 2.1 

 

If the transition probability matrix M  has the form given in equation (2.1) and   1QI  exists, 

then: 

 

i)                            ,...3,2,1, 







 jj

j
j

I0

CWQ
M                                                                  (2.2) 

                          where 132 ...  j
j QQQQIW  

 

ii)                       1lim 


 QIW j

j
                                                                                                (2.3) 

(Fu et al. (2002)) 

 

The proofs of Result 2.1(i) and Result 2.1 (ii) are given in Appendix 2 as Proof 2.1 and Proof 2.2 

respectively. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 51

Result 2.2 

 

Given that the Markov chain  jY  starts in the dummy state “ ”, i.e.  0Y , and the transition 

probability matrix is of the form given in equation (2.2), then: 

   
,...3,2,1,

|| 001



 

j

YjNPYYP
j

hj

1ξQ


 

 

  ,...3,2,1,| 01   jYYP j
hj 1ξQ                                             (2.4) 

 

where  Th 1,...,1,1,11 1  and  0,...,0,0,11 hξ  

 

Note that since h and m are the number of transient and absorbing states respectively, it follows 

from the definitions of  jY and  N  that 

   jNY hj  1  

(Fu et al. (2002)) 

 

In order to interpret    jNY hj  1 , recall that  jY  and  N  are the Markov chain and 

run-length random variable, respectively. It simply means that the run-length is greater than j  (i.e. the 

chart has not yet signalled at time j ) if and only if the Markov chain at time j  has not yet entered an 

absorbing state. 

 

The proof of Result 2.2 is given in Appendix 2 as Proof 2.3. 
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2.1.6  Theorems 

 

The run-length distribution and some of its characteristics are presented in this section. This 

includes the moment generating function, and the factorial moment generating function (or the 

probability generating function), which are both used to derive some characteristics of the run-length 

distribution. Only the results are presented in this section, the proofs are provided in Appendix 2. 

 

 

Theorem 2.1 

 

Let  jY be the finite Markov chain with state space   and transition probability matrix given in 

equation (2.1), initial distribution given by  0,...,0,0,11 hξ  and where  Th 1,...,1,1,11 1 is the unit 

vector, then: 

 

i)    1QIQξ  1
0| jYjNP  , for j=1,2,3,…, with IQ 0                                                (2.5) 

 

ii)  The moment generating function is given by: 

      1QIξ
1

11


 tt
N eetM                                                                                               (2.6) 

 

iii)     1QIξ 1NE                                                                                                                 (2.7) 

     1QIQIξ 22 NE                                                                                                     (2.8) 

       212var 1QIξ1QIQIξ  N                                                                            (2.9) 

       212 1QIξ1QIQIξ  NStdv                                                                       (2.10) 

(Fu et al. (2002)) 

 

The proofs of Theorem 2.1(i), (ii) and (iii) are given in Appendix 2 as Proofs 2.4, 2.5 and 2.6 

respectively. 
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Theorem 2.2 

 

Let  jY  be the finite Markov chain, having state space   and transition probability matrix given 

in equation (2.1), initial distribution  0,...,0,0,11 hξ  and where  Th 1,...,1,1,11 1  is the unit vector. 

The same results as found in Theorem 2.1 can be obtained by considering the probability generating 

function or the factorial moment generating function: 

 

i) The probability generating function is given by: 

      11 1   1QIξ tttGN                                                                                  (2.11) 

 

ii)         1QIξ 1NE                                                                                                 (2.12) 

     1QIQIξ 22 NE                                                                                      (2.13) 

       212var 1QIξ1QIQIξ  N                                                             (2.14) 

       212 1QIξ1QIQIξ  Nstdv                                                         (2.15) 

(Fu and Lou (2003), p.73) 

 

The proofs of Theorem 2.2 (i) and (ii) are given in Appendix 2 as Proofs 2.7 and 2.8 

respectively. 
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Theorem 2.3 

 

The cumulative distribution function of the run-length distribution is given by: 

i)      



j

i

YiNPYjNP
1

00 ||   

 


 
j

i

i

1

1 1QIξQ ,   for j=1,2,3,…, with IQ 0                        (2.16) 

 

ii)    ,...3,2,1,1| 0  jYjNP j 1ξQ                                                               (2.17) 

 

iii) From the definition of a percentile it follows that the th100  percentile of the run-length 

distribution is the smallest integer j  so that: 

    0| YjNP                                                                         (2.18) 

 

Stated differently, the th100  percentile of the run-length distribution is the integer j  so 

that: 

 











 
j

i

ij
1

1:inf 1QIξQ                                                             (2.19) 

                                     or 

  1ξQ jj 1:inf                                                                           (2.20) 

 

The proof of Theorem 2.3 (ii) is given in Appendix 2 as Proof 2.9. 

 

 

The necessary results and formulas are now established which is used in Chapters 4 and 5 to 

calculate the run length distribution and some of the characteristics of the run-length distribution of the 

sign and precedence charts. 
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2.1.7  Summary of the Markov chain approach 

 

A brief summary is presented to recapitulate and illustrate the Markov chain approach to calculate 

the run-length distribution and some of the characteristics of the run-length distribution. 

 

 

Table 2.3: Summary of the Markov chain approach. 

 

 

Create “zones” on the control 
chart. 

Create the random variable 
...3,2,1, iZi  that keeps track 

of the different zones that the 
plotting statistic plots in. 

Include in the state space   
of the Markov chain, the 
possible iZ  values and 

sequences of iZ  values, that 

are sub-sequences of 
sequences of iZ ’s that cause 

the chart to signal. Also 
include the dummy state   in 
 .

Define the sequence(s) or 
pattern(s) of the plotting 
statistic/s iT  that cause the 

chart to signal i.e. define the 
absorbing states of the 
Markov chain 

Calculate the transition 
probabilities. 

Set up the transition 
probability matrix of the 
Markov chain  tY . 

Use equations (2.5), (2.7), 
(2.8), (2.9) and (2.10) to 
calculate the run-length 
distribution and some of the 
characteristics of the run-
length distribution.

Step 6 

Step 2 

Step 3 

Step 4 

Step 5 

Step 7 

Step 8 

Step 1 

Create a control chart and 
decide on a plotting statistic. 
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Remark 2.2 

 

The steps illustrated in Table 2.3 present clear stepwise instructions to apply the Markov chain 

approach. However, note that the run-length random variable  N  is imbedded (fit together or fit 

inside) into a finite Markov chain  jY , so that the run-length distribution and the characteristics of the 

run-length distribution can be calculated. 

 

 

To illustrate the application of Table 2.3 Example 2.1 is revisited. 

 

Step 1: The control chart is created and illustrated in Figure 2.1; the plotting statistic that is 

decided on is the individual measurements of the weights (gram) of the packets of 

sweets. 

 

Step 2: Zones 1, 2 and 3 are created as illustrated in Figure 2.2. 

 

Step 3: The random variable ,...3,2,1, iZi  is created in Table 2.1. 

 

Step 4: The chart signal following either one of the following two patterns of plotting statistics: 

 ,...3,2,1,8  iZi  or  ,...3,2,1,9  iZi . 

 

Step 5: The state space of the Markov chain iY  is  9,8,3,  (in this case the absorbing 

states have no sub-sequences). 

 

Step 6: The transition probabilities are calculated at the start of Example 2.1, given as follows: 

  80.001349898   UCLTPpp i  

  80.001349899   UCLTPpp i  

  40.9973002013   ppUCLTLCLPp i  
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Step 7: The transition matrix of the Markov chain tY  is as follows: 
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Step 8: Using equations 2.5, 2.7, 2.8, 2.9 and 2.10 where  0,121 ξ ,  Th 1,11 1 and 
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I  the following is obtained: 
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From the above, exactly the same results are obtained as at the start of the chapter by making use 

of the Geometric distribution characteristics. 

 

It may seem that the density functions differ, but when calculating numerical values it is seen that 

they are in fact the same. Consider the following illustration: 
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2.2  Computer simulations or Monte Carlo simulations 

 

Computer simulations or Monte Carlo simulations are often used to estimate the run length 

distribution of a control chart. The popularity of this method stems from the fact that no matter how 

complicated the analytical form of the run-length distribution is, computer simulations can almost 

always be used with relative ease to estimate the run-length distribution and its associated 

characteristics fairly accurately, provided the simulation size is big enough. Unfortunately the size of 

the simulation is very ambiguous; there is no “magical” number of simulations which always results in 

accurate results. However, the standard error of a run-length characteristic can be bounded by 

increasing the simulation size sufficiently. The two main drawbacks of this method are: (i) in order to 

find accurate values of the run-length distribution a large number of simulation iterations must be 

performed, which can be very time consuming and (ii) this method does not provide the exact (or 

theoretical) values, but only approximate values. 

 

 

A stepwise computer simulation procedure to calculate the run-length distribution for a two sided 

control chart, where the plotting statistic is calculated from a random sample, is given as follows: 

 

Step 1: Calculate the control limits. (Prior knowledge is required regarding the process and 

design parameters in order to calculate the control limits.) 

Step 2: Create a counting variable namely count and set the variable count equal to zero 

 0count . 

Step 3: Simulate a random sample from an assumed underlying process distribution, for 

example from the standard Normal distribution (  1,0N ). 

Step 4: Calculate the plotting statistic from the simulated sample. 

Step 5: Determine if the control chart has signalled by comparing the plotting statistic(s) to the 

control limits. 

Step 6: If a signalling event has not realized, then 1 countcount . 

Step 7: If a signalling event has realized; store the value of the count random variable and reset 

count i.e. count = 0. 

Step 8: Repeat steps 1 to 7 many times (number of simulations). 

Step 9: All the stored count values are values from the run-length distribution. From these a 

frequency distribution can be obtained. 

Step 10: From these stored run-length values, any unknown statistic or characteristic of the 

unknown run-length distribution can be calculated and estimated. 
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By increasing the number of simulations, the accuracy of the estimated run-length distribution and 

characteristics of the run-length distribution can be improved. 

 

The IC run-length distribution characteristics are found by evaluating the run-length values that 

were obtained by simulating the random samples from an IC process distribution. Similarly the OOC 

run-length characteristics are found by evaluating the run-length values that were obtained by 

simulating the random samples from an OOC process distribution. 

 

Examples of where the run-length distribution or some characteristics of the run-length distribution 

are found through computer simulations can be found in, e.g., Khoo (2005), Khoo and Ariffin (2006), 

Graham et al. (2009) and de Vargas et al. (2004). 

 

 

2.3  Exact approach or Integral equation approach 

 

The exact approach utilizes mathematics and combinatorics to find a closed form expression of the 

run-length distribution. This approach is sometimes challenging, in that the expression obtained is 

typically complex or difficult to be evaluated numerically. Often the exact expression of the run-length 

distribution can be found, but simulations are used instead, since that is easier. Papers where the exact 

approach was used to calculate the run-length distribution include Jones et al. (2001) (for the EWMA 

control chart), Jones et al. (2004) (for the CUSUM control chart) and Human et al. (2009) (for the 

nonparametric Shewhart-type control charts). 

 

 

2.4  Summary of Chapter 2 

 

The reader should now be familiar with the three different methods that can be used to calculate the 

run-length distribution and some characteristics of interest of the run-length distribution. In particular 

the theoretical background and the application of the Markov chain approach to calculate the run-

length distribution should be clear. 
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2.5  Following chapter 

 

The following chapter (Chapter 3) gives a discussion on the runs-rules that are applied to the 

nonparametric charts in Chapters 4 and 5. The transition probability matrices that are required in the 

Markov chain formulas are constructed in Chapter 3. 
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Chapter 3 
 

Runs-rules, improved runs-rules and transition 

probability matrices 
 

 

3.0  Chapter 3 overview and objective 

 

The improved 2-of-2 and the improved 2-of-3 runs-rules (Shewhart-type) nonparametric charts are 

considered in this dissertation. These improved runs-rules charts are extensions of the original 2-of-2 

and 2-of-3 charts (see Human et al. (2009)), which in turn are extensions of the original 1-of-1 charts 

(see Amin et al. (1995) and Chakraborti et al. (2004)). 

 

The improved 2-of-2 charts are a combination of the 1-of-1 and 2-of-2 runs-rules based charts, 

whereas the improved 2-of-3 charts are a combination of the 1-of-1 and 2-of-3 runs-rules based charts. 

 

The objective in Chapter 3 is to clearly explain and graphically illustrate the signalling rules of the 

1-of-1, the 2-of-2, the 2-of-3, the improved 2-of-2 and the improved 2-of-3 charts. The transition 

probability matrices are also constructed for all these charts. Note that, both one-sided and two-sided 

charts are considered. 

 

After reading this chapter the reader should be familiar with: 

 How the control limits divide the control chart decision region into “zones”, 

 The signaling rules, 

 The transition probability matrices, and 

 How to use the general results in Chapter 2 for the charts in this chapter. 
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3.1  Introduction 

 

When monitoring a process an appropriate plotting statistic is used, for example when monitoring 

the location, the sample mean  X  is typically used as the plotting statistic. The plotting statistics are 

plotted on the control chart until a particular plotting statistic or a sequence of plotting statistics leads 

to a signal, then the process is declared to be OOC and a search for an assignable cause is started. 

Since Shewhart-type control charts use only the last plotting statistic (calculated only from the last 

sample) in determining the state of the process, i.e. whether the process is IC or OOC, only large shifts 

in the process are efficiently detected (see Klein (2000)). Sensitizing rules have been proposed to 

address the lack of sensitivity of the Shewhart-type chart for small process shifts (see e.g. Page (1955), 

the Western Electric Handbook (1956), Roberts (1958), Bissell (1978) and Wheeler (1983), among 

others). Sensitizing rules are signalling rules designed to detect some improbable and/or non-random 

pattern of the plotting statistics on the control chart (Montgomery (2005), p.166). 

 

Runs-rules, which are specific/special signalling rules, are the types of sensitizing rules discussed 

in this chapter; these rules are used to improve the Shewhart chart’s sensitivity in detecting small 

process shifts. The original Shewhart chart considers only the last plotting statistic (calculated from the 

last sample) in determining the state of the process; this chart is also known as the 1-of-1 chart. Two of 

the most popular signalling rules are the 2-of-2 and the 2-of-3 runs-rules suggested by Klein (2000) 

and the corresponding charts are thus labelled the 2-of-2 and the 2-of-3 charts. 

 

Note that the k-of-k  2k  runs-rules chart is the general case. The k-of-k runs-rules chart signals 

when k consecutive charting statistics all plot on or outside the control limit(s). A generalization of the 

k-of-k runs-rules chart is the k-of-w  wk 1  runs-rules chart which signals when k of the last w 

charting statistics plot on or outside the control limit(s). 

 

The 2-of-2 and 2-of-3 charts have a drawback, namely the lack of being able to immediately detect 

a large process shift i.e. the 2-of-2 and the 2-of-3 charts require at least the last two or three plotting 

statistics to signal, respectively. This dilemma can potentially be costly to the practitioner in the sense 

that the chart’s ability to detect a large shift in the process is delayed; the proposed improved runs-

rules offer a possible solution in this case. 

 

The control limits of the runs-rules and the improved runs-rules charts divide the chart area into so 

called “zones”. Figure 3.1 is a graphical illustration of all the zones that are created when using the 

runs-rules and the improved runs-rules charts. 
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Note that referring to Figure 3.1, the BUCL  and BLCL  are known as the outer control limits or the 

so called B control limits. Similarly AUCL  and ALCL  are known as the inner control limits or the so 

called A control limits. 

 

In Figure 3.1 the set of inner control limits is labelled AUCL  (or UCL ) and ALCL  (or LCL ). Note 

that, when the usual runs-rules charts are used the upper and lower control limits referred to as the 

UCL  and LCL  respectively, are used. When the improved runs-rules are used the inner upper and 

inner lower control limits, referred to as AUCL  and ALCL , respectively, and BUCL  and BLCL  

referred to as the outer control limits or the so called B control limits, respectively, are all used. 

 

 

 

 

Figure 3.1: Illustration of the different “zones” on the runs-rules and improved runs-rules 

control charts. 

 

 

Remark 3.1: 

 

Note that throughout this dissertation the inner lower control limit of the improved runs-rules 

charts will be denoted by ALCL  and the lower control limit of the runs-rules charts will be denoted by 

LCL . The ALCL  and LCL  are taken to be the same in this dissertation, this is denoted by 

LCLLCLA /  on the graphical illustrations as is shown in Figure 3.1. The same is implied for the outer 

upper control limit denoted by UCLUCLA / . 
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Note that not all the zones and/or control limits are relevant to a particular control chart. For 

instance, when considering an upper one-sided 1-of-1 Shewhart-type control chart, the BUCL , 

LCLLCLA /  and BLCL  are not applicable (not used), only the UCLUCLA /  are used. Thus only zones 

7 and 8 are used (and zones 1, 2, 3, 4, 5, 6 and 9 are not used) as illustrated in panel (a) of Figure 3.2. 

 

 

In Figure 3.2, panels (a) through (f), the various cases that arise out of Figure 3.1 are shown: 

 Panel (a) of Figure 3.2 illustrates how Figure 3.1 reduces for the upper one-sided 1-of-1, the 

upper one-sided 2-of-2 and the upper one-sided 2-of-3 charts. 

 Panel (c) of Figure 3.2 illustrates how Figure 3.1 reduces for the lower one-sided 1-of-1, the 

lower one-sided 2-of-2 and the lower one-sided 2-of-3 charts. 

 Panel (e) of Figure 3.2 illustrates how Figure 3.1 reduces for the two-sided 1-of-1, the two-

sided 2-of-2 and the two-sided 2-of-3 charts. 

 Panel (b) of Figure 3.2 illustrates how Figure 3.1 reduces for the upper one-sided improved 2-

of-2 and the upper one-sided improved 2-of-3 charts. 

 Panel (d) of Figure 3.2 illustrates how Figure 3.1 reduces for the lower one-sided improved 2-

of-2 and the lower one-sided improved 2-of-3 charts. 

 Panel (f) Figure 3.2 illustrates how Figure 3.1 reduces for the two-sided improved 2-of-2 and 

the two-sided improved 2-of-3 charts. 

 

Note that the panels are not discussed in sequence (a) to (f) since in Figure 3.2 the first row 

consists of the upper one-sided charts, the second row consists of the lower one-sided charts and 

the third row consists of two-sided charts. The discussion above is presented by first considering 

the first column of Figure 3.2 and then the second column of Figure 3.2. 
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(a) Upper one-sided runs-rules chart 

 

 
 
 
 
 
 
 
 
 

(b) Upper one-sided improved runs-rules chart 

 

 
 
 
 
 
 
 
 
 

(c) Lower one-sided runs-rules chart 

 

 
 
 
 
 
 
 
 
 

(d) Lower one-sided improved runs-rules chart 

 

 
 
 
 
 
 
 
 
 

(e) Two-sided runs-rules chart 

 

 
 
 
 
 
 
 
 
 

(f) Two-sided improved runs-rules chart 

 

Figure 3.2: Figure 3.1 reduces to these Figures for specific charts. 

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic Zo ne  8

Zo ne  7

UCL

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic Zo ne  6

Zo ne  9
LCL

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

Zo ne  9

UCL

LCL

Zo ne  3

Zo ne  8

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

Zo ne 7

Zo ne 2
BUCL

AUCL

Zo ne 1

1 2 3 4 5 6 7 8
Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

Zo ne  4

Zo ne  3

Zo ne  1

ALCL

BLCL

Zo ne  2

Zo ne  5

AUCL
BUCL

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

Zo ne 5

Zo ne 4

Zo ne 6

ALCL

BLCL

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 67

3.2  Runs-rules and signalling events 

 

Let ,...3,2,1, iZi , be a sequence of random variables that keeps track of the classification of the 

plotting statistics ,...3,2,1, iTi , in the zones on the control chat. Thus, for example, 2iZ  if the thi  

plotting statistic lies in zone 2, i.e., it falls between AUCL  and BUCL . These cases are summarized in 

Table 3.1. 

 

 

Table 3.1: Defining the Zi’s and the corresponding probabilities. 

 

 

The sZi '  are defined as follows: 

The probabilities that the plotting statistics 

,...3,2,1,' isTi , plot 

inside the zones are denoted by: 

      iBi TUCLZ     if   1  

      BiAi UCLTUCLZ     if   2  

      UCLUCLTLCLLCLZ AiAi / /   if   3   

      AiBi LCLTLCLZ      if   4  

          if   5 Bii LCLTZ   

      LCLLCLTZ Aii /   if   6   

      UCLUCLTZ Aii /   if   7   

      UCLTZ ii     if   8  

      LCLTZ ii     if   9  

 11  iZPp  

 22  iZPp  

 33  iZPp  

 44  iZPp  

 55  iZPp  

 66  iZPp  

 77  iZPp  

 88  iZPp  

 99  iZPp  

 

 

Note that in Table 3.1, iZ  can only equal 1, 2, 4 or 5 when improved runs-rules are considered, 

therefore mention is only made to the control limits BUCL , AUCL , ALCL  and BLCL  when 

5or  4,2,1iZ  (see e.g. panels (b), (d) and (f) of Figure 3.2). Similarly iZ  can only equal 8 or 9 when 

runs-rules are considered, therefore mention is only made to the control limits LCL  and UCL  when 

9or  8iZ  (see e.g. panels (a), (c) and (e) of Figure 3.2). But iZ  can equal 3, 6 or 7 in both runs-rules 

and improved runs-rules charts, therefore mention is made to the control limits LCLLCLA /  and 

UCLUCLA /  when 7or  6,3iZ  (see e.g. panels (a), (c), (e) and (f) of Figure 3.2). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 68

3.2.1  The 1-of-1 control charts 

 

The 1-of-1 Shewhart chart signals when a single plotting statistic iT  plots on or outside a control 

limit. The upper one-sided, lower one-sided and two-sided 1-of-1 charts are discussed next. 

 

 

3.2.1.1  The upper one-sided 1-of-1 control chart 

 

The upper one-sided 1-of-1 chart is used to detect an upward shift in the process and only has an 

upper control limit. Studying panel (a) of Figure 3.2, the upper one-sided 1-of-1 control chart is 

divided by the UCL  into zones 7 and 8. 

 

The upper one-sided 1-of-1 chart signals when a plotting statistic iT  plots on or above the upper 

control limit UCL  (or when iT  plots in zone 8). Hence, the signalling event of the upper one-sided 1-

of-1 chart is: 

   81
11  iUof ZE . 

 

The E  represents an event, the subscript indicates which chart is considered i.e. the 1-of-1, 

improved 2-of-2 etc. and whether it is an upper, lower or two-sided chart, indicated by U, L or T, 

respectively. In this case the signalling event of an upper one-sided 1-of-1 chart is considered. 

 

The superscript represents the signalling event number; this is necessary because a control chart 

can have multiple signalling events. In this case the chart has only a single signalling event denoted by 

1. 

 

Consider the following two examples: (i) the event 2
)(22 TofE   is the second signalling event of the 

two-sided 2-of-2 chart and (ii) the event 3
)(32 LofIE   is the third signalling event of the lower one-sided 

improved 2-of-3 chart. 

 

Examples of the signalling event of the upper one-sided 1-of-1 chart are graphically illustrated in 

Figure 3.3. In panel (a) of Figure 3.3 there is no signal and in panel (b) there is a signal at the eighth 

sample (without loss of generality). 
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(a) 1
)(11 UofE   does not occur 

 

 

 
 
 
 
 

(b) 1
)(11 UofE   occurs the eighth sample 

 

Figure 3.3: Illustrations of the signalling event of the upper one-sided 1-of-1 control chart. 

 

 

3.2.1.2  The lower one-sided 1-of-1 control chart 

 

The lower one-sided 1-of-1 chart is used to detect a downward shift in the process and thus only 

has a lower control limit. Studying panel (c) of Figure 3.2, the lower one-sided 1-of-1 chart is divided 

by the LCL  into zones 6 and 9. 

 

The lower one-sided 1-of-1 chart signals when the first plotting statistic iT  plots on or below the 

LCL  (or when iT  plots in zone 9). Hence, the signalling event of the lower one-sided 1-of-1 control 

chart is: 

 91
)(11  iLof ZE . 

 

Examples of the signalling event of the lower one-sided 1-of-1 chart are graphically illustrated in 

Figure 3.4. In panel (a) of Figure 3.4 there is no signal, whereas in panel (b) there is a signal at the 

eighth sample. 

 

 

 

 
 
 
 
 

(a) 1
)(11 LofE   does not occur 

 

 

 
 
 
 
 

(b) 1
)(11 LofE   occurs at the eighth sample 

 

Figure 3.4: Illustrations of the signalling event of the lower one-sided 1-of-1 control chart. 
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3.2.1.3  The two-sided 1-of-1 control chart 

 

The two-sided 1-of-1 chart is used to detect upward and downward shifts in the process and thus 

has an upper and lower control limit. Studying panel (e) of Figure 3.2, the two-sided 1-of-1 chart is 

divided by the UCL  and LCL  into zones 3, 8 and 9. 

 

The two-sided 1-of-1 chart signals when the plotting statistic iT  plots on or above (below) the 

UCL  ( LCL ) (or when iT  plots in zone 8 (9)). Hence the signalling events of the two-sided 1-of-1 

control chart are: 

 81
)(11  iTof ZE  

                                                         and  92
)(11  iTof ZE . 

 

Examples of the signalling events of the two-sided 1-of-1 chart are graphically illustrated in Figure 

3.5. In panels (a) and (b) there is a signal at the first sample, and in panels (c) and (d) there is a signal 

at the eighth sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(11 TofE   occurs at the first sample 

 

 

 
 
 
 
 

(b) 2
)(11 TofE   occurs at the first sample 

 

 

 

 
 

(c) 1
)(11 TofE   occurs at the eighth sample 

 

 

 

 
 

(d) 2
)(11 TofE   occurs at the eighth sample 

 

Figure 3.5: Illustrations of the signalling events of the two-sided 1-of-1 control chart. 
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3.2.2  The 2-of-2 control charts 

 

The 2-of-2 control charts signal when two consecutive plotting statistics 1iT  and iT  plot on or 

outside the same control limit. 

 

 

3.2.2.1  The upper one-sided 2-of-2 control chart 

 

The upper one-sided 2-of-2 chart is used to detect an upward shift in the process and consequently 

has an upper control limit. Studying panel (a) of Figure 3.2 the upper one-sided 2-of-2 chart is divided 

by the UCL  into two zones namely zones 7 and 8. 

 

The upper one-sided 2-of-2 chart signals when two consecutive plotting statistics, 1iT  and iT , plot 

on or above the UCL  (or when two consecutive plotting statistics, 1iT  and iT , plot in zone 8). Hence, 

the signalling event of the upper one-sided 2-of-2 chart is: 

 8,81
1

)(22   iiUof ZZE . 

 

Examples of the signalling event of the upper one-sided 2-of-2 chart are graphically illustrated in 

Figure 3.6. In panel (a) of Figure 3.6 there is no signal and in panel (b) there is a signal at the eighth 

sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(22 UofE   does not occur 

 

 

 
 
 
 
 

(b) 1
)(22 UofE   occurs at the eighth sample 

 

Figure 3.6: Illustrations of the signalling event of the upper one-sided 2-of-2 control chart. 
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3.2.2.2  The lower one-sided 2-of-2 control chart 

 

The lower one-sided 2-of-2 chart is used to detect a downward shift in the process and 

consequently has a lower control limit. Studying panel (c) of Figure 3.2 the lower one-sided 2-of-2 

chart is divided by the LCL  into zones 6 and 9. 

 

The lower one-sided 2-of-2 chart signals when two consecutive plotting statistics, 1iT  and iT , plot 

on or below the LCL  (or when two consecutive plotting statistics, 1iT  and iT , plot in zone 9). Hence 

the signalling event of the lower one-sided 2-of-2 chart is: 

 9,91
1

)(22   iiLof ZZE . 

 

Examples of the signalling event of the lower one-sided 2-of-2 chart are graphically illustrated in 

Figure 3.7. In panel (a) of Figure 3.7 there is no signal and in panel (b) there is a signal at the eighth 

sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(22 LofE   does not occur 

 

 

 
 
 
 
 

(b) 1
)(22 LofE   occurs at the eighth sample 

 

Figure 3.7: Illustrations of the signalling event of the lower one-sided 2-of-2 control chart. 
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3.2.2.3  The two-sided 2-of-2 control chart 

 

The two-sided 2-of-2 chart is used to detect an upward or downward shift in the process and 

consequently has an upper and lower control limit. Studying panel (e) of Figure 3.2 the two-sided 2-of-

2 chart is divided by the UCL  and LCL  into three zones namely zones 3, 8 and 9. 

 

The two-sided 2-of-2 chart signals when two consecutive plotting statistics, 1iT  and iT , plot on or 

above (below) the UCL  ( LCL ) (or when two consecutive plotting statistics, 1iT  and iT , plot in zone 8 

(9)). Hence the signalling events of the two-sided 2-of-2 chart are: 

 8,81
1

)(22   iiTof ZZE  

                                                  and  9,91
2

)(22   iiTof ZZE . 

 

Note that Human et al. (2009) also referred to this chart as the 2-of-2 KL chart since Klein (2000) 

considered these signalling rules in the context of the Shewhart X  chart. 

 

Examples of the signalling events of the two-sided 2-of-2 chart are graphically illustrated in Figure 

3.8. In panels (a) and (b) of Figure 3.8 there is no signal, whereas in panel (c), (d) there is a signal at 

the eighth sample. 

 

 

 

 
 
 
 
 

(a) Chart does not signal 

 

 

 
 
 
 
 

(b) Chart does not signal 

 

 

 

 
 

(c) 1
)(22 TofE   occurs at the eighth sample 

 

 

 

 
 

(d) 2
)(22 TofE   occurs at the eighth sample 

 

Figure 3.8: Illustrations of the signalling events of the two-sided 2-of-2 control chart. 
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Remark 3.2: 

 

Note that there are combinations where the last two plotting statistics plot on or outside the control 

limits, where it is defined/chosen that the chart does not signal. These events are graphically illustrated 

in Figure 3.9. 

 

 

 

 

 
 
 
 
 

(a) Chart does not signal at the second sample 

 

 

 
 
 
 
 

(b) Chart does not signal at the second sample 

 

 

 

 
 

(c) Chart does not signal at the sixth sample 

 

 

 

 
 

(d) Chart does not signal at the sixth sample 
 

Figure 3.9: Illustrations of combinations of the last two plotting statistics plotting on or outside 

the control limits, where the chart does not signal. 

 

 

Figure 3.9 illustrates four possible patterns of the plotting statistics, where two consecutive plotting 

statistics plot on or outside the control limits, but not outside the same control limit. These events are 

excluded as signalling events in the two-sided 2-of-2 control charts, since only upward or downward 

shifts in the process are of interest here. These patters could indicate a possible swing in the process, 

the aim here is not to detect a swing in the process, and therefore these events are excluded as 

signalling events. Human et al. (2009) developed a two-sided 2-of-2 control chart that can detect 

upward shifts, downward shifts and swings in the process and named this chart the 2-of-2 DR chart, 

since these signalling rules were proposed by Derman and Ross (1997). 

 

Therefore the following events are excluded as signalling events of the two-sided 2-of-2 control 

chart: 
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 9,81   ii ZZE  

                                                        and  8,91   ii ZZE . 

 

 

3.2.3  The 2-of-3 control charts 

 

The 2-of-3 control charts signal when two of the last three plotting statistics, 2iT , 1iT  and iT , plot 

on or above (below) the UCL  ( LCL ). 

 

 

3.2.3.1  The upper one-sided 2-of-3 control chart 

 

The upper one-sided 2-of-3 chart is used to detect an upward shift in the process and thus only has 

an upper control limit. Studying panel (a) of Figure 3.2 the upper one-sided 2-of-3 chart is divided by 

the UCL  into zones 7 and 8. 

 

The upper one-sided 2-of-3 chart signals when two of the last three plotting statistics, namely 2iT , 

1iT  and iT , plot on or above the UCL  (or when two of the last three plotting statistics plot in zone 8). 

Hence the signalling events of the upper one-sided 2-of-3 control chart are: 

 8,8,7 12
1

)(32   iiiUof ZZZE  

                                     and  8,7,8 12
2

)(32   iiiUof ZZZE . 

 

Examples of the signalling events of the upper one-sided 2-of-3 chart are graphically illustrated in 

Figure 3.10. In panels (a) and (b) of Figure 3.10 there is a signal at the eighth sample. 
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(a) 1
)(32 UofE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(32 UofE   occurs at the eighth sample 

 

Figure 3.10: Illustrations of the signalling events of the upper one-sided 2-of-3 control chart. 

 

 

Remark 3.3: 

 

Panel (d) of Figure 3.11 illustrates a combination of plotting statistics where two of the last three 

plotting statistics plot on or above the UCL  which is not included as a signalling event, namely where 

the first two plotting statistics, 2iT  and 1iT , plot on or above the UCL  (zone 8), and the third plotting 

statistic, iT , plots below the UCL  (zone 7). This event is excluded as a signalling event since it is 

undesirable in practice to have a chart that signals when the last plotting statistic, iT , plots IC 

( UCLTi  ). Hence the following event is excluded as a signalling event: 

 7,8,8 12   iii ZZZE . 

 

 

Remark 3.4: 

 

Panels (b) and (c) of Figure 3.11 illustrates sequences of plotting statistics where the chart does not 

signal since these events are not included in the signalling events 1
)(32 UofE   and 2

)(32 UofE   which is 

undesirable since there are clearly assignable causes present in the process. To address this issue the 

following event is included as a signalling event: 

 8,8 21
3

)(32  ZZE Uof . 

 

With these three signalling events 1
)(32 UofE   2

)(32 UofE   and 3
)(32 UofE   the chart will signal at the 

second sample following the sequence of plotting statistics illustrated in Figure 3.11 panels (a), (b), (c) 

and (d). 
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Note that in Figure 3.11 panel (d) it is said that it is undesirable for the chart to signal where the 

last, in this case the third plotting statistic plots below the UCL  (zone 7). However, 3
)(32 UofE   occurs 

at the second plotting statistic i.e. the chart signals where the last plotting statistic plots on or above the 

UCL  (zone 8). 

 

 

 

 
 
 
 
 
 
 
 

(a) 3
)(32 UofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(b) 3
)(32 UofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(c) 3
)(32 UofE   occurs at the second sample 

 

 
 
 
 
 
 
 

 
(d) 3

)(32 UofE   occurs at the second sample 
 

Figure 3.11: Illustrations of signalling events of the upper one-sided 2-of-3 control chart. 

 

 

3.2.3.2  The lower one-sided 2-of-3 control chart 

 

The lower one-sided 2-of-3 chart is used to detect a downward shift in the process and thus only 

has a lower control limit. Studying panel (c) of Figure 3.2 the lower one-sided 2-of-3 chart is divided 

by the LCL  into zones 6 and 9. 

 

The lower one-sided 2-of-3 chart signals when two of the last three plotting statistics namely, 2iT , 

1iT  and iT , plot on or below the LCL  (or when two consecutive plotting statistics plot in zone 9). 

Hence the signalling events of the lower one-sided 2-of-3 control chart are: 

 9,9,6 12
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)(32   iiiLof ZZZE . 
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The signalling events of the lower one-sided 2-of-3 chart are graphically illustrated in Figure 3.12. 

In panels (a) and (b) of Figure 3.12 the chart signals at the eighth sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(32 LofE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(32 LofE   occurs at the eighth sample 

 

Figure 3.12: Illustrations of signalling events of the lower one-sided 2-of-3 control chart. 

 

 

Remark 3.5: 

 

Panel (d) of Figure 3.13 illustrates a combination of plotting statistics where two of the last three 

plotting statistics plot on or below the LCL  (zone 9) which is not included as a signalling event, 

namely where the first two plotting statistics, 2iT  and 1iT , plot on or below the LCL  (zone 9), and the 

third plotting statistic, iT , plots above the LCL  (zone 6). This event is excluded as a signalling event 

since it is undesirable in practice to have the chart signal where the most recent plotting statistic, iT , 

plots IC ( LCLTi  ). Hence the following event is excluded as a signalling event: 

 6,9,9 12   iii ZZZE . 

 

 

Remark 3.6: 

 

Panels (b) and (c) of Figure 3.13 illustrate sequences of plotting statistics where the chart does not 

signal, since these events are not included in the signalling events 1
)(32 LofE   and 2

)(32 LofE  . This is 

undesirable, since there are clearly assignable causes present in the process. To address this issue the 

following event is included as a signalling event: 
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With these three signalling events 1
)(32 LofE  , 2

)(32 LofE   and 3
)(32 LofE   the chart will signal at the 

second sample following the sequence of plotting statistics illustrated in panels (a), (b), (c) and (d) of 

Figure 3.13. 

 

Note that in panel (d) of Figure 3.13 it is said that it is undesirable for the chart to signal where the 

last, in this case the third plotting statistic, plots above the LCL  (zone 6). However, 3
)(32 LofE   occurs 

at the second plotting statistic i.e. the chart signals when the last plotting statistic plots OOC 

( LCLTi 1 ). 

 

 

 

 
 
 
 
 
 
 
 

(a) 3
)(32 LofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(b) 3
)(32 LofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(c) 3
)(32 LofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(d) 3
)(32 LofE   occurs at the second sample 

 

Figure 3.13: Illustrations of signalling events of the lower one-sided 2-of-3 control chart. 

 

 

3.2.3.3  The two-sided 2-of-3 control chart 

 

The two-sided 2-of-3 chart is used to detect an upward or downward shift in the process and 

consequently has an upper and lower control limit. Studying panel (e) of Figure 3.2 the two-sided 2-of-

3 chart is divided by the UCL  and LCL  into zones 3, 8 and 9. 
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The two-sided 2-of-3 chart signals when two of the last three plotting statistics, 2iT , 1iT  and iT , 

plot on or above (below) the UCL  ( LCL ) (or when two of the last three plotting statistics 2iT , 1iT  

and iT , plot in zone 8 (9)). Hence the signalling events of the two-sided 2-of-3 chart are: 

 8,8,3 12
1

)(32   iiiTof ZZZE , 

 8,3,8 12
2

)(32   iiiTof ZZZE , 

                                                  9,9,3 12
3

)(32   iiiTof ZZZE  

                                          and  9,3,9 12
4

)(32   iiiTof ZZZE . 

 

Examples of the signalling events of the two-sided 2-of-3 chart are graphically illustrated in Figure 

3.14. In panels (a), (b), (c) and (d) of Figure 3.14 there is a signal at the eighth sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(32 TofE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(32 TofE   occurs at the eighth sample 

 

 

 

 
 

(c) 3
)(32 TofE   occurs at the eighth sample 

 

 

 

 
 

(d) 4
)(32 TofE   occurs at the eighth sample 

 

Figure 3.14: Illustrations of the signalling events of the two-sided 2-of-3 control chart. 

 

 

Remark 3.7: 

 

Two combinations where two of the last three plotting statistics, namely 2iT , 1iT  and iT , plot on 

or outside the same control limit that is not included as signalling events, are illustrated in panels (c) 
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and (g) of Figure 3.15, i.e. where the first two plotting statistics, 2iT  and 1iT , plot on or above 

(below) the UCL  (zone 8) ( LCL  (zone 9)), and the third plotting statistic, iT , plots between the UCL  

and the LCL  (zone 3) respectively. These events are excluded as signalling events since it is 

undesirable in practice to have the chart signal were the last plotting statistic iT  plots IC i.e. between 

the upper and lower control limits (zone 3). Therefore the following two events are excluded as 

signalling events: 

 

 3,8,8 12   iii ZZZE , 

                                                and  3,9,9 12   iii ZZZE . 

 

The signalling events are defined in such a way that the two-sided 2-of-3 control chart will not 

signal given the sequence of plotting statistics illustrated in panels (b), (d), (f) and (h) of Figure 3.15. 

This is undesirable since there are clearly assignable causes present in the process, therefore the 

following events are included as signalling events: 

 8,8 21
5

)(32  ZZE Tof , 

                                                  and  9,9 21
6

)(32  ZZE Tof . 

 

 

Remark 3.8: 

 

With these six signalling events 1
)(32 TofE  , 2

)(32 TofE  , 3
)(32 TofE  , 4

)(32 TofE  , 5
)(32 TofE   and 

6
)(32 TofE   the chart will signal at the second sample following the sequence of plotting statistics 

illustrated in panels (a), (b), (c), (d), (e), (f), (g) and (h) of Figure 3.15. 

 

Note that in panels (c) and (g) of Figure 3.15 it is said that it is undesirable for the chart to signal 

where the last, in this case the third plotting statistic, plots above (below) the LCL  (UCL ). However, 

5
)(32 TofE   6

)(32 TofE   occur at the second plotting statistic i.e. the chart signals when the last plotting 

statistic  1iT  plots OOC. 
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(a) 5

)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 

 
(b) 5

)(32 TofE   occurs at the second sample 
 

 
 
 
 
 
 
 
 

(c) 5
)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(d) 5
)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(e) 6
)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(f) 6
)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(g) 6
)(32 TofE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(h) 6
)(32 TofE   occurs at the second sample 

 

Figure 3.15: Illustrations of signalling events of the two-sided 2-of-3 control chart. 
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Remark 3.9: 

 

Not all combinations of plotting statistics, where two of the last three plotting statistics plot on or 

outside the control limits cause the two-sided 2-of-3 chart to signal. The combinations that do not lead 

to a signal are illustrated in Figure 3.16. When applying the two-sided 2-of-3 control chart only the 

detection of an upward or downward shift in the process is of interest here. The sequences of plotting 

statistics namely 3T , 4T  and 5T , illustrated in panels (a) and (b) of Figure 3.16 are excluded as 

signalling events since these indicate a possible swing in the process. The sequence of plotting 

statistics illustrated in panels (c) and (d) of Figure 3.16 are excluded as signalling events since these 

indicate a possible drift in the process. Only the detection of upward or downward shifts in the process 

is of interest in this dissertation and not swings or drifts in the process. 

 

 

 

 

 
 
 
 
 

(a) Chart does not signal at the fifth sample 

 

 

 
 
 
 
 

(b) Chart does not signal at the fifth sample 

 

 

 

 

 

 

(c) Chart does not signal at the fifth sample 

 

 

 

 

 

 

(d) Chart does not signal at the fifth sample 
 

Figure 3.16: Illustrations of drifts and swings of the two-sided 2-of-3 control chart. 

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

UCL

LCL

Zo ne  8

Zo ne  3

Zo ne  9

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

UCL

LCL

Zo ne  8

Zo ne  3

Zo ne  9

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

UCL

LCL

Zo ne  8

Zo ne 3

Zo ne  9

1 2 3 4 5 6 7 8

Sample number / T ime (i )

Pl
ot

tin
g 

St
at

is
tic

UCL

LCL

Zo ne  8

Zo ne  3

Zo ne  9

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 84

Remark 3.10: 

 

Note that Human et al. (2009) incorporated the 2-of-3 runs-rules to the sign and precedence charts, 

respectfully, and that the events  8,8 21
3

)(32  ZZE Uof ,  9,9 21
3

)(32  ZZE Lof , 

 8,8 21
5

)(32  ZZE Tof  and  9,9 21
6

)(32  ZZE Tof  were not included as signalling events by 

them, and, consequently the 2-of-3 control charts given here differ slightly to theirs. 

 

 

3.2.4  The improved 2-of-2 control charts 

 

The improved 2-of-2 control charts signal when the plotting statistic iT  plots on or above (below) 

the BUCL  )( BLCL , or when two consecutive plotting statistics plot on or above (below) the AUCL  

)( ALCL . 

 

 

3.2.4.1  The upper one-sided improved 2-of-2 control chart 

 

The upper one-sided improved 2-of-2 chart is used to detect small upward shifts and has the ability 

to immediately detect large upward shifts in the process and thus has two upper control limits. 

Studying panel (b) of Figure 3.2 the upper one-sided improved 2-of-2 chart is divided by the AUCL  

and BUCL  into zones 1, 2 and 7. 

 

The upper one-sided improved 2-of-2 chart signals when the plotting statistic iT  plots on or above 

the BUCL  ( Bi UCLT  ) ( iT  plots in zone 1), or when two consecutive plotting statistics, 1iT  and iT , 

plot on or above the AUCL  while plotting below the BUCL  

( BiABiA UCLTUCLUCLTUCL   ,1 ) ( 1iT  and iT  plot in zone 2). Hence the signalling events of 

the upper one-sided improved 2-of-2 chart are: 

 11
)(22  iUofI ZE  

                                                     and  2,21
2

)(22   iiUofI ZZE . 

 

Examples of the signalling events of the upper one-sided improved 2-of-2 control chart are 

graphically illustrated in Figure 3.17. In panels (a) and (b) of Figure 3.17 there is a signal at the eighth 

sample. In panels (c) and (d) there is a signal at the seventh and sixth sample, respectively. 
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Note that panels (c) and (d) of Figure 3.17 include both events 1
)(22 UofIE   and 2

)(22 UofIE  . The 

chart signals on the first occurrence of either 1
)(22 UofIE   or 2

)(22 UofIE  . 

 

 

 

 

 
 
 
 
 

(a) 1
)(22 UofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(22 UofIE   occurs at the eighth sample 

 

 

 

 
 

(c) 2
)(22 UofIE   occurs at the seventh sample 

 

 

 

 
 

(d) 1
)(22 UofIE   occurs at the sixth sample 

 

Figure 3.17: Illustrations of the signalling events of the upper one-sided improved 2-of-2 control 

chart. 

 

 

3.2.4.2  The lower one-sided improved 2-of-2 control chart 

 

The lower one-sided improved 2-of-2 chart is used to detect a small downward shift in the process 

and has the ability to immediately detect large downward shifts in the process and thus has two lower 

control limits. Studying panel (d) of Figure 3.2 the lower one-sided improved 2-of-2 chart is divided by 

the ALCL  and BLCL  into zones 4, 5 and 6. 

 

The lower one-sided improved 2-of-2 chart signals when the plotting statistic, iT , plots on or below 

the BLCL  ( Bi LCLT  ) ( iT  plots in zone 5), or when two consecutive plotting statistics, 1iT  and iT , 

plot on or below the ALCL  while plotting above the BLCL  ( AiBAiB LCLTLCLLCLTLCL   ,1 ) 
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( 1iT  and iT  plot in zone 4). Hence the signalling events of the lower one-sided improved 2-of-2 

control chart are: 

 51
)(22  iLofI ZE  

                                                     and  4,41
2

)(22   iiLofI ZZE . 

 

Examples of the signalling events of the lower one-sided improved 2-of-2 chart are graphically 

illustrated in Figure 3.18. In panels (a) and (b) of Figure 3.18 there is a signal at the eighth sample and 

in panels (c) and (d) there is a signal at the seventh and sixth sample, respectively. 

 

 

 

 

 
 
 
 
 

(a) 2
)(22 LofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 1
)(22 LofIE   occurs at the eighth sample 

 

 

 

 
 

(c) 2
)(22 LofIE   occurs at the seventh sample 

 

 

 

 
 

(d) 1
)(22 LofIE   occurs at the sixth sample 

 

Figure 3.18: Illustrations of the signalling events of the lower one-sided improved 2-of-2 control 

chart. 
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3.2.4.3  The two-sided improved 2-of-2 control chart 

 

The two-sided improved 2-of-2 chart is used to detect a small upward or downward shift in the 

process and has the ability to immediately detect large upward or downward shifts in the process and 

thus have two upper and two lower control limits. Studying panel (f) of Figure 3.1 the two-sided 

improved 2-of-2 chart is divided by the AUCL , BUCL , ALCL  and BLCL  into zones 1, 2, 3, 4 and 5. 

 

The two-sided improved 2-of-2 chart signals when the plotting statistic, iT , plots on or above 

(below) the BUCL  )( BLCL  ( Bi UCLT   or Bi LCLT  ) ( iT  plots in zones 1 or 5), or when two 

consecutive plotting statistics, 1iT  and iT , plot on or above (below) the AUCL  )( ALCL  while plotting 

below (above) the BUCL  )( BLCL  ( BiABiA UCLTUCLUCLTUCL   ,1  or 

AiBAiB LCLTLCLLCLTLCL   ,1 ) (both 1iT  and iT  plot in zone 2 or both 1iT  and iT  plot in 

zone 4). Hence the signalling events of the two-sided improved 2-of-2 chart are: 

 11
)(22  iTofI ZE , 

 2,21
2

)(22   iiTofI ZZE , 

 53
)(22  iTofI ZE  

                                       and  4,41
4

)(22   iiTofI ZZE  

 

Examples of the signalling events of the two-sided improved 2-of-2 chart are graphically illustrated 

in Figure 3.19. In panels (a), (b), (c) and (d) of Figure 3.19 there is a signal at the eighth sample. 
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(a) 2
)(22 TofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 1
)(22 TofIE   occurs at the eighth sample 

 

 

 

 
 

(c) 4
)(22 TofIE   occurs at the eighth sample 

 

 

 

 
 

(d) 3
)(22 TofIE   occurs at the eighth sample 

 

Figure 3.19: Illustrations of the signalling events of the two-sided improved 2-of-2 control chart. 

 

 

Remark 3.11: 

 

Panels (a) and (b) of Figure 3.20 illustrate sequences of the plotting statistics that are not included 

as signalling events of the two-sided improved 2-of-2 chart. Panels (a) and (b) of Figure 3.20 illustrate 

sequences of the plotting statistics where two consecutive plotting statistics plot on or outside different 

inner control limits, indicating a possible swing in the process. Since only the detection of an upward 

or a downward shift in the process is of interest here, these events are excluded as signalling events. 
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(a) Swing in the process 

 

 

 
 
 
 
 

(b) Swing in the process 

 

Figure 3.20: Illustrations of swings in the process. 

 

 

3.2.5  The improved 2-of-3 control charts 

 

The improved 2-of-3 chart signals when the plotting statistic iT  plots on or above (below) the 

BUCL  )( BLCL , or when two out of three consecutive plotting statistics plot on or above (below) the 

AUCL  )( ALCL . 

 

 

3.2.5.1  The upper one-sided improved 2-of-3 control chart 

 

The upper one-sided improved 2-of-3 chart is used to detect a small upward shift and has the ability 

to immediately detect a large upward shift and thus has two upper control limits. Studying panel (b) of 

Figure 3.2 the upper one-sided improved 2-of-3 chart is divided by the AUCL  and BUCL  into zones 1, 

2 and 7. 

 

The upper one-sided improved 2-of-3 chart signals when the plotting statistic iT  plots on or above 

the BUCL  ( Bi UCLT  ) ( iT  plots in zone 1), or when two out of three consecutive plotting statistics, 

2iT , 1iT  and iT , plot on or above the AUCL  while plotting below the BUCL  (two out of three 

consecutive plotting statistics, 2iT , 1iT  and iT , plot in zone 2). Hence the signalling events of the 

upper one-sided improved 2-of-3 chart are: 

                                                      11
)(32  iUofI ZE , 

 2,2,7 12
2

)(32   iiiUofI ZZZE  

                                          and  2,7,2 12
3

)(32   iiiUofI ZZZE  
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Examples of the signalling events of the upper one-sided improved 2-of-3 chart are graphically 

illustrated in Figure 3.21. In panels (a), (b), (c) and (d) of Figure 3.21 there is a signal at the eighth 

sample. 

 

 

 

 

 
 
 
 
 

(a) 1
)(32 UofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(32 UofIE   occurs at the eighth sample 

 

 

 

 
 

(c) 3
)(32 UofIE   occurs at the eighth sample 

 

 

 

 
 

(d) 3
)(32

1
)(32  and UofIUofI EE   occurs at the 

eighth sample 
 

Figure 3.21: Illustrations of the signalling events of the upper one-sided improved 2-of-3 control 

chart. 

 

 

Remark 3.12: 

 

Figure 3.22 panel (d) illustrates a combination of plotting statistics where two of the last three 

plotting statistics plot on or above the AUCL  (zone 2), i.e. the first two plotting statistics, 2iT  and 1iT , 

plot on or above the AUCL  (zone 2), and the third plotting statistic, iT , plots below the AUCL  (zone 

7). This event is excluded as a signalling event since it is undesirable in practice to have a chart that 

signals when the last plotting statistic, iT , plots IC ( Bi UCLT  ) ( iT  plots in zone 7). 

 

Therefore the following event is excluded as a signalling event: 

 7,2,2 12   iii ZZZE . 
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Remark 3.13: 

 

Panels (b) and (c) of Figure 3.22 illustrates sequences of plotting statistics where the chart does not 

signal since these events are not included in the signalling events 1
)(32 UofIE  , 2

)(32 UofIE   and 

3
)(32 UofIE  . These events are undesirable since there are clearly assignable causes present in the 

process. To address this issue the following event is included as a signalling event: 

 2,2 21
4

)(32  ZZE UofI . 

 

With these four signalling events 1
)(32 UofIE  , 2

)(32 UofIE  , 3
)(32 UofIE   and 4

)(32 UofIE   the upper one-

sided improved 2-of-3 chart signals at the second sample following the sequence of plotting statistics 

illustrated in panels (a), (b), (c) and (d) of Figure 3.22. 

 

Note that in panel (d) of Figure 3.22 it is said that it is undesirable for the chart to signal where the 

last, in this case the third plotting statistic, plots below the AUCL  (zone 7). However, 4
)(32 UofIE   

occurs at the second plotting statistic i.e. the chart signals where the last plotting statistic plots above 

the AUCL  ( BiA UCLTUCL  1 ) ( 1iT  plots in zone 2). 
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(a) 4
)(32 UofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(b) 4
)(32 UofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(c) 4
)(32 UofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(d) 4
)(32 UofIE   occurs at the second sample  

 

Figure 3.22: Illustrations of signalling events of the upper one-sided improved 2-of-3 control 

chart. 
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3.2.5.2  The lower one-sided improved 2-of-3 control chart 

 

The lower one-sided improved 2-of-3 chart is used to detect a small downward shift in the process 

and has the ability to immediately detect a large downward shift in the process and thus has two lower 

control limits. Studying panel (d) of Figure 3.2 the lower one-sided improved 2-of-3 chart is divided by 

the ALCL  and BLCL  into zones 4, 5 and 6. 

 

The lower one-sided improved 2-of-3 chart signals when the plotting statistic iT  plots on or below 

the BLCL  ( Bi LCLT  ) ( iT  plots in zone 5), or when two of the last three plotting statistics, 2iT , 1iT  

and iT , plot on or below the ALCL  while plotting above the BLCL  (zone 4). Hence the signalling 

events of the lower one-sided improved 2-of-3 chart are: 

                                                51
)(32  iLofI ZE , 

 4,4,6 12
2

)(32   iiiLofI ZZZE  

                                          and  4,6,4 12
3

)(32   iiiLofI ZZZE  

 

Examples of the signalling events of the lower one-sided improved 2-of-3 chart are graphically 

illustrated in Figure 3.23. In panels (a), (b), (c) and (d) of Figure 3.23 there is a signal at the eighth 

sample. 
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(a) 1
)(32 LofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 2
)(32 LofIE   occurs at the eighth sample 

 

 

 

 
 

(c) 3
)(32 LofIE   occurs at the eighth sample 

 

 

 

 
 

(d) 3
)(32

1
)(32  and LofILofI EE   occurs at the 

eighth sample 
 

Figure 3.23: Illustrations of the signalling events of the lower one-sided improved 2-of-3 control 

chart. 

 

 

Remark 3.14: 

 

Figure 3.24 panel (d) illustrates a combination of plotting statistics where two of the last three 

plotting statistics plots on or below the ALCL , while plotting above the BLCL  (zone 4), i.e. the first 

two plotting statistics, 2iT  and 1iT , plot on or below the ALCL  (zone 4), and the third plotting 

statistic, iT , plots above the ALCL  (zone 6). This event is excluded as a signalling event since it is 

undesirable in practice to have a chart that signals when the last plotting statistic, iT , plots IC (zone 6). 

 

Therefore the following event is excluded as a signalling event: 

 6,4,4 12   iii ZZZE . 
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Remark 3.15: 

 

Panels (a) and (c) of Figure 3.24 illustrates sequences of plotting statistics where the chart does not 

signal since these events are not included in the signalling events 1
)(32 LofIE  , 2

)(32 LofIE   and 

3
)(32 LofIE  . These events are undesirable since there are clearly assignable causes present in the 

process. To address this issue the following event is included as a signalling event: 

 4,4 21
4

)(32  ZZE LofI . 

 

With these four signalling events the chart signals at the second sample following the sequence of 

plotting statistics illustrated in panels (a), (b), (c) and (d) of Figure 3.24. 

 

Note that in panel (d) of Figure 3.24 it is said that it is undesirable for the chart to signal where the 

last, in this case the third plotting statistic, plots above the ALCL . However, 4
)(32 LofIE   occurs at the 

second plotting statistic i.e. the chart signals where the last plotting statistic plots below the ALCL  

( AiB LCLTLCL  1 ) ( 1iT  plots in zone 4). 

 

 

 

 
 
 
 
 
 
 
 

(a) 4
)(32 LofIE   occurs at the second sample 

 

 
 
 
 
 
 
 

 
(b) 4

)(32 LofIE   occurs at the second sample 
 

 
 
 
 
 
 
 
 

(c) 4
)(32 LofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(d) 4
)(32 LofIE   occurs at the second sample 

 

Figure 3.24: Illustrations of the signalling events of the lower one-sided improved 2-of-3 control 

chart. 
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3.2.5.3  The two-sided improved 2-of-3 control chart 

 

The two-sided improved 2-of-3 chart is used to detect a small upward or downward shift in the 

process and has the ability to immediately detect large upward or large downward shifts in the process 

and consequently have two upper and two lower control limits. Referring to panel (f) of Figure 3.2 the 

two-sided improved 2-of-3 chart is divided by the AUCL , BUCL , ALCL  and BLCL  into zones 1, 2, 3, 

4 and 5. 

 

The two-sided improved 2-of-3 chart signals when the plotting statistic, iT , plots on or above 

(below) the BUCL  )( BLCL  (zone 1 (zone5)), or when two out of three consecutive plotting statistics 

2iT , 1iT  and iT , plot on or above (below) the AUCL  )( ALCL  while plotting below (above) the BUCL  

)( BLCL  (zone 2 (zone 4)). Hence the signalling events of the two-sided improved 2-of-3 chart are: 

                                                      11
)(32  iTofI ZE , 

                                                      2,2,3 12
2

)(32   iiiTofI ZZZE , 

                                                 2,3,2 12
3

)(32   iiiTofI ZZZE , 

                                                       54
)(32  iTofI ZE , 

                                                       4,4,3 12
5

)(32   iiiTofI ZZZE  

                                          and  4,3,4 12
6

)(32   iiiTofI ZZZE  

 

Examples of the signalling events of the two-sided improved 2-of-3 chart are graphically illustrated 

in Figure 3.25. In panels (a), (b), (c), (d), (e) and (f) of Figure 3.25 there is a signal at the eighth 

sample. 
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(a) 1
)(32 TofIE   occurs at the eighth sample 

 

 

 
 
 
 
 

(b) 4
)(32 TofIE   occurs at the eighth sample  

 

 

 

 
 

(c) 2
)(32 TofIE   occurs at the eighth sample 

 

 

 

 
 

(d) 5
)(32 TofIE   occurs at the eighth sample 

 

 

 

 

 

 

(e) 3
)(32 TofIE   occurs at the eighth sample 

 

 
 
 
 
 
 
 

(f) 6
)(32 TofIE   occurs at the eighth sample 

 

Figure 3.25: Illustrations of the signalling events of the two-sided improved 2-of-3 control chart. 

 

 

Remark 3.16: 

 

Panel (d) of Figure 3.26 illustrates combinations of plotting statistics where two of the last three 

plotting statistics plot on or above the AUCL  while plotting below the BUCL  (zone 2), i.e. the first two 

plotting statistics, 2iT  and 1iT , plot on or above the AUCL  (zone 2), and the third plotting statistic, iT , 

plots below the AUCL  (zone 3). Similarly panel (h) of Figure 3.26 illustrates a combination of plotting 

statistics where two of the last three plotting statistics plot on or below the ALCL  while plotting above 

the BLCL  (zone 4), i.e. the first two plotting statistics, 2iT  and 1iT , plot on or below the ALCL  (zone 
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4), and the third plotting statistic, iT , plots above the ALCL  (zone 3). These events are excluded as 

signalling events since it is undesirable in practice to have a chart that signals when the last plotting 

statistic, iT , plots IC ( AiA UCLTLCL  ) ( iT  plots in zone 3). 

 

Therefore the following events are excluded as signalling events: 

 3,2,2 12   iii ZZZE  

                                                    and  3,4,4 12   iii ZZZE . 

 

 

Remark 3.17: 

 

However, panels (a), (c), (e) and (g) of Figure 3.26 illustrates sequences of plotting statistics where 

the chart does not signal since these events are not included in the signalling events 1
)(32 TofIE  , 

2
)(32 TofIE  , 3

)(32 TofIE  , 4
)(32 TofIE  , 5

)(32 TofIE   and 6
)(32 TofIE   which is undesirable since there are 

clearly assignable causes present in the process. To address this issue the following two events are 

included as signalling events: 

 2,2 21
7

)(32  ZZE TofI  

                                                     and  4,4 21
8

)(32  ZZE TofI . 

 

With these eight signalling events the chart signals at the second sample following the sequence of 

plotting statistics illustrated in panels (a), (b), (c), (d), (e), (f), (g) and (h) of Figure 3.26. 

 

Note that in panels (d) and (h) of Figure 3.26 it is said that it is undesirable for the chart to signal 

where the last, in this case the third plotting statistic, plots below (above) the AUCL  ( ALCL ) (zone 3). 

However, 7
)(32 TofIE   and 8

)(32 TofIE   occurs at the second plotting statistic i.e. the chart signals where 

the last plotting statistic ( 1iT ) plots below (above) the ALCL  ( AUCL ) i.e. plots OOC. 
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(a) 7
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(b) 7
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(c) 7
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(d) 7
)(32 TofIE   occurs at the second sample 

  

 
 
 
 
 
 
 
 

(e) 8
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(f) 8
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(g) 8
)(32 TofIE   occurs at the second sample 

 

 
 
 
 
 
 
 
 

(h) 8
)(32 TofIE   occurs at the second sample 

 

Figure 3.26: Illustrations of the signalling events of the two-sided improved 2-of-3 control chart. 
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Remark 3.18: 

 

Figure 3.27 illustrates combinations of plotting statistics where two of the last three plotting 

statistics, 2iT , 1iT  and iT , plot on or above (below) the AUCL  )( ALCL  (zone 2 (zone 4)) that does not 

cause the two-sided improved 2-of-3 control chart to signal. Only the detection of an upward or 

downward shift in the process is of interest here. Panels (a) and (b) of Figure 3.27 indicate a possible 

swing in the process, where panels (c) and (d) indicate a possible drift in the process. Consequently the 

events illustrated in panels (a), (b), (c) and (d) of Figure 3.27 are discarded as signalling events since 

they can not be interpreted as an upward or downward shift in the process. 

 

 

 

 

 
 
 
 
 

(a) Swing in the process 

 

 

 
 
 
 
 

(b) Swing in the process 

 

 
 
 
 
 
 
 

(c) Downward drift in the process 

 

 
 
 
 
 
 
 

(d) Upward drift in the process 

 

Figure 3.27: Illustrations of plotting statistic combinations that are not included as signalling 

events for the two-sided improved 2-of-3 control chart. 
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3.2.6  Summary of the signalling events 

 

 

Table 3.1: The 1-of-1 control charts (Signalling events). 

 

The 1-of-1 control charts 

Upper one-sided 1-of-1 

 81
)(11  iUof ZE  

Lower one-sided 1-of-1 

 91
)(11  iLof ZE  

Two-sided 1-of-1 

 81
)(11  iTof ZE  

 92
)(11  iTof ZE  

 

 

Table 3.2: The 2-of-2 control charts (Signalling events). 

 

The 2-of-2 control charts 

Upper one-sided 2-of-2 

 8,81
1

)(22   iiUof ZZE  

Lower one-sided 2-of-2 

 9,91
1

)(22   iiLof ZZE  

Two-sided 2-of-2 

 8,81
1

)(22   iiTof ZZE  

 9,91
2

)(22   iiTof ZZE  
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Table 3.3: The 2-of-3 control charts (Signalling events). 

 

The 2-of-3 control charts 

Upper one-sided 2-of-3 

 8,8,7 12
1

)(32   iiiUof ZZZE  

 8,7,8 12
2

)(32   iiiUof ZZZE  

                        8,8 21
3

)(32  ZZE Uof  

Lower one-sided 2-of-3 

 9,9,6 12
1

)(32   iiiLof ZZZE  

 9,6,9 12
2

)(32   iiiLof ZZZE  

                        9,9 21
3

)(32  ZZE Lof  

Two-sided 2-of-3 

 8,8,7 12
1

)(32   iiiTof ZZZE  

 8,7,8 12
2

)(32   iiiTof ZZZE  

 9,9,6 12
3

)(32   iiiTof ZZZE  

 9,6,9 12
4

)(32   iiiTof ZZZE  

                       8,8 21
5

)(32  ZZE Tof  

                       9,9 21
6

)(32  ZZE Tof  
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Table 3.4: The improved 2-of-2 control charts (Signalling events). 

 

The improved 2-of-2 control charts 

Upper one-sided improved 2-of-2 

                              11
)(22  iUofI ZE  

 2,21
2

)(22   iiUofI ZZE  

Lower one-sided improved 2-of-2 

                             51
)(22  iLofI ZE  

 4,41
2

)(22   iiLofI ZZE  

Two-sided improved 2-of-2 

                             11
)(22  iTofI ZE  

 2,21
2

)(22   iiTofI ZZE  

                             53
)(22  iTofI ZE  

 4,41
4

)(22   iiTofI ZZE  
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Table 3.5: The improved 2-of-3 control charts (Signalling events). 

 

The improved 2-of-3 control charts 

Upper one-sided improved 2-of-3 

                      11
)(32  iUofI ZE  

 2,2,7 12
2

)(32   iiiUofI ZZZE  

 2,7,2 12
3

)(32   iiiUofI ZZZE  

                      2,2 21
4

)(32  ZZE UofI  

Lower one-sided improved 2-of-3 

                     51
)(32  iLofI ZE  

 4,4,6 12
2

)(32   iiiLofI ZZZE  

 4,6,4 12
3

)(32   iiiLofI ZZZE  

                      4,4 21
4

)(32  ZZE LofI  

Two-sided improved 2-of-3 

                      11
)(32  iTofI ZE  

 2,2,3 12
2

)(32   iiiTofI ZZZE  

 2,3,2 12
3

)(32   iiiTofI ZZZE  

                       54
)(32  iTofI ZE  

 4,4,3 12
5

)(32   iiiTofI ZZZE  

 4,3,4 12
6

)(32   iiiTofI ZZZE  

                       2,2 21
7

)(32  ZZE TofI  

                       4,4 21
8

)(32  ZZE TofI  
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Remark 3.19: 

 

By comparing all five different charts (the 1-of-1 charts, the 2-of-2 charts, the 2-of-3 charts, the 

improved 2-of-2 charts and the improved 2-of-3 charts) there are a number of points worth mentioning. 

 

Firstly the 1-of-1, the 2-of-2 and the 2-of-3 charts all look the same, this can be seen in panels (a), 

(c) and (e) of Figure 3.2 for the upper, lower and two-sided charts respectively. The only difference 

between the three charts is the placement of their control limits and their signalling rules. The 2-of-2 

and 2-of-3 charts have narrower limits compared to the 1-of-1 charts. Secondly the improved 2-of-2 

and the improved 2-of-3 charts look the same this can be seen in panels (b), (d) and (f) of Figure 3.2. 

The only difference between these two charts is the placement of their control limits and their 

signalling rules. 

 

 

3.3  Transition probability matrices 

 

When using the Markov chain approach to calculate the run-length distribution and the 

characteristics of the run-length distribution, the transition probability matrix M  needs to be 

constructed first. The essential transition probability matrix Q , i.e. a submatrix of M  is of special 

interest, since only Q  is required in order to calculate the run-length distribution and the 

characteristics of the run-length distribution (see equations (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10)). 

 

Before the transition probability matrix can be constructed, the state space of the Markov chain 

needs to be defined, which includes all possible events on the control chart. A state is associated with a 

specific location of the plotting statistic on the control chart, or a sequence of plotting statistics on the 

control chart. The state space and transition probability matrices for each of the different control charts 

considered in this dissertation are set up in the following section.  

 

 

Remark 3.20: 

 

A point that needs to be stressed is the inclusion of the dummy state “ ” to the state space  . The 

process always starts in the dummy state “ ” with probability one. A question that needs to be asked 

is, what this means in a SPC context, or what the state “ ” represents on the control chart? Since the 

dummy state“ ” is introduced so that the process starts IC with certainty, the dummy state “ ” is 

associated with the first plotting statistic, 0T , plotting IC. For an upper one-sided, lower one-sided and 
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two-sided charts, this is equivalent to 0T  plotting below the UCL  (zone 7), above the LCL  (zone 6) 

and between the UCL  and the LCL  (zone 3) respectively. And for the upper one-sided improved, the 

lower one-sided improved and the two-sided improved charts this is equivalent to 0T  plotting below 

the AUCL  (zone 7), above the ALCL  (zone 6) and between the AUCL  and the ALCL  (zone 3) 

respectively. 

 

“The number of rational subgroups to be collected or the number of charting statistics to be plotted 

on a control chart before the first OOC signal is observed is the run-length of a chart.”, see Human and 

Graham (2007). Where the run-length in the Markov chain context is the number of transitions 

between the states until an absorbing state is entered into, and not the number of states visited until an 

absorbing state is entered into. Some adjustments are made to accommodate for this difference: Firstly 

the plotting statistic associated with the dummy state “ ” is denoted by 0T  (with time subscript 0), the 

reason for this is demonstrated in Figure 3.28. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The upper one-sided 1-of-1 control chart 

Figure 3.28: Run-length illustration. 

An upper one-sided chart is used to demonstrate the adjustments made to accommodate the 

difference (without loss of generality). Recall that each plotting statistic or sequence of plotting 

statistics is associated with a state in the state space  . 0T  is associated with state  , where 1T , 2T , 3T  

and 4T  are associated with state 7, since these plotting statistics plot in zone 7 on the chart and 5T  is 
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associated with state 8, since the plotting statistic plots in zone 8. In the SPC context the run-length in 

Figure 3.28 is six, since the chart signals at the sixth plotting statistic (note that the first plotting 

statistic is 0T  and the sixth plotting statistic is 5T ). But in the Markov chain context the run-length is 

five, since there are only five transitions between the states until the chart signals. To address this 

problem the plotting statistic 0T  associated with the dummy state“ ” is not included in the count of 

the run-length i.e. the count of the number of plotting statistics plotted on the control chart until the 

chart signals is counted from the first plotting statistic ( 1T ) onwards. This is a rational approach since 

the probabilities entered into the transition probability matrix has no influence whether the process 

visits or revisits state “ ” and ultimately does not influence 0T  i.e. 0T  always plots IC regardless of 

the probabilities entered into the transition probability matrix . When using this approach the problem 

associated with difference between the run-length in the SPC context and Markov chain context is 

solved. The run-length in Figure 3.28 is therefore five according to this understanding. 

 

Hence the dummy state has a dual purpose, namely that the process starts IC with certainty and that 

the run-length count starts from the first sample  1T  up to when the chart signals. 
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3.3.1  The 1-of-1 control charts 

 

 

3.3.1.1  The upper one-sided 1-of-1 control chart 

 

The random variable iZ  can assume values 7 and 8 associated with the plotting statistic iT  plotting 

below the UCL   UCLTi   (zone 7) and iT  plotting on or above the UCL   UCLTi   (zone 8) 

respectively. Consequently the state space of the Markov chain  tY  is  1,7,  , where  81   

is the absorbing state. The run-length of the upper one-sided 1-of-1 control chart is the waiting time for 

the occurrence of the element in  , where  1 . 
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3.3.1.2  The lower one-sided 1-of-1 control chart 

 

The random variable iZ  can only assume values 6 and 9 associated with the plotting statistic iT  

plotting above the LCL   LCLTi   (zone 6), and iT  plotting on or below the LCL   LCLTi   (zone 

9) respectively. Consequently the state space of the Markov chain  tY  is  1,6,  , where 

 91   is the absorbing state. The run-length of the lower one-sided 1-of-1 control chart is the 

waiting time for the occurrence of the element in  , where  1 . 
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3.3.1.3  The two-sided 1-of-1 control chart 

 

The random variable iZ  can assume values 3, 8 and 9 associated with the plotting statistic iT  

plotting between the control limits  UCLTLCL i   (zone 3), on or above the UCL   UCLTi   

(zone 8) and iT  plotting on or below the LCL   LCLTi   (zone 9) respectively. Consequently the 

state space of the Markov chain  tY  is  21 ,,3,  , where  81   and  92   are the 

absorbing states. The run-length of the two-sided 1-of-1 control chart is the waiting time for the 

occurrence of one of the elements in  , where  21 , . 
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3.3.2  The 2-of-2 control charts 

 

 

3.3.2.1  The upper one-sided 2-of-2 control chart 

 

The random variable iZ  can only assume values 7 and 8 associated with the plotting statistic iT  

plotting below the UCL   UCLTi   (zone 7) and iT  plotting on or above the UCL   UCLTi   (zone 

8) respectively. Consequently the state space of the Markov chain  tY  is  1,8,7,  , where 

 881   is the absorbing state associated with two consecutive plotting statistics plotting on or above 

the UCL . The run-length of the upper one-sided 2-of-2 control chart is the waiting time for the 

occurrence of the element in  , where  1 . 
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3.3.2.2  The lower one-sided 2-of-2 control chart 

 

The random variable iZ  can only assume values 6 and 9 associated with the plotting statistic iT  

plotting above the LCL   LCLTi   (zone 6) and iT  plotting on or below the LCL   LCLTi   (zone 

9) respectively. Consequently the state space of the Markov chain  tY  is  1,9,6,  , where 

 991   is the absorbing state associated with two consecutive plotting statistics plotting on or below 

the LCL . The run-length of the lower one-sided 2-of-2 control chart is the waiting time for the 

occurrence of the element in  , where  1 . 
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3.3.2.3  The two-sided 2-of-2 control chart 

 

The random variable iZ  can assume values 3, 8 and 9 associated with the plotting statistic iT  

plotting between the control limits  UCLTLCL i   (zone 3), on or above the UCL   UCLTi   

(zone 8) and iT  plotting on or below LCL  the  LCLTi   (zone 9) respectively. Consequently the 

state space of the Markov chain  tY  is  21,,9,8,3,  , where  881   and  992   are the 

absorbing states associated with two consecutive plotting statistics plotting on or above (below) the 

UCL  ( LCL ). The run-length of the two-sided 2-of-2 control chart is the waiting time for the 

occurrence of one of the elements in  , where  21 , . 
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3.3.3  The 2-of-3 control charts 

 

3.3.3.1  The upper one-sided 2-of-3 control chart 

 

The random variable iZ  can assume values 7 and 8 associated with the plotting statistic iT  plotting 

below the UCL   UCLTi   (zone 7), and iT  plotting on or above the UCL   UCLTi   (zone 8) 

respectively. Consequently the state space of the Markov chain  tY  is  321 ,,,87,78,8,7,  , 

where  881  ,  7882   and  8783   are the absorbing states. The run-length of the upper one-

sided 2-of-3 control chart is the waiting time for the occurrence of one of the elements in  , 

where  321 ,,  . 
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3.3.3.2  The lower one-sided 2-of-3 control chart 

 

The random variable iZ  can only assume values 6 and 9, associated with the plotting statistic iT  

plotting above the LCL   LCLTi   (zone 6), and iT  plotting on or below the LCL   LCLTi   (zone 

9) respectively. Consequently the state space of the Markov chain }{ tY  is  321 ,,,96,69,9,6,  , 

where  991  ,  6992   and  9693   are the absorbing states. The run-length of the lower one-

sided 2-of-3 control chart is the waiting time for the occurrence of one of the elements in  , 

where  321 ,,  . 
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3.3.3.3  The two-sided 2-of-3 control chart 

 

The random variable iZ  can assume values 3, 8 and 9 associated with the plotting statistic iT  

plotting between the control limits  UCLTLCL i   (zone 3), on or above the UCL   UCLTi   

(zone 8) and iT  plotting on or below the LCL   LCLTi   (zone 9) respectively. Consequently the 

state space of the Markov chain  tY  is  654321 ,,,,,,93,83,39,38,9,8,3,  , where 

 881  ,  992  ,  3883  ,  3994  ,  8385   and  9396   are the absorbing states. 

The run-length of the two-sided 2-of-3 control chart is the waiting time for the occurrence of one of the 

elements in  , where  654321 ,,,,,  . 
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Remark 3.21: 

 

The transition probability matrix M , is constructed in such a manner that when the Markov chain 

is in state  9  or  39  at sample 1i , and the plotting statistic iT  plots on or above the UCL  (zone 8), 

the Markov chain moves to state  8  and if the following plotting statistic also plots on or above the 

UCL  (zone 8) the chart signals since the process moves to the absorbing state  88 , illustrated in panel 

(a) of Figure 3.29. If the Markov chain is in state  8  or  38  at sample 1i , and the plotting statistic 

iT  plots on or below the LCL  (zone 9), the Markov chain moves to state  9  and if the following 

plotting statistic plots on or below the LCL  (zone 9) the process moves to the absorbing state  99 , 

illustrated in Figure 3.29 panel (b). These sequences of plotting statistics illustrated in Figure 3.29 are 

interpreted as upward or downward shifts in the process since in each panel in Figure 3.29 there is at 

least two consecutive plotting statistics plotted above (below) the UCL  ( LCL ). 
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(a) 5
)(32 TofE   occurs at the eighth sample 

 

 
 
 
 
 
 
 
 

(b) 6
)(32 TofE   occurs at the eighth sample 

 

Figure 3.29: Illustrations to help explain some of the signalling events and transitions in the 

transition probability matrix of the two-sided 2-of-3 control chart. 

 

 

Remark 3.22: 

 

Note that Human et al. (2009)’s 2-of-3 control charts excluded the signalling events 
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)(32  ZZE Tof , therefore the 2-of-3 control charts given here differ slightly to Human et 

al. (2009)’s 2-of-3 control charts. Consequently the 2-of-3 control chart transition probability matrices 

also differ slightly. The motivation for the alterations is that the improved runs-rules control charts has 

a clear advantage over and above the runs-rules control charts when there is a large shift in the process. 

The transition probability matrices are needed to study the OOC performance of the control charts, 

which are necessary to show the advantage of improved runs-rules. Performance comparisons between 

runs-rules and improved runs-rules control charts are very limited using Human et al. (2009)’s 

transition probability matrices, since given large shifts in the process and using Human et al. (2009)’s 

transition probability matrix, the run-length tends to infinity, which is undesirable. 
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3.3.4  The improved 2-of-2 control charts 

 

3.3.4.1  The upper one-sided improved 2-of-2 control chart 

 

The random variable iZ  can assume values 1, 2 and 7, associated with the plotting statistic iT  

plotting on or above BUCL   Bi UCLT   (zone 1), plotting between AUCL  and BUCL  

 BiA UCLTUCL   (zone 2) and plotting below AUCL   Ai UCLT   (zone 7) respectively. 

Consequently the state space of the Markov chain  tY  is,  21,,,2,7,  , where  11   and 

 222   are the absorbing states. The run-length of the upper one-sided improved 2-of-2 control 

chart is the waiting time for the occurrence of one of the elements in  , where  21, . 
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3.3.4.2  The lower one-sided improved 2-of-2 control chart 

 

The random variable iZ  can assume values 5, 4 and 6, associated with the plotting statistic iT  

plotting on or below BLCL   Bi LCLT   (zone 5), plotting between ALCL  and BLCL  

 AiB LCLTLCL   (zone 4) and plotting above ALCL   Ai LCLT   (zone 6) respectively. 

Consequently the state space of the Markov chain  tY  is,  21 ,,4,6,  , where  51   and 

 442   are the absorbing states. The run-length of the lower one-sided improved 2-of-2 control 

chart is the waiting time for the occurrence of one of the elements in  , where  21, . 
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3.3.4.3  The two-sided improved 2-of-2 control chart 

 

The random variable iZ  can assume values 1, 2, 3, 4 and 5, associated with the plotting statistic iT  

plotting on or above BUCL   Bi UCLT   (zone 1), between AUCL  and BUCL   BiA UCLTUCL   

(zone 2), between ALCL  and AUCL   AiA UCLTLCL   (zone 3), between ALCL  and BLCL  

 AiB LCLTLCL   (zone 4), and iT  plotting on or below BLCL   Bi LCLT   (zone 5) respectively. 

Consequently the state space of the Markov chain  tY  is,  4321 ,,,,4,2,3,  , where  11  , 

 52  ,  223   and  444   are the absorbing states. The run-length of the two-sided improved 

2-of-2 control chart is the waiting time for the occurrence of one of the elements in  , 

where  4321 ,,,  . 
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3.3.5  The improved 2-of-3 control charts 

 

3.3.5.1  The upper one-sided improved 2-of-3 control chart 

 

The random variable iZ  can assume values 1, 2 and 7, associated with the plotting statistic iT  

plotting on or above BUCL   Bi UCLT   (zone 1), plotting between AUCL  and BUCL  

 BiA UCLTUCL   (zone 2) and plotting below AUCL   Ai UCLT   (zone 7) respectively. 

Consequently the state space of the Markov chain  tY  is,  4321 ,,,,27,72,2,7,  , where 

 11  ,  222  ,  7223   and  2724   are the absorbing states. The run-length of the upper 

one-sided improved 2-of-3 control chart is the waiting time for the occurrence of one of the elements in 

 , where  4321 ,,,  . 
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3.3.5.2  The lower one-sided improved 2-of-3 control chart 

 

The random variable iZ  can assume values 5, 4 and 6, associated with the plotting statistic iT  

plotting on or below BLCL   Bi LCLT   (zone 5), plotting between ALCL  and BLCL  

 AiB LCLTLCL   (zone 4) and plotting above ALCL   Ai LCLT   (zone 6) respectively. 

Consequently the state space of the Markov chain  tY  is  4321 ,,,,46,64,4,6,  , where 

 51  ,  442  ,  6443   and  4644   are the absorbing states. The run-length of the lower 

one-sided improved 2-of-3 control chart is the waiting time for the occurrence of one of the elements in 

 , where  4321 ,,,  . 
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3.3.5.3  The two-sided improved 2-of-3 control chart 

 

The random variable iZ  can assume values 1, 2, 3, 4 and 5, associated with the plotting statistic iT  

plotting on or above BUCL   Bi UCLT   (zone 1), between AUCL  and BUCL   BiA UCLTUCL   

(zone 2), between ALCL  and AUCL   AiA UCLTLCL   (zone 3), between ALCL  and BLCL  

 AiB LCLTLCL   (zone 4), and iT  plotting on or below BLCL   Bi LCLT   (zone 5) respectively. 

Consequently the state space of the Markov chain  tY  is, 

 87654321 ,,,,,,,,43,34,4,23,32,2,3,  , where  11  ,  52  ,  223  , 

 444  ,  3225  ,  2326  ,  3447   and  4348   are the absorbing states. The run-

length of the two-sided improved 2-of-3 control chart is the waiting time for the occurrence of one of 

the elements in  , where  87654321 ,,,,,,,  . 
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Remark 3.23: 

 

The transition probability matrix M , is constructed in such a manner that when the Markov chain 

is in state  4  or  34  at time 2i , and the plotting statistic 1iT  plots between the AUCL  and the 

BUCL  )( 1 BiA UCLTUCL    (zone 2), the Markov chain moves to state  2  at time 1i , if the 

following plotting statistic iT  plots between the AUCL  and the BUCL  )( BiA UCLTUCL   (zone 2) 

the chart signals at time i  since the process moves to the absorbing state  22 . Similarly if the Markov 

chain is in state  2  or  32  at time 2i , and the plotting statistic 1iT  plots between the ALCL  and 

BLCL  )( AiB LCLTLCL   (zone 4) the Markov chain moves to state  4  at time 1i  and if the 
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following plotting statistic iT  plots between the ALCL  and BLCL  )( AiB LCLTLCL   (zone 4) the 

process moves to the absorbing state  44 . Refer to the two-sided 2-of-3 control chart and Figure 3.29 

for a similar discussion on these transitions and their interpretation. 

 

 

3.4  Control limits 

 

Considering the control charts with improved runs-rules, an additional control limit is added to the 

ordinary control chart in the case of the one-sided control chart, and two additional control limits in the 

case of the two-sided control chart. A natural question that follows is what are the effects on the 

control charts when the inner and outer control limits lie on top of each other, or when the inner and 

outer control limits are swapped? 

 

Recall that the inner control limits (A control limits) are associated with the runs-rules, namely the 

2-of-2- and 2-of-3 runs-rules and the outer control limits (B control limits) are associated with the 1-of-

1 rule i.e. when a plotting statistic plots on or above (below) the BUCL  )( BLCL  the chart signals. The 

B control limit(s) were introduced, so that the chart signals immediately following a large process 

shift. 

 

 

3.4.1  Upper one-sided control charts 

 

Figure 3.30 graphically illustrates all the possible combinations of the A and B control limits on the 

upper one-sided improved runs-rules control chart. 

 

In panel (a) of Figure 3.30, is the usual combination of control limits namely where BUCL  lies 

above AUCL . 

 

Panel (b) of Figure 3.30 illustrates the case where the A and B control limits are the same (the inner 

and outer control limits lie on top of each other). In this case the runs-rules associated with the A 

control limit is negated, since when a plotting statistic plots on or above the 

 BABA UCLUCLUCLUCL /  the control chart signals immediately. Therefore when the BUCL  and 

AUCL  lies on top of each other, the improved runs-rules chart reduces to an ordinary 1-of-1 upper one-

sided chart with upper control limit equal to BA UCLUCL / . 
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Panel (c) of Figure 3.30 illustrates the case where the A control limit lies above the B control limit. 

In this case the runs-rules associated with the A control limit is also negated, since when a plotting 

statistic plots on or above the  BUCL  the control chart signals immediately. Therefore when the AUCL  

lies above the BUCL  the one-sided improved runs-rules chart reduce to an ordinary 1-of-1 upper one-

sided chart, with upper control limit equal to BUCL . 
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Figure 3.30: Illustrations of combinations of the upper one-sided improved runs-rules control 

limits. 
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3.4.2  Lower one-sided control charts 

 

A similar argument as with the upper one-sided control charts can be given, in order to show that 

both lower one-sided improved runs-rules control charts illustrated in panels (b) and (c) of Figure 3.31, 

reduces to a lower one-sided 1-of-1 control chart, with lower control limits equal to BA LCLLCL /  and 

BLCL  respectively. 
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Figure 3.31: Illustrations of combinations of the lower one-sided improved runs-rules control 

limits. 

 

 

3.4.3  Two-sided control charts 

 

Panel (a) of Figure 3.32 graphically illustrates the two-sided improved runs-rules control chart 

where the A control limits associated with the runs-rules lies inside the B control limits associated with 

the 1-of-1 signalling rule. This arrangement of the A and B control limits is the usual arrangement. 

 

Panels (b) and (c) of Figure 3.32 illustrates the case where the chart has normal lower improved 

runs-rules control limits i.e. BLCL  lies below ALCL , but has a 1-of-1 signalling rule for an upward 
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shift in the process. The control limits for the upper 1-of-1 signalling rule for the control charts in 

panels (b) and (c) are BA UCLUCL /  and BUCL  respectively. 

 

Panels (d) and (e) of Figure 3.32 illustrates the case where the chart has normal upper improved 

runs-rules control limits i.e. AUCL  lies below BUCL , but has a 1-of-1 signalling rule for a downward 

shift in the process. The control limits for the lower 1-of-1 signalling rule, for the control charts 

illustrated in panels (d) and (e) are BA LCLLCL /  and BLCL  respectively. 

 

Panels (f) and (g) illustrates the cases where the A and B control limits lie on top of each other and 

the case where the B control limits lie inside the A control limits respectively. In both cases these 

control charts reduce to ordinary two-sided 1-of-1 control charts. 
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Figure 3.32: Illustrations of combinations of the two-sided improved runs-rules control limits. 
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3.5  Summary of Chapter 3 

 

The reader should now be familiar with the signalling rules and the essential transition probability 

matrices of the 1-of-1, the 2-of-2, the 2-of-3, the improved 2-of-2 and the improved 2-of-3 control 

charts. 

 

 

3.6  Following two chapters 

 

The foundation that is laid down in Chapters 2 and 3 are applied in the following two chapters. In 

Chapter 4 the run-length distribution of the sign chart is calculated, where in Chapter 5 the run-length 

distribution of the precedence chart is calculated. In both Chapters 4 and 5 the run-length distribution 

is calculated using a Markov chain approach. 
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Chapter 4 

Sign control charts (Case K) 
 

 

4.0  Chapter 4 overview and objective 

 

In Chapter 3 the operations of the runs-rules and the improved runs-rules have been outlined. 

Chapter 2 introduced the Markov chain approach to calculate the run-length distribution and some 

characteristics of the run-length distribution. However, a plotting statistic and control limits are yet to 

be defined and used in conjunction with the runs-rules and the improved runs-rules charts. In this 

chapter the well-known sign statistic is used as a plotting statistic together with the improved runs-

rules; this leads to the so-called improved runs-rules sign control charts. An overview of the basic and 

the runs-rules enhanced sign charts by Amin et al. (1995) and Human et al. (2009), respectively are 

also presented. 

 

The objectives in Chapter 4 are to introduce the improved runs-rules sign chart and to derive the 

run-length distribution of the improved runs-rules sign chart using a Markov chain approach. 

Performance analysis is carried out to illustrate that the improved runs-rules sign charts are superior in 

performance to runs-rules sign charts for large shifts, while maintaining the same sensitivity in the 

detection of small shifts. 

 

 

After reading this chapter the reader should be familiar with: 

 The history of the sign chart, 

 The well-known sign statistic (i.e. the plotting statistic of the sign chart), 

 The application of the sign charts, 

 The design of the sign charts, 

 How the performance of the improved runs-rules sign charts compare to the runs-rules 

enhanced sign charts, and 

 The strengths and limitations of the improved runs-rules sign charts, compared to the runs-rules 

enhanced sign charts. 
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4.1  Introduction 

 

The sign chart is a Shewhart-type chart which uses the sign statistic as plotting statistic and can be 

used to monitor any specified )10(100   th  process percentile of interest. Note that since it is 

assumed that the percentile of interest is known, this scenario is referred to as the “Standards Known” 

case and is abbreviated as Case K. 

 

Amin et al. (1995) developed a nonparametric Shewhart-type chart based on the sign statistic 

which can be used to monitor the location of a process. This chart is known as the basic sign chart and 

is based on the simplest signalling rule, namely the 1-of-1 signalling rule i.e. the chart signals when the 

first plotting statistic plots on or outside the control limits. The 1-of-1 sign chart uses only the most 

recent plotting statistic in determining the state of the process and is thus insensitive to small process 

shifts. Human et al. (2009) addressed the 1-of-1 sign chart’s insensitivity to small process shifts by 

introducing the 2-of-2 and the 2-of-3 runs-rules and showed that the sign chart with runs-rules, have 

very good properties compared to the 1-of-1 sign chart. 

 

However, runs-rules charts have a limitation, in that they are unable to quickly detect large shifts in 

the process, as discussed in Chapter 3. The 2-of-2 (2-of-3) chart requires at least the last two (three) 

plotting statistics before the chart can signal, regardless of the size of the shift. To address this 

limitation, the improved 2-of-2 and the improved 2-of-3 runs-rules are introduced to the sign chart. 

 

Amin et al. (1995), p.1607-1608 introduced warning limits to the sign chart that were also studied 

by Page (1962), Weindling et al. (1970) and Champ et al. (1987) for the X  control chart. Amin et al. 

(1995)’s motivation for introducing warning limits to the sign chart, was to improve the efficiency in 

detecting small shifts. Coincidently one of the sign charts of Amin et al. (1995) with warning limits is 

exactly the same as the improved 2-of-2 sign chart as proposed and considered in this dissertation. The 

motivation in this dissertation for introducing improved runs-rules is to improve the efficiency of the 

runs-rules charts in detecting large shifts which is different from Amin et al. (1995)’s motivation, (for 

introducing warning limits) namely to improve the efficiency in detecting small shifts. 

 

Note that the values (ARL’s) in Table 2 on p.1606 of Amin et al. (1995) could be reproduced using 

the formulas provided in this dissertation. 

 

Note that, whereas Amin et al. (1995) only gave a formula to calculate the ARL for their sign chart 

with warning limits, in this dissertation (with regard to the improved 2-of-2 sign chart over and above 
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the sign chart of Amin et al. (1995) with warning limits) the run-length distribution, cumulative run-

length distribution, ARL and VRL are derived using a Markov chain approach and formulae for the 

FAR is provided. The improved 2-of-3 sign chart’s run-length distribution is derived, which is 

unavailable in the literature. Furthermore, the improved runs-rules charts are shown to be superior for 

large process shifts, while they maintain the same sensitivity as the runs-rules charts for small shifts. 

 

It is worth noting that Khoo and Ariffin (2006) implemented improved runs-rules to the X  chart to 

address the limitation that the runs-rules charts are unable to detect large shifts quickly. The 

application of the improved 2-of-3 runs-rules sign charts that are considered in this dissertation are 

slightly different at start up to Khoo and Ariffin (2006)’s improved runs-rules for reasons discussed in 

Chapter 3 Section 3.2.3; namely to address the problem that the chart does not signal following the 

event that all the plotting statistics plot on or outside the control limits from start up for the 2-of-3 

charts. 

 

 

4.2  Assumptions 

 

Let niii XXX ..., , , 21  denote a random sample of size 1n  (see Graham et al. (2011)) at time 

,...3,2,1i . Assume that the samples are independent and that each observation follows a continuous 

distribution with cumulative distribution function denoted by  xFX . The unique )10(100   th  

percentile is denoted by   1 XF , 10    (Human et al. (2009)). 

 

 

4.3  Applications and general information on the sign chart 

 

The sign chart is generally used to monitor the location i.e. the )10(100   th  percentile, of a 

process or distribution. Two special situations arise and these are: (i) when 5.0  and the underlying 

process distribution is symmetric, then the sign chart monitors the mean of the process, and (ii) if 

5.0  and the underlying process distribution is not symmetric, then the sign chart monitors for a 

change in the median of the process, where  5.01
0

 XF  denotes the median. It is assumed that 0  is 

specified. 

 

The sign chart is a nonparametric chart, i.e. its IC run-length distribution does not depend on the 

underlying process distribution. An advantage of the sign chart is that it does not require the 

underlying continuous process distribution to be symmetric (see e.g. Gibbons and Chakraborti, 
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(2003)). Furthermore the sign chart does not require the actual measurements, but only the number or 

count of observations within each sample that are larger or smaller than the known or specified value 

of the percentile of interest. Consequently, the sign chart can be applied with only binary data, i.e. 

when the only information available is whether a measurement is larger or smaller than the known or 

specified percentile of interest. Another advantage of the sign chart is that the variance need not be 

established in order to set up the sign chart to monitor the location. 

 

 

4.4  Plotting statistic 

 

The point that is plotted on the chart is typically referred to as a plotting statistic or charting 

statistic, refer to Chapter 1 Section 1.5.2 for a discussion on plotting statistics. 

 

Amin et al. (1995) considered the statistic 
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as plotting statistic for their sign chart. 

 

Amin et al. (1995) pointed out that iSN  is just the difference between the number of observations 

greater than 0  and the number smaller than 0  in the thi  sample of size n, where 0  denotes the 

specified value or the percentile of interest. Amin et al. (1995) favoured iSN  as the plotting statistic 

given in equation (4.1) since   0iSNE , i.e. the control limits could be placed symmetrically around 

zero. 

 

However, Human et al. (2009) considered the classical sign statistic 
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The plotting statistic iT  denotes the number of observations greater than 0  in the thi sample of 

size n, where 0  denotes the known (or the specified or the target) value of the percentile of interest. 

Note that iT  follows a Binomial distribution with parameters n and p , where  0 jiXPp . If the 

percentile of interest is equal to its specified value i.e. 0   the process is said to be IC and p equals 

 ICXPp ji |00  . Note that, the probability  0jiXP  is theoretically zero since the process 

distribution is assumed to be continuous. Amin et al. (1995) used iSN  as plotting statistic since the 

control limits are then symmetric about zero. This had the result that the control limits could be 

conveniently placed symmetric about zero. However, iT  is used as the plotting statistic in this 

dissertation since iT  follows a  pnBIN ,  distribution and the properties of a Binomial distribution are 

well known. 

 

 

Remark 4.1 

 

Note that the two statistics iT  and iSN  are equivalent since they are linearly related: 

  ,...3,2,12/  inSNT ii                                                         (4.3) 

Consequently, monitoring a process using iT  as plotting statistic will be the same as monitoring the 

process using iSN  as plotting statistic, where equivalent control limits are used. 

 

 

4.5  Control limits 

 

The upper and lower control limits for the 1-of-1 and runs-rules control charts are: 

cUCLUCLA /  and bLCLLCLA / .                                                    (4.4) 

 

The upper and lower control limits of the improved runs-rules control charts are: 

dUCLB  , cUCLUCLA / , bLCLLCLA /  and aLCLB  .                                    (4.5) 

Refer to Chapter 3 Section 3.1 for an explanation on the four control limits. Refer to Chapter 3 

Remark 3.1 for clarity on the notation used in equations (4.4) and (4.5). 

 

The values of the control limits i.e. a, b, c and d (where dcba  ) are all integers between 

(and including) zero and n. 

 

The choice of control limits is later discussed in Section 4.8. 
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4.6  Run-length distribution of the sign charts 

 

A Markov chain approach is used to calculate the run-length distribution. The essential transition 

probability matrices of all the control charts are given and the formulas that are used to calculate the 

elements (i.e. the transition probabilities) of the essential transition probability matrices are provided. 

A performance comparison is carried out between the improved runs-rules sign charts and the runs-

rules sign charts. Recall that, the essential transition probability matrices were all constructed in 

Section 3.3 of Chapter 3. 

 

 

4.6.1  Transition probabilities 

 

Recall from Section 4.4 that the sign statistic iT  follows a Binomial distribution with parameters n 

and p where  0 ijXPp . Furthermore, each element of the essential transition probability matrix 

is in fact a probability whose value depends on the “zone” in which iT  plots on the chart; these zones 

were graphically illustrated in Chapter 3 Figure 3.1. So, it follows that: 
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To understand the formulae for 921 ,...,, ppp . Note that the formulae for the probabilities are sums 

of Binomial probabilities (the control limits are integers between zero and n). iT  follows a Binomial 

distribution with parameters n and p where  0 ijXPp . 

 

 

4.6.2  Essential transition probability matrices 

 

The essential transition probability matrices for all the charts were constructed in Section 3.3 of 

Chapter 3 and are again given here for completeness. 

 

 

4.6.2.1   The 1-of-1 sign charts 

 

The essential transition probability matrices of the upper one-sided 1-of-1, lower one-sided 1-of-1 

and two-sided 1-of-1 charts are given by: 

 

Upper one-sided 1-of-1 sign chart essential transition probability matrix: 
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Lower one-sided 1-of-1 sign chart essential transition probability matrix: 
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Two-sided 1-of-1 sign chart essential transition probability matrix: 
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4.6.2.2   The 2-of-2 sign charts 

 

The essential transition probability matrices of the upper one-sided 2-of-2, lower one-sided 2-of-2 

and two-sided 2-of-2 charts are given by: 

 

Upper one-sided 2-of-2 sign chart essential transition probability matrix: 
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Lower one-sided 2-of-2 sign chart essential transition probability matrix: 
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Two-sided 2-of-2 sign chart essential transition probability matrix: 
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4.6.2.3   The 2-of-3 sign charts 

 

The essential transition probability matrices of the upper one-sided 2-of-3, lower one-sided 2-of-3 

and two-sided 2-of-3 charts are given by: 

 

Upper one-sided 2-of-3 sign chart essential transition probability matrix: 
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Lower one-sided 2-of-3 sign chart essential transition probability matrix: 
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Two-sided 2-of-3 sign chart essential transition probability matrix: 
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Note that the essential transition probability matrices of the 2-of-3 charts are marginally different 

from the essential transition probability matrices in Human et al. (2009). A discussion on this point is 

given in Remark 3.22 of Chapter 3. 

 

 

4.6.2.4   The improved 2-of-2 sign charts 

 

The essential transition probability matrices of the upper one-sided improved 2-of-2, lower one-

sided improved 2-of-2 and two-sided improved 2-of-2 charts are given by: 

 

Upper one-sided improved 2-of-2 sign chart essential transition probability matrix: 
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Lower one-sided improved 2-of-2 sign chart essential transition probability matrix: 
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Two-sided improved 2-of-2 sign chart essential transition probability matrix: 
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4.6.2.5   The improved 2-of-3 sign charts 

 

The essential transition probability matrices of the upper one-sided improved 2-of-3, lower one-

sided improved 2-of-3 and two-sided improved 2-of-3 charts are given by: 

 

Upper one-sided improved 2-of-3 sign chart essential transition probability matrix: 
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Lower one-sided improved 2-of-3 sign chart essential transition probability matrix: 
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Two-sided improved 2-of-3 sign chart essential transition probability matrix: 
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4.6.3  Run-length distribution and associated characteristics of the charts 

 

From Theorems 2.1 and 2.3 the following run-length distribution formulae follow: 

 

     1QIQξ  1jjNP ,  for ,...3,2,1j   with IQ 0    (pdf of the run-length distribution)    (4.30) 

    1ξQ jjNP  1 ,  for ,...3,2,1j                                  (cdf of the run-length distribution)    (4.31) 

          1QIξ 1NE                                      (expected value of the run-length distribution)    (4.32) 

       212 1QIξ1QIQIξ  NVar            (variance of the run-length distribution)    (4.33) 

 

where:      hh QQ  is the essential transition probability matrix, 

                  0,...,0,0,11  hξξ , 

                  Th 1,...,1,1,11  11 , 

                 hhII  is the identity matrix, 

                 N is the run-length random variable, 

                 j is the integer value that N can assume, and 

                 h is an integer value representing the number of transient states. 

 

To calculate the run-length distribution and some associated characteristics of a chart under 

consideration, the appropriate essential transition probability matrix needs to substitute into equations 

(4.30), (4.31), (4.32) and (4.33). SAS®9.2 and Mathcad®14.0 are software packages that are capable of 

evaluating these expressions. 

 

Refer to Section 1.6.3 and Table 1.1 of Chapter 1 for elaboration on equations (4.30) – (4.33). 
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4.7  False alarm rates 

 

A single compact FAR formula for the different sign charts is not available. Consequently a 

formula for each chart is given below.  

 

Note that all the probabilities given below are IC probabilities, in other words it is the probability 

of iT  plotting in a zone on the chart given the process is IC. 
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  ,...3,2,19811  timeforppFAR Tof                                                                                   (4.36) 
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Where the spi '  are defined in (4.6)-(4.14) with 0pp  , i.e. IC probabilities. 

 

 

Remark 4.2 

 

An advantage of using the Markov chain approach is that it can be used to calculate the IC and 

OOC run-length distribution and some IC and OOC characteristics of the run-length distribution. In 

order to calculate a chart’s IC run-length distribution and characteristics, IC probabilities 921 ...,,, ppp  

needs to be substituted into the essential transition probability matrix, i.e. 0  . Conversely, to 

calculate a control chart’s OOC run-length distribution and characteristics, OOC probabilities 

921 ...,,, ppp  need to be substituted into the essential transition probability matrix, i.e. 0  . 
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Remark 4.3 

 

If 0  , the process is IC and the probability that the chart signals depends only on: 

(i) The sample size n, 

(ii) Some or all of the control limits BUCL , UCLUCLA / ,  LCLLCLA /  and BLCL , and 

(iii) The specified value of the  10100   th  percentile denoted by 0 . 

 

Therefore any signalling events based on the iT ’s are distribution-free since the IC probability of a 

signal does not depend on the underlying process distribution as long as the process distribution is 

continuous and identical at every point in time. Consequently the IC run-length distribution, and hence 

the sign chart is distribution-free. 

 

 

Remark 4.4 

 

Note that when the process is OOC i.e. 0   the run-length distribution depends on the 

underlying process distribution. The underlying process distribution influences the parameter p of the 

Binomial distribution. Therefore p is no longer be equal to 0p  (i.e. 0pp  ).  

 

Consequently the transition probabilities in equations (4.6) to (4.14) will be influenced. These 

transition probabilities are used to populate the essential transition probability matrix which are used to 

calculate the run-length distribution as can be seen in equations (4.30) to (4.33). Therefore p depends 

on the underlying process distribution and ultimately so does the run-length distribution. 

 

 

Remark 4.5 

 

The run-length distribution and the characteristics of the sign charts can now be calculated since 

the following is established; the plotting statistic, essential transition probability matrices, the ability to 

calculate the probabilities inside the essential transition probability matrices (transition probabilities) 

and formulae to calculate the run-length distribution and the characteristics of the 1-of-1, 2-of-2, 2-of-

3, improved 2-of-2 and improved 2-of-3 sign charts. 
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Charting constants/control limits for the sign charts are required for practical implementation by 

the quality practitioner. Performance comparisons are required to illustrate that improved runs-rules 

sign charts are an improvement over the runs-rules sign charts. This is done through the examination 

of the characteristics of charts such as the average run-length (ARL), the false alarm rate (FAR), the 

standard deviation of the run-length (SDRL) and percentiles of the run-length distribution (see e.g. 

Human et al. (2009)). Refer to Section 1.12.2 of Chapter 1 for an elaboration on the performance 

analysis of a chart using the characteristic of the run-length distribution. 

 

 

4.8  Design of the improved runs-rules sign charts 

 

In practice one is interested in a chart that has good properties, for instance a large IC ARL and 

small FAR (for more detail refer to Chapter 1). The IC properties of a nonparametric (sign) chart 

depend on the design parameters which include: 

(i) the sample size n  

(ii) the charting constants a, b, c and d, and 

(iii) the target value 0 . 

 

The design of the sign charts is given where the median is chosen to be monitored. The median is a 

popular percentile that is used to monitor the location, hence 5.0  and 

  5.0|00  ICXPpp ij  . Note that in general the sign chart can be used to monitor any desired 

percentile. 

 

The charting constants can assume any integer values between and including zero and n. However, 

the charting constants are chosen such that the IC ARL assumes values that are informative/usable to 

the quality practitioner. Note that the charting constants are chosen symmetrically for the median i.e. 

aLCLB  , bLCLLCLA / , bncUCLUCLA /  and andUCLB  . 

 

These IC characteristics (ARL and FAR) of the improved runs-rules sign charts are calculated by 

evaluating exact expressions using Proc IML in SAS®9.2. 
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Remark 4.6 

 

Note that since the median is monitored the IC distribution of the sign (plotting) statistic is 

symmetric,   5.0,~ nBinTi . Since the plotting statistic is symmetric it follows naturally to select the 

control limits (charting constants) so that they are symmetric. Based on symmetric control limits the IC 

run-length distribution of the upper and the lower one-sided improved 2-of-2 and improved 2-of-3 

charts are equal and that the IC performance of the lower and the upper one-sided improved sign 

charts, for monitoring the median, are identical. 

 

It will be shown that the run-length distributions of the upper and the lower improved 2-of-2 charts 

are equal and that the performance of the lower and the upper improved one-sided sign charts, for 

monitoring the median, are identical. Recall that equations (4.30) to (4.33) are used to calculate the 

run-length distribution and the characteristics of the run-length distribution. Equations (4.30) to (4.33) 

depend only on: 

hh QQ  the essential transition probability matrix, 

  0,...,0,0,11  hξξ , 

  Th 1,...,1,1,11  11 , 

 hhII  is the identity matrix, 

where h is the number of transient states. The upper and the lower improved 2-of-2 charts have the 

same number of transient states. The only difference between the upper and the lower improved 2-of-2 

charts is the essential transition probability matrix. From investigating matrices (4.24) and (4.25) it is 

clear that the essential transition probability matrices will be the same if: 

            42 pp  , and 

            76 pp  . 
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2p  will equal 4p  if: 

   bTaPanTbnP ii    which is the case since the control limits are symmetrically 
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Similarly 6p  will equal 7p . 

 

Consequently the essential transition probability matrices of the upper and the lower one-sided 

improved 2-of-2 charts are equal since their corresponding transition probabilities are equal. This in 

turn results in an equal run-length distribution of the upper and the lower one-sided improved 2-of-2 

charts. Consequently, when monitoring the process median, the performances of the upper and the 

lower one-sided improved 2-of-2 sign charts are equal. 

 

A similar argument can be provided to prove that based on symmetric control limits that the run-

length distribution of the upper and the lower improved 2-of-3 charts are equal and that the 

performance of the lower and the upper one-sided improved sign charts, for monitoring the median, are 

identical i.e. they are equal in distribution. This is omitted here. 

 

 

4.8.1  Tables presenting the IC characteristics of the improved runs-rules sign charts 

 

Tables 4.2, 4.3, 4.4 and 4.5 provide the IC characteristics (ARL and FAR) of the improved runs-

rules sign charts. These Tables will aid in selecting appropriate control limits in the application of the 

improved runs-rules sign charts. Following the presentation and explanation of Tables 4.2, 4.3, 4.4 and 

4.5 an example is given to illustrate the use of the Tables 4.2, 4.3, 4.4 and 4.5, and also the application 

of the improved runs-rules sign charts. 

 

Table 4.1 is provided to clarify the notation used in the Tables 4.2, 4.3, 4.4 and 4.5. 
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Table 4.1: Description of the notation used in Tables 4.1, 4.2, 4.3 and 4.4. 

 

Notation Description 

n Sample size. 

a Integer representing the value of the outer lower control limit  BLCL . 

b Integer representing the value of the inner lower control limit  ALCL . 

c Integer representing the value of the inner upper control limit  AUCL . 

d Integer representing the value of the outer upper control limit  BUCL . 

0ARL  In control ARL. 

FAR1 False alarm rate for time = 1. 

FAR234 False alarm rate for time = 2, 3, 4,…. 

FAR2 False alarm rate for time = 2. 

FAR345 False alarm rate for time = 3, 4, 5,…. 

I2-of-2 (U & L) Upper and lower one-sided improved 2-of-2 charts. 

I2-of-2 (Two-Sided) Two-sided improved 2-of-2 chart. 

I2-of-3 (U & L) Upper and lower one-sided improved 2-of-3 charts. 

I2-of-3 (Two-Sided) Two-sided improved 2-of-3 chart. 

 

 

4.8.2  The use of Tables 4.2, 4.3, 4.4 and 4.5 

 

An illustration is discussed to explain the use of Tables 4.2, 4.3, 4.4 and 4.5. Consider a two-sided 

improved 2-of-2 sign chart, with a sample size of 20, used to monitor a process median. Suitable 

charting constants/control limits need to be selected to obtain desirable properties for the chart. 

 

In Table 4.2 the first column provides the choice of sample sizes. The last 16 rows of Table 4.2 

provides information on the upper and the lower one-sided improved 2-of-2 sign chart and the two-

sided improved 2-of-2 sign chart with a sample size of 20. However, since the two-sided improved 2-

of-2 sign chart is considered, only the last three columns are of interest. 

 

Columns two, three, four and five provide the combinations of control limits. Now focus is placed 

on the last 16 rows and columns two, three, four, five, nine, ten and eleven since all the information on 

the two-sided improved 2-of-2 sign chart is provided in these cells. 
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Suppose that control limits need to be selected so that the IC ARL of the improved two-sided chart 

is approximately 370. Column nine contains the IC ARL values. The seventh row from the bottom of 

Table 4.2 contains an IC ARL value of 381.78. Note that since the sign statistic is a discrete statistic, an 

IC ARL of 370 is not possible for the two-sided improved 2-of-2 sign chart with a sample size of 20. 

The control limits that provides an IC ARL of 381.78 can be obtained from the Table, 3BLCL , 

4ALCL , 16AUCL  and 17BUCL , where FAR1=0.00258 and FAR234=0.00262. 

 

 

4.8.3  Discussion on Tables 4.2, 4.3, 4.4 and 4.5 

 

A general observation can be made regarding Tables 4.2, 4.3, 4.4 and 4.5 that as the sample size 

increases that the possible combinations of ARL and FAR increases. It can be seen that the one-sided 

charts has a greater combination of practical ARL and FAR combinations. 

 

For the upper one-sided improved 2-of-2 (two-sided improved 2-of-2) sign chart a sample size of at 

least nine (ten) is required to obtain a practical IC ARL of 443.11 (466.85). Where for the upper one-

sided improved 2-of-3 (two-sided improved 2-of-3) sign chart a sample size of at least nine (ten) is 

required to obtain a practical IC ARL of 393.01 (430.41). 

 

From the discussions in this section and in the discussion in the previous section where the 

application of Tables 4.2, 4.3, 4.4 and 4.5 is discussed it can be seen that the Tables provide a great 

deal of information. However, the use of Tables 4.2, 4.3, 4.4 and 4.5 is simple and should be useful to 

the quality practitioner. 
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Table 4.2: The in-control characteristics (ARL and FAR) of the upper one-sided, lower one-sided 

and two-sided improved 2-of-2 sign charts for the median (n=5-20). 

 

Sample Size LCLB LCLA UCLA UCLB I2-of-2 (U & L) I2-of-2 (Two-Sided) 
n a=n-d b=n-c c=n-b d=n-a ARL0 FAR1 FAR234 ARL0 FAR1 FAR234 

0 1 4 5 19.10 0.03125 0.05566 9.55 0.06250 0.11133 

0 2 3 5 5.53 0.03125 0.25098       5 

1 2 3 4 3.82 0.18750 0.28516       

0 1 5 6 42.26 0.01563 0.02441 21.13 0.03125 0.04883 

0 2 4 6 10.34 0.01563 0.12329       6 

1 2 4 5 6.50 0.10938 0.16431       

0 1 6 7 93.91 0.00781 0.01080 46.96 0.01563 0.02161 

0 2 5 7 21.24 0.00781 0.05566       7 

1 2 5 6 11.68 0.06250 0.08942       

0 1 7 8 206.05 0.00391 0.00488 103.02 0.00781 0.00977 

0 2 6 8 47.07 0.00391 0.02368 23.54 0.00781 0.04736 8 

1 2 6 7 21.77 0.03516 0.04712       

0 1 8 9 443.11 0.00195 0.00226 221.55 0.00391 0.00452 

0 2 7 9 110.45 0.00195 0.00968 55.23 0.00391 0.01936 9 

1 2 7 8 41.41 0.01953 0.02448       

0 1 9 10 933.70 0.00098 0.00107 466.85 0.00195 0.00214 

0 2 8 10 269.22 0.00098 0.00386 134.61 0.00195 0.00772 

0 3 7 10 38.58 0.00098 0.03018       
10 

1 2 8 9 79.41 0.01074 0.01267 39.71 0.02148 0.02535 

0 3 12 15 3001.87 0.00003 0.00034 1500.93 0.00006 0.00068 

0 4 11 15 299.43 0.00003 0.00354 149.71 0.00006 0.00707 

0 5 10 15 50.50 0.00003 0.02279 25.25 0.00006 0.04557 

1 3 12 14 1289.60 0.00049 0.00078 644.80 0.00098 0.00156 

1 4 11 14 266.81 0.00049 0.00394 133.41 0.00098 0.00788 

1 5 10 14 49.63 0.00049 0.02311 24.82 0.00098 0.04621 

2 3 12 13 257.55 0.00369 0.00389 128.77 0.00739 0.00777 

2 4 11 13 151.17 0.00369 0.00678 75.58 0.00739 0.01356 

2 5 10 13 44.29 0.00369 0.02536 22.15 0.00739 0.05071 

3 4 11 12 51.96 0.01758 0.01931 25.98 0.03516 0.03863 

15 

4 5 10 11 14.94 0.05923 0.06763       

0 5 15 20 2378.10 0.00000 0.00043 1189.05 0.00000 0.00086 

0 6 14 20 318.05 0.00000 0.00333 159.02 0.00000 0.00665 

0 7 13 20 65.35 0.00000 0.01732 32.67 0.00000 0.03463 

1 5 15 19 2278.88 0.00002 0.00045 1139.44 0.00004 0.00089 

1 6 14 19 316.33 0.00002 0.00334 158.17 0.00004 0.00668 

1 7 13 19 65.28 0.00002 0.01733 32.64 0.00004 0.03466 

2 5 15 18 1631.92 0.00020 0.00062 815.96 0.00040 0.00124 

2 6 14 18 300.91 0.00020 0.00350 150.45 0.00040 0.00701 

2 7 13 18 64.69 0.00020 0.01746 32.34 0.00040 0.03493 

3 4 16 17 763.55 0.00129 0.00131 381.78 0.00258 0.00262 

3 6 14 17 232.75 0.00129 0.00447 116.37 0.00258 0.00893 

3 7 13 17 61.32 0.00129 0.01827 30.66 0.00258 0.03653 

4 5 15 16 163.28 0.00591 0.00613 81.64 0.01182 0.01226 

4 6 14 16 118.27 0.00591 0.00859 59.13 0.01182 0.01717 

4 7 13 16 50.15 0.00591 0.02170 25.07 0.01182 0.04341 

20 

5 6 14 15 45.43 0.02069 0.02206 22.71 0.04139 0.04412 
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Table 4.3: The in-control characteristics (ARL and FAR) of the upper one-sided, lower one-sided 

and two-sided improved 2-of-2 sign charts for the median (n=25). 

 

Sample Size LCLB LCLA UCLA UCLB I2-of-2 (U & L) I2-of-2 (Two-Sided) 
n a=n-d b=n-c c=n-b d=n-a ARL0 FAR1 FAR234 ARL0 FAR1 FAR234 

0 7 18 25 2180.98 0.00000 0.00047 1090.49 0.00000 0.00094 

0 8 17 25 363.07 0.00000 0.00290 181.54 0.00000 0.00581 

0 9 16 25 84.64 0.00000 0.01317 42.32 0.00000 0.02634 

0 10 15 25 26.93 0.00000 0.04502       

1 7 18 24 2177.59 0.00000 0.00047 1088.80 0.00000 0.00094 

1 8 17 24 362.98 0.00000 0.00290 181.49 0.00000 0.00581 

1 9 16 24 84.64 0.00000 0.01317 42.32 0.00000 0.02634 

1 10 15 24 26.93 0.00000 0.04502       

2 7 18 23 2137.72 0.00001 0.00048 1068.86 0.00002 0.00096 

2 8 17 23 361.93 0.00001 0.00291 180.96 0.00002 0.00582 

2 9 16 23 84.59 0.00001 0.01318 42.29 0.00002 0.02636 

2 10 15 23 26.92 0.00001 0.04503       

3 6 19 22    3837.93 0.00016 0.00026 

3 7 18 22 1874.53 0.00008 0.00054 937.27 0.00016 0.00109 

3 8 17 22 354.02 0.00008 0.00297 177.01 0.00016 0.00594 

3 9 16 22 84.19 0.00008 0.01323 42.10 0.00016 0.02646 

3 10 15 22 26.89 0.00008 0.04506       

4 5 20 21       1092.27 0.00091 0.00092 

4 6 19 21       995.98 0.00091 0.00100 

4 7 18 21 1117.50 0.00046 0.00090 558.75 0.00091 0.00181 

4 8 17 21 316.02 0.00046 0.00331 158.01 0.00091 0.00662 

4 9 16 21 82.10 0.00046 0.01352 41.05 0.00091 0.02704 

4 10 15 21 26.70 0.00046 0.04528       

5 6 19 20 483.94 0.00204 0.00207 241.97 0.00408 0.00413 

5 7 18 20 413.98 0.00204 0.00242 206.99 0.00408 0.00485 

5 8 17 20 217.71 0.00204 0.00473 108.85 0.00408 0.00945 

5 9 16 20 74.31 0.00204 0.01475 37.15 0.00408 0.02949 

5 10 15 20 25.95 0.00204 0.04620       

6 7 18 19 133.00 0.00732 0.00752 66.50 0.01463 0.01504 

6 8 17 19 106.52 0.00732 0.00948 53.26 0.01463 0.01897 

6 9 16 19 56.37 0.00732 0.01886 28.18 0.01463 0.03772 

25 

7 8 17 18 44.15 0.02164 0.02268 22.08 0.04329 0.04536 
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Table 4.4: The in-control characteristics (ARL and FAR) of the upper one-sided, lower one-sided 

and two-sided improved 2-of-3 sign charts for the median (n=5-20). 

 

Sample Size LCLB LCLA UCLA UCLB I2-of-3 (U & L) I2-of-3 (Two-Sided) 
n a=n-d b=n-c c=n-b d=n-a ARL0 FAR1 FAR2 FAR345 ARL0 FAR1 FAR2 FAR345
5 0 1 4 5 15.21 0.03125 0.05566 0.07092 7.95 0.06250 0.11133 0.13116 

6 0 1 5 6 33.62 0.01563 0.02441 0.03128 17.22 0.03125 0.04883 0.06036 

0 1 6 7 76.62 0.00781 0.01080 0.01342 38.76 0.01563 0.02161 0.02642 
7 

0 2 5 7 14.50 0.00781 0.05566 0.08183         

0 1 7 8 175.01 0.00391 0.00488 0.00579 87.97 0.00781 0.00977 0.01151 
8 

0 2 6 8 30.30 0.00391 0.02368 0.03774 16.04 0.00781 0.04736 0.06961 

0 1 8 9 393.01 0.00195 0.00226 0.00256 196.94 0.00391 0.00452 0.00510 

0 2 7 9 68.55 0.00195 0.00968 0.01601 35.52 0.00391 0.01936 0.03061 9 

1 2 7 8 35.90 0.01953 0.02448 0.02853 18.18 0.03906 0.04895 0.05598 

0 1 9 10 860.10 0.00098 0.00107 0.00117 430.41 0.00195 0.00214 0.00233 

0 2 8 10 165.08 0.00098 0.00386 0.00643 84.35 0.00195 0.00772 0.01254 

0 3 7 10 24.00 0.00098 0.03018 0.04935 12.93 0.00195 0.06037 0.08860 

1 2 8 9 70.41 0.01074 0.01267 0.01439 35.43 0.02148 0.02535 0.02853 

10 

1 3 7 9 21.09 0.01074 0.03671 0.05374         

0 3 12 15 1611.81 0.00003 0.00034 0.00064 812.53 0.00006 0.00068 0.00126 

0 4 11 15 163.08 0.00003 0.00354 0.00663 83.83 0.00006 0.00707 0.01284 

0 5 10 15 30.37 0.00003 0.02279 0.03867 16.24 0.00006 0.04557 0.07048 

1 2 13 14         983.07 0.00098 0.00100 0.00102 

1 3 12 14 953.93 0.00049 0.00078 0.00106 479.16 0.00098 0.00156 0.00211 

1 4 11 14 153.83 0.00049 0.00394 0.00698 78.92 0.00098 0.00788 0.01355 

1 5 10 14 30.11 0.00049 0.02311 0.03890 16.09 0.00098 0.04621 0.07095 

2 3 12 13 246.03 0.00369 0.00389 0.00407 123.11 0.00739 0.00777 0.00813 

2 4 11 13 109.92 0.00369 0.00678 0.00950 55.88 0.00739 0.01356 0.01861 

2 5 10 13 28.42 0.00369 0.02536 0.04048 15.09 0.00739 0.05071 0.07427 

3 4 11 12 48.32 0.01758 0.01931 0.02084 24.27 0.03516 0.03863 0.04142 

15 

4 5 10 11 13.79 0.05923 0.06763 0.07350         

0 4 16 20         7189.62 0.00000 0.00007 0.00014 

0 5 15 20 1226.68 0.00000 0.00043 0.00084 619.56 0.00000 0.00086 0.00166 

0 6 14 20 172.18 0.00000 0.00333 0.00627 88.46 0.00000 0.00665 0.01215 

0 7 13 20 38.51 0.00000 0.01732 0.03007 20.42 0.00000 0.03463 0.05559 

1 4 16 19         5670.31 0.00004 0.00011 0.00018 

1 5 15 19 1200.76 0.00002 0.00045 0.00086 606.32 0.00004 0.00089 0.00170 

1 6 14 19 171.72 0.00002 0.00334 0.00628 88.22 0.00004 0.00668 0.01218 

1 7 13 19 38.49 0.00002 0.01733 0.03008 20.41 0.00004 0.03466 0.05561 

2 5 15 18 999.90 0.00020 0.00062 0.00102 504.00 0.00040 0.00124 0.00203 

2 6 14 18 167.51 0.00020 0.00350 0.00642 85.98 0.00040 0.00701 0.01246 

2 7 13 18 38.32 0.00020 0.01746 0.03018 20.31 0.00040 0.03493 0.05582 

3 4 16 17 751.54 0.00129 0.00131 0.00133 375.81 0.00258 0.00262 0.00266 

3 5 15 17 498.44 0.00129 0.00167 0.00203 250.12 0.00258 0.00333 0.00404 

3 6 14 17 145.96 0.00129 0.00447 0.00728 74.60 0.00258 0.00893 0.01418 

3 7 13 17 37.31 0.00129 0.01827 0.03078 19.74 0.00258 0.03653 0.05704 

4 5 15 16 157.99 0.00591 0.00613 0.00634 79.05 0.01182 0.01226 0.01266 

4 6 14 16 94.02 0.00591 0.00859 0.01096 47.58 0.01182 0.01717 0.02157 

4 7 13 16 33.55 0.00591 0.02170 0.03334         

20 

5 6 14 15 43.16 0.02069 0.02206 0.02327 21.64 0.04139 0.04412 0.04633 
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Table 4.5: The in-control characteristics (ARL and FAR) of the upper one-sided, lower one-sided 

and two-sided improved 2-of-3 sign charts for the median (n=25). 

 

Sample Size LCLB LCLA UCLA UCLB I2-of-3 (U & L) I2-of-3 (Two-Sided) 
n a=n-d b=n-c c=n-b d=n-a ARL0 FAR1 FAR2 FAR345 ARL0 FAR1 FAR2 FAR345

0 6 19 25         4771.42 0.00000 0.00011 0.00021 

0 7 18 25 1125.30 0.00000 0.00047 0.00092 568.62 0.00000 0.00094 0.00181 

0 8 17 25 195.59 0.00000 0.00290 0.00549 100.31 0.00000 0.00581 0.01067 

0 9 16 25 48.99 0.00000 0.01317 0.02332 25.80 0.00000 0.02634 0.04361 

1 6 19 24         4738.69 0.00000 0.00011 0.00021 

1 7 18 24 1124.44 0.00000 0.00047 0.00092 568.18 0.00000 0.00094 0.00181 

1 8 17 24 195.56 0.00000 0.00290 0.00549 100.30 0.00000 0.00581 0.01067 

1 9 16 24 48.99 0.00000 0.01317 0.02332 25.80 0.00000 0.02634 0.04361 

2 6 19 23         4378.24 0.00002 0.00013 0.00023 

2 7 18 23 1114.14 0.00001 0.00048 0.00093 562.91 0.00002 0.00096 0.00183 

2 8 17 23 195.28 0.00001 0.00291 0.00550 100.15 0.00002 0.00582 0.01069 

2 9 16 23 48.97 0.00001 0.01318 0.02332 25.79 0.00002 0.02636 0.04362 

3 6 19 22         2765.35 0.00016 0.00026 0.00036 

3 7 18 22 1041.02 0.00008 0.00054 0.00099 525.58 0.00016 0.00109 0.00196 

3 8 17 22 193.16 0.00008 0.00297 0.00555 99.03 0.00016 0.00594 0.01080 

3 9 16 22 48.86 0.00008 0.01323 0.02336 25.73 0.00016 0.02646 0.04371 

4 5 20 21         1086.37 0.00091 0.00092 0.00092 

4 6 19 21 1825.46 0.00046 0.00050 0.00055 913.29 0.00091 0.00100 0.00110 

4 7 18 21 764.74 0.00046 0.00090 0.00133 385.01 0.00091 0.00181 0.00265 

4 8 17 21 182.28 0.00046 0.00331 0.00586 93.29 0.00091 0.00662 0.01140 

4 9 16 21 48.26 0.00046 0.01352 0.02359 25.39 0.00091 0.02704 0.04417 

5 6 19 20 477.65 0.00204 0.00207 0.00209 238.85 0.00408 0.00413 0.00419 

5 7 18 20 360.93 0.00204 0.00242 0.00279 180.97 0.00408 0.00485 0.00556 

5 8 17 20 147.30 0.00204 0.00473 0.00712 74.97 0.00408 0.00945 0.01395 

5 9 16 20 45.88 0.00204 0.01475 0.02454 24.05 0.00408 0.02949 0.04610 

6 7 18 19 129.68 0.00732 0.00752 0.00772 64.87 0.01463 0.01504 0.01542 

6 8 17 19 89.41 0.00732 0.00948 0.01142 45.10 0.01463 0.01897 0.02257 

6 9 16 19 39.35 0.00732 0.01886 0.02776         

25 

7 8 17 18 42.47 0.02164 0.02268 0.02361 21.28 0.04329 0.04536 0.04706 

 

Remark 4.7 

 

The sign statistic is a discrete statistic i.e. the sign statistic can only assume a finite number of 

possible values. Consequently the sign chart can only assume a finite number of possible ARL and 

FAR combinations for a choice of n. The possible ARL and FAR combinations increases as n increase. 
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Example 4.1 

 

An example where the median is monitored is presented to illustrate the application of the sign 

chart. A two-sided improved 2-of-2 sign chart and a two-sided improved 2-of-3 sign chart is presented 

in this example. 

 

In this example the median of the inside diameter measurements of forged automobile engine 

piston rings are monitored. The observations that were used for this example is given on p.223 in 

Table 5.3 of Montgomery (2005), the observations was supplemented with additional observations 

given on p.250 in Exercise 5.10 of Montgomery (2005). Note that the data is modified by grouping 

two consecutive samples of size five together to obtain 19 samples (i.e. a total of 190 observations) of 

size ten each. This grouping of two samples of size five each was done purely for illustration purposes 

in this Example, so that samples of size ten each could be obtained which would yield combinations of 

control limits that provide a “practical” IC ARL. 

 

In order to apply the sign charts the charting constants are required. Tables 4.6 and 4.7 are 

provided to aid in choosing appropriate charting constants. 

 

 

Table 4.6: The in-control characteristics (ARL and FAR) of the two-sided improved 2-of-2 sign 

chart for the median (n=10). 

 

I2-of-2 (Two-Sided) 
LCLB LCLA UCLA UCLB ARL0 FAR1 FAR234 
a=n-d b=n-c c=n-b d=n-a       

0 1 9 10 466.85 0.00195 0.00214 
0 2 8 10 134.61 0.00195 0.00772 
1 2 8 9 39.71 0.02148 0.02535 

 

 

Table 4.7: The in-control characteristics (ARL and FAR) of the two-sided improved 2-of-3 sign 

chart for the median (n=10). 

 

I2-of-3 (Two-Sided) 
LCLB LCLA UCLA UCLB ARL0 FAR1 FAR2 FAR345 
a=n-d b=n-c c=n-b d=n-a         

0 1 9 10 430.41 0.00195 0.00214 0.00233 
0 2 8 10 84.35 0.00195 0.00772 0.01254 
0 3 7 10 12.93 0.00195 0.06037 0.0886 
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When choosing LCLB=0, LCLA=1, UCLA=9 and UCLB=10 the 0ARL  is 467 and 430 for the two-

sided improved 2-of-2 and the two-sided improved 2-of-3 sign charts respectively as can be seen in 

Tables 4.6 and 4.7. With this the choice of control limits, the two-sided improved 2-of-2 and the two-

sided improved 2-of-3 sign charts appears visually identical, since the plotting statistic is calculated in 

the same manner and the control limits are the same as can be seen in and Figure 4.1. The only 

difference is the signalling rules and ultimately the characteristics of the charts. 

 

A plot of the sign statistics is presented in Figure 4.1. Note that for this set of observations both the 

two-sided improved 2-of-2 and the two-sided improved 2-of-3 sign charts signal at the 19th sample. 

Note that if the two-sided 2-of-2 and the two-sided 2-of-3 sign charts were considered, neither one 

would have signalled at the 19th sample since the 19th sample would have been the first plotting 

statistic plotting on or above the UCLUCLA / . The two-sided 1-of-1 sign chart would not be 

appropriate to compare in this case since the control limits would be wider than UCLUCLA /  (to obtain 

a similar IC ARL), so the chart may signal or not depending if the plotting statistic plots on or above 

UCLUCLA / . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The two-sided improved 2-of-2 and two-sided improved 2-of-3 sign charts for 

monitoring the median for Montgomery (2005) piston-ring data. 
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4.9  Performance of the improved runs-rules sign charts 

 

Performance analysis between two competing charts is performed when their IC ARL ( 0ARL ) 

values are equal or, at least approximately so. The chart that detects a shift in the least amount of 

observations (smallest OOC ARL) is declared to be the superior chart. Refer to Section 1.12 of Chapter 

1 for a discussion on the performance of a chart. 

 

The improved runs-rules charts are compared to the runs-rules charts to illustrate the advantages of 

the improved runs-rules charts over the runs-rules charts. These performance comparisons were done 

by evaluating exact expressions using Proc IML in SAS®9.2. 

 

Recall the claims that improved runs-rules sign charts are superior in performance for large shifts in 

the process, while maintaining the same sensitivity in the detection of small shifts compared to runs-

rules sign charts. Performance analysis is done to confirm these claims. 

 

The performance comparisons between the improved runs-rules sign charts and runs-rules sign 

charts are done by considering the Normal (symmetric distribution), Students-t (symmetric with heavy 

tails) and Exponentially (skew) distributions as the underlying process distributions as illustrated in 

Figure 4.2. Performance analysis is done using different underlying process distributions to investigate 

the performance of the improved runs-rules sign charts under different conditions. It will be shown in 

the performance analysis that the improved runs-rules sign charts do not perform equally well when 

altering the underlying process distribution. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Different underlying process distributions that are used to perform performance 

comparisons. 
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4.9.1  Discussion on the performance analysis Tables 

 

Refer to Table 4.8 to clarify the notation used in Tables 4.9 to 4.22. 

 

 

Table 4.8: Description of notation used in Tables 4.9 – 4.22. 

 

Notation Description 

N(0,1) Standard Normal underlying process distribution. 

T(4) Students t(4) underlying process distribution. 

Exp(1) Exponential  1  underlying process distribution. 

Shift (  Units) Shift in the underlying process distribution in standard deviation units. 

2-of-2 (U&L) Upper and lower one-sided 2-of-2 runs-rules sign charts. 

I2-of-2 (U&L) Upper and lower one-sided improved 2-of-2 runs-rules sign charts. 

2-of-2 (U) Upper one-sided 2-of-2 runs-rules sign chart. 

I2-of-2 (U) Upper one-sided improved 2-of-2 runs-rules sign chart. 

2-of-2 (L) Lower one-sided 2-of-2 runs-rules sign chart. 

I2-of-2 (L) Lower one-sided improved 2-of-2 runs-rules sign chart. 

2-of-2 (T) Two-sided 2-of-2 runs-rules sign chart. 

I2-of-2 (T) Two-sided improved 2-of-2 runs-rules sign chart. 

2-of-3 (U&L) Upper and lower one-sided 2-of-3 runs-rules sign charts. 

I2-of-3 (U&L) Upper and lower one-sided improved 2-of-3 runs-rules sign charts. 

2-of-3 (U) Upper one-sided 2-of-3 runs-rules sign chart. 

I2-of-3 (U) Upper one-sided improved 2-of-3 runs-rules sign chart. 

2-of-3 (L) Lower one-sided 2-of-3 runs-rules sign chart. 

I2-of-3 (L) Lower one-sided improved 2-of-3 runs-rules sign chart. 

2-of-3 (T) Two-sided 2-of-3 runs-rules sign chart. 

I2-of-3 (T) Two-sided improved 2-of-3 runs-rules sign chart. 

ARL Average run-length. 

SDRL Standard deviation of the run-length. 

5th 5th Percentile of the run-length distribution. 

Q1 25th Percentile (first quartile) of the run-length distribution. 

MDRL 50th Percentile (median) of the run-length distribution. 

Q3 75th Percentile (third quartile) of the run-length distribution. 

95th 95th Percentile of the run-length distribution. 
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To illustrate the use of Tables 4.9 to 4.22 consider the following situation. A process is monitored 

using n=20 and the underlying process distribution is N(0,1). A comparison needs to be done between 

the two-sided 2-of-2 runs-rules sign chart and the two-sided improved 2-of-2 runs-rules sign chart. This 

can be done by considering Table 4.13. 

 

From Table 4.13, it can be seen that the control limits are LCLB =1, LCLA =6, UCLA =14 and UCLB 

=19. From the second row it can be seen that the first column contains the shift in the underlying 

process distribution in standard deviation units. Columns two to eight (nine to fifteen) contain the 

characteristics (ARL, SDRL, the 5th, 25th (Q1), 50th (MRL), 75th (Q3) and 95th percentiles) of the two-

sided runs-rules sign chart (two-sided improved runs-rules sign chart). Refer to Table 4.8 for clarity on 

the notation. 

 

First, the observation can be made that the IC ARL for the two-sided 2-of-2 runs-rules sign chart 

and the two-sided improved 2-of-2 runs-rules sign chart are 159.07 and 158.17, respectively. Since the 

IC ARL is the same or approximately so, OOC performance analysis is meaningful. 

 

Second, it is seen that since the underlying process distribution is symmetric, upward and 

downward shifts of the same magnitude render the same performance for both the two-sided runs-rules 

sign chart and the two-sided improved runs-rules sign chart. 

 

Consider an upward shift of a 0.2 standard deviation units  2.0shiftunit  , then the OOC ARL 

is 31.59 and 31.39 for the two-sided runs-rules sign chart and the two-sided improved runs-rules sign 

chart respectively (note that the other characteristics are similar or the same). From this the first claim 

is supported that the improved runs-rules sign charts are as sensitive to small process shifts as the runs-

rules sign charts. Now consider an upward shift of 2.2 standard deviation units  2.2shiftunit  , 

then the OOC ARL is 2 and 1.03 for the two-sided runs-rules sign chart and the two-sided improved 

runs-rules sign chart respectively. From this, the second claim is supported that improved runs-rules 

sign charts detect larger shifts in the process more efficiently. The superiority of the improved runs-

rules sign charts in the presence of large process shifts is also confirmed by the remaining 

characteristics. 
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4.9.2  Discussion on the performance analysis results 

 

Considering Tables 4.9 to 4.22 the following observations can be made regarding the performance 

comparison between the runs-rules and the improved runs-rules sign charts: 

 From Tables 4.9, 4.10, 4.11 and 4.12 it can be seen that the upper and the lower one-sided 

improved 2-of-2 sign charts are as sensitive to small process shifts compared to the upper 

and the lower one-sided 2-of-2 sign charts while having the ability to detect large process 

shifts more efficiently. However, for the t(4) distribution and for the Exp(1) distribution 

(for downward shifts) the improved 2-of-2 charts the OOC ARL seem to converge slower to 

one i.e. less efficient in the detection of large process shifts. 

 From Tables 4.13, 4.14 and 4.15 it can be seen that the two-sided improved 2-of-2 sign 

chart is as sensitive to small process shifts compared to the two-sided 2-of-2 sign chart 

while having the ability to detect large process shifts more efficiently. Note that for certain 

underlying distributions the two-sided improved 2-of-2 sign chart is able to detect large 

process shifts more efficiently than for other distributions. However, the chart is less 

efficient in detecting large process shifts in the case of a downward shift when the 

underlying process distribution is Exp(1) as can be seen in Table 4.15. 

 Close inspection of Tables 4.16, 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22 lead to the same 

conclusions regarding the improved 2-of-3 runs-rules sign charts. 

 From investigating the performance analysis it can be concluded that, in general the 

improved runs-rules sign charts are as sensitive to small shifts as the runs-rules sign charts, 

while at least have the ability to detect large process shifts more efficient than runs-rules 

sign charts. 

 

Remark 4.8 

 

Note that Tables 4.9 to 4.22 are rich in information regarding the OOC performance of the runs-

rules and the improved runs-rules sign charts and can be a discussion topic on its own. However, in 

this dissertation the main concern is to confirm the two claims that the improved runs-rules sign charts 

are superior in performance to the runs-rules sign charts for large shifts in the process, while 

maintaining the same sensitivity in the detection of small shifts. These two claims are confirmed in the 

previous discussion. 
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Remark 4.9 

 

The OOC characteristics for the upper and the lower one-sided charts are presented in the same 

tables for the N(0,1) and the t(4) distributions since these distributions are symmetric. The shifts for the 

lower one-sided charts are presented in brackets in the column titled “Shift”. 

 

 

Table 4.9: The OOC characteristics of the upper and the lower one-sided 2-of-2 sign charts and 

the improved 2-of-2 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and 

UCLB =19. 

 

N(0,1) Distribution 
  Units 2-of-2 (U&L) I2-of-2 (U&L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 (0.2) 8474.71 8473.22 436 2439 5875 11748 25385 8414.54 8413.06 433 2422 5833 11664 25205 

-0.1 (0.1) 1449.97 1448.49 76 418 1005 2010 4341 1441.17 1439.70 75 416 999 1997 4314 

0 318.13 316.68 18 93 221 440 950 316.33 314.89 18 92 220 438 945 

0.1 (-0.1) 89.23 87.81 6 27 62 123 264 88.71 87.31 6 27 62 122 263 

0.2 (-0.2) 31.71 30.34 3 10 22 43 92 31.51 30.15 3 10 22 43 92 

0.3 (-0.3) 14.03 12.70 2 5 10 19 39 13.93 12.61 2 5 10 19 39 

0.4 (-0.4) 7.53 6.22 2 3 6 10 20 7.46 6.17 2 3 6 10 20 

0.5 (-0.5) 4.76 3.45 2 2 4 6 12 4.71 3.41 2 2 4 6 12 

0.6 (-0.6) 3.44 2.09 2 2 3 4 8 3.38 2.06 2 2 2 4 8 

0.7 (-0.7) 2.76 1.34 2 2 2 3 6 2.69 1.33 2 2 2 3 5 

0.8 (-0.8) 2.39 0.89 2 2 2 2 4 2.30 0.90 1 2 2 2 4 

0.9 (-0.9) 2.19 0.60 2 2 2 2 4 2.07 0.65 1 2 2 2 4 

1 (-1) 2.09 0.40 2 2 2 2 3 1.92 0.52 1 2 2 2 2 

1.1 (-1.1) 2.04 0.26 2 2 2 2 2 1.80 0.48 1 2 2 2 2 

1.2 (-1.2) 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

1.3 (-1.3) 2.01 0.10 2 2 2 2 2 1.59 0.50 1 1 2 2 2 

1.4 (-1.4) 2.00 0.06 2 2 2 2 2 1.49 0.50 1 1 1 2 2 

1.5 (-1.5) 2.00 0.03 2 2 2 2 2 1.39 0.49 1 1 1 2 2 

1.6 (-1.6) 2.00 0.02 2 2 2 2 2 1.30 0.46 1 1 1 2 2 

1.7 (-1.7) 2.00 0.01 2 2 2 2 2 1.22 0.42 1 1 1 1 2 

1.8 (-1.8) 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

1.9 (-1.9) 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

2 (-2) 2.00 0.00 2 2 2 2 2 1.08 0.26 1 1 1 1 2 

2.1 (-2.1) 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2.2 (-2.2) 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 

2.3 (-2.3) 2.00 0.00 2 2 2 2 2 1.02 0.14 1 1 1 1 1 

2.4 (-2.4) 2.00 0.00 2 2 2 2 2 1.01 0.11 1 1 1 1 1 

2.5 (-2.5) 2.00 0.00 2 2 2 2 2 1.01 0.08 1 1 1 1 1 

2.6 (-2.6) 2.00 0.00 2 2 2 2 2 1.00 0.06 1 1 1 1 1 
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Table 4.10: The OOC characteristics of the upper and the lower one-sided 2-of-2 sign charts and 

the improved 2-of-2 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and 

UCLB =19. 

 

t(4) Distribution 
  Units 2-of-2 (U&L) I2-of-2 (U&L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 (0.2) 30268.2 30266.7 1554 8709 20981 41960 90673 30017.7 30016.2 1541 8637 20807 41613 89922 

-0.1 (0.1) 2516.02 2514.54 130 725 1744 3487 7534 2500.11 2498.64 130 720 1733 3465 7487 

0 318.13 316.68 18 93 221 440 950 316.33 314.89 18 92 220 438 945 

0.1 (-0.1) 61.97 60.58 4 19 43 85 183 61.61 60.22 4 19 43 85 182 

0.2 (-0.2) 18.29 16.95 2 6 13 25 52 18.16 16.83 2 6 13 25 52 

0.3 (-0.3) 7.76 6.45 2 3 6 10 21 7.69 6.39 2 3 6 10 20 

0.4 (-0.4) 4.39 3.07 2 2 3 6 11 4.34 3.03 2 2 3 5 10 

0.5 (-0.5) 3.07 1.70 2 2 2 4 6 3.01 1.67 2 2 2 4 6 

0.6 (-0.6) 2.49 1.02 2 2 2 3 4 2.41 1.02 2 2 2 2 4 

0.7 (-0.7) 2.22 0.65 2 2 2 2 4 2.11 0.69 1 2 2 2 4 

0.8 (-0.8) 2.10 0.41 2 2 2 2 3 1.93 0.53 1 2 2 2 3 

0.9 (-0.9) 2.04 0.26 2 2 2 2 2 1.81 0.48 1 2 2 2 2 

1 (-1) 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

1.1 (-1.1) 2.01 0.10 2 2 2 2 2 1.60 0.50 1 1 2 2 2 

1.2 (-1.2) 2.00 0.06 2 2 2 2 2 1.50 0.50 1 1 1 2 2 

1.3 (-1.3) 2.00 0.04 2 2 2 2 2 1.41 0.49 1 1 1 2 2 

1.4 (-1.4) 2.00 0.02 2 2 2 2 2 1.34 0.47 1 1 1 2 2 

1.5 (-1.5) 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

1.6 (-1.6) 2.00 0.01 2 2 2 2 2 1.21 0.41 1 1 1 1 2 

1.7 (-1.7) 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

1.8 (-1.8) 2.00 0.00 2 2 2 2 2 1.13 0.34 1 1 1 1 2 

1.9 (-1.9) 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

2 (-2) 2.00 0.00 2 2 2 2 2 1.08 0.27 1 1 1 1 2 

2.1 (-2.1) 2.00 0.00 2 2 2 2 2 1.06 0.24 1 1 1 1 2 

2.2 (-2.2) 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2.3 (-2.3) 2.00 0.00 2 2 2 2 2 1.04 0.19 1 1 1 1 1 

2.4 (-2.4) 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 

2.5 (-2.5) 2.00 0.00 2 2 2 2 2 1.02 0.15 1 1 1 1 1 

2.6 (-2.6) 2.00 0.00 2 2 2 2 2 1.02 0.14 1 1 1 1 1 

2.7 (-2.7) 2.00 0.00 2 2 2 2 2 1.02 0.12 1 1 1 1 1 

2.8 (-2.8) 2.00 0.00 2 2 2 2 2 1.01 0.11 1 1 1 1 1 

2.9 (-2.9) 2.00 0.00 2 2 2 2 2 1.01 0.10 1 1 1 1 1 

3 (-3) 2.00 0.00 2 2 2 2 2 1.01 0.09 1 1 1 1 1 
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Table 4.11: The OOC characteristics of the upper one-sided 2-of-2 sign charts and the improved 

2-of-2 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

Exp(1) Distribution 
  Units 2-of-2 (U) I2-of-2 (U) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 14869.17 14867.68 764 4279 10307 20612 44541 14756.61 14755.12 758 4246 10229 20456 44204 

-0.1 2008.01 2006.53 104 579 1392 2783 6013 1995.54 1994.07 104 575 1384 2766 5975 

0 318.13 316.68 18 93 221 440 950 316.33 314.89 18 92 220 438 945 

0.1 62.36 60.96 5 19 44 86 184 61.99 60.60 4 19 43 85 183 

0.2 16.10 14.77 2 6 12 22 46 15.99 14.67 2 6 11 22 45 

0.3 5.78 4.47 2 2 4 7 15 5.73 4.43 2 2 4 7 15 

0.4 2.97 1.58 2 2 2 4 6 2.91 1.56 2 2 2 4 6 

0.5 2.15 0.53 2 2 2 2 3 2.02 0.60 1 2 2 2 3 

0.6 2.00 0.08 2 2 2 2 2 1.54 0.50 1 1 2 2 2 

0.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 
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Table 4.12: The OOC characteristics of the lower one-sided 2-of-2 sign charts and the improved 

2-of-2 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

  Exp(1) Distribution 
  Units 2-of-2 (L) I2-of-2 (L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.2 42668.0 42666.5 2190 12276 29576 59150 127819 42298.1 42296.6 2171 12169 29319 58637 126711 

0.1 2491.19 2489.71 129 718 1727 3453 7460 2475.46 2473.98 128 713 1716 3431 7413 

0 318.13 316.68 18 93 221 440 950 316.33 314.89 18 92 220 438 945 

-0.1 71.57 70.17 5 22 50 99 212 71.16 69.76 5 21 50 98 210 

-0.2 24.46 23.10 2 8 17 33 71 24.30 22.95 2 8 17 33 70 

-0.3 11.36 10.04 2 4 8 15 31 11.28 9.97 2 4 8 15 31 

-0.4 6.60 5.29 2 3 5 9 17 6.54 5.24 2 3 5 9 17 

-0.5 4.50 3.18 2 2 4 6 11 4.44 3.14 2 2 3 6 11 

-0.6 3.44 2.09 2 2 3 4 8 3.39 2.06 2 2 2 4 8 

-0.7 2.86 1.46 2 2 2 3 6 2.80 1.44 2 2 2 3 6 

-0.8 2.52 1.06 2 2 2 3 5 2.45 1.06 2 2 2 3 4 

-0.9 2.32 0.79 2 2 2 2 4 2.22 0.81 1 2 2 2 4 

-1 2.19 0.60 2 2 2 2 4 2.07 0.65 1 2 2 2 4 

-1.1 2.12 0.45 2 2 2 2 3 1.96 0.55 1 2 2 2 3 

-1.2 2.07 0.35 2 2 2 2 2 1.88 0.50 1 2 2 2 2 

-1.3 2.04 0.26 2 2 2 2 2 1.81 0.48 1 2 2 2 2 

-1.4 2.02 0.20 2 2 2 2 2 1.74 0.48 1 1 2 2 2 

-1.5 2.01 0.15 2 2 2 2 2 1.68 0.49 1 1 2 2 2 

-1.6 2.01 0.11 2 2 2 2 2 1.62 0.50 1 1 2 2 2 

-1.7 2.00 0.08 2 2 2 2 2 1.56 0.50 1 1 2 2 2 

-1.8 2.00 0.06 2 2 2 2 2 1.50 0.50 1 1 2 2 2 

-1.9 2.00 0.05 2 2 2 2 2 1.45 0.50 1 1 1 2 2 

-2 2.00 0.03 2 2 2 2 2 1.40 0.49 1 1 1 2 2 

-2.1 2.00 0.02 2 2 2 2 2 1.35 0.48 1 1 1 2 2 

-2.2 2.00 0.02 2 2 2 2 2 1.31 0.46 1 1 1 2 2 

-2.3 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

-2.4 2.00 0.01 2 2 2 2 2 1.23 0.42 1 1 1 1 2 

-2.5 2.00 0.01 2 2 2 2 2 1.20 0.40 1 1 1 1 2 

-2.6 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

-2.7 2.00 0.00 2 2 2 2 2 1.14 0.35 1 1 1 1 2 

-2.8 2.00 0.00 2 2 2 2 2 1.12 0.33 1 1 1 1 2 

-2.9 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

-3 2.00 0.00 2 2 2 2 2 1.09 0.28 1 1 1 1 2 
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Table 4.13: The OOC characteristics of the two-sided 2-of-2 sign charts and the improved 2-of-2 

sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

N(0,1) Distribution 
  Units 2-of-2 (T) I2-of-2 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
2.2 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2 2.00 0.00 2 2 2 2 2 1.08 0.26 1 1 1 1 2 

1.9 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

1.8 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

1.7 2.00 0.01 2 2 2 2 2 1.22 0.42 1 1 1 1 2 

1.6 2.00 0.02 2 2 2 2 2 1.30 0.46 1 1 1 2 2 

1.5 2.00 0.03 2 2 2 2 2 1.39 0.49 1 1 1 2 2 

1.4 2.00 0.06 2 2 2 2 2 1.49 0.50 1 1 1 2 2 

1.3 2.01 0.10 2 2 2 2 2 1.59 0.50 1 1 2 2 2 

1.2 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

1.1 2.04 0.26 2 2 2 2 2 1.80 0.48 1 2 2 2 2 

1 2.09 0.40 2 2 2 2 3 1.92 0.52 1 2 2 2 2 

0.9 2.19 0.60 2 2 2 2 4 2.07 0.65 1 2 2 2 4 

0.8 2.39 0.89 2 2 2 2 4 2.30 0.90 1 2 2 2 4 

0.7 2.76 1.34 2 2 2 3 6 2.69 1.33 2 2 2 3 5 

0.6 3.44 2.09 2 2 3 4 8 3.38 2.06 2 2 2 4 8 

0.5 4.76 3.45 2 2 4 6 12 4.71 3.41 2 2 4 6 12 

0.4 7.53 6.22 2 3 6 10 20 7.46 6.17 2 3 6 10 20 

0.3 14.02 12.69 2 5 10 19 39 13.92 12.60 2 5 10 19 39 

0.2 31.59 30.22 3 10 22 43 92 31.39 30.03 3 10 22 43 91 

0.1 84.05 82.64 6 25 59 116 249 83.57 82.16 6 25 58 115 248 

0 159.07 157.61 10 47 111 220 474 158.17 156.72 9 47 110 219 471 

-0.1 84.05 82.64 6 25 59 116 249 83.57 82.16 6 25 58 115 248 

-0.2 31.59 30.22 3 10 22 43 92 31.39 30.03 3 10 22 43 91 

-0.3 14.02 12.69 2 5 10 19 39 13.92 12.60 2 5 10 19 39 

-0.4 7.53 6.22 2 3 6 10 20 7.46 6.17 2 3 6 10 20 

-0.5 4.76 3.45 2 2 4 6 12 4.71 3.41 2 2 4 6 12 

-0.6 3.44 2.09 2 2 3 4 8 3.38 2.06 2 2 2 4 8 

-0.7 2.76 1.34 2 2 2 3 6 2.69 1.33 2 2 2 3 5 

-0.8 2.39 0.89 2 2 2 2 4 2.30 0.90 1 2 2 2 4 

-0.9 2.19 0.60 2 2 2 2 4 2.07 0.65 1 2 2 2 4 

-1 2.09 0.40 2 2 2 2 3 1.92 0.52 1 2 2 2 2 

-1.1 2.04 0.26 2 2 2 2 2 1.80 0.48 1 2 2 2 2 

-1.2 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

-1.3 2.01 0.10 2 2 2 2 2 1.59 0.50 1 1 2 2 2 

-1.4 2.00 0.06 2 2 2 2 2 1.49 0.50 1 1 1 2 2 

-1.5 2.00 0.03 2 2 2 2 2 1.39 0.49 1 1 1 2 2 

-1.6 2.00 0.02 2 2 2 2 2 1.30 0.46 1 1 1 2 2 

-1.7 2.00 0.01 2 2 2 2 2 1.22 0.42 1 1 1 1 2 

-1.8 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

-1.9 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

-2 2.00 0.00 2 2 2 2 2 1.08 0.26 1 1 1 1 2 

-2.1 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

-2.2 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 
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Table 4.14: The OOC characteristics of the two-sided 2-of-2 sign charts and the improved 2-of-2 

sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

t(4) Distribution 
  Units 2-of-2 (T) I2-of-2 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th

2.2 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.06 0.24 1 1 1 1 2 

2 2.00 0.00 2 2 2 2 2 1.08 0.27 1 1 1 1 2 

1.9 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

1.8 2.00 0.00 2 2 2 2 2 1.13 0.34 1 1 1 1 2 

1.7 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

1.6 2.00 0.01 2 2 2 2 2 1.21 0.41 1 1 1 1 2 

1.5 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

1.4 2.00 0.02 2 2 2 2 2 1.34 0.47 1 1 1 2 2 

1.3 2.00 0.04 2 2 2 2 2 1.41 0.49 1 1 1 2 2 

1.2 2.00 0.06 2 2 2 2 2 1.50 0.50 1 1 1 2 2 

1.1 2.01 0.10 2 2 2 2 2 1.60 0.50 1 1 2 2 2 

1 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

0.9 2.04 0.26 2 2 2 2 2 1.81 0.48 1 2 2 2 2 

0.8 2.10 0.41 2 2 2 2 3 1.93 0.53 1 2 2 2 3 

0.7 2.22 0.65 2 2 2 2 4 2.11 0.69 1 2 2 2 4 

0.6 2.49 1.02 2 2 2 3 4 2.41 1.02 2 2 2 2 4 

0.5 3.07 1.70 2 2 2 4 6 3.01 1.67 2 2 2 4 6 

0.4 4.39 3.07 2 2 3 6 11 4.34 3.03 2 2 3 5 10 

0.3 7.76 6.45 2 3 6 10 21 7.69 6.39 2 3 6 10 20 

0.2 18.28 16.94 2 6 13 25 52 18.15 16.82 2 6 13 25 52 

0.1 60.48 59.08 4 18 42 83 178 60.13 58.74 4 18 42 83 177 

0 159.07 157.61 10 47 111 220 474 158.17 156.72 9 47 110 219 471 

-0.1 60.48 59.08 4 18 42 83 178 60.13 58.74 4 18 42 83 177 

-0.2 18.28 16.94 2 6 13 25 52 18.15 16.82 2 6 13 25 52 

-0.3 7.76 6.45 2 3 6 10 21 7.69 6.39 2 3 6 10 20 

-0.4 4.39 3.07 2 2 3 6 11 4.34 3.03 2 2 3 5 10 

-0.5 3.07 1.70 2 2 2 4 6 3.01 1.67 2 2 2 4 6 

-0.6 2.49 1.02 2 2 2 3 4 2.41 1.02 2 2 2 2 4 

-0.7 2.22 0.65 2 2 2 2 4 2.11 0.69 1 2 2 2 4 

-0.8 2.10 0.41 2 2 2 2 3 1.93 0.53 1 2 2 2 3 

-0.9 2.04 0.26 2 2 2 2 2 1.81 0.48 1 2 2 2 2 

-1 2.02 0.16 2 2 2 2 2 1.70 0.49 1 1 2 2 2 

-1.1 2.01 0.10 2 2 2 2 2 1.60 0.50 1 1 2 2 2 

-1.2 2.00 0.06 2 2 2 2 2 1.50 0.50 1 1 1 2 2 

-1.3 2.00 0.04 2 2 2 2 2 1.41 0.49 1 1 1 2 2 

-1.4 2.00 0.02 2 2 2 2 2 1.34 0.47 1 1 1 2 2 

-1.5 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

-1.6 2.00 0.01 2 2 2 2 2 1.21 0.41 1 1 1 1 2 

-1.7 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

-1.8 2.00 0.00 2 2 2 2 2 1.13 0.34 1 1 1 1 2 

-1.9 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

-2 2.00 0.00 2 2 2 2 2 1.08 0.27 1 1 1 1 2 

-2.1 2.00 0.00 2 2 2 2 2 1.06 0.24 1 1 1 1 2 

-2.2 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 
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Table 4.15: The OOC characteristics of the two-sided 2-of-2 sign charts and the improved 2-of-2 

sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

Exp(1) Distribution 
  Units 2-of-2 (T) I2-of-2 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
2.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.6 2.00 0.08 2 2 2 2 2 1.54 0.50 1 1 2 2 2 

0.5 2.15 0.53 2 2 2 2 3 2.02 0.60 1 2 2 2 3 

0.4 2.97 1.58 2 2 2 4 6 2.91 1.56 2 2 2 4 6 

0.3 5.78 4.47 2 2 4 7 15 5.72 4.43 2 2 4 7 15 

0.2 16.10 14.76 2 6 12 22 46 15.99 14.66 2 6 11 22 45 

0.1 60.83 59.43 4 18 43 84 179 60.48 59.08 4 18 42 83 178 

0 159.07 157.61 10 47 111 220 474 158.17 156.72 9 47 110 219 471 

-0.1 69.11 67.70 5 21 48 95 204 68.71 67.31 5 21 48 95 203 

-0.2 24.42 23.06 2 8 17 33 70 24.26 22.91 2 8 17 33 70 

-0.3 11.36 10.04 2 4 8 15 31 11.28 9.96 2 4 8 15 31 

-0.4 6.60 5.29 2 3 5 9 17 6.54 5.24 2 3 5 9 17 

-0.5 4.50 3.18 2 2 4 6 11 4.44 3.14 2 2 3 6 11 

-0.6 3.44 2.09 2 2 3 4 8 3.39 2.06 2 2 2 4 8 

-0.7 2.86 1.46 2 2 2 3 6 2.80 1.44 2 2 2 3 6 

-0.8 2.52 1.06 2 2 2 3 5 2.45 1.06 2 2 2 3 4 

-0.9 2.32 0.79 2 2 2 2 4 2.22 0.81 1 2 2 2 4 

-1 2.19 0.60 2 2 2 2 4 2.07 0.65 1 2 2 2 4 

-1.1 2.12 0.45 2 2 2 2 3 1.96 0.55 1 2 2 2 3 

-1.2 2.07 0.35 2 2 2 2 2 1.88 0.50 1 2 2 2 2 

-1.3 2.04 0.26 2 2 2 2 2 1.81 0.48 1 2 2 2 2 

-1.4 2.02 0.20 2 2 2 2 2 1.74 0.48 1 1 2 2 2 

-1.5 2.01 0.15 2 2 2 2 2 1.68 0.49 1 1 2 2 2 

-1.6 2.01 0.11 2 2 2 2 2 1.62 0.50 1 1 2 2 2 

-1.7 2.00 0.08 2 2 2 2 2 1.56 0.50 1 1 2 2 2 

-1.8 2.00 0.06 2 2 2 2 2 1.50 0.50 1 1 2 2 2 

-1.9 2.00 0.05 2 2 2 2 2 1.45 0.50 1 1 1 2 2 

-2 2.00 0.03 2 2 2 2 2 1.40 0.49 1 1 1 2 2 

-2.1 2.00 0.02 2 2 2 2 2 1.35 0.48 1 1 1 2 2 

-2.2 2.00 0.02 2 2 2 2 2 1.31 0.46 1 1 1 2 2 
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Table 4.16: The OOC characteristics of the upper and the lower one-sided 2-of-3 sign charts and 

the improved 2-of-3 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and 

UCLB =19. 

 

N(0,1) Distribution 
  Units 2-of-3 (U&L) I2-of-3 (U&L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 (0.2) 4306.15 4304.19 223 1240 2985 5969 12896 4290.89 4288.93 222 1236 2975 5948 12850 

-0.1 (0.1) 753.30 751.37 40 218 523 1044 2253 751.03 749.11 40 217 521 1040 2246 

0 172.20 170.36 11 51 120 238 512 171.72 169.88 11 51 120 237 511 

0.1 (-0.1) 51.46 49.72 4 16 36 71 151 51.32 49.58 4 16 36 70 150 

0.2 (-0.2) 19.86 18.22 3 7 14 27 56 19.80 18.16 3 7 14 27 56 

0.3 (-0.3) 9.62 8.06 2 4 7 13 26 9.58 8.04 2 4 7 13 26 

0.4 (-0.4) 5.64 4.13 2 3 4 7 14 5.62 4.12 2 3 4 7 14 

0.5 (-0.5) 3.86 2.35 2 2 3 5 9 3.83 2.34 2 2 3 5 9 

0.6 (-0.6) 2.98 1.44 2 2 3 3 6 2.94 1.44 2 2 2 3 6 

0.7 (-0.7) 2.51 0.92 2 2 2 3 4 2.47 0.93 2 2 2 3 4 

0.8 (-0.8) 2.26 0.60 2 2 2 2 3 2.19 0.64 1 2 2 2 3 

0.9 (-0.9) 2.13 0.39 2 2 2 2 3 2.02 0.50 1 2 2 2 3 

1 (-1) 2.06 0.26 2 2 2 2 3 1.90 0.45 1 2 2 2 2 

1.1 (-1.1) 2.03 0.17 2 2 2 2 2 1.80 0.45 1 2 2 2 2 

1.2 (-1.2) 2.01 0.10 2 2 2 2 2 1.70 0.48 1 1 2 2 2 

1.3 (-1.3) 2.00 0.06 2 2 2 2 2 1.59 0.50 1 1 2 2 2 

1.4 (-1.4) 2.00 0.04 2 2 2 2 2 1.49 0.50 1 1 1 2 2 

1.5 (-1.5) 2.00 0.02 2 2 2 2 2 1.39 0.49 1 1 1 2 2 

1.6 (-1.6) 2.00 0.01 2 2 2 2 2 1.30 0.46 1 1 1 2 2 

1.7 (-1.7) 2.00 0.01 2 2 2 2 2 1.22 0.42 1 1 1 1 2 

1.8 (-1.8) 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

1.9 (-1.9) 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

2 (-2) 2.00 0.00 2 2 2 2 2 1.08 0.26 1 1 1 1 2 

2.1 (-2.1) 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2.2 (-2.2) 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 

2.3 (-2.3) 2.00 0.00 2 2 2 2 2 1.02 0.14 1 1 1 1 1 

2.4 (-2.4) 2.00 0.00 2 2 2 2 2 1.01 0.11 1 1 1 1 1 

2.5 (-2.5) 2.00 0.00 2 2 2 2 2 1.01 0.08 1 1 1 1 1 

2.6 (-2.6) 2.00 0.00 2 2 2 2 2 1.00 0.06 1 1 1 1 1 

2.7 (-2.7) 2.00 0.00 2 2 2 2 2 1.00 0.05 1 1 1 1 1 

2.8 (-2.8) 2.00 0.00 2 2 2 2 2 1.00 0.03 1 1 1 1 1 

2.9 (-2.9) 2.00 0.00 2 2 2 2 2 1.00 0.03 1 1 1 1 1 

3 (-3) 2.00 0.00 2 2 2 2 2 1.00 0.02 1 1 1 1 1 
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Table 4.17: The OOC characteristics of the upper and the lower one-sided 2-of-3 sign charts and 

the improved 2-of-3 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and 

UCLB =19. 

 

t(4) Distribution 
  Units 2-of-3 (U&L) I2-of-3 (U&L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 (0.2) 15264.3 15262.3 785 4393 10581 21160 45724 15201.1 15199.1 782 4374 10537 21072 45535 

-0.1 (0.1) 1295.38 1293.44 68 374 898 1795 3877 1291.31 1289.38 68 373 896 1789 3865 

0 172.20 170.36 11 51 120 238 512 171.72 169.88 11 51 120 237 511 

0.1 (-0.1) 36.66 34.95 3 12 26 50 106 36.56 34.85 3 12 26 50 106 

0.2 (-0.2) 12.14 10.56 2 5 9 16 33 12.10 10.53 2 5 9 16 33 

0.3 (-0.3) 5.79 4.27 2 3 4 7 14 5.76 4.26 2 3 4 7 14 

0.4 (-0.4) 3.62 2.10 2 2 3 4 8 3.59 2.10 2 2 3 4 8 

0.5 (-0.5) 2.73 1.17 2 2 2 3 5 2.69 1.17 2 2 2 3 5 

0.6 (-0.6) 2.33 0.69 2 2 2 3 3 2.27 0.72 2 2 2 2 3 

0.7 (-0.7) 2.15 0.42 2 2 2 2 3 2.05 0.52 1 2 2 2 3 

0.8 (-0.8) 2.06 0.27 2 2 2 2 3 1.91 0.45 1 2 2 2 3 

0.9 (-0.9) 2.03 0.17 2 2 2 2 2 1.80 0.45 1 2 2 2 2 

1 (-1) 2.01 0.10 2 2 2 2 2 1.70 0.48 1 1 2 2 2 

1.1 (-1.1) 2.00 0.06 2 2 2 2 2 1.60 0.50 1 1 2 2 2 

1.2 (-1.2) 2.00 0.04 2 2 2 2 2 1.50 0.50 1 1 1 2 2 

1.3 (-1.3) 2.00 0.02 2 2 2 2 2 1.41 0.49 1 1 1 2 2 

1.4 (-1.4) 2.00 0.01 2 2 2 2 2 1.34 0.47 1 1 1 2 2 

1.5 (-1.5) 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

1.6 (-1.6) 2.00 0.01 2 2 2 2 2 1.21 0.41 1 1 1 1 2 

1.7 (-1.7) 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

1.8 (-1.8) 2.00 0.00 2 2 2 2 2 1.13 0.34 1 1 1 1 2 

1.9 (-1.9) 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

2 (-2) 2.00 0.00 2 2 2 2 2 1.08 0.27 1 1 1 1 2 

2.1 (-2.1) 2.00 0.00 2 2 2 2 2 1.06 0.24 1 1 1 1 2 

2.2 (-2.2) 2.00 0.00 2 2 2 2 2 1.05 0.22 1 1 1 1 1 

2.3 (-2.3) 2.00 0.00 2 2 2 2 2 1.04 0.19 1 1 1 1 1 

2.4 (-2.4) 2.00 0.00 2 2 2 2 2 1.03 0.17 1 1 1 1 1 

2.5 (-2.5) 2.00 0.00 2 2 2 2 2 1.02 0.15 1 1 1 1 1 

2.6 (-2.6) 2.00 0.00 2 2 2 2 2 1.02 0.14 1 1 1 1 1 

2.7 (-2.7) 2.00 0.00 2 2 2 2 2 1.02 0.12 1 1 1 1 1 

2.8 (-2.8) 2.00 0.00 2 2 2 2 2 1.01 0.11 1 1 1 1 1 

2.9 (-2.9) 2.00 0.00 2 2 2 2 2 1.01 0.10 1 1 1 1 1 

3 (-3) 2.00 0.00 2 2 2 2 2 1.01 0.09 1 1 1 1 1 
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Table 4.18: The OOC characteristics of the upper and the lower one-sided 2-of-3 sign charts and 

the improved 2-of-3 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and 

UCLB =19. 

 

Exp(1) Distribution 
  Units 2-of-3 (U) I2-of-3 (U) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
-0.2 7525.79 7523.82 388 2166 5217 10432 22541 7497.31 7495.34 386 2158 5197 10393 22456 

-0.1 1037.37 1035.44 55 300 720 1437 3104 1034.17 1032.24 55 299 717 1433 3094 

0 172.20 170.36 11 51 120 238 512 171.72 169.88 11 51 120 237 511 

0.1 36.87 35.16 4 12 26 50 107 36.77 35.06 4 12 26 50 107 

0.2 10.86 9.29 2 4 8 14 29 10.82 9.26 2 4 8 14 29 

0.3 4.53 3.02 2 2 3 6 11 4.50 3.01 2 2 3 6 11 

0.4 2.66 1.08 2 2 2 3 5 2.62 1.09 2 2 2 3 5 

0.5 2.10 0.34 2 2 2 2 3 1.98 0.47 1 2 2 2 3 

0.6 2.00 0.05 2 2 2 2 2 1.54 0.50 1 1 2 2 2 

0.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 
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Table 4.19: The OOC characteristics of the lower one-sided 2-of-3 sign charts and the improved 

2-of-3 sign charts for the median (n=20) where LCLB =1, LCLA =6, UCLA =14 and UCLB =19. 

 

Exp(1) Distribution 
  Units 2-of-3 (L) I2-of-3 (L) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.2 21488.7 21486.7 1104 6183 14895 29789 64370 21395.3 21393.4 1099 6156 14831 29660 64091

0.1 1282.78 1280.84 68 370 890 1778 3839 1278.76 1276.82 67 369 887 1772 3827 

0 172.20 170.36 11 51 120 238 512 171.72 169.88 11 51 120 237 511 

-0.1 41.90 40.18 4 13 30 57 122 41.78 40.06 4 13 29 57 122 

-0.2 15.72 14.11 2 6 11 21 44 15.67 14.07 2 6 11 21 44 

-0.3 8.01 6.48 2 3 6 10 21 7.98 6.45 2 3 6 10 21 

-0.4 5.05 3.54 2 3 4 6 12 5.02 3.53 2 3 4 6 12 

-0.5 3.69 2.18 2 2 3 4 8 3.66 2.17 2 2 3 4 8 

-0.6 2.98 1.44 2 2 3 3 6 2.95 1.44 2 2 2 3 6 

-0.7 2.59 1.00 2 2 2 3 5 2.54 1.01 2 2 2 3 5 

-0.8 2.35 0.72 2 2 2 3 4 2.30 0.75 2 2 2 3 4 

-0.9 2.21 0.53 2 2 2 2 3 2.13 0.59 1 2 2 2 3 

-1 2.13 0.39 2 2 2 2 3 2.02 0.50 1 2 2 2 3 

-1.1 2.08 0.29 2 2 2 2 3 1.94 0.45 1 2 2 2 3 

-1.2 2.05 0.22 2 2 2 2 2 1.86 0.44 1 2 2 2 2 

-1.3 2.03 0.17 2 2 2 2 2 1.80 0.45 1 2 2 2 2 

-1.4 2.02 0.13 2 2 2 2 2 1.74 0.47 1 1 2 2 2 

-1.5 2.01 0.10 2 2 2 2 2 1.68 0.48 1 1 2 2 2 

-1.6 2.01 0.07 2 2 2 2 2 1.62 0.49 1 1 2 2 2 

-1.7 2.00 0.05 2 2 2 2 2 1.56 0.50 1 1 2 2 2 

-1.8 2.00 0.04 2 2 2 2 2 1.50 0.50 1 1 2 2 2 

-1.9 2.00 0.03 2 2 2 2 2 1.45 0.50 1 1 1 2 2 

-2 2.00 0.02 2 2 2 2 2 1.40 0.49 1 1 1 2 2 

-2.1 2.00 0.02 2 2 2 2 2 1.35 0.48 1 1 1 2 2 

-2.2 2.00 0.01 2 2 2 2 2 1.31 0.46 1 1 1 2 2 

-2.3 2.00 0.01 2 2 2 2 2 1.27 0.44 1 1 1 2 2 

-2.4 2.00 0.01 2 2 2 2 2 1.23 0.42 1 1 1 1 2 

-2.5 2.00 0.00 2 2 2 2 2 1.20 0.40 1 1 1 1 2 

-2.6 2.00 0.00 2 2 2 2 2 1.17 0.37 1 1 1 1 2 

-2.7 2.00 0.00 2 2 2 2 2 1.14 0.35 1 1 1 1 2 

-2.8 2.00 0.00 2 2 2 2 2 1.12 0.33 1 1 1 1 2 

-2.9 2.00 0.00 2 2 2 2 2 1.10 0.30 1 1 1 1 2 

-3 2.00 0.00 2 2 2 2 2 1.09 0.28 1 1 1 1 2 
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Table 4.20: The OOC characteristics of the two-sided 2-of-3 sign charts and the improved 2-of-3 

sign charts for the median (n=25) where LCLB =1, LCLA =7, UCLA =18 and UCLB =24. 

 

N(0,1) Distribution 
  Units 2-of-3 (T) I2-of-3 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
2.2 2.00 0.00 2 2 2 2 2 1.05 0.21 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.07 0.26 1 1 1 1 2 

2 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

1.9 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

1.8 2.00 0.00 2 2 2 2 2 1.23 0.42 1 1 1 1 2 

1.7 2.00 0.00 2 2 2 2 2 1.31 0.46 1 1 1 2 2 

1.6 2.00 0.01 2 2 2 2 2 1.40 0.49 1 1 1 2 2 

1.5 2.00 0.02 2 2 2 2 2 1.50 0.50 1 1 2 2 2 

1.4 2.00 0.03 2 2 2 2 2 1.61 0.49 1 1 2 2 2 

1.3 2.00 0.06 2 2 2 2 2 1.71 0.46 1 1 2 2 2 

1.2 2.01 0.11 2 2 2 2 2 1.81 0.42 1 2 2 2 2 

1.1 2.03 0.18 2 2 2 2 2 1.90 0.38 1 2 2 2 2 

1 2.07 0.28 2 2 2 2 3 1.99 0.39 1 2 2 2 3 

0.9 2.17 0.45 2 2 2 2 3 2.12 0.50 2 2 2 2 3 

0.8 2.35 0.71 2 2 2 3 4 2.32 0.73 2 2 2 3 4 

0.7 2.72 1.16 2 2 2 3 5 2.70 1.16 2 2 2 3 5 

0.6 3.46 1.94 2 2 3 4 7 3.45 1.94 2 2 3 4 7 

0.5 5.02 3.51 2 3 4 6 12 5.01 3.51 2 3 4 6 12 

0.4 8.68 7.13 2 4 6 11 23 8.66 7.12 2 3 6 11 23 

0.3 18.78 17.15 3 7 14 25 53 18.76 17.13 3 7 13 25 53 

0.2 53.49 51.74 4 17 38 73 157 53.45 51.70 4 17 38 73 157 

0.1 203.96 202.10 12 60 142 282 607 203.80 201.94 12 60 142 282 607 

0 568.64 566.71 31 165 395 788 1700 568.18 566.25 31 165 394 787 1698 

-0.1 203.96 202.10 12 60 142 282 607 203.80 201.94 12 60 142 282 607 

-0.2 53.49 51.74 4 17 38 73 157 53.45 51.70 4 17 38 73 157 

-0.3 18.78 17.15 3 7 14 25 53 18.76 17.13 3 7 13 25 53 

-0.4 8.68 7.13 2 4 6 11 23 8.66 7.12 2 3 6 11 23 

-0.5 5.02 3.51 2 3 4 6 12 5.01 3.51 2 3 4 6 12 

-0.6 3.46 1.94 2 2 3 4 7 3.45 1.94 2 2 3 4 7 

-0.7 2.72 1.16 2 2 2 3 5 2.70 1.16 2 2 2 3 5 

-0.8 2.35 0.71 2 2 2 3 4 2.32 0.73 2 2 2 3 4 

-0.9 2.17 0.45 2 2 2 2 3 2.12 0.50 2 2 2 2 3 

-1 2.07 0.28 2 2 2 2 3 1.99 0.39 1 2 2 2 3 

-1.1 2.03 0.18 2 2 2 2 2 1.90 0.38 1 2 2 2 2 

-1.2 2.01 0.11 2 2 2 2 2 1.81 0.42 1 2 2 2 2 

-1.3 2.00 0.06 2 2 2 2 2 1.71 0.46 1 1 2 2 2 

-1.4 2.00 0.03 2 2 2 2 2 1.61 0.49 1 1 2 2 2 

-1.5 2.00 0.02 2 2 2 2 2 1.50 0.50 1 1 2 2 2 

-1.6 2.00 0.01 2 2 2 2 2 1.40 0.49 1 1 1 2 2 

-1.7 2.00 0.00 2 2 2 2 2 1.31 0.46 1 1 1 2 2 

-1.8 2.00 0.00 2 2 2 2 2 1.23 0.42 1 1 1 1 2 

-1.9 2.00 0.00 2 2 2 2 2 1.16 0.37 1 1 1 1 2 

-2 2.00 0.00 2 2 2 2 2 1.11 0.31 1 1 1 1 2 

-2.1 2.00 0.00 2 2 2 2 2 1.07 0.26 1 1 1 1 2 

-2.2 2.00 0.00 2 2 2 2 2 1.05 0.21 1 1 1 1 1 
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Table 4.21: The OOC characteristics of the two-sided 2-of-3 sign charts and the improved 2-of-3 

sign charts for the median (n=25) where LCLB =1, LCLA =7, UCLA =18 and UCLB =24. 

 

t(4) Distribution 
  Units 2-of-3 (T) I2-of-3 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
2.2 2.00 0.00 2 2 2 2 2 1.07 0.26 1 1 1 1 2 

2.1 2.00 0.00 2 2 2 2 2 1.09 0.29 1 1 1 1 2 

2 2.00 0.00 2 2 2 2 2 1.12 0.32 1 1 1 1 2 

1.9 2.00 0.00 2 2 2 2 2 1.15 0.36 1 1 1 1 2 

1.8 2.00 0.00 2 2 2 2 2 1.19 0.39 1 1 1 1 2 

1.7 2.00 0.00 2 2 2 2 2 1.24 0.42 1 1 1 1 2 

1.6 2.00 0.00 2 2 2 2 2 1.29 0.46 1 1 1 2 2 

1.5 2.00 0.01 2 2 2 2 2 1.36 0.48 1 1 1 2 2 

1.4 2.00 0.01 2 2 2 2 2 1.44 0.50 1 1 1 2 2 

1.3 2.00 0.02 2 2 2 2 2 1.53 0.50 1 1 2 2 2 

1.2 2.00 0.04 2 2 2 2 2 1.62 0.49 1 1 2 2 2 

1.1 2.00 0.06 2 2 2 2 2 1.72 0.46 1 1 2 2 2 

1 2.01 0.11 2 2 2 2 2 1.81 0.42 1 2 2 2 2 

0.9 2.03 0.18 2 2 2 2 2 1.90 0.38 1 2 2 2 2 

0.8 2.08 0.29 2 2 2 2 3 2.00 0.40 1 2 2 2 3 

0.7 2.19 0.49 2 2 2 2 3 2.15 0.53 2 2 2 2 3 

0.6 2.45 0.84 2 2 2 3 4 2.43 0.85 2 2 2 3 4 

0.5 3.06 1.52 2 2 3 3 6 3.04 1.52 2 2 3 3 6 

0.4 4.57 3.06 2 2 3 6 11 4.56 3.06 2 2 3 6 11 

0.3 8.99 7.45 2 4 7 12 24 8.98 7.44 2 4 7 12 24 

0.2 26.30 24.63 3 9 19 36 75 26.28 24.61 3 9 19 36 75 

0.1 128.02 126.20 8 38 89 177 380 127.92 126.10 8 38 89 177 380 

0 568.64 566.71 31 165 395 788 1700 568.18 566.25 31 165 394 787 1698 

-0.1 128.02 126.20 8 38 89 177 380 127.92 126.10 8 38 89 177 380 

-0.2 26.30 24.63 3 9 19 36 75 26.28 24.61 3 9 19 36 75 

-0.3 8.99 7.45 2 4 7 12 24 8.98 7.44 2 4 7 12 24 

-0.4 4.57 3.06 2 2 3 6 11 4.56 3.06 2 2 3 6 11 

-0.5 3.06 1.52 2 2 3 3 6 3.04 1.52 2 2 3 3 6 

-0.6 2.45 0.84 2 2 2 3 4 2.43 0.85 2 2 2 3 4 

-0.7 2.19 0.49 2 2 2 2 3 2.15 0.53 2 2 2 2 3 

-0.8 2.08 0.29 2 2 2 2 3 2.00 0.40 1 2 2 2 3 

-0.9 2.03 0.18 2 2 2 2 2 1.90 0.38 1 2 2 2 2 

-1 2.01 0.11 2 2 2 2 2 1.81 0.42 1 2 2 2 2 

-1.1 2.00 0.06 2 2 2 2 2 1.72 0.46 1 1 2 2 2 

-1.2 2.00 0.04 2 2 2 2 2 1.62 0.49 1 1 2 2 2 

-1.3 2.00 0.02 2 2 2 2 2 1.53 0.50 1 1 2 2 2 

-1.4 2.00 0.01 2 2 2 2 2 1.44 0.50 1 1 1 2 2 

-1.5 2.00 0.01 2 2 2 2 2 1.36 0.48 1 1 1 2 2 

-1.6 2.00 0.00 2 2 2 2 2 1.29 0.46 1 1 1 2 2 

-1.7 2.00 0.00 2 2 2 2 2 1.24 0.42 1 1 1 1 2 

-1.8 2.00 0.00 2 2 2 2 2 1.19 0.39 1 1 1 1 2 

-1.9 2.00 0.00 2 2 2 2 2 1.15 0.36 1 1 1 1 2 

-2 2.00 0.00 2 2 2 2 2 1.12 0.32 1 1 1 1 2 

-2.1 2.00 0.00 2 2 2 2 2 1.09 0.29 1 1 1 1 2 

-2.2 2.00 0.00 2 2 2 2 2 1.07 0.26 1 1 1 1 2 
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Table 4.22: The OOC characteristics of the two-sided 2-of-3 sign charts and the improved 2-of-3 

sign charts for the median (n=25) where LCLB =1, LCLA =7, UCLA =18 and UCLB =24. 

 

Exp(1) Distribution 
  Units 2-of-3 (T) I2-of-3 (T) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
2.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.6 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.5 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.4 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.3 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.2 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1.1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

1 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.9 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.8 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.7 2.00 0.00 2 2 2 2 2 1.00 0.00 1 1 1 1 1 

0.6 2.00 0.05 2 2 2 2 2 1.67 0.47 1 1 2 2 2 

0.5 2.13 0.39 2 2 2 2 3 2.07 0.45 1 2 2 2 3 

0.4 2.95 1.40 2 2 2 3 6 2.93 1.40 2 2 2 3 6 

0.3 6.31 4.80 2 3 5 8 16 6.30 4.79 2 3 5 8 16 

0.2 22.37 20.72 3 8 16 30 64 22.35 20.70 3 8 16 30 64 

0.1 129.05 127.23 8 38 90 178 383 128.95 127.13 8 38 90 178 383 

0 568.64 566.71 31 165 395 788 1700 568.18 566.25 31 165 394 787 1698 

-0.1 154.17 152.33 10 46 107 213 458 154.05 152.21 10 46 107 213 458 

-0.2 38.21 36.50 4 12 27 52 111 38.18 36.47 4 12 27 52 111 

-0.3 14.41 12.81 2 5 10 19 40 14.40 12.80 2 5 10 19 40 

-0.4 7.39 5.86 2 3 6 10 19 7.38 5.86 2 3 6 10 19 

-0.5 4.70 3.19 2 3 4 6 11 4.69 3.19 2 3 4 6 11 

-0.6 3.47 1.95 2 2 3 4 7 3.45 1.95 2 2 3 4 7 

-0.7 2.83 1.28 2 2 2 3 6 2.82 1.28 2 2 2 3 5 

-0.8 2.48 0.88 2 2 2 3 4 2.46 0.89 2 2 2 3 4 

-0.9 2.28 0.62 2 2 2 2 3 2.25 0.64 2 2 2 2 3 

-1 2.16 0.45 2 2 2 2 3 2.12 0.50 2 2 2 2 3 

-1.1 2.10 0.33 2 2 2 2 3 2.03 0.41 1 2 2 2 3 

-1.2 2.05 0.24 2 2 2 2 3 1.96 0.38 1 2 2 2 2 

-1.3 2.03 0.18 2 2 2 2 2 1.90 0.38 1 2 2 2 2 

-1.4 2.02 0.13 2 2 2 2 2 1.85 0.40 1 2 2 2 2 

-1.5 2.01 0.10 2 2 2 2 2 1.79 0.42 1 2 2 2 2 

-1.6 2.00 0.07 2 2 2 2 2 1.74 0.45 1 1 2 2 2 

-1.7 2.00 0.05 2 2 2 2 2 1.68 0.47 1 1 2 2 2 

-1.8 2.00 0.04 2 2 2 2 2 1.62 0.49 1 1 2 2 2 

-1.9 2.00 0.03 2 2 2 2 2 1.57 0.50 1 1 2 2 2 

-2 2.00 0.02 2 2 2 2 2 1.51 0.50 1 1 2 2 2 

-2.1 2.00 0.01 2 2 2 2 2 1.46 0.50 1 1 1 2 2 

-2.2 2.00 0.01 2 2 2 2 2 1.41 0.49 1 1 1 2 2 
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Remark 4.10 

 

Note that to do performance analysis; a sufficiently large sample size is required so that there exists 

an outer set of control limits that has an absolute minimal influence on the IC ARL of the improved 

runs-rules charts. This is done so that the IC ARL for both runs-rules and improved runs-rules charts 

are almost exactly the same by choosing the inner set of control limits of the improved runs-rules 

charts and the control limits of the runs-rules charts the same. Consequently, the sample size is chosen 

to be 20 in the performance analysis for the 2-of-2 charts and the one-sided 2-of-3 charts. The sample 

size is chosen to be 25 in the performance analysis for the two-sided 2-of-3 charts. 

 

 

4.10  Final comments regarding the improved runs-rules sign charts 

 

From investigating the performance analysis it can be concluded that the improved runs-rules sign 

charts are superior in performance to the runs-rules sign charts for large shifts, while maintaining the 

same sensitivity in the detection of small shifts. Consequently the improved runs-rules sign charts are 

superior in performance compared to the runs-rules sign charts. 

 

However, the improved runs-rules sign charts do have limitations. First, the improved runs-rules 

sign charts require the sample size to be larger than what is required for the runs-rules charts. The 

sample size needs to be at least 9 for the one-sided improved 2-of-2 and the 2-of-3 sign charts and 

needs to be at least 10 for the two-sided improved 2-of-2 and the 2-of-3 sign charts so that sufficient 

and practically usable ARL and FAR combinations are obtained. Second, the improved runs-rules sign 

charts are more complex than the runs-rules charts. Note that for the sacrifice in simplicity there are 

rewards in the performance of the chart. 

 

 

Summary of the strengths and the limitations of the improved runs-rules sign charts: 

Strengths: 

 Does not require a specified underlying process distribution (nonparametric), 

 Does not require the variance of the process to be established, 

 Can monitor any desirable percentile of the underlying process distribution, 

 Does not require the actual measurements, but only the number or count of 

observations within each sample that are larger or smaller than the known or 

specified value of the percentile of interest to be able to calculate the plotting 

statistic, 
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 As sensitive to small process shifts as the runs-rules sign charts, and 

 Superior in the detection of large process shifts. 

 

Limitations: 

 Requires sample sizes to be larger than the runs-rules sign charts to obtain practical 

0ARL  and FAR control limit combinations, and 

 The improved runs-rules sign charts are more complex charts. 

 

 

4.11  Summary of Chapter 4 

 

The improved runs-rules are introduced to the sign chart in Chapter 4. The run-length distribution 

of the improved runs-rules sign charts are derived using a Markov chain approach. Performance 

analysis is carried out to illustrate that the improved runs-rules sign charts are superior in performance 

to the runs-rules sign charts for large shifts in the process, while maintaining the same sensitivity in the 

detection of small shifts. 

 

 

4.12  Following chapter 

 

The sign chart requires the value of the percentile that needs to be monitored to be specified (i.e. 

Case K). When the value of the percentile that needs to be monitored is unspecified (i.e. Case U) then 

the sign chart is no longer appropriate. The precedence chart is then the appropriate chart. In Chapter 5 

the improved runs-rules precedence chart is introduced. 
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Chapter 5 

Precedence control charts (Case U) 
 

 

5.0  Chapter 5 overview and objective 

 

In Chapter 4 improved runs-rules are introduced to the sign chart. However, in order to apply the 

sign chart the percentile of the underlying process distribution that is monitored needs to be known or 

specified (i.e. Case K). In this chapter the situation is considered where the percentile of the underlying 

process distribution that is monitored is unknown or unspecified (i.e. Case U). An appropriate chart for 

Case U is the precedence chart. The precedence chart is a nonparametric chart that can be used to 

monitor any unknown )10(100   th  percentile of a continuous process distribution, i.e. 

monitoring the location of a process where the )10(100   th  percentile is unknown or 

unspecified. Chakraborti et al. (2004) introduced the precedence statistic as plotting statistic to the 1-

of-1 precedence charts. Human et al. (2009) introduced runs-rules to the precedence charts to address 

the 1-of-1 precedence charts lack of sensitivity to small shifts. In this chapter improved runs-rules are 

introduced to the precedence charts as an improvement over the runs-rules enhanced precedence 

charts. A Markov chain and a conditioning by expectation approach are used to calculate the 

unconditional run-length distribution and the unconditional characteristics of the improved runs-rules 

precedence charts. Performance analysis is carried out to illustrate that the improved runs-rules 

precedence charts are superior in performance to the runs-rules precedence charts for large shifts, 

while maintaining the same sensitivity in the detection of small shifts. 

 

 

After reading this chapter the reader should be familiar with: 

 The history of the precedence chart, 

 The precedence statistic and the plotting statistic of the precedence chart, 

 The application of the precedence chart, 

 The design of the precedence charts, 

 How the performance of the improved runs-rules precedence charts compare to the runs-rules 

enhanced precedence charts, and 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 175

 The strengths and the limitations of the improved runs-rules precedence charts compared to the 

runs-rules enhanced precedence charts. 

 

 

5.1  Introduction 

 

The precedence charts are based on the median test, which is essentially a modified sign test for 

two independent samples and is a member of a more general class of nonparametric two-sample tests. 

The nonparametric two-sample tests are referred to as precedence tests of precedence statistics (see 

e.g. Gibbons and Chakraborti (2003)). The precedence charts can be used to monitor any unknown 

)10(100   th  process percentile of interest. Similar to the sign chart the precedence chart is a 

nonparametric chart, consequently the properties of the chart remain unchanged while the process 

remains IC and the underlying process is continuous. 

 

Chakraborti et al. (2004) introduced a class of Phase II Shewhart-type nonparametric charts, which 

are referred to as the (basic) 1-of-1 precedence charts or simply the precedence charts. Chakraborit et 

al. (2004) showed that the 1-of-1 precedence charts are preferred from a robustness point of view, 

since these charts have attractive ARL properties and would be particularly useful in situations where 

one uses a classical Shewhart X -chart to monitor a process (Human et al. (2009)). 

 

The 1-of-1 precedence charts consider only the last plotting statistic in determining whether the 

process is IC or OOC. Consequently the precedence chart is insensitive to small shifts. Human et al. 

(2009) addressed this limitation, namely lack of sensitivity to small process shifts by introducing runs-

rules to the Phase II nonparametric precedence charts of Chakraborti et al. (2004). 

 

Unfortunately the runs-rules that Human et al. (2009) introduced to the precedence charts are 

unable to detect large process shifts quickly; since at least two or three of the last plotting statistics are 

required before the chart can signal in the case of the 2-of-2 and the 2-of-3 charts respectively. As with 

the sign charts, the implementation of the improved runs-rules are proposed to the precedence charts, 

which is similar to what Khoo and Ariffin (2006) introduced to the X  chart. 

 

The precedence charts require an IC Phase I reference sample from which the control limits are 

estimated. The process is then monitored in Phase II using these estimated control limits from Phase I. 

Since the monitoring of the process in Phase II depends on the estimated control limits from Phase I, 

the performance of the precedence charts depends on the estimated control limits from Phase I. 
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Chakraborti et al. (2004) noted that the 1-of-1 precedence charts have a Geometric distribution given a 

set of estimated control limits from Phase I. A conditioning argument (see Chakraborti (2000)) is then 

used to find an expression for the precedence chart’s unconditional run-length distribution, which 

yields the exact IC run-length distribution and the exact IC run-length characteristics. Human et al. 

(2009) used a Markov chain approach to calculate the conditional run-length distribution; a 

conditioning argument was then used to find an expression for the unconditional run-length 

distribution, which yields the exact IC run-length distribution of the runs-rules enhanced precedence 

charts. 

 

For the proposed precedence charts with improved runs-rules incorporated, a Markov chain 

approach is used to calculate the conditional run-length distribution, conditioned on the estimated 

control limits from Phase I. A similar conditioning argument as used by Chakraborti et al. (2004) and 

Human et al. (2009) is then used to find an expression for the exact run-length distribution, i.e. the 

unconditional run-length distribution. 

 

Throughout Chapter 5 the focus is on the median chart since the median is by far the most popular 

percentile and the median is a robust estimator of the location. Charts based on other percentiles can be 

developed with a similar approach (Chakraborti et al. (2004)). 

 

 

5.2  Assumptions 

 

Suppose that an IC reference sample of size m from Phase I denoted by  mXXX ,...,, 21  is 

available from an unknown continuous process distribution with an unknown continuous cdf 

)()(  xFxFX  where   is the location parameter and F is some continuous cdf with a median of 

zero. The Phase I reference sample  mXXX ,...,, 21  is used to estimate the control limits for Phase II 

monitoring. 

 

In Phase II a test sample denoted by  niii YYY ,2,1, ,...,,  is sequentially taken at sampling stage (time) 

,...3,2,1i . Each Phase II test sample  niii YYY ,2,1, ,...,,  is a random sample (rational subgroup) of size 

1n  from an unknown continuous distribution with cdf )()( iY yFyG   where i  is the location 

parameter of the thi  test sample. 
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It is assumed that the Phase II test samples  niii YYY ,2,1, ,...,, , ,...3,2,1i  are drawn sequentially and 

independently of one another and from the Phase I reference sample  mXXX ,...,, 21 . 

 

 

5.3  Plotting statistic and control limits 

 

The plotting statistic of the precedence chart can be represented in many ways. The plotting 

statistic that is used in this dissertation is an order statistics from the Phase II test samples. Background 

is given on the plotting statistic of the precedence chart. 

 

Let jW  denote the number of Phase I reference sample observations that precede (not greater than) 

the thj  order statistic from a Phase II test sample. In the literature the statistic jW  has been referred to 

as a precedence statistic and any test based on jW  has been referred to as a precedence test. 

 

When the process is IC, the exact probability distribution of the precedence statistic can be 

obtained either by mathematical statistical techniques or by combinatorial arguments. This is given by: 

  mw

m

nm

wm

wjnm

w

wj

wWP j ,...,1,0,

1










 



















 

                                   (5.1) 

 

Note that the IC distribution of the precedence statistic jW  depends only on selected values of m, n 

and j and not on the underlying process distributions (F and G). Hence any chart based on the 

precedence statistic is nonparametric as per the definition of a nonparametric chart, provided that the 

process distributions in Phase I and Phase II are continuous and identical (Chakraborti et al. (2004)). 

 

The probability that the precedence chart does not signal ( jW  plotting between two 

integers/control limits) can be expressed in terms of the thj  order statistic from Phase II ( ):( njY ) 

plotting between two order statistics from Phase I i.e.: 

 

     1signalnot  doesChart ):():():(  bWaPXYXPP jmbnjma                       (5.2) 

(Chakraborti et al. (2004)) 
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Consequently the plotting statistic chosen to be used in the precedence chart is the thj  order 

statistic from a Phase II test sample. 

 

The monitoring of a process is carried out as follows: In Phase I an IC reference sample of size m  

is obtained from which the control limits are estimated. Note that the estimated control limits are order 

statistic(s) from the Phase I reference sample. In Phase II new incoming samples are taken sequentially 

from the process. For each new incoming sample a plotting statistic (an order statistic) is 

calculated/observed at time ,...3,2,1i , each plotting statistic is then compared to the control limits. If 

a sequence of plotting statistics of interest occur on the control chart, the chart signals and a search is 

initiated to determine if an assignable cause is present. This will be explained further. 

 

The plotting statistic is denoted by iT , where iT  at time ,...3,2,1i  is the thj  order statistic from 

the thi  Phase II test sample  inii YYY ,...,, 21 , i=1,2,3,… denoted by i
njY ):(  for nj 1 . 

 

To find the control limits for Phase II monitoring the Phase I reference sample of size m  is 

arranged in ascending order given by: 

):():3():2():1( ... mmmmm XXXX  , 

where ):( mkX  denotes the thk  order statistic of the reference sample of size m. The control limits for the 

basic (1-of-1), the runs-rules and the improved runs-rules precedence charts are order statistics from 

the Phase I reference sample. The order statistics ):( maX , ):( mbX , ):( mcX  and ):( mdX  (for 

mdcba 1  i.e. ):():():():( mdmcmbma XXXX  ) denote the control limits of the precedence 

charts and are given by: 

 

                                                            ):(

^

mdB XUCL   

                                                  ):(

^^

/ mcA XUCLUCL   

                                                  ):(

^^

/ mbA XLCLLCL   

                                                             ):(

^

maB XLCL   

 

 

Figure 5.1 illustrate the order statistics from the Phase I reference sample that is used as control 

limits in Phase II monitoring. 
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Figure 5.1: Illustration of the control limits and the zones on the precedence charts. 

 

 

Note that when monitoring the process in Phase II, the plotting statistic iT = i
njY ):(  that is calculated 

from each test sample is not compared to known control limits BLCL , LCLLCLA / , UCLUCLA /  and 

BUCL  as was the case with the sign chart, but are compared to estimated control limits 
^

BLCL , 

^^

/ LCLLCLA , 
^^

/UCLUCLA  and 
^

BUCL  from the Phase I reference sample. Also note that it is possible to 

apply the precedence chart as soon as the necessary order statistic is available, which is an advantage 

in applications where the observations are observed in ascending or descending order. 
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Remark 5.1 

 

Precedence charts can be used to monitor any unknown )10(100   th  process percentile of 

interest. However, the emphasis in this chapter is on the median chart, since the median is the most 

popular percentile. Charts based on other percentiles can be developed in a similar manner 

(Chakraborti et al. (2004)). To simplify matters further it is assumed, without loss of generality, that 

the Phase II sample size n  12  sn  is odd, therefore the median of the test sample i
njY ):(  is uniquely 

defined with 1 sj  (Human et al. (2009)). 

 

 

5.4  The run-length distribution and some characteristics of the precedence charts 

 

In order calculate the run-length distribution of each precedence chart, a Markov Chain approach is 

used to calculate the conditional run-length distribution conditioned on the estimated control limits 

from a Phase I analysis. A conditioning argument (see Chakraborti (2000)) is then used to find an 

expression for the exact unconditional run-length distribution. 

 

All the necessary results, probabilities and essential transition probability matrices are given in 

Appendix 5. These results, probabilities and essential transition probability matrices are then used to 

derive the run-length distribution of all of the considered precedence charts. The expressions are given 

below but for full details refer to Appendix 5. 

 

 

5.4.1  The 1-of-1 precedence charts 

 

5.4.1.1  The upper one-sided 1-of-1 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the upper one-sided 1-of-1 precedence chart are given by: 

 

             dfdfjNPjNP c
j

cUofCUof   


1

0

1
1

0

)(11)(11 1QIQξ                                       (5.3) 

       
 

1

0

1

0

1
)(11)(11  dfdfCARLARL ccUofUof 1QIξ                                                          (5.4) 
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       dfFGpdfCFARFAR cCcUofUof   

1

0

8

1

0

)(11)(11 |                                                        (5.6) 

 

For more information regarding the equations (5.3), (5.4), (5.5) and (5.6) refer to Appendix 5 

equations (A5.77), (A5.78), (A5.79) and (A5.80). 

 

Refer to Section 3.2.1.1 of Chapter 3 for an explanation of the subscripts used in the equations of 

the unconditional run-length distribution and the characteristics of the unconditional run-length 

distribution. Also note that the C in CARL, CVRL and CFAR indicate that the ARL, VRL and FAR is 

conditional. 

 

 

5.4.1.2  The lower one-sided 1-of-1 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the lower one-sided 1-of-1 precedence chart are given by: 
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For more information regarding the equations (5.7), (5.8), (5.9) and (5.10) refer to equations 

(A5.81), (A5.82), (A5.83) and (A5.84) of Appendix 5. 

 

 

5.4.1.3  The two-sided 1-of-1 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the two-sided 1-of-1 precedence chart are given by: 
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ddfFGppddfUFARFAR bcCCbcTofTof     

1

0 0

98

1

0 0

)(11)(11 ,|,                       (5.13) 

 

For more information regarding the equations (5.10), (5.11), (5.12) and (5.13) refer to equations 

(A5.85), (A5.86), (A5.87) and (A5.88) of Appendix 5. 
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5.4.2  The 2-of-2 precedence charts 

 

5.4.2.1  The upper one-sided 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the upper one-sided 2-of-2 precedence chart are given by: 

 

             dfdfjNPjNP c
j

cUofCUof   


1

0

1
1

0

)(22)(22 1QIQξ                                    (5.14) 

       
 

1

0

1

0

1
)(22)(22  dfdfCARLARL ccUofUof 1QIξ                                                      (5.15) 

       
21

0

)(22

1

0

2
)(22

1

0

)(22)(22 







    dfCARLdfCARLdfCVRLVRL cUofcUofcUofUof

        

        
21

0

1
1

0

21

1

0

212

     

                   

























dfdf

df

cc

c

1QIξ1QIξ

1QIξ1QIQIξ

                                                (5.16) 

        dfFGpdfCFARFAR cCcUofUof   

1

0

2
8

1

0

)(22)(22 |                                                (5.17) 

 

For more information regarding the equations (5.14), (5.15), (5.16) and (5.17) refer to equations 

(A5.89), (A5.90), (A5.91) and (A5.92) of Appendix 5. See also Human et al. (2009). 

 

 

5.4.2.2  The lower one-sided 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the lower one-sided 2-of-2 precedence chart are given by: 

 

             dfdfjNPjNP b
j

bLofCLof   


1

0

1
1

0

)(22)(22 1QIQξ                                         (5.18) 

       
 

1

0

1

0

1
)(22)(22  dfdfCARLARL bbLofLof 1QIξ                                                            (5.19) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 184

       
21

0

)(22

1

0

2
)(22

1

0

)(22)(22 







    dfCARLdfCARLdfCVRLVRL bLofbLofbLofLof

        

        
21

0

1
1

0

21

1

0

212

      

                   

























dfdf

df

bb

b

1QIξ1QIξ

1QIξ1QIQIξ

                                                   (5.20) 

        dfFGpdfCFARFAR bCbLofLof   

1

0

2
9

1

0

)(22)(22 |                                                      (5.21) 

 

For more information regarding the equations (5.18), (5.19), (5.20) and (5.21) refer to equations 

(A5.93), (A5.94), (A5.95) and (A5.96) of Appendix 5. 

 

 

5.4.2.3  The two-sided 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the two-sided 2-of-2 precedence chart are given by: 
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For more information regarding the equations (5.22), (5.23), (5.24) and (5.25) refer to equations 

(A5.97), (A5.98), (A5.99) and (A5.100) of Appendix 5. See also Human et al. (2009). 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 185

5.4.3  The 2-of-3 precedence charts 

 

5.4.3.1  The upper one-sided 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the upper one-sided 2-of-3 precedence chart are given by: 
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For more information regarding the equations (5.26), (5.27), (5.28) and (5.29) refer to equations 

(A5.101), (A5.102), (A5.103) and (A5.104) of Appendix 5. 

 

 

5.4.3.2  The lower one-sided 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the lower one-sided 2-of-3 precedence chart are given by: 
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For more information regarding the equations (5.30), (5.31), (5.32) and (5.33) refer to equations 

(A5.105), (A5.106), (A5.107) and (A5.108) of Appendix 5. 

 

 

5.4.3.3  The two-sided 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the two-sided 2-of-3 precedence chart are given by: 
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For more information regarding the equations (5.34), (5.35), (5.36) and (5.37) refer to equations 

(A5.109), (A5.110), (A5.111) and (A5.112) of Appendix 5. 
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5.4.4  The improved 2-of-2 precedence charts 

 

5.4.4.1  The upper one-sided improved 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the upper one-sided improved 2-of-2 precedence chart are given by: 
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For more information regarding the equations (5.38), (5.39), (5.40) and (5.41) refer to equations 

(A5.113), (A5.114), (A5.115) and (A5.116) of Appendix 5. 

 

 

5.4.4.2  The lower one-sided improved 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the lower one-sided improved 2-of-2 precedence chart are given by: 
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For more information regarding the equations (5.42), (5.43), (5.44) and (5.45) refer to equations 

(A5.117), (A5.118), (A5.119) and (A5.120) of Appendix 5. 

 

 

5.4.4.3  The two-sided improved 2-of-2 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the two-sided improved 2-of-2 precedence chart are given by: 
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For more information regarding the equations (5.46), (5.47), (5.48) and (5.49) refer to equations 

(A5.121), (A5.122), (A5.123) and (A5.124) of Appendix 5. 

 

 

5.4.5  The improved 2-of-3 precedence charts 

 

5.4.5.1  The upper one-sided improved 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the upper one-sided improved 2-of-3 precedence chart are given by: 
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For more information regarding the equations (5.50), (5.51), (5.52) and (5.53) refer to equations 

(A5.125), (A5.126), (A5.127) and (A5.128) of Appendix 5. 

 

 

5.4.5.2  The lower one-sided improved 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the lower one-sided improved 2-of-3 precedence chart are given by: 
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For more information regarding the equations (5.54), (5.55), (5.56) and (5.57) refer to equations 

(A5.129), (A5.130), (A5.131) and (A5.132) of Appendix 5. 
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5.4.5.3  The two-sided improved 2-of-3 precedence chart 

 

The unconditional run-length distribution and some characteristics of the unconditional run-length 

distribution of the two-sided improved 2-of-3 precedence chart are given by: 

 

     

      



  

  

ddddf

ddddfjNPjNP

abcd
j

abcdTofICTofI

   

   









1

0 0 0 0

1

1

0 0 0 0

)(32)(32

,,,                             

,,,

1QIQξ

                                             (5.58) 

 

      

   









1

0 0 0 0

1

1

0 0 0 0

)(32)(32

,,,                    

,,,





  

  

ddddf

ddddfCARLARL

abcd

abcdTofITofI

1QIξ

                                                         (5.59) 

 

   

 
21

0 0 0 0

)(32

1

0 0 0 0

2
)(32

1

0 0 0 0

)(32)(32

,,,                        

,,,                        

,,,















   

   

   













  

  

  

ddddfCARL

ddddfCARL

ddddfCVRLVRL

abcdTofI

abcdTofI

abcdTofITofI

        

    

   
21

0 0 0 0

1

1

0 0 0 0

21

1

0 0 0 0

212

,,,                         

,,,    

,,,                     















   

   

   













  

  

  

ddddf

ddddf

ddddf

abcd

abcd

abcd

1QIξ

1QIξ

1QIξ1QIQIξ

                          (5.60) 

      
1

0 0 0 0

)(32)(32 ,,, 
  

ddddfCFARFAR abcdTofITofI                                                          (5.61) 

 

For more information regarding the equations (5.58), (5.59), (5.60) and (5.61) refer to equations 

(A5.133), (A5.134), (A5.135) and (A5.136) of Appendix 5. 
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5.5  Design of the improved runs-rules precedence charts 

 

The background and the explicit formulas for the precedence charts have been established. But 

what are still lacking are the charting constants for the improved runs-rules precedence charts. 

Therefore the order statistics from the IC reference sample need to be established that are used as the 

control limits in Phase II monitoring. This would ensure a chart which has desirable properties. 

 

Note that the equations that are used to calculate the run-length distribution and the characteristics 

of the two-sided improved precedence charts are complicated (see equations (5.46)-(5.49) and 

equations (5.58)-(5.61)). Solving these equations is resource intensive. Simulations can be utilized for 

an approximation, but solving the equations is preferred. Consequently the focus will be on the upper 

one-sided improved runs-rules precedence charts. The software package Mathcad®14.0 is used to solve 

the equations that are used to calculate the characteristics of the upper one-sided improved runs-rules 

precedence charts. 

 

Tables 5.2 and 5.3 were constructed by allowing the outer control limit BUCL  to be as large as 

possible (i.e. making BUCL  as un-influential as possible) while at the same time choosing the inner 

control limit AUCL  such that the UARL is as close as possible to 370. The effect is then observed when 

the outer control limit is gradually brought closer to the AUCL . From Tables 5.2 and 5.3 it can be seen 

that as the BUCL  is decreased, the unconditional average run-length (UARL) is at first unaffected, then 

the UARL starts to decrease as expected. Based on the IC performance analysis, when reference 

sample size is 100 and 200 the UARL is immediately affected as the BUCL  decreases. 

 

There are two motivations for the manner in which Tables 5.2 and 5.3 were populated i.e. by 

starting to let the outer control limit BUCL  be as large as possible while at the same time choosing the 

inner control limit AUCL  such that the UARL is as close as possible to 370 and then gradually bringing 

the BUCL  closer to the AUCL . The first motivation is to limit the combinations of charting constants 

that need to be investigated since there are many possibilities. The second motivation is that the 

performance comparisons are simplified since a combination of charting constants can quite easily be 

found that provide a similar (same) IC ARL to the runs-rules enhanced precedence charts. 

 

To illustrate the use of Tables 5.2 and 5.3 consider rows one to seven and the far right cells of 

Table 5.3. These cells contain the characteristics of the upper one-sided improved 2-of-3 precedence 

chart when the reference sample is of size 500, the test sample is of size 7 and the 393rd  AUCL  and 
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500th  BUCL  order statistics from the reference sample are used as control limits to monitor the 

median. From this cell the following information can be obtained 361.49)(32  UofIARL , 

000000010)(32 .1FAR UofI  , 002117500)(32 .2FAR UofI   and 004016240)(32 .345FAR UofI  . See 

Table 5.1 for clarity on the notation. 

 

Tables 5.2 and 5.3 provide a great deal of information. These Tables should be of great usefulness 

to the quality practitioner in selecting appropriate control limits. 

 

Following the presentation of Tables 5.2 and 5.3 an example is presented to illustrate the use of 

Tables 5.2 and 5.3 and also the application of the improved runs-rules precedence charts. 

 

 

Table 5.1: Description of the notation used in Tables 5.2 and 5.3. 

 

Notation Description 

n Test sample size. 

m Reference sample size. 

c Integer representing the order statistic number from Phase I that is used as AUCL . 

d Integer representing the order statistic number from Phase I that is used as BUCL . 

j 
Integer representing the order statistic number from Phase II that is used as the plotting 

statistic. 

IC ARL Unconditional IC ARL. 

FAR1 Unconditional false alarm rate for time = 1. 

FAR234 Unconditional false alarm rate for time = 2, 3, 4,…. 

FAR2 Unconditional false alarm rate for time = 2. 

FAR345 Unconditional false alarm rate for time = 3, 4, 5,…. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 194

Table 5.2: Unconditional IC ARL, unconditional FAR at time 1 and 2,3,4… respectively and the 

charting constants (c,d) for the upper one-sided improved 2-of-2 precedence chart for m = 100, 

200, 500 and (n,j)=(5,3),(7,4). 

 

  n=5, j=3 n=7, j=4 
  m=100 m=200 m=500 m=100 m=200 m=500 

IC ARL 390.45 349.63 365.00 303.91 383.78 352.22 
FAR1 0.00005334 0.00000706 0.00000048 0.00000678 0.00000047 0.00000001 

FAR234 0.00740930 0.00512795 0.00361770 0.01133275 0.00542242 0.00396963 
(c,d) (79,100) (159,200) (401,500) (74,100) (152,200) (382,500) 

IC ARL 349.94 317.89 362.08 297.97 377.38 352.05 
FAR1 0.00051782 0.00038136 0.00002714 0.00009703 0.00005590 0.00000166 

FAR234 0.00778414 0.00544478 0.00363992 0.01140042 0.00546881 0.00397098 
(c,d) (79,98) (159,195) (401,495) (74,98) (152,195) (382,495) 

IC ARL 281.28 239.06 350.80 279.99 343.08 350.92 
FAR1 0.00175854 0.00187392 0.00012313 0.00043158 0.00041777 0.00001206 

FAR234 0.00879061 0.00671368 0.00373121 0.01165212 0.00577221 0.00398024 
(c,d) (79,96) (159,190) (401,490) (74,96) (152,190) (382,490) 

IC ARL 207.78 155.81 328.27 247.96 273.57 347.39 
FAR1 0.00409341 0.00514267 0.00038085 0.00123317 0.00152033 0.00004721 

FAR234 0.01069985 0.00951387 0.00393757 0.01225836 0.00669983 0.00400990 
(c,d) (79,94) (159,185) (401,485) (74,94) (152,185) (382,485) 

IC ARL 145.84 96.04 295.51 206.18 191.94 339.70 
FAR1 0.00779507 0.01072807 0.00078110 0.00276654 0.00391215 0.00012126 

FAR234 0.01376099 0.01435966 0.00430221 0.01342680 0.00872557 0.00407739 
(c,d) (79,92) (159,180) (401,480) (74,92) (152,180) (382,480) 

IC ARL 100.22 59.64 256.55 162.04 123.96 326.30 
FAR1 0.01309294 0.01906042 0.00142281 0.00532072 0.00819766 0.00028059 

FAR234 0.01820764 0.02172273 0.00486596 0.01539354 0.01239459 0.00420459 
(c,d) (79,90) (159,175) (401,475) (74,90) (152,175) (382,475) 

IC ARL 68.99 38.42 216.28 121.91 77.72 306.46 
FAR1 0.02017518 0.03046625 0.00233323 0.00919351 0.01498703 0.00049152 

FAR234 0.02426358 0.03205126 0.00566744 0.01841729 0.01830187 0.00441737 
(c,d) (79,88) (159,170) (401,470) (74,88) (152,170) (382,470) 

IC ARL 48.25 25.86 178.61 89.14 49.18 280.67 
FAR1 0.02919065 0.04517478 0.00355142 0.01467797 0.02485491 0.00089128 

FAR234 0.03214747 0.04578421 0.00674304 0.02277628 0.02708197 0.00474463 
(c,d) (79,86) (159,165) (401,465) (74,86) (152,165) (382,465) 
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Table 5.3: Unconditional IC ARL, unconditional FAR at time 1, 2 and 3,4,5… respectively and 

the charting constants (c,d) for the upper one-sided improved 2-of-3 nonparametric chart for m = 

100, 200, 500 and (n,j)=(5,3),(7,4). 

 

  n=5, j=3 n=7, j=4 
  m=100 m=200 m=500 m=100 m=200 m=500 

IC ARL 375.52 381.94 363.52 411.00 376.14 361.49 
FAR1 0.00005334 0.00000706 0.00000050 0.00000678 0.00000047 0.00000001 
FAR2 0.00475813 0.00273040 0.00197355 0.00581425 0.00321304 0.00211750 

FAR345 0.00857053 0.00510493 0.00375400 0.01033252 0.00596127 0.00401624 
(c,d) (81,100) (164,200) (412,500) (77,100) (156,200) (393,500) 

IC ARL 338.19 345.57 360.74 400.34 370.17 361.32 
FAR1 0.00051782 0.00038136 0.00002713 0.00009703 0.00005590 0.00000167 
FAR2 0.00514999 0.00306232 0.00199661 0.00588790 0.00326143 0.00211895 

FAR345 0.00890389 0.00540012 0.00377491 0.01039343 0.00600366 0.00401753 
(c,d) (81,98) (164,195) (412,495) (77,98) (156,195) (393,495) 

IC ARL 274.41 257.02 349.96 369.79 337.95 360.18 
FAR1 0.00175854 0.00187392 0.00012308 0.00043158 0.00041777 0.00001174 
FAR2 0.00620188 0.00439138 0.00147987 0.00616174 0.00357775 0.00212855 

FAR345 0.00980350 0.00658673 0.00386081 0.01062060 0.00628133 0.00402623 
(c,d) (81,96) (164,190) (412,490) (77,96) (156,190) (393,490) 

IC ARL 205.20 165.48 328.34 318.77 271.88 356.60 
FAR1 0.00409341 0.00514267 0.00038084 0.00123317 0.00152033 0.00004703 
FAR2 0.00819648 0.00732316 0.00230506 0.00682091 0.00454512 0.00215932 

FAR345 0.01152340 0.00922503 0.00405527 0.01117011 0.00713328 0.00405405 
(c,d) (81,94) (164,185) (412,485) (77,94) (156,185) (393,485) 

IC ARL 145.82 100.87 296.68 256.43 192.94 348.81 
FAR1 0.00779507 0.01072807 0.00078122 0.00276654 0.00391215 0.00012130 
FAR2 0.01139276 0.01239353 0.00268312 0.00809038 0.00665666 0.00222954 

FAR345 0.01431125 0.01384659 0.00439933 0.01223604 0.00900565 0.00411752 
(c,d) (81,92) (164,180) (412,480) (77,92) (156,180) (393,480) 

IC ARL 101.26 61.98 258.70 194.59 125.88 335.21 
FAR1 0.01309294 0.01906042 0.00142281 0.00532072 0.00819766 0.00028072 
FAR2 0.01603250 0.02009117 0.00326737 0.01022504 0.01047909 0.00236197 

FAR345 0.01841853 0.02099078 0.00493190 0.01404651 0.01243255 0.00423734 
(c,d) (81,90) (164,175) (412,475) (77,90) (156,175) (393,475) 

IC ARL 70.18 39.46 219.08 141.53 79.38 315.05 
FAR1 0.02017518 0.03046624 0.00233302 0.00919351 0.01498703 0.00049145 
FAR2 0.02234616 0.03087704 0.00409792 0.01350283 0.01662884 0.00258325 

FAR345 0.02410957 0.03123572 0.00569006 0.01686358 0.01803541 0.00443770 
(c,d) (81,88) (164,170) (412,470) (77,88) (156,170) (393,470) 

IC ARL 49.21 26.19 181.68 100.38 50.25 288.78 
FAR1 0.02919065 0.04517478 0.00355148 0.01467796 0.02485491 0.00089118 
FAR2 0.03055755 0.04519885 0.00521257 0.01822056 0.02576048 0.00292356 

FAR345 0.03166874 0.04521988 0.00671165 0.02098636 0.02653684 0.00474606 
(c,d) (81,86) (164,165) (412,465) (77,86) (156,165) (393,465) 
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Remark 5.2 

 

The precedence statistic is a discrete statistic as the sign statistic i.e. the precedence statistic can 

only assume a finite number of possible values. Consequently the precedence chart can only assume a 

finite number of possible UARL and unconditional false alarm rate (UFAR) combinations for a choice 

of m and n. The possible UARL and UFAR combinations increases as m and n increases. 

 

 

Example 5.1 

 

An example is presented to illustrate the application of the precedence charts. An upper one-sided 

improved 2-of-2 precedence chart and an upper one-sided improved 2-of-3 precedence chart are 

presented in this example. 

 

In this example the inside diameter measurements of forged automobile engine piston rings are 

monitored. The IC Phase I reference sample consisting of twenty-five samples of size five each (i.e. a 

total of 125 observations) given on p.223 in Table 5.3 of Montgomery (2005). 

 

In order to apply the precedence charts the charting constants are required, Table 5.4 is given to aid 

in choosing appropriate charting constants. 

 

 

Table 5.4: Unconditional characteristics of the upper one-sided improved 2-of-2 precedence chart 

and upper one-sided improved 2-of-3 precedence chart when m=125, n=5 and j=3. 

 

I2-of-2(U) I2-of-3(U) 
c d ARL0 FAR1 FAR234 c d ARL0 FAR1 FAR2 FAR345 
99 125 373.382 0.000028 0.006433 102 125 402.5662 0.000028 0.003667 0.006721 
99 124 365.0477 0.000110 0.006500 102 124 393.1183 0.000110 0.003738 0.006783 
99 123 350.6366 0.000273 0.006637 102 123 376.9063 0.000273 0.003879 0.006905 
99 122 330.4585 0.000539 0.006854 102 122 354.3849 0.000539 0.004109 0.007105 
99 121 305.6776 0.000933 0.007178 102 121 326.9381 0.000933 0.004450 0.007403 

 

 

When constructing a control chart one typically require the chart to have a large unconditional IC 

ARL. From Table 5.4 it can be seen that to obtain an ARL0 (unconditional) of 350.64 for the upper one-

sided improved 2-of-2 chart, charting constants c=99 and d=123 need to be selected. Therefore in order 

to obtain an ARL0 (unconditional) of 350.64 one need choose the inner and the outer upper control 

limits to be the 99th and the 123rd order statistics from the Phase I reference sample of size 125 

respectively. Similarly for the upper one-sided improved 2-of-3 chart, the 102nd and the 122nd order 
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statistics from the phase I reference sample of size 125 need to be selected as the inner and the outer 

upper control limits respectively, to obtain an ARL0 (unconditional) of 354.38. 

 

The control limits for the upper one-sided improved 2-of-2 precedence chart are given by: 

74.009125:99

^

 XUCLA  and 74.021125:123

^

 XUCLB  

 

The control limits for the upper one-sided improved 2-of-3 precedence chart are given by: 

74.010125:102

^

 XUCLA  and 74.020125:122

^

 XUCLB  

 

The upper one-sided improved 2-of-2 and the upper one-sided improved 2-of-3 precedence charts 

are presented in Figures 5.2 and 5.3 respectively. The 15 samples from Phase II of size five each is 

given on p.250 under exercise 5.10 of Montgomery (2005). 

 

A plot of the medians is presented in Figures 5.2 and 5.3. The first 25 medians are from the IC 

phase I reference sample. The last 15 medians are from Phase II monitoring. Considering Figure 5.2 

the upper one-sided improved 2-of-2 precedence chart detects the first signal at sample number 35 

since two consecutive plotting statistics plotted on or above the AUCL . Considering Figure 5.3 the 

upper one-sided improved 2-of-3 chart detects the first signal at sample number 35 since two of the last 

three plotting statistics plotted on or above the AUCL . 

 

Note that for the upper one-sided 2-of-2 precedence chart the chart will signal at sample number 35 

since two consecutive plotting statistics plotted on or above the UCLUCLA / . Note that for the upper 

one-sided 2-of-3 precedence chart the chart will signal at sample number 35 since two of the last three 

plotting statistics plotted on or above the UCLUCLA / . For illustration purposes assume that the one-

sided 1-of-1 precedence chart control limit is equal to UCLUCLA /  in Figure 5.2 (Figure 5.3), then the 

chart would signal at the 20th (26th) sample since a single plotting statistics plotted on or above the 

UCLUCLA / . 
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Figure 5.2: The upper one-sided improved 2-of-2 precedence chart for the Montgomery (2005) 

piston-ring data. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: The upper one-sided improved 2-of-3 precedence chart for the Montgomery (2005) 

piston-ring data. 

 

The example illustrates that the application of the improved runs-rules precedence charts are quite 

simple. The challenge is to determine appropriate charting constants so that the chart has desirable 

properties. 
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5.6  Performance of the improved runs-rules precedence charts 

 

Improved runs-rules are introduced to address a shortcoming of the runs-rules charts, namely the 

inability to detect large shifts quickly. Performance comparisons between the upper one-sided 2-of-2 

precedence chart and the upper one-sided improved 2-of-2 precedence chart is done. Performance 

comparisons are also made between the upper one-sided 2-of-3 precedence chart and the upper one-

sided improved 2-of-3 precedence chart. 

 

The performance comparisons between the improved runs-rules precedence charts and the runs-

rules precedence charts are done by considering the Normal (symmetric distribution), Students-t 

(symmetric with heavy tails) and Exponential (skew) distribution as the underlying process distribution 

as illustrated in Figure 5.4. It will be shown in the performance analysis that the improved runs-rules 

precedence charts do not perform equally well for all underlying process distributions. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: Different underlying process distributions that are used to perform performance 

comparisons. 
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5.6.1  Discussion on the performance analysis Tables 

 

Refer to Table 5.5 to clarify the notation used in Tables 5.6 to 5.11. 

 

 

Table 5.5: Description of notation used in Tables 5.6 to 5.11. 

 

Notation Description 

N(0,1) Standard Normal underlying process distribution. 

t(4) Students t(4) underlying process distribution. 

Exp(1) Exponential  1  underlying process distribution. 

Shift (  Units) Shift in the underlying process distribution in standard deviation units. 

2-of-2 (U) Upper one-sided 2-of-2 runs-rules precedence chart. 

I2-of-2 (U) Upper one-sided improved 2-of-2 runs-rules precedence chart. 

2-of-3 (U) Upper one-sided 2-of-3 runs-rules precedence chart. 

I2-of-3 (U) Upper one-sided improved 2-of-3 runs-rules precedence chart. 

ARL Unconditional average run-length. 

IQR Unconditional inter quartile range of the run-length. 

5th Unconditional 5th percentile of the run-length distribution. 

Q1 Unconditional 25th percentile (first quartile) of the run-length distribution. 

MDRL Unconditional 50th percentile (median) of the run-length distribution. 

Q3 Unconditional 75th percentile (third quartile) of the run-length distribution. 

95th Unconditional 95th percentile of the run-length distribution. 
 

 

To illustrate the use of Tables 5.6 to 5.11 consider the following situation. A process is monitored 

using an upper one-sided 2-of-2 runs-rules precedence chart and the underlying process distribution is 

t(4) distributed. A comparison needs to be done between the upper one-sided 2-of-2 runs-rules 

precedence chart and the upper one-sided improved 2-of-2 runs-rules precedence chart. This can be 

done by considering Table 5.8. 

 

From the first row of Table 5.8 it can be seen that the reference sample size is 500  500m , the 

test sample size is 7  7n , the control limits are UCLA =382 and UCLB =490. From the caption it can 

be seen that the underlying process distribution is t(4). From the third row it can be seen that the first 

column contains the shift in the underlying process distribution (in standard deviation units). Still 

considering the third row it can be seen that columns two to eight (nine to fifteen) contains the 
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characteristics of the upper one-sided runs-rules precedence chart (upper one-sided improved runs-

rules precedence chart). Refer to Table 5.5 for clarity on the notation. 

 

The observation can be made that when the process is IC, that the IC ARL for the upper one-sided 

runs-rules precedence chart and the upper one-sided improved runs-rules precedence chart is 350.83 

and 351.52 respectively. Since the IC ARL is the same or approximately so, OOC performance analysis 

is meaningful. 

 

Consider an upward shift in the process of a 0.25 standard deviation units  25.0shiftunit  , 

then the OOC ARL is 36.84 and 36.72 for the upper one-sided runs-rules precedence chart and the 

upper one-sided improved runs-rules precedence chart respectively (note that the other characteristics 

are also similar or the same). From this the first claim is supported that the improved runs-rules 

precedence charts are as sensitive to small process shifts as the runs-rules precedence charts. Now 

consider an upward shift in the process of 4 standard deviation units  4shiftunit  , then the OOC 

ARL is 2 and 1.00 for the upper one-sided 2-of-2 runs-rules precedence chart and the upper one-sided 

improved 2-of-2 runs-rules precedence charts respectively. From this the second claim is supported 

that the improved runs-rules precedence charts detect larger shifts in the process more efficiently. The 

superiority of the improved runs-rules precedence charts in the presence of larger process shifts is also 

confirmed by the remaining characteristics. 

 

From the performance analysis illustration between the upper one-sided 2-of-2 runs-rules 

precedence chart and the upper one-sided improved 2-of-2 runs-rules precedence chart in Table 5.8, the 

use of the performance analysis Tables (Tables 5.6 to 5.11) is established. 

 

 

5.6.2  Discussion on the performance analysis results 

 

Considering Tables 5.6 to 5.11 the following observations can be made regarding the performance 

comparison between the runs-rules and the improved runs-rules precedence charts: 

 From Tables 5.6, 5.7 and 5.8 it can be seen that the upper one-sided improved 2-of-2 

precedence chart is as sensitive to small process shifts compared to the upper one-sided 2-

of-2 precedence chart, while having the ability to detect large process shifts more 

efficiently. However, for the Exp(1) distribution (for upward shifts) the upper one-sided 

improved 2-of-2 chart, that the OOC ARL seem to converge slower to one i.e. less efficient 

in the detection of large process shifts compared to the t(4) and the N(0,1) distributions. 
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 From Tables 5.9, 5.10 and 5.11 it can be seen that the upper one-sided improved 2-of-3 

precedence chart is as sensitive to small process shifts compared to the upper one-sided 2-

of-3 precedence chart, while having the ability to detect large process shifts more 

efficiently. Note that for certain underlying distributions the upper one-sided improved 2-

of-3 precedence chart is able to detect large process shifts more efficient than for other 

distributions. The chart is less efficient in detecting large process shifts in the case of a 

upward shift when the underlying process distribution is Exp(1). This can be seen in Table 

5.9 in the ARL column (ninth column) when the shift increases the ARL does not converge 

as quickly to one as for the other distributions. 

 

 

Remark 5.3 

 

Note that Tables 5.6 to 5.11 are rich in information regarding the OOC performance for the runs-

rules and the improved runs-rules precedence charts and can be a discussion topic on its own. 

However, in this dissertation the main concern is to confirm the two claims that the improved runs-

rules precedence charts are superior in performance to the runs-rules precedence charts for large shifts 

in the process, while maintaining the same sensitivity in the detection of small shifts. These two claims 

are confirmed in the previous discussion. 

 

 

The performance comparisons are presented in Tables 5.6-5.11. These results are obtained by 

means of computer simulation (250 000 repetitions) using proc IML in SAS®9.2. 

 

Considering Tables 5.6-5.11 it can be seen that the improved runs-rules precedence charts are as 

sensitive to small process shifts compared to the runs-rules precedence charts while having the ability 

to detect large process shifts quickly. 
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Table 5.6: Unconditional characteristics of the upper one-sided 2-of-2 and the upper one-sided 

improved 2-of-2 precedence charts when the underlying process distribution is Exp(1). 

Exp(1) Distribution (n=7, j=4, m=500, c=382, d=490) 
σ Units 2-of-2 (U) I2-of-2 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 491.41 511 20 112 284 623 1647 488.34 509 20 111 283 620 1636 

0 351.28 363 15 82 205 445 1174 350.52 363 15 81 203 444 1170 

0.25 73.98 76 4 19 45 95 240 74.17 77 4 19 45 96 241 

0.5 18.95 18 2 6 12 24 58 18.94 18 2 6 12 24 58 

0.75 6.33 6 2 2 4 8 17 6.33 6 2 2 4 8 17 

1 2.97 2 2 2 2 4 6 2.98 2 2 2 2 4 6 

1.25 2.10 0 2 2 2 2 3 2.10 0 2 2 2 2 3 

1.5 2.00 0 2 2 2 2 2 2.00 0 2 2 2 2 2 

1.75 2.00 0 2 2 2 2 2 1.99 0 2 2 2 2 2 

2 2.00 0 2 2 2 2 2 1.98 0 2 2 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.95 0 1 2 2 2 2 

2.5 2.00 0 2 2 2 2 2 1.89 0 1 2 2 2 2 

2.75 2.00 0 2 2 2 2 2 1.78 0 1 2 2 2 2 

3 2.00 0 2 2 2 2 2 1.62 1 1 1 2 2 2 

3.25 2.00 0 2 2 2 2 2 1.40 1 1 1 1 2 2 

3.5 2.00 0 2 2 2 2 2 1.21 0 1 1 1 1 2 

3.75 2.00 0 2 2 2 2 2 1.08 0 1 1 1 1 2 

4 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 
 

 

Table 5.7: Unconditional characteristics of the upper one-sided 2-of-2 and the upper one-sided 

improved 2-of-2 precedence charts when the underlying process distribution is N(0,1). 

N(0,1) Distribution (n=7, j=4, m=500, c=382, d=490) 
σ Units 2-of-2 (U) I2-of-2 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 550.30 570 22 124 315 694 1847 547.73 570 22 123 313 693 1852 

0 352.38 365 15 81 205 446 1177 353.17 368 15 81 205 449 1177 

0.25 53.10 56 4 14 34 70 167 52.75 55 4 14 33 69 167 

0.5 13.62 13 2 5 9 18 40 13.53 13 2 5 9 18 39 

0.75 5.58 5 2 2 4 7 14 5.53 5 2 2 4 7 14 

1 3.27 2 2 2 2 4 7 3.21 2 2 2 2 4 7 

1.25 2.44 0 2 2 2 2 4 2.37 0 2 2 2 2 4 

1.5 2.14 0 2 2 2 2 3 1.99 0 1 2 2 2 3 

1.75 2.04 0 2 2 2 2 2 1.75 1 1 1 2 2 2 

2 2.01 0 2 2 2 2 2 1.53 1 1 1 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.32 1 1 1 1 2 2 

2.5 2.00 0 2 2 2 2 2 1.16 0 1 1 1 1 2 

2.75 2.00 0 2 2 2 2 2 1.06 0 1 1 1 1 2 

3 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 

3.25 2.00 0 2 2 2 2 2 1.01 0 1 1 1 1 1 

3.5 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.75 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

4 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 
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Table 5.8: Unconditional characteristics of the upper one-sided 2-of-2 and the upper one-sided 

improved 2-of-2 precedence charts when the underlying process distribution is t(4). 

t(4) Distribution (n=7, j=4, m=500, c=382, d=490) 
σ Units 2-of-2 (U) I2-of-2 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 595.46 616 24 135 342 751 1997 590.72 617 24 133 340 750 1977 

0 350.83 364 15 81 205 445 1168 351.52 367 15 81 206 448 1167 

0.25 36.84 38 3 10 23 48 115 36.72 38 3 10 23 48 115 

0.5 7.98 7 2 3 6 10 22 7.97 7 2 3 6 10 22 

0.75 3.45 2 2 2 2 4 8 3.44 2 2 2 2 4 8 

1 2.38 0 2 2 2 2 4 2.37 0 2 2 2 2 4 

1.25 2.09 0 2 2 2 2 3 2.07 0 2 2 2 2 3 

1.5 2.02 0 2 2 2 2 2 1.94 0 1 2 2 2 2 

1.75 2.00 0 2 2 2 2 2 1.80 0 1 2 2 2 2 

2 2.00 0 2 2 2 2 2 1.58 1 1 1 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.35 1 1 1 1 2 2 

2.5 2.00 0 2 2 2 2 2 1.16 0 1 1 1 1 2 

2.75 2.00 0 2 2 2 2 2 1.06 0 1 1 1 1 2 

3 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 

3.25 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.5 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.75 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

4 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

 

 

Table 5.9: Unconditional characteristics of the upper one-sided 2-of-3 and the upper one-sided 

improved 2-of-3 precedence charts when the underlying process distribution is Exp(1). 

Exp(1) Distribution (n=7, j=4, m=500, c=393, d=490) 
σ Units 2-of-3 (U) I2-of-3 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 502.92 516 21 112 284 628 1706 501.41 517 21 112 284 629 1704 

0 361.74 370 16 82 206 452 1219 360.47 372 15 81 205 453 1207 

0.25 76.05 77 5 19 45 96 250 76.22 78 5 19 45 97 250 

0.5 19.86 19 3 6 13 25 61 19.82 19 3 6 13 25 61 

0.75 6.80 5 2 3 5 8 18 6.80 5 2 3 5 8 19 

1 3.24 2 2 2 3 4 7 3.24 2 2 2 3 4 7 

1.25 2.21 0 2 2 2 2 3 2.20 0 2 2 2 2 3 

1.5 2.01 0 2 2 2 2 2 2.00 0 2 2 2 2 2 

1.75 2.00 0 2 2 2 2 2 1.99 0 2 2 2 2 2 

2 2.00 0 2 2 2 2 2 1.98 0 2 2 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.95 0 1 2 2 2 2 

2.5 2.00 0 2 2 2 2 2 1.89 0 1 2 2 2 2 

2.75 2.00 0 2 2 2 2 2 1.78 0 1 2 2 2 2 

3 2.00 0 2 2 2 2 2 1.61 1 1 1 2 2 2 

3.25 2.00 0 2 2 2 2 2 1.40 1 1 1 1 2 2 

3.5 2.00 0 2 2 2 2 2 1.21 0 1 1 1 1 2 

3.75 2.00 0 2 2 2 2 2 1.08 0 1 1 1 1 2 

4 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 
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Table 5.10: Unconditional characteristics of the upper one-sided 2-of-3 and the upper one-sided 

improved 2-of-3 precedence charts when the underlying process distribution is N(0,1). 

N(0,1) Distribution (n=7, j=4, m=500, c=393, d=490) 
σ Units 2-of-3 (U) I2-of-3 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 576.04 590 23 125 322 715 1968 573.88 584 23 125 318 709 1956 

0 360.60 371 15 81 205 452 1222 359.92 369 15 81 204 450 1216 

0.25 50.64 52 4 14 32 66 160 50.27 51 4 14 32 65 159 

0.5 12.70 13 2 4 9 17 36 12.63 12 2 4 9 16 36 

0.75 5.27 4 2 3 4 7 13 5.24 4 2 3 4 7 13 

1 3.15 1 2 2 3 3 7 3.11 1 2 2 3 3 6 

1.25 2.41 1 2 2 2 3 4 2.34 1 1 2 2 3 4 

1.5 2.14 0 2 2 2 2 3 1.99 0 1 2 2 2 3 

1.75 2.04 0 2 2 2 2 2 1.75 1 1 1 2 2 2 

2 2.01 0 2 2 2 2 2 1.53 1 1 1 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.32 1 1 1 1 2 2 

2.5 2.00 0 2 2 2 2 2 1.16 0 1 1 1 1 2 

2.75 2.00 0 2 2 2 2 2 1.07 0 1 1 1 1 2 

3 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 

3.25 2.00 0 2 2 2 2 2 1.01 0 1 1 1 1 1 

3.5 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.75 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

4 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 
 

 

Table 5.11: Unconditional characteristics of the upper one-sided 2-of-3 and the upper one-sided 

improved 2-of-3 precedence charts when the underlying process distribution is t(4). 

t(4) Distribution (n=7, j=4, m=500, c=393, d=490) 
σ Units 2-of-3 (U) I2-of-3 (U) 

Shift ARL IQR 5th Q1 MDRL Q3 95th ARL IQR 5th Q1 MDRL Q3 95th 
-0.05 616.18 633 24 135 346 768 2093 613.74 629 24 134 343 763 2086 

0 361.53 374 16 81 206 455 1220 360.87 370 15 82 206 452 1215 

0.25 36.19 37 3 10 23 47 114 35.88 36 3 10 23 46 112 

0.5 7.71 7 2 3 6 10 21 7.72 7 2 3 6 10 21 

0.75 3.37 2 2 2 3 4 7 3.37 2 2 2 3 4 7 

1 2.36 1 2 2 2 3 4 2.35 1 2 2 2 3 4 

1.25 2.09 0 2 2 2 2 3 2.07 0 2 2 2 2 3 

1.5 2.02 0 2 2 2 2 2 1.94 0 1 2 2 2 2 

1.75 2.00 0 2 2 2 2 2 1.80 0 1 2 2 2 2 

2 2.00 0 2 2 2 2 2 1.58 1 1 1 2 2 2 

2.25 2.00 0 2 2 2 2 2 1.35 1 1 1 1 2 2 

2.5 2.00 0 2 2 2 2 2 1.16 0 1 1 1 1 2 

2.75 2.00 0 2 2 2 2 2 1.06 0 1 1 1 1 2 

3 2.00 0 2 2 2 2 2 1.02 0 1 1 1 1 1 

3.25 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.5 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

3.75 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 

4 2.00 0 2 2 2 2 2 1.00 0 1 1 1 1 1 
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Remark 5.4 

 

Note that in order to perform the performance analysis on the precedence charts; a sufficiently 

large reference sample size is required, so that there exist an outer set of control limits that has an 

absolute minimal influence on the IC UARL of the improved runs-rules precedence charts. This is done 

so that the IC UARL for both the runs-rules and the improved runs-rules precedence charts are almost 

exactly the same by choosing the inner set of control limits of the improved runs-rules charts and the 

control limits of the runs-rules charts the same. Consequently the reference sample size is chosen to be 

500 in the performance analysis for the upper one-sided improved 2-of-2 runs-rules precedence charts 

and the upper one-sided improved 2-of-3 runs-rules precedence charts. 

 

 

Remark 5.5 

 

Note that in Chapter 4 for the improved runs-rules sign charts it is required that the sample size 

should be sufficiently large. The sample size needs to be at least 9 for the one-sided improved 2-of-2 

and the improved 2-of-3 sign charts and at least 10 for the two-sided improved 2-of-2 and the improved 

2-of-3 sign charts so that practically usable ARL and FAR combinations are obtained. However, for the 

improved runs-rules precedence charts the test sample size can be relatively small provided that the 

reference sample size is large. Note that in the improved runs-rules precedence charts performance 

analysis (Tables 5.6 to 5.11) the test sample was of size seven  7n . 

 

 

5.7  Final comments regarding the improved runs-rules precedence charts 

 

From the performance analysis it can concluded that the improved runs-rules precedence charts are 

as sensitive to small shifts as the runs-rules precedence charts, while they have the ability to detect 

large shifts more efficiently. It is shown that the improved runs-rules charts are superior in 

performance for large shifts, while maintaining the same sensitivity in the detection of small shifts. 

Consequently, the improved runs-rules precedence charts are superior compared to runs-rules 

precedence charts. 

 

However, the improved runs-rules precedence charts do have a practical limitation, they are more 

complex than the runs-rules precedence charts. Note that for the sacrifice in some simplicity there are 

rewards in the performance of the chart. 
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Summary of the strengths and the limitations of the improved runs-rules precedence charts: 

Strengths: 

 Do not require a specified underlying process distribution (nonparametric), 

 Can monitor any desirable percentile, 

 The percentile of the underlying process distribution that is monitored need not be 

known or specified, 

 Do not require the variance of the process to be established, 

 It is possible to apply the precedence chart as soon as the necessary order statistics 

are available, which is an advantage in applications where the observations are 

observed in ascending or descending order, 

 Are sensitive to small process shifts as the runs-rules precedence charts, and 

 Superior in the detection of large process shifts. 

 

Limitations: 

 The improved runs-rules precedence charts are more complex. 

 

 

5.8  Summary of Chapter 5 

 

The improved runs-rules are introduced to the precedence charts in Chapter 5. The run-length 

distribution and some characteristics of the run-length distribution of the improved runs-rules 

precedence charts are derived using a Markov chain approach combined with a conditioning by 

expectation approach. Performance analysis is carried out to illustrate that the improved runs-rules 

precedence charts are superior in performance to the runs-rules precedence charts for large shifts, 

while maintaining the same sensitivity in the detection of small shifts. 

 

 

5.9  Following chapter 

 

Chapter 6 provides some concluding remarks. 
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Chapter 6 
 

Concluding remarks 
 

 

This mini dissertation introduced the improved runs-rules to the sign and the precedence charts. 

Performance comparisons between the sign charts with runs-rules and the sign charts with improved 

runs-rules in Case K, illustrates that the improved runs-rules are superior in performance for large 

shifts, while maintaining the same sensitivity in the detection of small shifts. Similarly performance 

comparisons between the precedence charts with runs-rules and the precedence charts with improved 

runs-rules in Case U, illustrates that the improved runs-rules are superior in performance for large 

shifts, while maintaining the same sensitivity in the detection of small shifts. 

 

A part of the research that is not the main focus of this dissertation and not reported here is related 

to the robustness of the EWMA control chart. A paper tilted Robustness of the EWMA control chart for 

individual observations was written, submitted and was first published on the 24th of January 2011 in 

the Journal of Applied Statistics; the authors of the paper are Human, S.W., Kritzinger, P. and 

Chakraborti, S. 

 

Currently a paper is being written on the improved 2-of-2 sign chart. The intention is to submit the 

paper for publication very shortly. In the near future the goal is to write a paper on the improved 2-of-2 

precedence chart. 

 

Note that Khoo and Ariffin introduced improved runs-rules to the X  control chart. Improved runs-

rules are extended in this dissertation to the sign and precedence charts. In future the improved runs-

rules can be considered for other nonparametric charts like the Shewhart-type signed-rank chart. 
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Appendix 1 

 

 

Introduction 

 

Appendix 1 is the appendix of Chapter 1. Only the variance of the plotting statistic of the EWMA 

control chart (given in equation (1.3) of Chapter 1) is derived in this appendix. 

 

 

Proof 1.1 (Equation 1.3) 

 

The exponentially weighted moving average is defined as: 

  11  iii TXT    where  10    and 00 T                               (A1.1) 

 

Expanding the equation (A1.1) (exponentially weighted moving average): 
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Recall the following formulae: 
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Substituting (A1.3) into (A1.4) the following is obtained: 
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Appendix 2 
 

 

Introduction 

 

The proofs of the results and theorems given in Chapter 2 are provided in this appendix. Note that 

it is not necessary for the reader to read Appendix 2 in order to follow the flow of the dissertation. 

However, this appendix is a reference to the results. 

 

 

Proof 2.1 (Result 2.1(i)) 

 

For a given j, (i) follows immediately from the multiplication of matrices. (Fu et al., 2002) 
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Proof 2.2 (Result 2.1(ii)) 

 

Let: 

132 ...  j
j QQQQIW                                                                                         (A2.1) 

j
j QQQQQQW  ...432                                                                                       (A2.2) 
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Proof 2.3 (Result 2.2) 

 

Since    


 
h
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ijhj YYPYYP

0
001 ||   and   10  YP  for a given ,...3,2,1j , the 

result follows from the matrix version of Chapman-Kolmogorov equation and equation (2.2). 
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(Fu et al. (2002)) 

 

 

Proof 2.4 (Theorem 2.1(i)) 

 

For given ,...3,2,1j , since h  ( 1h ) and hm   ( 1 hm ) are the number of transient and 

absorbing states respectively, it follows from the definitions of  jY and  N , that 

   jNY hj  1                                                                                                       (A2.5) 

Hence, (i) follows from (A2.5) and Result 2.2 that  
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Proof 2.5 (Theorem 2.1(ii)) 

 

It follows from the definition of a moment generating function (Definition 2.5.1 Bain & Engelhardt 

(1992)) that the random variable N has moment generating function: 
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From Result 2.1(ii) (A2.3) and the equation above it follows that: 

 

      11
1



1QIξ tt

N eetM                                                                                                  (A2.7) 

 

(Fu et al. (2002)) 
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Proof 2.6 (Theorem 2.1(iii)) 

 

By differentiating the moment generating function (mgf) with respect to t  and setting 0t , the 

moments of the run-length random variable N can be found i.e.: 
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(Fu et al. (2002)) 
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Proof 2.7 (Theorem 2.2(i)) 

 

It follows from the definition of the probability generating function or factorial moment generating 

function (Definition 2.5.2 Bain & Engelhardt (1992)) that the random variable N  has probability 

generating function: 
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From Result 2.1(ii) (A2.3) and the equation above it follows that: 

 

      11 1   1QIξ tttGN                                                                                     (A2.12) 

 

(Fu and Lou (2003), p.73) 
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Proof 2.8 (Theorem 2.2(ii)) 
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From Theorem 2.5.4 of Bain & Engelhardt (1992) it follows that: 
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From the equations above the variance formulae are as follows: 
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(Fu and Lou (2003), p.73) 
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Proof 2.9 (Theorem 2.3(ii)) 

 

Consider equation (A2.4) from Result 2.2: 
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Appendix 5 
 

 

Introduction 

 

The proofs of the results and theorems given and utilized in Chapter 5 are provided in this 

appendix. Note that it is not necessary for the reader to read Appendix 5 in order to follow the flow of 

the dissertation. However, this appendix is a reference to the results. 

 

 

 

 

Figure A5.1: Illustration of control limits and zones on the precedence charts. 
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   UCLTPZPp ii  88                                                                      (A5.8) 

   LCLTPZPp ii  99                                                                      (A5.9) 

 

 

The estimated control limits from a Phase I reference sample are: 
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Let the conditional probabilities, conditioned on the estimated control limits from phase I be 
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 )()(

)()(2 2

d:mic:m

d:mBc:mABiAiC

xTxP

x,UCLx|UCLUCLTUCLPZPp




 

   
 ):():(

):():(3 /,/|/ /3

mcimb

mcAmbAAiAiC

xTxP

xUCLUCLxLCLLCLUCLUCLTLCLLCLPZPp




 

   
 )()(

)()(4 4

b:mia:m

b:mAa:mBAiBiC

xTxP

x,LCLx|LCLLCL TLCLPZPp




 

     )()(5 |5 a:mia:mBBiiC xTPxLCLLCLTPZPp   

     )()(6 //6 b:mib:mAAiiC xTPxLCLLCL|LCLLCLTPZPp   

     )()(7 //7 c:mic:mAAiiC xTPxUCLUCL|UCLUCLTPZPp   

     )()(8 |8 c:mic:miiC xTPxUCLUCLTPZPp   

     )()(9 |9 b:mib:miiC xTPxLCLLCLTPZPp   

 

 

Result AR5.1  (Probability Integral Transformation (PIT)) 

 

If X  is continuous with cdf )(xFX , then 

   1,0~ UNIFxFU X  
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Result AR5.2 

 

Let ):1( nU ,  ):2( nU ,…, ):( nnU  be i.i.d.  1,0UNIF  order statistics where 0n , and let the ):1( mU , 

):2( mU ,…, ):( mmU  be i.i.d.  1,0UNIF  order statistics where 0m , independent from the first set. 

 

Then it follows from the Resut A5.1 (PIT) that  ):(
1

):( mimi UFX   i  and  ):(
1

):( njnj UGY   j   

where ):( miX  and ):( njY  denote the thi  and thj  order statistics from samples of size 1m  and 1n  

with cdf’s denoted by F and G respectively. 

 

 

Result AR5.3 

 

If  1,0~ UNIFX , then  

  1xf X  and  

  aaFX   if 10  a , and zero otherwise. 

 

 

Result AR5.4 

 

Suppose that mXXX ,...,, 21  denotes a random sample of size 0m  from a continuous pdf,  xf X , 

where   0xf  for 21 cxc   and cdf denoted by  xFX . Then the pdf of the tha  order statistic 

):( maX  is given by 

              X
am

X
a

XX fFF
ama

m
f

ma

 


 1
!!1

! 1

):(
, 

if 21 cc   , and zero otherwise.  

(see e.g. Gibbons and Chakraborti (2003), p.48) 
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Result AR5.5 

 

If mXXX ,...,, 21  is a random sample of size 0m  from a population with continuous pdf  xf X  

and cdf  xFX , then the joint pdf of the order statistics ):( mbX  and ):( mcX , where cb   is given by: 

                          
            

         



X
cm

X
bc

XX

X
b

XXX

fFFF

fF
cmbcb

m
f

mcmb










1                                 

!!1!1

!
,

1

1
, ):():(  

(see e.g. Gibbons and Chakraborti (2003), p.48) 

 

 

Result AR5.6 

 

If mXXX ,...,, 21  is a random sample of size 0m  from a population with continuous pdf  xf  

and cdf  xFX , then the joint pdf of the order statistics ):( maX , ):( mbX , ):( mcX  and ):( mdX  where 

dcba   is given by: 

         

              

         
       
       







XXXX

dm
X

cd
XX

bc
XX

ab
XX

a
XXXXX

ffff

FFF

FFFF

F
dmcdbcaba

m
f

mdmcmbma















                                                        

1                                                         

                                                        

!!1!1!1!1

!
,,,

1

11

1
,,, ):():():():(

 

(see e.g. Gibbons and Chakraborti (2003), p.50 for an explanation) 

 

 

Result AR5.7 

 

If mXXX ,...,, 21  is a random sample of size 0m  from a population with continuous pdf  xf X  

and cdf  xFX , then the joint pdf of the order statistics ):():2():1( ,...,, mmmm XXX  is 

                   mXXXmXXX cfcfcfmcccf
mmmm

...!,...,, 2121,...,, ):():2():1(
  

             if mccc  ...21 , and zero otherwise. 

(see e.g. Bain and Engelhardt (1992), p.215) 
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Result AR5.8 

 

Let mUUU ,...,, 21  be a random sample of size 0m  from a )1,0(UNIF  distribution with pdf and 

c.d.f denoted by   1ufU  and   uuFU   respectively, then it follows from Results AR5.3 and AR5.4 

that the pdf of the tha  order statistics ):( maU  and is given by: 

 

                                     u
am

u
a

uu fFF
ama

m
f

ma

 


 1
!!1

! 1

):(
 

                              ama

ama

m  


  1
!!1

!
              1  

 

 

Result AR5.9 

 

Let mUUU ,...,, 21  be a random sample of size 0m  from a )1,0(UNIF  distribution with pdf and 

c.d.f denoted by   1ufU  and   uuFU   respectively, then it follows from Results AR5.3 and AR5.5 

that the joint pdf of the thb  and thc  order statistics ):( mbU  ):( mcU  where cb  is given by: 
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Result AR5.10 

 

Let mUUU ,...,, 21  be a random sample of size 0m  from a  1,0UNIF  distribution with pdf and 

c.d.f denoted by 1)( ufU  and uuFU )(  respectively, then it follows from Results AR5.3 and AR5.6 

that the joint pdf of the tha , thb , thc  and thd order statistics ):( maU , ):( mbU , ):( mcU  and ):( mdU  where 

dcba   is given by: 
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111

1

 

 

 

Result AR5.11 

 

The thj  order statistic from a sample size of 0n  from an  1,0UNIF  distribution follows a Beta 

distribution with parameters j and n-j+1. 

                    
p

jnj
p dwwwjnjjnjI

0

11 11,1,         where: 01,  jnj  

is the cdf of the )1,(  jnjBeta  distribution, also known as the incomplete beta function. 

            Where      
!

!!1
1,

n

jnj
jnj


             (Chakraborti et al. (2004)) 

(see e.g. Gibbons and Chakraborti (2003), p.41) 
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Result AR5.12 

 

Let ):( njY  denote the thj  order statistic in a sample of size 0n  from a continuous distribution 

with cdf G, and let ):( mkx  be the thk  order statistic in a sample of size 0m  from a continuous 

distribution with cdf F. Also let ):( njU  denote the thj  order statistic in a sample of size 0n  from a 

)1,0(UNIF  distribution and ):( mkU  denote the thk  order statistic in a sample of size 0m  from a 

)1,0(UNIF  distribution. 

 

Then: 

   ):():():():():():():():( || mkmkmknjmkmkmknj xXXYPxXXYP   

      ):():():(
1

):(
1 | mkmkmknj uUUFUGP                      (Result AR5.2) 

     ):():():(
1

):( | mkmkmknj uUUGFUP    

   1,
):(

1   jnjI
mkuGF

                                                  (Result AR5.11) 

    
 




 
):(

1

0

11 11,
mkuGF

jnj dwwwjnj                       (Result AR5.11) 

 

i.e.           
 




 
):(

1

0

11
):():():():( 11,|

mkuGF
jnj

mkmkmknj dwwwjnjxXXYP   

 

 

Result AR5.13 

 

When the process is in-control i.e. the reference sample and test sample distributions denoted by 

F  and G  respectively are the same  GF  , then it follows from AR5.12 that 

                          
):(

0

11
):():():():( 11,|

mku
jnj

mkmkmknj dwwwjnjxXXYP   
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Conditional probabilities for the plotting statistic plotting inside the different zones 

 

Let i
njY ):(  denote the thj  order statistic of the thi  Phase II test sample of size n.  

 

 ):():():():(1 | mdmdmd
i

njC xXXYPp   

        ):():():():( |1 mdmdmd
i

nj xXXYP   

         ):():():(
1

):( |1 mdmdmdnj uUUGFUP                      (see Result AR5.12) 

           


 
)(

0

11
):(

1

11,1
mduGF

jnj dwwwjnj                    (see Result AR5.13)                       (A5.14) 

 

 

A similar argument is followed to obtain expressions for Cp2 , Cp3 , Cp4 , Cp5 , Cp6 , Cp7 , Cp8  and 

Cp9 . 

 

 

 ):():():():():():():(2 ,| mdmdmcmcmdnjmcC xXxXXYXPp   

          ):():():():():():():():( || mcmcmcnjmdmdmdnj xXXYPxXXYP   

            ):():():(
1

):():():():(
1

):( || mcmcmcnjmdmdmdnj uUUGFUPuUUGFUP          (see AR5.12) 

           
 

 
 














 




):(

1
):(

1

0

1
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11 111,
mcmd uGF

jnj

uGF
jnj dwwwdwwwjnj    (see Result AR5.13)  (A5.15) 

 

 

 ):():():():():():():(3 ,| mcmcmbmbmcnjmbC xXxXXYXPp   

          ):():():():():():():():( || mbmbmbnjmcmcmcnj xXXYPxXXYP   

             ):():():(
1

):():():():(
1

):( || mbmbmbnjmcmcmcnj uUUGFUPuUUGFUP          (see AR5.12) 
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1
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1
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11 111,
mbmc uGF

jnj

uGF
jnj dwwwdwwwjnj (see Result AR5.13)    (A5.16) 
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 ):():():():():():():(4 ,| mbmbmamambnjmaC xXxXXYXPp   

          ):():():():():():():():( || mamamanjmbmbmbnj xXXYPxXXYP   

             ):():():(
1

):():():():(
1

):( || mamamanjmbmbmbnj uUUGFUPuUUGFUP         (see AR5.12) 

            
 

 
 














 




):(

1
):(
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1

0

11 111,
mamb uGF

jnj

uGF
jnj dwwwdwwwjnj  (see Result AR5.13)   (A5.17) 

 

 

 ):():():():(5 | mamamanjC xXXYPp   

         ):():():(
1

):( | mamamanj uUUGFUP                                                                          (see AR5.12) 

           
 




 
):(

1

0

11 11,
mauGF

jnj dwwwjnj                        (see Result AR5.13)                        (A5.18) 

 

 

 ):():():():(6 | mbmbmbnjC xXXYPp   

        ):():():():( |1 mbmbmbnj xXXYP   

          ):():():(
1

):( |1 mbmbmbnj uUUGFUP                                                                     (see AR5.12) 
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11 11,1
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jnj dwwwjnj                     (see Result AR5.13)                       (A5.19) 

 

 

 ):():():():(7 | mcmcmcnjC xXXYPp   

         ):():():(
1

):( | mcmcmcnj uUUGFUP                                                                           (see AR5.12) 
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11 11,
mcuGF

jnj dwwwjnj                         (see Result AR5.13)                       (A5.20) 
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 ):():():():(8 | mcmcmcnjC xXXYPp   

        ):():():():( |1 mcmcmcnj xXXYP   

          ):():():(
1

):( |1 mcmcmcnj uUUGFUP                                                                     (see AR5.12) 

            
 




 
):(

1

0

11 11,1
mcuGF

jnj dwwwjnj                   (see Result AR5.13)                       (A5.21) 

 

 

 ):():():():(9 | mbmbmbnjC xXXYPp   

          ):():():(
1

):( | mbmbmbnj uUUGFUP                                                                          (see AR5.12) 
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1

0

11 11,
mbuGF

jnj dwwwjnj                        (see Result AR5.13)                       (A5.22) 
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Conditional essential transition probability matrices 

 

The elements of the conditional essential transition probability matrices are all conditional 

probabilities. For more information regarding these conditional probabilities refer to equations A5.14, 

A5.15, A5.16, A5.17, A5.18, A5.19, A5.20, A5.21 and A5.22. 

 

 

The 1-of-1 precedence charts 

 

The essential transition probability matrices of the upper one-sided-, lower one-sided- and two 

sided 1-of-1 precedence charts are given by: 

 

 

The upper one-sided 1-of-1 precedence chart essential transition probability matrix: 












C

CCon
Uof p

p

7

7)22(
)(11 0

0
Q                                                               (A5.23) 

Before proceeding the notation is first clarified. The subscript of )22(
)(11




Con
UofQ  indicate which charts’ 

essential transition probability matrix is considered, in this case it is the upper 1-of-1 chart. The 

superscript of )22(
)(11




Con
UofQ  is )22( Con , the Con  denotes that the essential transition probability matrix 

has conditional transition probabilities as elements and the )22(   indicate the dimensions of the 

matrix. 

 

 

The lower one-sided 1-of-1 precedence chart essential transition probability matrix: 












C

CCon
Lof p

p

9

9)22(
)(11 0

0
Q                                                              (A5.24) 

 

 

The two-sided 1-of-1 precedence chart essential transition probability matrix: 












C

CCon
Tof p

p

3

3)22(
)(11 0

0
Q                                                             (A5.25) 
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The 2-of-2 precedence charts 

 

The essential transition probability matrices of the upper one-sided-, lower one-sided- and two-

sided 2-of-2 precedence charts are given by: 

 

 

The upper one-sided 2-of-2 precedence chart essential transition probability matrix: 




















00

0

0

7

87

87
)33(

)(22

C

CC

CC
Con

Uof

p

pp

pp

Q                                                           (A5.26) 

 

 

The lower one-sided 2-of-2 precedence chart essential transition probability matrix: 




















00

0

0

6

96

96
)33(

)(22

C
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Con
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p

pp

pp

Q                                                           (A5.27) 

 

 

The two-sided 2-of-2 precedence chart essential transition probability matrix: 
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93
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Q                                                    (A5.28) 

 

 

The 2-of-3 precedence charts 

 

The essential transition probability matrices of the upper one-sided-, lower one-sided- and two 

sided 2-of-3 precedence charts are given by: 

 

The upper one-sided 2-of-3 precedence chart essential transition probability matrix: 
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Q                                              (A5.29) 
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The lower one-sided 2-of-3 precedence chart essential transition probability matrix: 
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Q                                                (A5.30) 

 

 

The two-sided 2-of-3 precedence chart essential transition probability matrix: 




































000000

000000

000000

000000

000000

000000

00000

00000

83

93

38

39

38

39

983

983

)88(
)(32

CC

CC

CC

CC

CC

CC

CCC

CCC

Con
Tof

pp

pp

pp

pp

pp

pp

ppp

ppp

Q                                 (A5.31) 

 

Note that the essential transition probability matrices of the 2-of-3 charts are slightly different from 

the ones in Human et al. (2009). A discussion on this point is given in remark 3.21 of Chapter 3. 

 

 

The improved 2-of-2 precedence charts 

 

The essential transition probability matrices of the upper one-sided-, lower one-sided- and two 

sided improved 2-of-2 precedence charts are given by: 

 

The upper one-sided improved 2-of-2 precedence chart essential transition probability matrix: 
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Q                                                      (A5.32) 

 

 

The lower one-sided improved 2-of-2 precedence chart essential transition probability matrix: 
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The two-sided improved 2-of-2 precedence chart essential transition probability matrix: 
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Q                                                   (A5.34) 

 

 

The improved 2-of-3 precedence charts 

 

The essential transition probability matrices of the upper one-sided-, lower one-sided- and two 

sided improved 2-of-3 precedence charts are given by: 

 

The upper one-sided improved 2-of-3 precedence chart essential transition probability matrix: 
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Q                                               (A5.35) 

 

 

The lower one-sided improved 2-of-3 precedence chart essential transition probability matrix: 
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The two-sided improved 2-of-3 precedence chart essential transition probability matrix: 
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Q                                   (A5.37) 

 

 

To find the conditional run-length distribution and the characteristics of the conditional run-length 

distribution of a chart the associated essential transition probability matrix is substituted into the 

following formulae: 

 

       1QIQξzZ ConjCon
C jNPjNP 

1
| , for j=1,2,3,…, with   IQ 

0Con               (A5.38) 

      ,...3,2,1,1|  jjNPjNP
jCon

C 1QξzZ                                                           (A5.39) 

      1QIξzZ
1

|


 Con
C NENECARL                                                                            (A5.40) 

     212
)|()( 1QIξ1QIQIξzZ


 ConConCon

C NVRLNVRLCVRL                         (A5.41) 

 

 

Where:         Con
hh

Con
 QQ  is the conditional essential transition probability matrix. 

 0,...,0,0,11  hξξ ,                                                                                                (A5.42) 

 Th 1,...,1,1,11  11 ,                                                                                                  (A5.43) 

hh II  is the identity matrix,                                                                                    (A5.44) 

                     N is the run-length random variable, 

                       j is the integer value that N can assume, and 

                      h is an integer value representing the number of transient states. 

(Refer to Theorem 2.1) 
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Conditional false alarm rate (CFAR) 

 

Unfortunately there are no standard formulae to find the CFAR like equations A5.38, A5.39, A5.40 

and A5.41 are used to find the pdf cdf, average and variance of the conditional run-length distribution. 

First principles are used to find the CFAR for each chart. Note that the when calculating the CFAR it is 

assumed that the process is IC i.e. the reference sample distribution and test sample distribution are the 

same  GF  . 

 

 

The upper one-sided 1-of-1 precedence chart 

 

For time ,...3,2,1i  

 FGpCFAR CUof  |8)(11  

                            
):(

0

11 11,1
mcu

jnj dwwwjnj                    (see A5.21)                         (A5.45) 

 

 

The lower one-sided 1-of-1 precedence chart 

 

For time ,...3,2,1i  

 FGpCFAR CLof  |9)(11  

                            
):(

0

11 11,
mbu

jnj dwwwjnj                         (see A5.22)                         (A5.46) 

 

 

The two-sided 1-of-1 precedence chart 

 

For time ,...3,2,1i  
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      (see A5.21 and A5.22))                   (A5.47) 
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The upper one-sided 2-of-2 precedence chart 

 

For time 1i  

0)(22  UofCFAR  

 

For time ,...4,3,2i  

  FGpCFAR CUof  |2
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jnj dwwwjnj              (see A5.21)                         (A5.48) 

 

 

The lower one-sided 2-of-2 precedence chart 

 

For time 1i  
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For time ,...4,3,2i  
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jnj dwwwjnj                   (see A5.22)                         (A5.49) 
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The two-sided 2-of-2 precedence chart 

 

For time 1i  

0)(22  TofCFAR  

 

For time ,...4,3,2i  

    FGppCFAR CCTof  |2
9

2
8)(22  

                       

    

    
2

0

11

2

0

11

):(

):(

11,        

11,1

































mb

mc

u
jnj

u
jnj

dwwwjnj

dwwwjnj





         (see A5.21 and A5.22)         (A5.50) 

 

 

The upper one-sided 2-of-3 precedence chart 

 

For time 1i  
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For time 2i  
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For time ,...5,4,3i  
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        (see A5.20 and A5.21)        (A5.52) 
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The lower one-sided 2-of-3 precedence chart 

 

For time 1i  

0)(32  LofCFAR  

 

For time 2i  
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jnj dwwwjnj                   (see A5.22)                         (A5.53) 

 

For time ,...5,4,3i  
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          (see A5.19 and A5.22)         (A5.54) 

 

 

The two-sided 2-of-3 precedence chart 

 

For time 1i  
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For time 2i  
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            (see A5.21 and A5.22)        (A5.55) 
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For time ,...5,4,3i  
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dwwwjnjdwwwjnj

dwwwjnjdwwwjnj

dwwwdwwwjnj









 

                                                            (see A5.16, A5.21 and A5.22)                                            (A5.56) 

 

 

The upper one-sided improved 2-of-2 precedence chart 

 

For time 1i  

 FGpCFAR CUofI  |1)(22  

                               
):(

0

11 11,1
mdu

jnj dwwwjnj                 (see A5.14)                         (A5.57) 

 

For time ,...4,3,2i  
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                                                                                                 (see A5.14 and A5.15)                   (A5.58) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 241

The lower one-sided improved 2-of-2 precedence chart 

 

For time 1i  

 FGpCFAR CLofI  |5)(22  

                              
):(

0

11 11,
mau

jnj dwwwjnj                       (see A5.18)                         (A5.59) 

 

For time ,...4,3,2i  

 FGppCFAR CCLofI  |2
45)(22  

                        

    

      
2

0

1

0

11

0

11

):():(

):(

111,        

11,















































mamb

ma

u
jnj

u
jnj

u
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                                                                                    (see A5.17 and A5.18)                                (A5.60) 

 

 

The two-sided improved 2-of-2 precedence chart 

 

For time 1i  

 FGppCFAR CCTofI  |51)(22  

                                  




















  

):():(

0

11

0

11 11,11,1
mamd u
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u
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                                                                                    (see A5.14 and A5.18)                                (A5.61) 
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For time ,...4,3,2i  
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                                                            (see A5.14, A5.15, A5.17 and A5.18)                                (A5.62) 

 

 

The upper one-sided improved 2-of-3 precedence chart 

 

For time 1i  

 FGpCFAR CUofI  |1)(32  

                              
):(

0

11 11,1
mdu

jnj dwwwjnj                              (see A5.14)             (A5.63) 

 

For time 2i  
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                                                                                            (see A5.14 and A5.15)                        (A5.64) 
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For time ...5,4,3i  

 FGpppCFAR CCCUofI  |2 2
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                                                                                (see A5.14, A5.15 and A5.20)                        (A5.65) 

 

 

The lower one-sided improved 2-of-3 precedence chart 

 

For time 1i  

 FGpCFAR CLofI  |5)(32  
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0

11 11,
mau

jnj dwwwjnj                       (see A5.18)                         (A5.66) 

 

For time 2i  
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                                                                                              (see A5.17 and A5.18)                      (A5.67) 
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For time ,...5,4,3i  
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                                                                               (see A5.17, A5.18 and A5.19)                         (A5.68) 

 

 

The two-sided improved 2-of-3 precedence chart 

 

For time 1i  
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            (see A5.14 and A5.18)         (A5.69) 

 

For time 2i  
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                                                                      (see A5.14, A5.15, A5.17 and A5.18)                      (A5.70) 
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For time ,...5,4,3i  
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                                                      (see A5.14, A5.15, A5.16, A5.17 and A5.18)                          (A5.71) 
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Conditional and unconditional run-length distribution and some characteristics of the run-

length distribution. 

 

Expressions for the average and the variance of the unconditional run-length distributions can be 

calculated by making use of the following conditional expectations: 

    ZZ |NEENE                                                                                              (A5.72) 

       
           22 |||var

|var|var

ZZZ

ZZ

ZZZ

ZZ

NEENEENE

NENENVar




                             (A5.73) 

 

where Z  denotes a vector of random variables which consists of order statistics yet to be observed. 

This represents the estimated control limits from the Phase I reference sample. Note that the number of 

elements in Z  vary from control chart to control chart, e.g. for an upper one-sided 1-of-1 and two-

sided improved 2-of-2 control charts Z  has 1 and 4 elements respectively. 

 

 NE  and )(NVar  denotes the unconditional characteristics whilst  Z|NE  and  Z|NVar  

denote the conditional characteristics for the control chart under consideration. 

 

 

The 1-of-1 precedence charts 

 

 

The upper 1-of-1 precedence chart 

 

The conditional run-length distribution, conditional run-length distribution characteristics and 

CFAR are given by:  

 

     1QIQξZ  


1
)(11 | j

Uof jNP , for j=1,2,3,…  with   IQ 0                             (A5.74) 

    1QIξZ 1
)(11 | 

  NECARL Uof                                                                 (A5.75) 

       212
)(11 | 1QIξ1QIQIξZ 

  NVarCVRL Uof                          (A5.76) 

 FGpCFAR CUof  |8)(11                                                                          (see A5.45) 

 

where )22(
)(11


 Con

UofQQ  is the conditional essential transition probability matrix, conditioned on 

 ):( mcXZ . 
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The unconditional run-length distribution, unconditional run-length distribution characteristics and 

UFAR are obtained by averaging the conditional distributions given in A5.38, A5.40, A5.41 and A5.45 

over all possible values of the order statistic estimated from the Phase I reference sample. 

 

The unconditional run-length distribution, unconditional run-length distribution characteristics and 

UFAR are given by: 

 

             dfdfjNPjNP c
j

cUofCUof   


1

0

1
1

0

)(11)(11 1QIQξ                                  (A5.77) 

       
 

1

0

1

0

1
)(11)(11  dfdfCARLARL ccUofUof 1QIξ                                                     (A5.78) 

       
21

0

)(11

1

0

2
)(11

1

0

)(11)(11 







    dfCARLdfCARLdfCVRLVRL cUofcUofcUofUof

       

        
21

0

1
1

0

21

1

0

212

























dfdf

df

cc

c

1QIξ1QIξ

1QIξ1QIQIξ

                                                  (A5.79) 

       dfFGpdfCFARFAR cCcUofUof   

1

0

8

1

0

)(11)(11 |                                                   (A5.80) 

 

where )22(
)(11


 Con

UofQQ  (see A5.23) 

 cf : is the density of the ):( mcu  order statistic (see AR5.8) 

)(11 UofCARL  : is given in A5.75 where )22(
)(11


 Con

UofQQ  

)(11 UofCVRL  : is given in A5.76 where )22(
)(11


 Con

UofQQ  

)(11 UofCFAR   is given in A5.45. 

 

    0,121  ξξ  

    T1,112  11  

   22 II  
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The unconditional distribution, unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41 and A5.45 over the distribution of  ):( mcXZ . 

 

The same approach is used to find the unconditional run-length distribution, unconditional run-

length distribution characteristics and UFAR for the other charts namely the lower 1-of-1, two-sided 1-

of-1, upper 2-of-2, lower 2-of-2, two-sided 2-of-2, upper 2-of-3, lower 2-of-3, two-sided 2-of-3, upper 

improved 2-of-2, lower improved 2-of-2, two-sided improved 2-of-2, upper improved 2-of-3, lower 

improved 2-of-3 and two-sided improved 2-of-3. Note that in the calculations involving the integrals 

the order statistics ):( mau , ):( mbu , ):( mcu  and ):( mdu  are reduced to integral constants. The order statistics 

):( mau , ):( mbu , ):( mcu  and ):( mdu  are replaced by  ,  ,   and   respectively in the integrals for 

notational simplicity. 

 

The derivation of the unconditional run-length distribution, unconditional run-length distribution 

characteristics and UFAR for the different control charts differ slightly since not all the charts 

condition on the same and same number of Phase I estimated control limits. 

 

Expressions are provided for the unconditional run-length distribution, unconditional run-length 

distribution characteristics and UFAR for the different control charts: 
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The lower 1-of-1 precedence chart 

 

             dfdfjNPjNP b
j

bLofCLof   


1

0

1
1

0

)(11)(11 1QIQξ                                        (A5.81) 

 

       
 

1

0

1

0

1
)(11)(11  dfdfCARLARL bbLofLof 1QIξ                                                          (A5.82) 

 

       
21

0

)(11

1

0

2
)(11

1

0

)(11)(11 







    dfCARLdfCARLdfCVRLVRL bLofbLofbLofLof

        

        
21

0

1
1

0

21

1

0

212

   

                  

























dfdf

df

bb

b

1QIξ1QIξ

1QIξ1QIQIξ

                                                  (A5.83) 

       dfFGpdfCFARFAR bCbLofLof   

1

0

9

1

0

)(11)(11 |                                                      (A5.84) 

 

where  )22(
)(11


 Con

LofQQ  (see A5.24) 

 bf : is the density of the ):( mbu  order statistic (see AR5.8) 

)(11 LofCARL  : is given in A5.75 where )22(
)(11


 Con

LofQQ  

)(11 LofCVRL  : is given in A5.76 where )22(
)(11


 Con

LofQQ  

)(11 LofCFAR  : is given in A5.46. 

 

    0,121  ξξ  

    T1,112  11  

   22 II  

 

The unconditional distribution, unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41 and A5.46 over the distribution of  ):( mbXZ . 
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The two-sided 1-of-1 precedence chart 

 

            


ddfddfjNPjNP bc
j

bcTofCTof     


1

0 0

1
1

0 0

)(11)(11 ,, 1QIQξ                (A5.85) 

 

        
 

1

0

1

0 0

1

0

)(11)(11 ,, 


ddfddfCARLARL bcbcTofTof 1QIξ                                   (A5.86) 

 

     

                ,                      

,,

21

0 0

)(11

1

0 0

2
)(11

1

0 0

)(11)(11













 

  













ddfCARL

ddfCARLddfCVRLVRL
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bcTofbcTofTof

 

        

         











  

 













ddfddf

ddf

bcbc
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1

0 0

1
1

0 0

21

1

0 0

212

,,    

,                  

1QIξ1QIξ

1QIξ1QIQIξ

                        (A5.87) 

      


ddfFGppddfUFARFAR bcCCbcTofTof     

1

0 0

98

1

0 0

)(11)(11 ,|,                    (A5.88) 

 

where )22(
)(11


 Con

TofQQ  (see A5.25) 

 ,bcf : is the joint density of the order statistics ):( mbu  and ):( mcu  (see AR5.9) 

)(11 TofCARL  : is given in A5.75 where )22(
)(11


 Con

TofQQ  

)(11 TofCVRL  : is given in A5.76 where )22(
)(11


 Con

TofQQ  

)(11 TofUFAR  : is given in A5.47. 

 

    0,121  ξξ  

    T1,112  11  

   22 II  
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The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, conditional characteristics and CFAR given in 

A5.38, A5.40, A5.41 and A5.47 over the distribution of  ):():( , mcmb XXZ . 

 

 

The upper one-sided 2-of-2 precedence chart 

 

             dfdfjNPjNP c
j

cUofCUof   


1

0

1
1

0

)(22)(22 1QIQξ                                 (A5.89) 

       
 

1

0

1

0

1
)(22)(22  dfdfCARLARL ccUofUof 1QIξ                                                   (A5.90) 
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0
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)(22)(22 







    dfCARLdfCARLdfCVRLVRL cUofcUofcUofUof
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df
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c

1QIξ1QIξ

1QIξ1QIQIξ

                                             (A5.91) 

        dfFGpdfCFARFAR cCcUofUof   

1

0

2
8

1

0

)(22)(22 |                                             (A5.92) 

 

where )33(
)(22


 Con

UofQQ  (see A5.26) 

 cf : is the density of the ):( mcu  order statistic (see AR5.8) 

)(22 UofCARL  : is given in A5.75 where )22(
)(22


 Con

UofQQ  

)(22 UofCVRL  : is given in A5.76 where )22(
)(22


 Con

UofQQ  

)(22 UofCFAR  : is given in A5.48. 

 

    0,0,131  ξξ  

    T1,1,113  11  

   33 II  
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The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, characteristics of the conditional distribution and 

CFAR given in A5.38, A5.40, A5.41 and A5.48 over the distribution of  ):( mcXZ . 

 

 

The lower one-sided 2-of-2 precedence chart 

 

             dfdfjNPjNP b
j

bLofCLof   


1

0

1
1

0

)(22)(22 1QIQξ                                      (A5.93) 
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)(22)(22  dfdfCARLARL bbLofLof 1QIξ                                                         (A5.94) 

       
21

0

)(22

1

0

2
)(22

1

0

)(22)(22 







    dfCARLdfCARLdfCVRLVRL bLofbLofbLofLof

        

        
21

0

1
1

0

21

1

0

212

      

                   

























dfdf

df

bb

b

1QIξ1QIξ

1QIξ1QIQIξ

                                                (A5.95) 

        dfFGpdfCFARFAR bCbLofLof   
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1

0

)(22)(22 |                                                   (A5.96) 

 

where )33(
)(22


 Con

LofQQ  (see A5.27) 

 bf : is the density of the ):( mbu  order statistic (see AR5.8) 

)(22 LofCARL  : is given in A5.75 where )33(
)(22


 Con

LofQQ  

)(22 LofCVRL  : is given in A5.76 where )33(
)(22


 Con

LofQQ  

)(22 LofCFAR  : is given in A5.49. 
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The unconditional distribution, unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41 and A5.49 over the distribution of  ):( mbXZ . 

 

 

The two-sided 2-of-2 precedence chart 
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)(22)(22 ,, 1QIQξ              (A5.97) 
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)(22)(22 ,|,           (A5.100) 

 

where  )44(
)(22


 Con

TofQQ  (see A5.28) 

 ,bcf : is the joint density of the order statistics ):( mbu  and ):( mcu  (see AR5.9) 

)(22 TofCARL  : is given in A5.75 where )44(
)(22


 Con

TofQQ  

)(22 TofCVRL  : is given in A5.76 where )44(
)(22


 Con

TofQQ  

)(22 TofCFAR  : is given in A5.50. 
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   44 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41 and A5.50 over the distribution of  ):():( , mcmb XXZ . 

 

 

The upper one-sided 2-of-3 precedence chart 
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)(32)(32 







    dfCARLdfCARLdfCVRLVRL cUofcUofcUofUof

        

        
21

0

1
1

0

21

1

0

212

      

                   

























dfdf

df
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c

1QIξ1QIξ

1QIξ1QIQIξ

                                          (A5.103) 

   
1

0

)(32)(32  dfCFARFAR cUofUof                                                                                         (A5.104) 

 

where )55(
)(32


 Con

UofQQ  (see A5.29) 

 cf : is the density of the ):( mcu  order statistic (see AR5.8) 

)(32 UofCARL  : is given in A5.75 where )55(
)(32


 Con

UofQQ  

)(32 UofCVRL  : is given in A5.76 where )55(
)(32


 Con

UofQQ  

)(32 UofCFAR  : is given in A5.51 andA5.52. 
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   55 II  

 

The unconditional distribution, unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.51 and A5.52 over the distribution of  ):( mcXZ . 

 

 

The lower one-sided 2-of-3 precedence chart 

 

             dfdfjNPjNP b
j

bLofCLof   


1

0

1
1

0

)(32)(32 1QIQξ                                    (A5.105) 
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)(32)(32  dfdfCARLARL bbLofLof 1QIξ                                                       (A5.106) 
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1QIξ1QIξ

1QIξ1QIQIξ

                                                (A5.107) 

   
1

0

)(32)(32  dfCFARFAR bLofLof                                                                                            (A5.108) 

 

where  )55(
)(32


 Con

LofQQ  (see A5.30) 

 bf : is the density of the ):( mbu  order statistic (see AR5.8) 

)(32 LofCARL  : is given in A5.75 where )55(
)(32


 Con

LofQQ  

)(32 LofCVRL  : is given in A5.76 where )55(
)(32


 Con

LofQQ  

)(32 LofCFAR  : is given in A5.53 and A5.54. 
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   55 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.53 and A5.54 over the distribution of  ):( mbXZ . 

 

 

The two-sided 2-of-3 precedence chart 

 

            


ddfddfjNPjNP bc
j

bcTofCTof     
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0 0

1
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0 0

)(32)(32 ,, 1QIQξ             (A5.109) 
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ddf
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1QIξ1QIξ

1QIξ1QIQIξ

                      (A5.111) 

    
1

0 0

)(32)(32 , 


ddfCFARFAR bcTofTof                                                                                (A5.112) 

 

where )88(
)(32


 Con

TofQQ  (see A5.31) 

 ,bcf : is the joint density of the order statistics ):( mbu  and ):( mcu  (see AR5.9) 

)(32 TofCARL  : is given in A5.75 where )88(
)(32


 Con

TofQQ  

)(32 TofCVRL  : is given in A5.76 where )88(
)(32


 Con

TofQQ  

)(32 TofCFAR  : is given in A5.55 and A5.56. 
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    0,..,181  ξξ  

    T1,..,118  11  

   88 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, characteristics of the conditional distribution and 

CFAR given in A5.38, A5.40, A5.41, A5.55 and A5.56 over the distribution of  ):():( , mcmb XXZ . 

 

 

The upper one-sided improved 2-of-2 precedence chart 

 

            


ddfddfjNPjNP cd
j

cdUofICUofI     


1

0 0

1
1

0 0

)(22)(22 ,, 1QIQξ     (A5.113) 
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ddfddfCARLARL cdcdUofIUofI 1QIξ                       (A5.114) 
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ddf

cdcd
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1QIξ1QIξ

1QIξ1QIQIξ

                    (A5.115) 

    
1

0 0

)(22)(22 ,


 ddfCFARFAR cdUofIUofI                                                                          (A5.116) 

 

where  )33(
)(22


 Con

UofIQQ  (see A5.32) 

  ,cdf : is the joint density of the order statistics ):( mcu  ):( mdu  (see AR5.9) 

)(22 UofICARL  : is given in A5.75 where )33(
)(22


 Con

UofIQQ  

)(22 UofICVRL  : is given in A5.76 where )33(
)(22


 Con

UofIQQ  
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)(22 UofICFAR  : is given in A5.57 and A5.58. 

    0,0,131  ξξ  

    T1,1,113  11  

   33 II  

 

The unconditional distribution, the characteristics of the unconditional distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.57 and A5.58 over the distribution of  ):():( , mdmc XXZ . 

 

 

The lower one-sided improved 2-of-2 precedence chart 

 

            


ddfddfjNPjNP ab
j

abLofICLofI     


1

0 0

1
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0 0

)(22)(22 ,, 1QIQξ          (A5.117) 

        
 

1

0

1

0 0

1

0

)(22)(22 ,, 


ddfddfCARLARL ababLofILofI 1QIξ                             (A5.118) 

     

 
2

1

0 0

)(22

1

0 0

2
)(22

1

0 0

)(22)(22

,                        

,,















 

  










ddfCARL

ddfCARLddfCVRLVRL

ab

y

LofI

abLofIabLofILofI

        

        
21

0 0

1
1

0 0

21

1

0 0

212

,,    

,                     













  

 













ddfddf
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1QIξ1QIξ

1QIξ1QIQIξ

                          (A5.119) 

    
1

0 0

)(22)(22 , 


ddfCFARFAR abLofILofI                                                                             (A5.120) 

 

where  )33(
)(22


 Con

LofIQQ  (see A5.33) 

  ,abf : is the joint density of the order statistics ):( mau  ):( mbu  (see AR5.9) 

)(22 LofICARL  : is given in A5.75 where )33(
)(22


 Con

LofIQQ  

)(22 LofICVRL  : is given in A5.76 where )33(
)(22


 Con

LofIQQ  
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)(22 LofICFAR  : is given in A5.59 and A5.60. 

 

    0,0,131  ξξ  

    T1,1,113  11  

   33 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.59 and A5.60 over the distribution of  ):():( , mbma XXZ . 

 

 

The two-sided improved 2-of-2 precedence chart 
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                   (A5.123) 
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1

0 0 0 0

)(22)(22 ,,, 
  

ddddfCFARFAR abcdTofITofI                                                      (A5.124) 

 

where  )44(
)(22


 Con

TofIQQ  (see A5.34) 

  ,,,abcdf : is the joint density of the order statistics ):( mau , ):( mbu , ):( mcu  and ):( mdu  (see AR5.10) 

)(22 TofICARL  : is given in A5.75 where )44(
)(22


 Con

TofIQQ  

)(22 TofICVRL  : is given in A5.76 where )44(
)(22


 Con

TofIQQ  

)(22 TofICFAR  : is given in A5.61 and A5.62. 

 

    0,0,0,141  ξξ  
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   44 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.61 and A5.62 over the distribution of 

 ):():():():( ,,, mdmcmbma XXXXZ . 

 

 

The upper one-sided improved 2-of-3 precedence chart 
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ddfddfCFARFAR cd
j

cdUofIUofI     


1

0 0

1
1

0 0

)(32)(32 ,, 1QIQξ                   (A5.128) 

 

where )55(
)(32


 Con

UofIQQ  (see A5.35) 

  ,cdf : is the joint density of the order statistics ):( mcu  ):( mdu  (see AR5.9) 

)(32 UofICARL  : is given in A5.75 where )55(
)(32


 Con

UofIQQ  

)(32 UofICVRL  : is given in A5.76 where )55(
)(32


 Con

UofIQQ  

)(32 UofICFAR  : is given in A5.63, A5.64 and A5.65. 
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The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.63, A5.64 and A5.65 over the distribution of 

 ):():( , mdmc XXZ . 

 

 

The lower one-sided improved 2-of-3 precedence chart 
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ddfddfCARLARL ababLofILofI 1QIξ                             (A5.130) 
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1

0 0

)(32)(32 , 


ddfCFARFAR abLofILofI                                                                            (A5.132) 

 

where  )55(
)(32


 Con

LofIQQ  (see A5.36) 

  ,abf : is the joint density of the order statistics ):( mau  ):( mbu  (see AR5.9) 

)(32 LofICARL  : is given in A5.75 where )55(
)(32


 Con

LofIQQ  

)(32 LofICVRL  : is given in A5.76 where )55(
)(32


 Con

LofIQQ  

)(32 LofICFAR  : is given in A5.66, A5.67 and A5.68. 
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The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.66, A5.67 and A5.68 over the distribution of 

 ):():( , mbma XXZ . 
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The two-sided improved 2-of-3 precedence chart 
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                     (A5.135) 

      
1

0 0 0 0

)(32)(32 ,,, 
  

ddddfCFARFAR abcdTofITofI                                                     (A5.136) 

 

 

where )88(
)(32


 Con

TofIQQ  (see A5.37) 

  ,,,abcdf : is the joint density of the order statistics ):( mau , ):( mbu , ):( mcu  and ):( mdu  (see AR5.10) 

)(32 TofICARL  : is given in A5.75 where )88(
)(32


 Con

TofIQQ  

)(32 TofICVRL  : is given in A5.76 where )88(
)(32


 Con

TofIQQ  

)(32 TofICFAR  : is given in A5.69, A5.70 and A5.71. 
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    0,..,181  ξξ  

    T1,..,118  11  

   88 II  

 

The unconditional distribution, the unconditional characteristics of the distribution and UFAR are 

obtained by averaging the conditional distribution, the characteristics of the conditional distribution 

and CFAR given in A5.38, A5.40, A5.41, A5.69, A5.70 and A5.71 over the distribution of 

 ):():():():( ,,, mdmcmbma XXXXZ . 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 265

Appendix: Computer programs 
 

 

Introduction 

 

The computer programs appendix provides a reference to SAS®9.2 and Mathcad®14.0 programs. 

These programs are used to populate the charting constant Tables and performance comparison Tables 

in Chapters 4 and 5. 

 

 

SAS Program 1 

 

SAS Program 1 is a program that is used to calculate the IC performance of the sign control charts. 

This program is used to populate all the IC (charting constant) Tables in Chapter 4. 

 

The SAS Program 1 is written in a general form. The program has sections of code that is enclosed 

by stars and forward slashes; this is referred to as a block of code. Whenever a block of code appears 

in the program, the user has to read the caption of the block of code to determine if that block of code 

needs to be submitted, in order to obtain the desired results. When all the appropriate sections of code 

are identified and selected, the user may then submit the code to obtain the desired results. 

 

 

Proc Iml; 
             
               n = 10;        /*Sample Size*/ 
            UCLB = 10;        /*Outer Upper Control Limit*/ 
            UCLA = 8;         /*Inner Upper Control Limit*/ 
            LCLA = n-UCLA;    /*Inner Lower Control Limit*/ 
            LCLB = n-UCLB;    /*Outer Lower Control Limit*/ 
 
            Info = J(1,12,0);  
             med = J(n,1,0);  /*Median Matrix*/ 
 
print n  LCLB LCLA UCLA UCLB; 
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/*  Transition Probabilities that is used to construct  */ 
/*  the essential Transition Probability Matrix         */  
  p0 = 0.5; 
 p_1 = 1-(CDF('BINOMIAL',UCLB-1,p0,n)); 
 p_2 = (CDF('BINOMIAL',UCLB-1,p0,n))-(CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_3 = (CDF('BINOMIAL',UCLA-1,p0,n))-(CDF('BINOMIAL',LCLA,p0,n)); 
 p_4 = (CDF('BINOMIAL',LCLA,p0,n))-(CDF('BINOMIAL',LCLB,p0,n)); 
 p_5 = (CDF('BINOMIAL',LCLB,p0,n)); 
 p_6 = 1-(CDF('BINOMIAL',LCLA,p0,n)); 
 p_7 = (CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_8 = 1-(CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_9 = CDF('BINOMIAL',LCLA,p0,n); 
  
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        For the Upper One-Sided Improved 2-of-2 sign chart the         /**/ 
/**/            following block of code needs to be submitted              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/      * Calculates the FAR ;                                           /**/ 
/**/   FAR_Exact_1   = (p_1);                                              /**/ 
/**/   FAR_Exact_234 = (p_2**2)+(p_1);                                     /**/ 
/**/                                                                       /**/ 
/**/   Q = J(3,3,0);                                                       /**/ 
/**/   z = {1 0 0};                                                        /**/ 
/**/   e = {1 1 1};                                                        /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_2;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = p_2;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_7; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/       For the Lower One-Sided Improved 2-of-2 sign chart the          /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        * Calculates the FAR ;                                         /**/ 
/**/    FAR_Exact_1   = (p_5);                                             /**/ 
/**/    FAR_Exact_234 = (p_4**2)+(p_5);                                    /**/ 
/**/                                                                       /**/ 
/**/    Q = J(3,3,0);                                                      /**/ 
/**/    z = {1 0 0};                                                       /**/ 
/**/    e = {1 1 1};                                                       /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_4;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = p_4;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_6; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/           For the Two-Sided Improved 2-of-2 sign chart the            /**/ 
/**/            following block of code needs to be submitted              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/    FAR_Exact_1   = (p_1)+(P_5);                                       /**/ 
/**/    FAR_Exact_234 = (p_2**2)+(p_1)+(p_4**2)+(p_5);                     /**/ 
/**/                                                                       /**/ 
/**/    Q = J(4,4,0);                                                      /**/ 
/**/    z = {1 0 0 0};                                                     /**/ 
/**/    e = {1 1 1 1};                                                     /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_3; Q[1,3] = p_2; Q[1,4] = p_4;              /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_3; Q[2,3] = p_2; Q[2,4] = p_4;              /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_3; Q[3,3] = 0;   Q[3,4] = p_4;              /**/ 
/**/    Q[4,1] = 0; Q[4,2] = p_3; Q[4,3] = p_2; Q[4,4] = 0;                /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         For the Upper One-Sided Improved 2-of-3 sign chart the        /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/    FAR_Exact_1 = (p_1);                                               /**/ 
/**/    FAR_Exact_2 = (p_1)+(p_2*p_2);                                     /**/ 
/**/    FAR_Exact_345 = (p_1)+(2*(p_7*p_2*p_2));                           /**/ 
/**/                                                                       /**/ 
/**/    Q = J(5,5,0);                                                      /**/ 
/**/    z = {1 0 0 0 0};                                                   /**/ 
/**/    e = {1 1 1 1 1};                                                   /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_2; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = 0;   Q[2,4] = p_2; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_7;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_7;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_7; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        For the Lower One-Sided Improved 2-of-3 sign chart the         /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    * Calculates the FAR ;                                             /**/ 
/**/    FAR_Exact_1 = (p_5);                                               /**/ 
/**/    FAR_Exact_2 = (p_5)+(p_4*p_4);                                     /**/ 
/**/    FAR_Exact_345 = (p_5)+(2*(p_6*p_4*p_4));                           /**/ 
/**/                                                                       /**/ 
/**/    Q = J(5,5,0);                                                      /**/ 
/**/    z = {1 0 0 0 0};                                                   /**/ 
/**/    e = {1 1 1 1 1};                                                   /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_4; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = 0;   Q[2,4] = p_4; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_6;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_6;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_6; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 269

/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/          For the Two-Sided Improved 2-of-3 sign chart the             /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/    FAR_Exact_1 = (p_1)+(p_5);                                         /**/ 
/**/    FAR_Exact_2 = (p_1)+(p_5)+(p_2**2)+(p_4**2);                       /**/ 
/**/    FAR_Exact_345 = (p_1)+(p_5)+(2*p_3*(p_2**2))+(2*p_3*(p_4**2))+     /**/ 
/**/                   (p_4*(p_2**2))+(p_2*(p_4**2));                     /**/ 
/**/                                                                       /**/ 
/**/    Q = J(8,8,0);                                                      /**/ 
/**/    z = {1 0 0 0 0 0 0 0};                                             /**/ 
/**/    e = {1 1 1 1 1 1 1 1};                                             /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/ Q[1,1] = 0;   Q[1,2] = p_3; Q[1,3] = p_2; Q[1,4] = 0;                 /**/ 
/**/ Q[1,5] = 0;   Q[1,6] = p_4; Q[1,7] = 0;   Q[1,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/ Q[2,1] = 0;   Q[2,2] = p_3; Q[2,3] = 0;   Q[2,4] = p_2;               /**/ 
/**/ Q[2,5] = 0;   Q[2,6] = 0;   Q[2,7] = p_4; Q[2,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/ Q[3,1] = 0;   Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;                 /**/ 
/**/ Q[3,5] = p_3; Q[3,6] = p_4; Q[3,7] = 0;   Q[3,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/ Q[4,1] = 0;   Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;                 /**/ 
/**/ Q[4,5] = p_3; Q[4,6] = p_4; Q[4,7] = 0;   Q[4,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/ Q[5,1] = 0;   Q[5,2] = p_3; Q[5,3] = 0;   Q[5,4] = 0;                 /**/ 
/**/ Q[5,5] = 0;   Q[5,6] = 0;   Q[5,7] = p_4; Q[5,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/ Q[6,1] = 0;   Q[6,2] = 0;   Q[6,3] = p_2; Q[6,4] = 0;                 /**/ 
/**/ Q[6,5] = 0;   Q[6,6] = 0;   Q[6,7] = 0;   Q[6,8] = p_3;               /**/ 
/**/                                                                       /**/ 
/**/ Q[7,1] = 0;   Q[7,2] = 0;   Q[7,3] = p_2; Q[7,4] = 0;                 /**/ 
/**/ Q[7,5] = 0;   Q[7,6] = 0;   Q[7,7] = 0;   Q[7,8] = p_3;               /**/ 
/**/                                                                       /**/ 
/**/ Q[8,1] = 0;   Q[8,2] = p_3; Q[8,3] = 0;   Q[8,4] = p_2;               /**/ 
/**/ Q[8,5] = 0;   Q[8,6] = 0;   Q[8,7] = 0;   Q[8,8] = 0;                 /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/*  Calculates the number of rows in the     */ 
/*  essential transition probability matrix  */; 
  nr = nrow(Q);  
    
 
/*Calculates the ARL VARL and SDRL*/ 
    ARL_Exact = z*inv(I(nr)-Q)*e`;  
   VARL_Exact = z*(I(nr)+Q)*inv(I(nr)-Q)*inv(I(nr)-Q)*e`-ARL_Exact**2; 
   SDRL_Exact = sqrt(VARL_Exact);  
 
 
/*  The following do loop calculates the            */ 
/*  25th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
          j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.25 then do; Q1RLD_Exact=j; signal=1; end; 
             
 end; 
 
 
/*  The following do loop calculates the            */ 
/*  50th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
             j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.50 then do; Q2RLD_Exact=j; signal=1; end; 
 end; 
 
 
/*  The following do loop calculates the            */ 
/*  75th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
             j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.75 then do; Q3RLD_Exact=j; signal=1; end;       
 end;    
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     For the Upper One-Sided Improved 2-of-2 sign chart the            /**/ 
/**/     following block of code needs to be submitted to obtain           /**/ 
/**/     the sample size, control limits, False Alarm Rate and the         /**/ 
/**/     characteristics of the control chart                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                        *;                                             /**/ 
/**/       Print n UCLB UCLA FAR_Exact_1  FAR_Exact_234;                   /**/ 
/**/       Print ARL_Exact VARL_Exact SDRL_Exact Q1RLD_Exact;              /**/ 
/**/       Print Q2RLD_Exact Q3RLD_Exact;                                  /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided Improved 2-of-2 sign chart the             /**/ 
/**/    following block of code needs to be submitted to obtain            /**/ 
/**/    the sample size, control limits, False Alarm Rate and the          /**/ 
/**/    characteristics of the control chart                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                      *;                                               /**/ 
/**/      Print n LCLA LCLB FAR_Exact_1 FAR_Exact_234;                     /**/ 
/**/      Print ARL_Exact VARL_Exact SDRL_Exact Q1RLD_Exact;               /**/ 
/**/      Print Q2RLD_Exact Q3RLD_Exact;                                   /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided Improved 2-of-2 sign chart the                   /**/ 
/**/    following block of code needs to be submitted to obtain            /**/ 
/**/    the sample size, control limits, False Alarm Rate and the          /**/ 
/**/    characteristics of the control chart                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                     *;                                                /**/ 
/**/        Print n UCLB UCLA LCLA LCLB FAR_Exact_1 FAR_Exact_234;         /**/ 
/**/        Print ARL_Exact VARL_Exact SDRL_Exact;                         /**/ 
/**/        Print Q1RLD_Exact Q2RLD_Exact Q3RLD_Exact;                     /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Upper One-Sided Improved 2-of-3 sign chart the             /**/ 
/**/    following block of code needs to be submitted to obtain            /**/ 
/**/    the sample size, control limits, False Alarm Rate and the          /**/ 
/**/    characteristics of the control chart                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                       *;                                              /**/ 
/**/       Print n UCLB UCLA FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;        /**/ 
/**/       Print ARL_Exact VARL_Exact SDRL_Exact Q1RLD_Exact;              /**/ 
/**/       Print Q2RLD_Exact Q3RLD_Exact;                                  /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided Improved 2-of-3 sign chart the             /**/ 
/**/    following block of code needs to be submitted to obtain            /**/ 
/**/    the sample size, control limits, False Alarm Rate and the          /**/ 
/**/    characteristics of the control chart                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                     *;                                                /**/ 
/**/       Print n LCLA LCLB FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;        /**/ 
/**/       Print ARL_Exact VARL_Exact SDRL_Exact Q1RLD_Exact;              /**/ 
/**/       Print Q2RLD_Exact Q3RLD_Exact;                                  /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided Improved 2-of-3 sign chart the                   /**/ 
/**/    following block of code needs to be submitted to obtain            /**/ 
/**/    the sample size, control limits, False Alarm Rate and the          /**/ 
/**/    characteristics of the control chart                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                         *;                                            /**/ 
/**/       Print n UCLB UCLA LCLA LCLB FAR_Exact_1 FAR_Exact_2;            /**/ 
/**/       Print FAR_Exact_345 ARL_Exact VARL_Exact SDRL_Exact;            /**/ 
/**/       Print Q1RLD_Exact Q2RLD_Exact Q3RLD_Exact;                      /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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SAS Program 2 

 

SAS Program 2 is a program that is used to calculate the OOC performance comparisons between 

the run-rules and improved runs-rules sign charts. This program is used to populate all the OOC 

(performance comparison) Tables in Chapter 4. 

 

The SAS Program 2 is written in a general form. The program has sections of code that is enclosed 

by stars and forward slashes; this is referred to as a block of code. Whenever a block of code appears 

in the program, the user has to read the caption of the block of code to determine if that block of code 

needs to be submitted, in order to obtain the desired results. When all the appropriate sections of code 

are identified and selected, the user may then submit the code to obtain the desired results. 

 

 

Proc Iml; 
             
               n = 20;      /*Sample Size*/ 
            UCLB = 19;      /*Outer Upper Control Limit*/ 
            UCLA = 14;      /*Inner Upper Control Limit*/ 
            LCLA = n-UCLA;  /*Inner Lower Control Limit*/ 
            LCLB = n-UCLB;  /*Outer Lower Control Limit*/ 
           shift = -0.2;    /*In standard deviation units*/ 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is Exp(1),           /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/            * median of the Exp(1) distribution ;                      /**/ 
/**/            median = -log(0.5);                                        /**/ 
/**/                                                                       /**/ 
/**/         * the sign statistic follows a Bin(n,p0) distribution  ;      /**/ 
/**/         p0 = 1-CDF('EXPONENTIAL',median-shift,1);                     /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is N(0,1),           /**/ 
/**/          the following block of code needs to be submitted            /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/            * median of the N(0,1) distribution ;                      /**/ 
/**/            median = 0;                                                /**/ 
/**/                                                                       /**/ 
/**/         * the sign statistic follows a Bin(n,p0) distribution  ;      /**/ 
/**/         p0 = 1-CDF('NORMAL',median-shift);                            /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is T(4),             /**/ 
/**/          the following block of code needs to be submitted            /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/            * median of the T(4) distribution ;                        /**/ 
/**/            median = 0;                                                /**/ 
/**/                                                                       /**/ 
/**/         * the sign statistic follows a Bin(n,p0) distribution  ;      /**/ 
/**/         p0 = 1-CDF('T',median-sqrt(2)*shift,4);                       /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/*  Transition Probabilities that is used to construct  */ 
/*  the essential Transition Probability Matrix         */;  
 p_1 = 1-(CDF('BINOMIAL',UCLB-1,p0,n)); 
 p_2 = (CDF('BINOMIAL',UCLB-1,p0,n))-(CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_3 = (CDF('BINOMIAL',UCLA-1,p0,n))-(CDF('BINOMIAL',LCLA,p0,n)); 
 p_4 = (CDF('BINOMIAL',LCLA,p0,n))-(CDF('BINOMIAL',LCLB,p0,n)); 
 p_5 = (CDF('BINOMIAL',LCLB,p0,n)); 
 p_6 = 1-(CDF('BINOMIAL',LCLA,p0,n)); 
 p_7 = (CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_8 = 1-(CDF('BINOMIAL',UCLA-1,p0,n)); 
 p_9 = CDF('BINOMIAL',LCLA,p0,n); 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Upper One-Sided 2-of-2 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/    FAR_Exact_1 = 0;                                                   /**/ 
/**/    FAR_Exact_234 = p_8*p_8;                                           /**/ 
/**/                                                                       /**/ 
/**/    Q = J(3,3,0);                                                      /**/ 
/**/    z = {1 0 0};                                                       /**/ 
/**/    e = {1 1 1};                                                       /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_8;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = p_8;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_7; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Lower One-Sided 2-of-2 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/    FAR_Exact_1 = 0;                                                   /**/ 
/**/    FAR_Exact_234 = p_9*p_9;                                           /**/ 
/**/                                                                       /**/ 
/**/    Q = J(3,3,0);                                                      /**/ 
/**/    z = {1 0 0};                                                       /**/ 
/**/    e = {1 1 1};                                                       /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_9;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = p_9;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_6; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                For the Two-Sided 2-of-2 sign chart the                /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/    FAR_Exact_1   = 0;                                                 /**/ 
/**/    FAR_Exact_234 = (p_8*p_8)+(p_9*p_9);                               /**/ 
/**/                                                                       /**/ 
/**/     Q = J(4,4,0);                                                     /**/ 
/**/     z = {1 0 0 0};                                                    /**/ 
/**/     e = {1 1 1 1};                                                    /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_3; Q[1,3] = p_8; Q[1,4] = p_9;              /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_3; Q[2,3] = p_8; Q[2,4] = p_9;              /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_3; Q[3,3] = 0; Q[3,4] = p_9;              /**/ 
/**/    Q[4,1] = 0; Q[4,2] = p_3; Q[4,3] = p_8; Q[4,4] = 0;                /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Upper One-Sided 2-of-3 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/    FAR_Exact_1 = 0;                                                   /**/ 
/**/    FAR_Exact_2 = p_8*p_8;                                             /**/ 
/**/    FAR_Exact_345 = 2*p_7*p_8*p_8;                                     /**/ 
/**/                                                                       /**/ 
/**/    Q = J(5,5,0);                                                      /**/ 
/**/    z = {1 0 0 0 0};                                                   /**/ 
/**/    e = {1 1 1 1 1};                                                   /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_8; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = 0;   Q[2,4] = p_8; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_7;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_7;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_7; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Lower One-Sided 2-of-3 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/     FAR_Exact_1 = 0;                                                  /**/ 
/**/     FAR_Exact_2 = p_9*p_9;                                            /**/ 
/**/   FAR_Exact_345 = 2*p_6*(p_9*p_9);                                    /**/ 
/**/                                                                       /**/ 
/**/     Q = J(5,5,0);                                                     /**/ 
/**/     z = {1 0 0 0 0};                                                  /**/ 
/**/     e = {1 1 1 1 1};                                                  /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_9; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = 0;   Q[2,4] = p_9; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_6;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_6;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_6; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                For the Two-Sided 2-of-3 sign chart the                /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/   * Calculates the FAR ;                                              /**/ 
/**/     FAR_Exact_1 = 0;                                                  /**/ 
/**/     FAR_Exact_2 = (p_8*p_8)+(p_9*p_9);                                /**/ 
/**/   FAR_Exact_345 = (2*p_3*p_8*p_8)+(2*p_3*p_9*p_9)+                    /**/ 
/**/                   (p_8*p_9*p_9)+(p_9*p_8*p_8);                        /**/ 
/**/                                                                       /**/ 
/**/     Q = J(8,8,0);                                                     /**/ 
/**/     z = {1 0 0 0 0 0 0 0};                                            /**/ 
/**/     e = {1 1 1 1 1 1 1 1};                                            /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0;   Q[1,2] = p_3; Q[1,3] = p_8; Q[1,4] = p_9;            /**/ 
/**/    Q[1,5] = 0;   Q[1,6] = 0;   Q[1,7] = 0;   Q[1,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/    Q[2,1] = 0;   Q[2,2] = p_3; Q[2,3] = 0;   Q[2,4] = 0;              /**/ 
/**/    Q[2,5] = p_8; Q[2,6] = p_9; Q[2,7] = 0;   Q[2,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/    Q[3,1] = 0;   Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = p_9;            /**/ 
/**/    Q[3,5] = 0;   Q[3,6] = 0;   Q[3,7] = p_3; Q[3,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/    Q[4,1] = 0;   Q[4,2] = 0; Q[4,3] = p_8; Q[4,4] = 0;              /**/ 
/**/    Q[4,5] = 0;   Q[4,6] = 0;   Q[4,7] = 0;   Q[4,8] = p_3;            /**/ 
/**/                                                                       /**/ 
/**/    Q[5,1] = 0;   Q[5,2] = 0;   Q[5,3] = 0;   Q[5,4] = p_9;            /**/ 
/**/    Q[5,5] = 0;   Q[5,6] = 0;   Q[5,7] = p_3; Q[5,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/    Q[6,1] = 0;   Q[6,2] = 0;   Q[6,3] = p_8; Q[6,4] = 0;              /**/ 
/**/    Q[6,5] = 0;   Q[6,6] = 0;   Q[6,7] = 0;   Q[6,8] = p_3;            /**/ 
/**/                                                                       /**/ 
/**/    Q[7,1] = 0;   Q[7,2] = p_3; Q[7,3] = 0;   Q[7,4] = 0;              /**/ 
/**/    Q[7,5] = 0;   Q[7,6] = p_9; Q[7,7] = 0;   Q[7,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/    Q[8,1] = 0;   Q[8,2] = p_3; Q[8,3] = 0;   Q[8,4] = 0;              /**/ 
/**/    Q[8,5] = p_8; Q[8,6] = 0;   Q[8,7] = 0;   Q[8,8] = 0;              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        For the Upper One-Sided Improved 2-of-2 sign chart the         /**/ 
/**/            following block of code needs to be submitted              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/      * Calculates the FAR ;                                           /**/ 
/**/     FAR_Exact_1   = (p_1);                                            /**/ 
/**/     FAR_Exact_234 = (p_2**2)+(p_1);                                   /**/ 
/**/                                                                       /**/ 
/**/     Q = J(3,3,0);                                                     /**/ 
/**/     z = {1 0 0};                                                      /**/ 
/**/     e = {1 1 1};                                                      /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_2;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = p_2;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_7; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/       For the Lower One-Sided Improved 2-of-2 sign chart the          /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        * Calculates the FAR ;                                         /**/ 
/**/    FAR_Exact_1   = (p_5);                                             /**/ 
/**/    FAR_Exact_234 = (p_4**2)+(p_5);                                    /**/ 
/**/                                                                       /**/ 
/**/    Q = J(3,3,0);                                                      /**/ 
/**/    z = {1 0 0};                                                       /**/ 
/**/    e = {1 1 1};                                                       /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_4;                            /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = p_4;                            /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_6; Q[3,3] = 0;                              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/           For the Two-Sided Improved 2-of-2 sign chart the            /**/ 
/**/            following block of code needs to be submitted              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/    FAR_Exact_1   = (p_1)+(P_5);                                       /**/ 
/**/    FAR_Exact_234 = (p_2**2)+(p_1)+(p_4**2)+(p_5);                     /**/ 
/**/                                                                       /**/ 
/**/    Q = J(4,4,0);                                                      /**/ 
/**/    z = {1 0 0 0};                                                     /**/ 
/**/    e = {1 1 1 1};                                                     /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/    Q[1,1] = 0; Q[1,2] = p_3; Q[1,3] = p_2; Q[1,4] = p_4;              /**/ 
/**/    Q[2,1] = 0; Q[2,2] = p_3; Q[2,3] = p_2; Q[2,4] = p_4;              /**/ 
/**/    Q[3,1] = 0; Q[3,2] = p_3; Q[3,3] = 0;   Q[3,4] = p_4;              /**/ 
/**/    Q[4,1] = 0; Q[4,2] = p_3; Q[4,3] = p_2; Q[4,4] = 0;                /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         For the Upper One-Sided Improved 2-of-3 sign chart the        /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/     FAR_Exact_1 = (p_1);                                              /**/ 
/**/     FAR_Exact_2 = (p_1)+(p_2*p_2);                                    /**/ 
/**/     FAR_Exact_345 = (p_1)+(2*(p_7*p_2*p_2));                          /**/ 
/**/                                                                       /**/ 
/**/     Q = J(5,5,0);                                                     /**/ 
/**/     z = {1 0 0 0 0};                                                  /**/ 
/**/     e = {1 1 1 1 1};                                                  /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_7; Q[1,3] = p_2; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_7; Q[2,3] = 0;   Q[2,4] = p_2; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_7;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_7;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_7; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        For the Lower One-Sided Improved 2-of-3 sign chart the         /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/     FAR_Exact_1 = (p_5);                                              /**/ 
/**/     FAR_Exact_2 = (p_5)+(p_4*p_4);                                    /**/ 
/**/     FAR_Exact_345 = (p_5)+(2*(p_6*p_4*p_4));                          /**/ 
/**/                                                                       /**/ 
/**/     Q = J(5,5,0);                                                     /**/ 
/**/     z = {1 0 0 0 0};                                                  /**/ 
/**/     e = {1 1 1 1 1};                                                  /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/  Q[1,1] = 0; Q[1,2] = p_6; Q[1,3] = p_4; Q[1,4] = 0;   Q[1,5] = 0;    /**/ 
/**/  Q[2,1] = 0; Q[2,2] = p_6; Q[2,3] = 0;   Q[2,4] = p_4; Q[2,5] = 0;    /**/ 
/**/  Q[3,1] = 0; Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;   Q[3,5] = p_6;  /**/ 
/**/  Q[4,1] = 0; Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;   Q[4,5] = p_6;  /**/ 
/**/  Q[5,1] = 0; Q[5,2] = p_6; Q[5,3] = 0;   Q[5,4] = 0;   Q[5,5] = 0;    /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/          For the Two-Sided Improved 2-of-3 sign chart the             /**/ 
/**/           following block of code needs to be submitted               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/     * Calculates the FAR ;                                            /**/ 
/**/      FAR_Exact_1 = (p_1)+(p_5);                                       /**/ 
/**/      FAR_Exact_2 = (p_1)+(p_5)+(p_2**2)+(p_4**2);                     /**/ 
/**/    FAR_Exact_345 = (p_1)+(p_5)+(2*p_3*(p_2**2))+(2*p_3*(p_4**2))+     /**/ 
/**/                   (p_4*(p_2**2))+(p_2*(p_4**2));                     /**/ 
/**/                                                                       /**/ 
/**/     Q = J(8,8,0);                                                     /**/ 
/**/     z = {1 0 0 0 0 0 0 0};                                            /**/ 
/**/     e = {1 1 1 1 1 1 1 1};                                            /**/ 
/**/                                                                       /**/ 
/**/    /*Populate the essential transition probability matrix*/           /**/ 
/**/     Q[1,1] = 0;   Q[1,2] = p_3; Q[1,3] = p_2; Q[1,4] = 0;             /**/ 
/**/     Q[1,5] = 0;   Q[1,6] = p_4; Q[1,7] = 0;   Q[1,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/     Q[2,1] = 0;   Q[2,2] = p_3; Q[2,3] = 0;   Q[2,4] = p_2;           /**/ 
/**/     Q[2,5] = 0;   Q[2,6] = 0;   Q[2,7] = p_4; Q[2,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/     Q[3,1] = 0;   Q[3,2] = 0;   Q[3,3] = 0;   Q[3,4] = 0;             /**/ 
/**/     Q[3,5] = p_3; Q[3,6] = p_4; Q[3,7] = 0;   Q[3,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/     Q[4,1] = 0;   Q[4,2] = 0;   Q[4,3] = 0;   Q[4,4] = 0;             /**/ 
/**/     Q[4,5] = p_3; Q[4,6] = p_4; Q[4,7] = 0;   Q[4,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/     Q[5,1] = 0;   Q[5,2] = p_3; Q[5,3] = 0;   Q[5,4] = 0;             /**/ 
/**/     Q[5,5] = 0;   Q[5,6] = 0;   Q[5,7] = p_4; Q[5,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/     Q[6,1] = 0;   Q[6,2] = 0;   Q[6,3] = p_2; Q[6,4] = 0;             /**/ 
/**/     Q[6,5] = 0;   Q[6,6] = 0;   Q[6,7] = 0;   Q[6,8] = p_3;           /**/ 
/**/                                                                       /**/ 
/**/     Q[7,1] = 0;   Q[7,2] = 0;   Q[7,3] = p_2; Q[7,4] = 0;             /**/ 
/**/     Q[7,5] = 0;   Q[7,6] = 0;   Q[7,7] = 0;   Q[7,8] = p_3;           /**/ 
/**/                                                                       /**/ 
/**/     Q[8,1] = 0;   Q[8,2] = p_3; Q[8,3] = 0;   Q[8,4] = p_2;           /**/ 
/**/     Q[8,5] = 0;   Q[8,6] = 0;   Q[8,7] = 0;   Q[8,8] = 0;             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/*  Calculates the number of rows in the     */ 
/*  essential transition probability matrix  */; 
  nr = nrow(Q);  
    
 
/*Calculates the ARL VARL and SDRL*/ 
    ARL_Exact = z*inv(I(nr)-Q)*e`; 
   VARL_Exact = z*(I(nr)+Q)*inv(I(nr)-Q)*inv(I(nr)-Q)*e`-ARL_Exact**2; 
   SDRL_Exact = sqrt(VARL_Exact); 
 
 
 
 
/*  The following do loop calculates the            */ 
/*  5th percentile of the run-length distribution   */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
          j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.05 then do; P05RLD_Exact=j; signal=1; end; 
             
 end; 
 
 
/*  The following do loop calculates the            */ 
/*  25th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
          j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.25 then do; Q1RLD_Exact=j; signal=1; end; 
 
 end; 
 
 
/*  The following do loop calculates the            */ 
/*  50th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
             j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.50 then do; Q2RLD_Exact=j; signal=1; end; 
 end; 
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/*  The following do loop calculates the            */ 
/*  75th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
             j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.75 then do; Q3RLD_Exact=j; signal=1; end;       
 end; 
 
 
/*  The following do loop calculates the            */ 
/*  95th percentile of the run-length distribution  */ 
cumelativeprob = 0; 
             j = 0; 
        signal = 0; 
 do until (signal=1); 
          j = j + 1; 
       cumelativeprob = cumelativeprob + z*(Q**(j-1))*(I(nr)-Q)*e`; 
 
      if cumelativeprob>=0.95 then do; P95RLD_Exact=j; signal=1; end;            
 end; 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Upper One-Sided 2-of-2 sign chart the following block of   /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/            *;                                                         /**/ 
/**/   Print n UCLA shift FAR_Exact_1 FAR_Exact_234 ARL_Exact;             /**/ 
/**/   Print VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;               /**/ 
/**/   Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided 2-of-2 sign chart the following block of   /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/             *;                                                        /**/ 
/**/   Print n LCLA shift FAR_Exact_1 FAR_Exact_234 ARL_Exact VARL_Exact;  /**/ 
/**/   Print SDRL_Exact P05RLD_Exact Q1RLD_Exact;                          /**/ 
/**/   Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided 2-of-2 sign chart the following block of         /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                       *;                                              /**/ 
/**/   Print n UCLA LCLA shift FAR_Exact_1 FAR_Exact_234 ARL_Exact;        /**/ 
/**/   Print VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;               /**/ 
/**/   Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Upper One-Sided 2-of-3 sign chart the following block of   /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                *;                                                     /**/ 
/**/     Print n UCLA shift FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;         /**/ 
/**/     Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;   /**/ 
/**/     Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                       /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided 2-of-3 sign chart the following block of   /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                     *;                                                /**/ 
/**/    Print n LCLA shift FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;          /**/ 
/**/    Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;    /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided 2-of-3 sign chart the following block of         /**/ 
/**/    code needs to be submitted to obtain the sample size,              /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                    *;                                                 /**/ 
/**/    Print n UCLA LCLA shift FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;     /**/ 
/**/    Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;    /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Upper One-Sided Improved 2-of-2 sign chart the following   /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                        *;                                             /**/ 
/**/    Print n UCLB UCLA shift FAR_Exact_1 FAR_Exact_234 ARL_Exact;       /**/ 
/**/    Print VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;              /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided Improved 2-of-2 sign chart the following   /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                      *;                                               /**/ 
/**/   Print n LCLA LCLB shift FAR_Exact_1 FAR_Exact_234 ARL_Exact;        /**/ 
/**/   Print VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;               /**/ 
/**/   Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided Improved 2-of-2 sign chart the following         /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                     *;                                                /**/ 
/**/    Print n UCLB UCLA LCLA LCLB shift FAR_Exact_1 FAR_Exact_234;       /**/ 
/**/    Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;    /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Upper One-Sided Improved 2-of-3 sign chart the following   /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                       *;                                              /**/ 
/**/    Print n UCLB UCLA shift FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;     /**/ 
/**/    Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;    /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Lower One-Sided Improved 2-of-3 sign chart the following   /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                     *;                                                /**/ 
/**/    Print n LCLA LCLB shift FAR_Exact_1 FAR_Exact_2 FAR_Exact_345;     /**/ 
/**/    Print ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact Q1RLD_Exact;    /**/ 
/**/    Print Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;                        /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/    For the Two-Sided Improved 2-of-3 sign chart the following         /**/ 
/**/    block of code needs to be submitted to obtain the sample size,     /**/ 
/**/    control limits, shift, False Alarm Rate and characteristics        /**/ 
/**/    of the control chart                                               /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                         *;                                            /**/ 
/**/   Print n UCLB UCLA LCLA LCLB shift FAR_Exact_1 FAR_Exact_2;          /**/ 
/**/   Print FAR_Exact_345 ARL_Exact VARL_Exact SDRL_Exact P05RLD_Exact;   /**/ 
/**/   Print Q1RLD_Exact Q2RLD_Exact Q3RLD_Exact P95RLD_Exact;             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
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SAS Program 3 

 

SAS Program 3 is a program that is used to calculate the OOC performance comparisons between 

the run-rules and improved runs-rules precedence charts. This program is used to populate all the OOC 

(performance comparison) Tables in Chapter 5. 

 

The SAS Program 3 is written in a general form. The program has sections of code that is enclosed 

by stars and forward slashes; this is referred to as a block of code. Whenever a block of code appears 

in the program, the user has to read the caption of the block of code to determine if that block of code 

needs to be submitted, in order to obtain the desired results. When all the appropriate sections of code 

are identified and selected, the user may then submit the code to obtain the desired results. 

 

 

Proc Iml; 
 
  nsim = 100;      /* Number of simulations */ 
 
     m = 500;      /* Reference sample size */ 
     n = 7;        /* Test sample size */ 
     j = (n+1)/2;  /* Number of the order statistic from the test sample 
                      that is used as the plotting statistic */ 
 
 shift = -0.05;    /* In standard deviation units */ 
 
     d = 385;      /* Number of the order statistic from the reference sample 
                      that is used as the UCLB */ 
     c = 382;      /* Number of the order statistic from the reference sample 
                      that is used as the UCLA */ 
     b = m-c+1;    /* Number of the order statistic from the reference sample 
                      that is used as the LCLA */ 
     a = m-d+1;    /* Number of the order statistic from the reference sample 
                      that is used as the LCLB */ 
 
    
/* Creating a row vector that contains the number of simulations, test 
   and reference sample size, control limits (order statistics) and the 
   size of the shift */ 
InfoM = nsim||m||n||j||d||c||b||a||shift; 
 
 
/* Creating a dataset Info from the InfoM row vector */ 
create Info from InfoM[colname={'nsim' , 'm' , 'n' , 'j' , 'd' , 'c' , 'b' , 'a' , 
'shift'}]; 
append from InfoM; 
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/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/**/*                                                                      /**/ 
/**/         Beginning of the First do loop. This do loop iterate          /**/ 
/**/         nsim times i.e. the number of simulations performed.          /**/ 
/**/         Therefore the number of run-lengths that is simulated         /**/ 
/**/         is nsim run-lengths.                                          /**/ 
/**/                                                                      ;/**/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
 
/* Starting the do loop that will iterate nsim times */ 
do k = 1 to nsim; 
 
    /* creating a reference sample vector*/ 
    x = J(m,1,0); 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is Exp(1),           /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/         * populate the x (reference sample) vector                    /**/ 
/**/           with EXP(1) random values;                                  /**/ 
/**/                       call randgen(x,'EXPO');                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is N(0,1),           /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/         * populate the x (reference sample)        vector             /**/ 
/**/           with N(0,1) random values;                                  /**/ 
/**/                  call randgen(x,'NORMAL')                             /**/ 
/**/                                                                      ;/**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/          When the underlying process distribution is T(4),            /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/         * populate the x (reference sample) vector                    /**/ 
/**/           with T(4) random values;                                    /**/ 
/**/                       call randgen(x,'T',4);                          /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
   /* sort the reference sample matrix */ 
   call sort(x,1);   
  
  /* populate the control limits with order statistics from  
     the reference sample */ 
       UCLB = x[d,1]; 
       UCLA = x[c,1];                       
       LCLA = x[b,1]; 
       LCLB = x[a,1]; 
 
 
 
  /* Initialize the following variables */ 
       count = 0;  /* count the run-length */ 
        Ti_1 = 1;  /* initialize the lag1 plotting statistic */               
        Ti_2 = 1;  /* initialize the lag2 plotting statistic */ 
      signal = 0;  /* initialize the signalling variable */ 
 
 
 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/**/*                                                                      /**/ 
/**/     Beginning of Second do loop. This do loop itterate until the      /**/ 
/**/     chart signal. Following a signal the value of the count           /**/ 
/**/    (run-length) variable is stored. The do loop is then started       /**/ 
/**/     aganin with count = 0. This do loop is performed nsim times.      /**/ 
/**/                                                                      ;/**/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
 
 
    do until (signal=1); 
       count = count + 1; 
           y = J(n,1,0); 
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is Exp(1),           /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/   * populate the y vector (test sample) with EXP(1) random values;    /**/ 
/**/                       call randgen(y,'EXPO');                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         When the underlying process distribution is N(0,1),           /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/   * populate the y vector (test sample) with N(0,1) random values;    /**/ 
/**/                 call randgen(y,'NORMAL');                             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/          When the underlying process distribution is T(4),            /**/ 
/**/         the following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/   * populate the y vector (test sample) with T(4) random values ;     /**/ 
/**/                        call randgen(y,'T',4);                         /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
    /* Populate the shiftM vector */ 
      shiftM = J(n,1,shift); 
 
    /* Adding a shift to the the test sample */ 
      y = y + shiftM; 
 
 
    /* Sort the test sample */ 
        call sort(y,1);    
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/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Upper One-Sided 2-of-2 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                     *;                                                /**/ 
/**/          Ti   = y[j,1];                                               /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/      if ((Ti >= UCLA) & (Ti_1 >= UCLA)) then do; signal=1; end;       /**/ 
/**/                                                                       /**/ 
/**/           Ti_1 = Ti;                                                  /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/             For the Upper One-Sided 2-of-3 sign chart the             /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                        *;                                             /**/ 
/**/           Ti   = y[j,];                                               /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/   /*1*/ if (Ti_1 >= UCLA) & (Ti >= UCLA) then do; signal=1; end;      /**/ 
/**/                                                                       /**/ 
/**/   /*2*/ if (Ti_2  < UCLA) & (Ti_1 >= UCLA) & (Ti >= UCLA)             /**/ 
/**/         then do; signal=1; end;                                       /**/ 
/**/                                                                       /**/ 
/**/   /*3*/ if (Ti_2 >= UCLA) & (Ti_1  < UCLA) & (Ti >= UCLA)             /**/ 
/**/         then do; signal=1; end;                                       /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/            Ti_2 = Ti_1;                                               /**/ 
/**/            Ti_1 = Ti;                                                 /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 294

/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/        For the Upper One-Sided Improved 2-of-2 sign chart the         /**/ 
/**/            following block of code needs to be submitted              /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                      *;                                               /**/ 
/**/                                                                       /**/ 
/**/                  Ti = y[j,1];                                         /**/ 
/**/                                                                       /**/ 
/**/   if (Ti >= UCLB)  then do; signal=1; end;                            /**/ 
/**/                                                                       /**/ 
/**/   if ((Ti >= UCLA) & (Ti < UCLB)) &                                   /**/ 
/**/      ((Ti_1 >= UCLA) & (Ti_1 < UCLB)) then do; signal=1; end;         /**/ 
/**/                                                                       /**/ 
/**/       Ti_1 = Ti;                                                      /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
 
 
 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/         For the Upper One-Sided Improved 2-of-3 sign chart the        /**/ 
/**/             following block of code needs to be submitted             /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**/ 
/**/                                                                       /**/ 
/**/                       *;                                              /**/ 
/**/                  Ti = y[j,1];                                         /**/ 
/**/                                                                       /**/ 
/**/  /*1*/  if (Ti >= UCLB)  then do; signal=1; end;                      /**/ 
/**/                                                                       /**/ 
/**/  /*2*/  if ((Ti_1 >= UCLA) &  (Ti_1  < UCLB)) &                       /**/ 
/**/            ((Ti  >= UCLA)  &  (Ti <  UCLB))   then do; signal=1; end; /**/ 
/**/                                                                       /**/ 
/**/  /*3*/  if (Ti_2  < UCLA) & ((Ti_1 >= UCLA)  & (Ti_1 <  UCLB)) &      /**/ 
/**/            ((Ti >= UCLA) & (Ti < UCLB)) then do; signal=1; end;       /**/ 
/**/                                                                       /**/ 
/**/  /*4*/  if ((Ti_2 >= UCLA) &  (Ti_2 <  UCLB)) & (Ti_1 <  UCLA)  &     /**/ 
/**/            ((Ti >= UCLA) & (Ti < UCLB)) then do; signal=1; end;       /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/              Ti_2 = Ti_1;                                             /**/ 
/**/              Ti_1 = Ti;                                               /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/                                                                       /**/ 
/**/***********************************************************************/**/ 
/**/***********************************************************************/**; 
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   end; 
 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/**/*                                                                      /**/ 
/**/                          End of Second do loop                        /**/ 
/**/                   This do loop stops when signal = 1                  /**/ 
/**/                                                                      ;/**/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
/*222222222222222222222222222222222222222222222222222222222222222222222222222*/ 
 
 
   /* Concatenate the new run-length value to the previous run-length 
      values to create a vector containing all the run-length values */ 
     C_Run_length = C_Run_length//count; 
 
 
end;    
 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/**/*                                                                      /**/ 
/**/                          End of First do loop.                        /**/ 
/**/            This do loop stops when k = nsim i.e. when nsim            /**/ 
/**/            iterations is performed.                                   /**/ 
/**/                                                                      ;/**/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
/*111111111111111111111111111111111111111111111111111111111111111111111111111*/ 
 
/* Creating the vector RL_info that contains all the simulated run-length  
   values */ 
RL_Info = C_Run_length; 
 
 
/* Creating a dataset Temp1 from the vector RL_Info containing all the  
   simulated run-length values */ 
create Temp1 from RL_Info[colname={'C_RL'}]; 
append from RL_Info; 
 
quit; 
 
 
/* Analyzing the simulated run-length values using Proc Univariate and  
   output the mean, median, 25th percentile, 75th percentile, 5th percentile 
   and the 95th percentile to the Temp2 dataset*/ 
Proc Univariate data = Temp1; 
var C_RL;  
output out=Temp2 
          mean=U_ARL median=U_Median_RL 
          q1=U_Q1_RL q3=U_Q3_RL p5=U_P5_RL p95=U_P95_RL; 
run; 
 
/* Creating the dataset Final by merging Info and Temp2 */ 
Data Final; 
  merge Info Temp2; 
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/* Printing the dataset Final, containing the number of simulations, 
   test and reference sample size, control limits, 
   the size of the shift and the characteristics of the control chart */ 
 
Proc Print data = Final; 
run; 
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Mathcad Program 1 

 

Mathcad Program 1 is a program that is used to calculate the IC performance of the upper one-

sided improved 2-of-2 precedence control charts. This program is used to populate the IC (charting 

constant) Table for the upper one-sided improved 2-of-2 precedence chart in Chapter 5. 

 

Note that in the program below FARo  represents False Alarm Rate one i.e. the FAR at the first 

point in time and FARttf  represents False Alarm Rate two three four i.e. the FAR after the first point 

in time. 
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Mathcad Program 2 

 

Mathcad Program 2 is a program that is used to calculate the IC performance of the upper one-

sided improved 2-of-3 precedence control charts. This program is used to populate the IC (charting 

constant) Table for the upper one-sided improved 2-of-3 precedence chart in Chapter 5. 

 

Note that in the program below FARo  represents False Alarm Rate one i.e. the FAR at the first 

point in time. FARt  represents False Alarm Rate two i.e. the FAR at the second point in time and 

FARtff  represents False Alarm Rate three four five i.e the FAR after the second point in time. 

 

 

393:c        495:d       500:m       7:n       4:j  

 

          dmcdc udmucmudmucm
dmcdc

m
udmucmfcd  










 )1(
!!1!1

!
:, 11  

        










  

udm
jnj dwww

jnj

n
udmcp

0

1 1
!!1

!
1:1  

          










  

ucm
jnj

udm
jnj dwwwdwww

jnj

n
udmucmcp

0

1

0

1 11
!!1

!
:,2  

         



ucm

jnj dwww
jnj

n
ucmcp

0

1 1
!!1

!
:7  

 

























000)(70

)(70000

)(70000

0),(20)(70

00),(2)(70

:,

ucmcp

ucmcp

ucmcp

udmucmcpucmcp

udmucmcpucmcp

udmucmQc   

























1

1

1

1

1

:one    

























10000

01000

00100

00010

00001

:Id     00001:  

 

     dudmducmudmucmfcdoneudmucmQcIdARL
udm

,,: 1

0

1

0

    

  dudmducmudmucmfcdudmcpFARo
udm

,)(1:
0

1

0

   

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 299

     dudmducmudmucmfcdudmucmcpudmcpFARt
udm

,,(2)(1:
0

2
1

0

   

     dudmducmudmucmfcdudmucmcpucmcpudmcpFARtff
udm

,,(2)(72)(1:
0

2
1

0

   

 

ARL                        FARo                        FARt                        FARtff  
 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 300

References 

 

 

Amin, R.W., Reynolds, M.R. Jr., Bakir, S. (1995). “Nonparametric quality control charts based on the 

sign statistic”. Communications in Statistics - Theory and Methods, 24(6):1597-1623. 

 

Bain, L.J., Engelhardt, M. (1992). Introduction to probability and mathematical statistics, 2nd edition, 

Duxbury Press. 

 

Bissell, A.F. (1978). “An Attempt to Unify the Theory of Quality Control Procedures”. Bulletin in 

Applied Statistics, 5:113-128. 

 

Borror, C.M., Champ, C.W. (2001).  “Phase I control charts for independent Bernoulli data”. Quality 

and Reliability Engineering International, 17(5):391-396. 

 

Borror, C.M., Montgomery, D.C. and Runger, G.C. (1999). “Robustness of the EWMA control chart 

to non-normality”.  Journal of Quality Technology, 31(3):309-316. 

 

Brook, D., Evans, D.A. (1972). “An approach to the probability distribution of cusum run length”.  

Biometrika, 59(3):539-549. 

 

Chakraborti, S. (2000). “Run length, average run length and false alarm rate of Shewhart X-bar chart: 

Exact derivations by conditioning”. Communications in Statistics - Simulation and Computation, 

29(1):61-81. 

 

Chakraborti, S., Van der Laan, P., Bakir, S.T. (2001). “Nonparametric control charts: An overview and 

some results”. Journal of Quality Technology, 33(3):304-315. 

 

Chakraborti, S., Van der Laan, P., Van de Wiel, M.A. (2004). “A class of distribution-free control 

charts”. Journal of the Royal Statistical Society. Series C: Applied Statistics, 53(3):443-462. 

 

Chakraborti, S. (2007). “Run length distribution and percentiles: The Shewhart X  chart with unknown 

parameters”. Quality Engineering, 19(2):119-127. 

 

Chakraborti, S. and Graham, M.A. (2007). “Nonparametric control charts.” Encyclopedia of Statistics 

in Quality and Reliability,1:415 – 429, New York: John Wiley. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 301

 

Chakraborti, S., Eryilmaz, S., Human S.W. (2009a). “A phase II nonparametric control chart based on 

precedence statistics with runs-type signaling rules”. Computational Statistics and Data Analysis 

53(4):1054-1065. 

 

Chakraborti, S., Human, S.W., Graham, M.A. (2009b). “Phase I statistical process control charts: An 

overview and some results”. Quality Engineering, 21(1):52-62. 

 

Chakraborti, S., Human, S.W. and Graham, M.A. (2010). “Nonparametric (distribution-free) quality 

control charts.” In Handbook of Methods and Applications of Statistics: Engineering, Quality Control, 

and Physical Sciences. N. Balakrishnan, Ed., 298-329, John Wiley & Sons, New York. 

 

Champ,C.W., Woodall,W.H. (1987). “Exact Results for Shewhart Control Charts With Supplementary 

Runs Rules”. Technometrics, 29(4):393-399. 

 

Crosier, R.B. (1986). “A New Two-Sided Cumulative Sum Quality Control Scheme”. Technometrics, 

28(3):187-194. 

 

Crowder, S.V. (1987). “A Simple Method for Studying Run-Length Distributions of Exponentially 

Weighted Moving Average Charts”. Technometrics, 29(4):401-407. 

 

Crowder, S.V. (1989). “Design of Exponentially Weighted Moving Average Schemes”. Journal of 

Quality Technology, 21(3):155-162. 

 

Derman, C., Ross, S.M. (1997). Statistical aspects of quality control, San Diego: Academic Press. 

 

De Vargas, V.d C.C., Lopes, L.F.D., Souza, A.M. (2004). “Comparative study of the performance of 

the CUSUM and EWMA control charts”. Computers & Industrial Engineering, 46(4):707-724. 

 

Farnum, N.R. (1994). Modern statistical quality control and improvement, Duxbury. 

 

Fu, J.C., Lou, W.Y.W. (2003). Distribution theory of runs and patterns and its applications: a finite 

Markov chain imbedding approach, World Scientific Publishing Co. Pte. Ltd. 

 

Fu, J.C., Spiring, F.A. and Xie, H. (2002). “On the average run lengths of quality control schemes 

using a Markov chain approach.” Statistics and Probability Letters, 56, 369-380. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 302

Graham, M.A., Human, S.W. and Chakraborti, S. (2009). “A nonparametric EWMA control chart 

based on the sign statistic.” Technical report, 09/04, Department of Statistics, University of Pretoria. 

 

Graham, M.A., Chakraborti, S. and Human, S.W. (2011). (Accepted) “A nonparametric EWMA sign 

chart for location for individual measurements.” Quality Engineering. 

 

Gibbons, J.D., Chakraborti, S. (2003). Nonparametric statistical inference, 4th edition, New York: 

Marcel Dekker. 

 

Hawkins, D.M., Olwell, D.H. (1998). Cumulative sum charts and charting for quality improvement, 

Springer-Verlag, New York. 

 

Human, S.W., Graham, M.A. (2007). “Average run lengths and operating characteristic curves”. 

Encyclopedia of Quality and Reliability, 1:159-168, New York: John Wiley. 

 

Human, S.W., Chakraborti, S., Smit, C.F. (2009). “Nonparametric Shewhart-type control charts with 

runs-type signalling rules”, Technical Report, 09/02, Department of Statistics, University of Pretoria. 

 

Human, S.W., Chakraborti, S., Smit, C.F. (2010). “Nonparametric Shewhart-type sign control charts 

based on runs”. Communications in Statistics-Theory and Methods, 39(11):2046-2062. 

 

Human, S.W., Kritzinger, P., Chakraborti, S. “Robustness of the EWMA control chart for individual 

observations”. Journal of Applied Statistics, First published on 24 January 2011. 

 

Jones, L.A., Champ, C.W., Rigdon, S.E. (2001). “The Performance of Exponentially Weighted 

Moving Average Charts With Estimated Parameters”. Technometrics, 43(2):156-167. 

 

Jones, L.A., Champ, C.W., Rigdon, S.E. (2004). “The run length distribution of the CUSUM with 

estimated parameters”. Journal of Quality Technology, 36(1):95-108. 

 

Khoo, M.B.C. (2003). “Design of Runs Rules Schemes”. Quality Engineering, 16(1):27-43. 

 

Khoo, M.B.C. (2005). “A Control Chart Based on Sample Median for the Detection of a Permanent 

Shift in the Process Mean”. Quality Engineering, 17(2):243-257. 

 

Khoo, M.B.C., Ariffin, K.N. (2006). “Two Improved Runs Rules for the Shewhart X  Control Chart” 

Quality Engineering, 18:173-178. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 303

Klein, M. (2000). “Two alternatives to the Shewhart X  control chart”.  Journal of Quality 

Technology, 32(4):427-431. 

 

Kotz, S., Balakrishnan, N., Read, C.B., Vidakovic, B., Johnson, N.L. (2006).  Encyclopedia of 

statistical sciences 2nd edition, John Wiley. 

 

Lucas, J.M., Saccucci, M.S. (1990). “Exponentially weighted moving average control schemes: 

properties and enhancements”. Technometrics, 32(1):1-29. 

 

Montgomery, D.C. (2005). Introduction to statistical quality control, 5th edition, John Wiley. 

 

Montgomery, D.C., Runger, G.C. (2003). Applied Statistics and Probability for Engineers, 3rd ed., 

Wiley, New York. 

 

Page, E.S. (1954). “Continuous Inspection Schemes”. Biometrics, 41(1):100-115. 

 

Page, E.S. (1955). “Control Charts with Warning Lines”. Biometrics, 42:243-257. 

 

Page, E.S. (1962). “A Modified Control Chart with Warning Lines”. Biometrica, 49:171-176. 

 

Quesenberry, C.P. (1991a).  “SPC Q-charts for Start-Up Processes and Short or Long Runs”. Journal 

of Quality Technology, 23(3):213-224 

 

Quesenberry, C.P. (1991b).  “SPC Q-charts for a Binomial Parameter p: Short or Long Runs”. Journal 

of Quality Technology, 23(3):239-246 

 

Quesenberry, C.P. (1991c).  “SPC Q-charts for a Poisson Parameter  : Short or Long Runs”. Journal 

of Quality Technology, 23(4):296-303 

 

Quesenberry, C.P. (1995a).  “On properties of Q-charts for variables”. Journal of Quality Technology, 

27(3):184-203 

 

Quesenberry, C.P. (1995b).  “On properties of Binomial Q-charts for Attributes”. Journal of Quality 

Technology, 27(3):204-213 

 

Quesenberry, C.P. (1995c).  “Geometric Q-charts for High Quality Processes”. Journal of Quality 

Technology, 27(4):304-315 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 304

Quesenberry, C.P. (1995d).  “On properties of Poisson Q-charts for attributes”. Journal of Quality 

Technology, 27(4):293-303 

 

Roberts, S.W. (1958). “Properties of Control Chart Zone Tests”. The Bell System Technical Journal, 

37:83-114. 

 

Roberts, S.W. (1959). “Control chart tests based on geometric moving averages”. Technometrics, 

1(3):239-250. 

 

Ross, S.M. (1997). Introduction to Probability Models, 6th  edition, Academic Press. 

 

Saccucci, M.S. and Lucas, J.M. (1990). “Average Run Lengths for Exponentially Weighted Moving 

Average Control Schemes Using the Markov Chain Approach”. Journal of Quality Technology, 

22(2):154-157. 

 

SAS®9.2 SAS Institute, Inc. 

 

Wheeler, D.J. (1983). “Detecting a Shift in Process Average: Tables of the Power Function for X 

Charts”. Journal of Quality Technology, 15:155-170. 

 

Weindling, J.I., Littauer, S.B., De Oliveira, J.T. (1970). “Mean Action Time of the X  Control Chart 

with Warning Limits”. Journal of Quality Technology, 2(2):79-85. 

 

Western Electric Company (1956), Statistical Quality Control Handbook, Western Electric 

Corporation, Indianapolis, IN. 

 

Woodall, W.H. (1984). “On the Markov Chain Approach to the Two-Sided CUSUM Procedure” 

Technometrics, 26(1):41-46 

 

Woodall, W.H. (2000). “Controversies and contradictions in statistical process control” Journal of 

Quality Technology, 32(4):341-350. 

 

Woodall, W.H., Spitzner, D.J., Montgomery, D.C., Gupta, S. (2004). “Using Control Charts to 

Monitor Process and Product Quality Profiles”. Journal of Quality Technology, 36(3):309-320. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 


	1 of16 Final Title Page
	2 of16 Final Declaration
	3 of16 Final Acknowledgements
	4 of16 Final Summary
	5 of16 Final Table of contents
	6 of16 Final Chapter1
	7 of16 Final Chapter2
	8 of16 Final Chapter3
	9 of16 Final Chapter4
	10 of16 Final Chapter5
	11 of16 Final Chapter6
	12 of16 Final Chapter1 Appendix
	13 of16 Final Chapter2 Appendix
	14 of16 Final Chapter5 Appendix
	15 of16 Final SAS & Mathcad Appendix
	16 of16 Final References



