

The in vitro and in vivo anti-inflammatory properties and cytotoxicity of

extracts of Euphorbia hirta

By

Okobi Eko Ekpo

Submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy (PhD)

In the Faculty of Health Sciences,

Department of Anatomy

University of Pretoria

South Africa

Supervisor: **Prof. E Pretorius**

Co-Supervisor: Dr. M. Bester

Department of Anatomy,

Faculty of Health Sciences

October 2008

© University of Pretoria

ABSTRACT

Asthma is considered one of the most common respiratory complaints in the world today but a medical cure for this condition is currently not available. The use of herbal medicines to treat asthma has however been reported and *Euphorbia hirta* is one such herb. The alkaloids, flavonoids, glycosides, sterols, tannins and triterpenoids in *E. hirta* appear to exert the anti-asthma effects reported.

In the first part of this study, the aqueous, acetone, dichloromethane and hexane extracts of *E. hirta* were evaluated for their effects on the lysosomal membrane integrity, cell viability and cell number of MRC-5 cell-line using the NR/MTT/CV assay. Hydrocortisone was used as a pharmaceutical control. The differences between the effects of the different extracts were investigated and the effects of the extracts were compared with hydrocortisone. Results obtained showed that hydrocortisone was relatively toxic to the MRC-5 cells whereas all four extracts studied showed very limited cytotoxic effects, with the aqueous extracts generally exhibiting the least effects.

In the second part of this study, the effects of the aqueous *E. hirta* extract on the blood coagulation system and general airway wall microstructure and ultrastructure were investigated using the BALB/c mouse asthma model. Hydrocortisone was also used as a pharmaceutical control. Parameters studied included inflammatory cell population in peripheral blood and their migration into the lung parenchyma; platelet aggregation and fibrin fibre morphology; fibroblast and mucous cell proliferation; alveolar cell numbers, lamellar body formation as

ii

well as filopodia formation. The animal weights were continuously being monitored throughout the study.

Results from the animal studies showed that the aqueous extract of *E. hirta* had limited effects on changes in the animal weights and did not cause fragility of blood fibrin fibres nor change the integrity and morphology of the platelets in the mice as seen in those treated with hydrocortisone. *E. hirta* extracts also significantly reduced the number of active inflammatory cells (especially neutrophils, eosinophils and basophils); restored the histological alterations observed in respiratory structures studied and had diverse, dose-dependent beneficial ultrastructural effects like reduction of smooth muscle hypertrophy, inhibition of macrophages into the airway parenchyma, among others.

The final judgment and conclusion of this study was that the aqueous *E. hirta* extract did not show cytotoxic effects and could be used for the treatment of asthma in the BALB/c mice at doses ranging 25-62.5mg/kg. Further research leading to clinical trials is recommended after testing the potency of equivalent doses of this extract in other animal asthma models.

DECLARATION

I, Okobi Ekpo hereby declare that this thesis entitled:

"The *in vitro* and *in vivo* anti-inflammatory properties and cytotoxicity of extracts of *Euphorbia Hirta*"

which I herewith submit to the University of Pretoria for the Degree of Doctor of Philosophy in Anatomy, is my own original work and has never been submitted for any academic award to any other tertiary institution for any degree.

Date

Okobi Ekpo

Department of Anatomy, Faculty of Health Sciences,

University of Pretoria,

Pretoria

South Africa

ACKNOWLEDGEMENTS

I would like to first and foremost thank God almighty, for the gift of life and for the good health He permitted me to enjoy throughout the period of my studies and research for this degree. I also thank Him for provision, knowledge and wisdom for this project.

I also acknowledge and thank the following individuals and institutions:

The Anatomy Department of the University of Pretoria, for granting me the opportunity to undertake and complete my study and Prof Meiring (Head of the department) for administrative assistance and funding for the project.

Prof. Etheresia Pretorius, my supervisor, for all her academic and intellectual input to the project as well as for her mentorship, guidance, constant encouragement and patience with me during all stages of this project. I enjoyed working with her!

Dr. Megan Bester my co-supervisor for her academic and technical guidance especially in the cell culture work, as well as her painstaking review, corrections and suggestions towards improving the overall quality of the final draft.

Maurius Loots and Gert Lewis for their respective technical assistance, Eureke Smit for helping with the blood count and coagulation studies and Grace Ngwenya for helping with the cell culture work and light microscopy tissue processing. Also, my thanks go to all the 2006 Honours students in the Histology/Cell Biology Section of the Department who helped with the collection of specimens during the animal studies.

Frank van der Kooy and Angelique Joubert both of the Department of Botany, UP, for their assistance with the identification and preparation of the plant material.

The staff of the Onderstepoort Animal Care facility (Biomedical Research Centre, Faculty of Veterinary Sciences of the University of Pretoria) who helped with my animal studies, especially Dr. Auer, Patrick Selahle and Lebo Sentle

The Unit of Microscopy and Micro-analysis of the University of Pretoria, for use of their facilities and technical assistance. Special thanks to Chris van der Merwe and Alan Hall.

LAUTECH Ogbomosho Nigeria, for financial support with special thanks to Dr. Toyin Oyewo, Dr Wole Omotosho and Mr. Ajibade.

Present and former staff of the Anatomy Unit of the MBS Department at the University of the Western Cape, especially Drs. Fisher, Kotze, Akpa and Rasool for their understanding, co-operation and support.

All my friends - Uche, Kemi Udom (late), Sister Taiwo, Mashishi, Utstas Jimoh, Innosemi, Solo, Bassey, Nkasi, Utem, Evidence, Davies, Mayowa, Sunday Falae, Moses, Avwioro, Raji, Opus, Bobo, Dr. Oladejo, Koffi, Opus, Andy, Ernest, Amadi, Odey, Amaka, KK Ojo - for their moral support.

My special thanks go to Mr. and Mrs. Grace and Innocent Oboma for their diverse assistance.

To my mother, Ma' Veronica Ekpo and my siblings – Isu, Nneoyi, Maxwell, Tessy, Eddy, Titus, Mercy and Maria; and my extended family, I say thanks for their love, emotional support and prayers.

Last, but indeed not least, my family: my wife Christy for her true love, care, emotional support, prayers and constant encouragement; and my son Dave for bearing with my spending so much time working on my thesis rather than playing with him.

DEDICATION

To the memory of my former life coach and loving father, Chief Eko Ekpo Offem who laid for me, a solid foundation for morality, character, discipline and hard work but did not live long enough to see how these have helped to shape me.

LIST OF PUBLICATIONS

Pretorius E, Ekpo OE, Smit E (2007): Comparative ultrastructural analyses platelets and fibrin networks using the murine model of asthma. Experimental and Toxicologic Pathology 59 (2): 105-114.

Pretorius E, Humphries P, Ekpo OE, Smit E, van der Merwe CF (2007): Comparative ultrastructural analysis of mouse, rabbit and human platelets and fibrin networks. Microsc. Res Tech. 70(9): 823-7.

Ekpo OE and Pretorius E (2007): Euphorbia hirta and its anti-inflammatory properties: news and views. South African Journal of Science 103 (5, 6): 201-203.

Submitted for Publication

Oberholzer HM, Pretorius E, Smit E, Ekpo OE, Humphries P, Auer RE (2007): Investigating the effect of Withania somnifera, selenium and hydrocortisone on blood count and bronchial lavage of Balb/c mice. (*Scandinavian Journal of Laboratory Animal Science*)

Ekpo OE and Pretorius E (2007): Using the Balb/c asthmatic mouse model to investigate the effects of hydrocortisone and an herbal asthma medicine on animal weight. (*Scandinavian Journal of Laboratory Animal Science*)

TABLE OF CONTENTS

TITLE PAGE		
ABSTRACT		
DECLARA	ΓΙΟΝ	iv
ACKNOWL	EDGEMENTS	v
DEDICATIO	N	viii
TABLE OF	CONTENTS	x
LIST OF TA	ABLES	xviii
LIST OF FI	GURES	xix
LIST OF ABBREVIATIONS AND SYMBOLS		
CHAPTER	ONE: General Introduction	1
1.1	General Introduction	2
CHAPTER	R TWO: Literature Review	9
2.1.	Asthma: an introduction	10
2.2.	Development and expression of asthma	11
2.2.1.	Host factors	12
2.2.1.1.	Genetics	12
2.2.1.2.	Obesity	13
2.2.1.3.	Sex	13
2.2.2.	Environmental factors	13
2.2.2.1.	Allergens	14
2.2.2.2.	Infections	15
2.2.2.3.	Occupational sensitizers	16

2.2.2.4.	Tobacco smoke	17
2.2.2.5.	Outdoor/indoor air pollution	18
2.2.2.6.	Diet	19
2.3.	Classification of asthma	19
2.3.1.	Extrinsic (allergic or atopic) asthma	19
2.3.2.	Intrinsic (non-allergic or non-atopic) asthma	20
2.3.3.	Occupational asthma	20
2.3.4.	Exercised-induced asthma (EIA)	21
2.4.	Epidemiology of asthma	22
2.5.	Aetiology and pathophysiology of asthma	22
2.6.	Asthma and genetics	23
2.7.	The inflammatory process of asthma	25
2.7.1.	The main mediators of asthma	28
2.7.1.1.	Chemokines	28
2.7.1.2.	Cysteinyl leukotrienes	28
2.7.1.3.	Cytokines	29
2.7.1.4.	Histamine	29
2.7.1.5.	Nitric oxide (NO)	29
2.7.1.6.	Prostaglandin D2	29
2.7.2.	Cellular influx during asthma	30
2.7.2.1.	Mast cells	30
2.7.2.2.	Eosinophils	30
2.7.2.3.	T-lymphocytes	30
2.7.2.4.	Dendritic cells:	30
2.7.2.5.	Macrophages	30
2.7.2.6.	Neutrophils	31
2.8.	Structural changes in asthmatic airways	31
2.9.	Treatment of asthma	32
2.9.1.	Controller medications	33
2.9.1.1.	Hydrocortisone (HC)	35
2.9.2.	Reliever medications	37
2.9.3.	Complementary and Alternative Medicine (CAM)	37

2.9.3.1	Herbal remedies and medicines for asthma	40
2932	Effects of vitamins and other food supplements	44
2.3.3.2.		
2.9.3.3.		44
2.10.	Animai astrima models	40
2.10.1.	BALB/c mouse models	49
2.11.	Cell cultures	50
2.12.	Aims and objectives of study.	52
CHAPTER	R THREE: Effects of HC and extracts of <i>E. hirta</i> on the fibroblast	54
MRC-5 ce	Il line	
3.1.	Introduction	55
3.2.	Hypothesis	57
3.3.	Aims of study	57
3.4.	Materials	58
3.4.1.	MRC-5 cell line	58
3.4.2.	HC and <i>E. hirta</i>	58
3.4.3.	Media, supplements, reagents and plastic ware	59
3.5.	Methods	62
3.5.1.	Cultivation, maintenance and preservation of the MRC-5	60
	fibroblast cell line	
3.5.2.	Exposure of cells to the treatment agents	64
3.5.3.	The combined NR, MTT and CV (NR/MTT/CV) bioassay	63
3.6.	Data management and statistical analysis	64
3.6.1.	Pilot study with HC	65
3.6.2.	Treatment with the aqueous extract of <i>E. hirta</i>	67
	Effects of acetone and acetone extracts of <i>E hirta</i> on MRC-5	
3.6.3.	cells	68
3.6.4.	Effects of DCM and DCM extracts of <i>E hirta</i> on MRC-5 cells	72
	Effects of hexane and hexane extracts of <i>E hirta</i> on MRC-5	
3.6.5.	cells	75
	Analysis of the effects of the different solvents, compared with	
3.6.6.	their E. hirta extracts and solvent extracts compared with water	81

extract.

3.6.6.1.	Comparative effects in the NR Assays	80
3.6.6.2.	Comparative effects in the MTT Assays	80
3.6.6.3.	Comparative effects in the CV Assays	80
3.6.7.	Comparison between all organic solvent extracts and the	82
	aqueous extract of <i>E. hirta</i> .	
3.6.8.	Comparison between treatment with HC and treatments with all	83
	three organic solvent extracts of <i>E. hirta</i> .	
3.6.8.1.	Comparative effects in the NR Assay	83
3.6.8.2.	Comparative effects in the MTT Assay	84
3.6.8.3.	Comparative effects in the CV Assay	84
3.6.9.	Comparative effects between the three organic solvent extracts	85
3.7.	Discussion	87
3.8.	Conclusion	90
CHAPTER	R FOUR: Animal Experiments and Weight Studies	92
4.1.	Introduction	93
4.1.1.	Aim Of Study	93
4.2.	Materials and methods	93
4.2.1.	Materials	93
4.2.1.1.	BALB/c Mice	93
4.2.1.2.	Hydrocortisone (HC)	93
4.2.1.3.	Euphorbia hirta	94
4.2.1.4.	Reagents and equipment	95
4.2.2.	Methods	95
4.2.2.1.	Animal care and grouping	95
4.2.2.2.	Experimental procedure	96
4.2.2.2.1.	Sensitization	97
4.2.2.2.2.	Nebulization	97
4.2.2.3.	Administration of the test agents	98
4.3.	Results and discussion	101
4.3.1.	General effects of HC and E. hirta on asthmatic mice	101
4.3.2.	Effects of HC and <i>E. hirta</i> on body weights of asthmatic mice	101

1321	Analysis of intra group weight changes on selected days	105
4.3.2.1.	Forth and late effects of immunication	105
4.3.2.1.1		107
4.3.2.1.2	Effects of first time treatment on nebulization	111
4.3.2.1.3	Midterm and late effects of continuous treatment	112
4.3.2.1.4	Effects of repeated nebulization on weight changes	112
	Early and terminal post-nebulization treatment effects after	
4.3.2.1.5	nebulization on weight changes	113
4.3.2.2.	Comparison of progressive inter-group weight changes	113
4.3.2.2.1	Control versus asthma group	113
4.3.2.2.2	Control versus treatment groups	114
4.3.2.2.3	Asthma versus other groups	114
4.3.2.2.4	Low dose versus high dose groups	116
4.3.2.2.5	Cortisone versus <i>E. hirta</i> groups	116
4.4.	Conclusion	118
CHAPTE	R FIVE: Analysis of Inflammatory Leukocytes	120
5.1.	Introduction	121
5.1.1.	Eosinophils	122
5.1.2.	Lymphocytes	124
5.1.3.	Neutrophils	125
5.1.4	Aim of study	126
5.2.	Materials and Methods	126
5.3.	Results	126
5.4.	Discussion	130
5.4.1.	Effects of <i>E. hirta</i> aqueous extract	130
5.4.2.	Effects of hydrocortisone	132
5.4.3.	Effects of treatment on monocyte count	132
5.5.	Conclusion	134
OUNDIE) OIV, I literatural studies of the Disc descendation such that	400
	COIA. UNIASTRUCTURAL STUDIES OF THE BIOOD COAQUIATING SVSTEM	136

-		
6.1.	Introduction	137
6.1.1.	Aim of study	140
6.2.	Materials and methods	140

6.2.1.	Inducing and treating asthma in the BALB/c mice	140
6.2.2.	Preparation of fibrin clots	141
6.2.3.	Preparation of washed fibrin clot for Scanning Electron	142
	Microscopy	
6.3.	Results	142
6.4.	Discussion	147
6.5.	Conclusion	151

CHAPTER SEVEN: Inflammatory Cell Infiltration and Structural Changes in 153 the Airways

7.1.	Introduction	154
7.2.	Mixed inflammatory infiltrate in the lung parenchyma	155
7.2.1.	Eosinophils	156
7.2.2.	Lymphocytes	156
7.2.3.	Mast cells	157
7.2.4.	Basophils	157
7.2.5.	Macrophages	158
7.2.6.	Polymorphonuclear neutrophils	158
7.2.7.	Fibroblasts	159
7.2.8.	Myofibroblasts	159
7.2.9.	Dendritic cells	160
7.2.10.	Aim of study	161
7.3.	Materials and methods	161
7.3.1.	Materials	161
7.3.1.1.	BALB/c mice	161
7.3.1.2.	Hydrocortisone (HC)	161
7.3.1.3.	Euphorbia hirta	162
7.3.1.4.	Reagents and equipment	162
7.3.1.5.	Light microscopy	163
7.3.2.	Transmission electron microscopy (TEM)	163
7.4.	Results	164
7.4.1.	Light microscopy	164
7.4.2.	Transmission electron microscopy (TEM) analysis	172

7.4.2.1.	Cell types	172
	Fibroblasts	172
	Lymphocytes	172
	Monocytes	172
	Neutrophils	172
	Macrophages	173
	Plasma cells	173
7.4.2.2.	Other structures	173
	Collagen fibres	173
	Lamellar bodies	173
	Thick alveolar walls	173
	Mitochondria	173
	Striations	173
	Mucous-secreting structures	173
	Smooth muscles	173
	Filopodia	174
7.5.	Discussion	181
7.5.1.	Cellular structures	181
	Fibroblasts	181
	Lymphocytes	182
	Neutrophils	183
	Monocytes	184
	Macrophages	184
	Plasma cells	185
	Pneumocytes	186
7.5.2.	Other structures	187
	Collagen deposition	187
	Lamellar bodies	188
	Alveolar wall thickness	190
	Mitochondria	190
	Striations	191
	Mucus-secreting structures	191
	Smooth muscle cells	192

7.6.	Filopodia Conclusion	193 196
CHAPTER	EIGHT: Concluding Discussion	199
0.1.		210
REFERENCES		210
APPENDICES		287

LIST OF TABLES

Table 3.1:	The effects of all solvent and extracts of <i>E hirta</i> as determined by the NR/MTT/CV assays.	79
Table 3.2:	Summary of the comparative effects of different E hirta solvent extracts as well as HC, as determined by the NR/MTT/CV assays	86
Table 4.1:	Groups for the short-term and long-term studies	96
Table 4.2:	Day of weighing and expected effects on weight changes	99
Table 4.3a:	Intra-group mean weights on selected reference days (ST study)	106
Table 4.3b:	Intra-group mean weights on selected reference days (LT study)	106
Table 4.4:	Percentage weights relative to baseline weights	107
Table 5.1:	Summary of the mean values obtained from white blood cell counts for all experimental groups	127
Table 5.2:	Summary of the percentage values obtained from white blood cell counts for every exposure group	128
Table 7.1:	Summary of the comparative effects of HC and E hirta extract treatments on inflammatory cell infiltration and structural changes in the airways as determined by TEM analysis	195

LIST OF FIGURES

- Figure 3.1: The effect of 0-5.56 μ M HC on lysosomal membrane integrity, 66 cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=4) ± SD. *Differences are significant p ≤ 0.05
- Figure 3.2: The effect of 0-11.11mg/ml aqueous extract of *E. hirta* on 68 lysosomal membrane integrity, cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=4) ± SD. *Differences are significant p≤0.05
- Figure 3.3: The effect of (a) 0-11.11% of acetone solvent, and (b): 0- 70 11.11mg/ml acetone extract of *E. hirta*, on lysosomal membrane integrity, cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=2) \pm SD. * Differences are significant at p \leq 0.05.
- Figure 3.4: Comparison of the effects of 24-hour exposure to the carrier 71 acetone and *E. hirta* acetone extracts on the MRC-5 cell line;
 a) NR, b) MTT and c) CV assay. * Differences are significant for the NR and CV assays, p ≤ 0.05.
- Figure 3.5: The effect of (a) 0-11.11% DCM and (b) 0-11.11mg/ml DCM 73 extract of *E. hirta* on lysosomal membrane integrity, cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=2) ± SD. *No significant differences at p ≤ 0.05
- Figure 3.6: Comparison of the effects of 24-hour exposure to the carrier 74 DCM and DCM extracts of *E. hirta* on the MRC-5 cell line; a) NR, b) MTT and c) CV assay. * Differences significant at p ≤ 0.05

- Figure 3.7: The effect of (a) 0-11.11% carrier hexane and (b) 0- 76 11.11mg/ml hexane extract of *E. hirta* on lysosomal membrane integrity, cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=2) \pm SD. *Significant differences were seen at p \leq 0.05
- Figure 3.8: Comparison of the effects of 24-hour exposure to hexane and 78 hexane extracts of E. hirta on the MRC-5 cell line; a) NR, b) MTT and c) CV assay.* Differences are significant for the NR, MTT and CV assays respectively as indicated; p ≤ 0.05
- Figure 3.9a- Comparison of the effects of 24-hour exposure to HC; 81
 c: aqueous, acetone, DCM and hexane extracts of E. hirta on lysosomal membrane integrity, cell viability and number measured using the NR/MTT/CV assay. Data expressed as mean (n=2) ± SD. * Differences are significant at p ≤ 0.05
- Figure 4.1: Histogram illustrating weight changes during the ST study for 109 the control, asthma, high and low hydrocortisone, high and low *E. hirta* treatment groups
- Figure 4.2: Histogram illustrating weight changes during the LT study for 109 the control, asthma, high and low hydrocortisone, high and low *E. hirta* treatment groups
- Figure 4.3: Line graph illustrating the trend of changes in weight during the 110 ST study for the control, asthma, high and low hydrocortisone, high and low E. hirta treatment groups
- Figure 4.4: Line graph illustrating the trend of changes in weight during the 110 LT study for the control, asthma, high and low hydrocortisone, high and low *E. hirta* treatment groups

- Figure 5.1a: Histogram showing the mean values obtained from white blood 129 cell counts per group
- Figure 5.1b: Histogram showing the percentage white blood cell counts per 129 group
- Figure 6.1. (a) Control fibrin network with thick, major fibres as well as 143 thin, minor fibres. Label A ¼ thick, major fibres; Label B ¼ thin, minor fibres. (b) Control platelet aggregate forming dense, round aggregate with pseudopodia.
- Figure 6.2. (a) Fibrin network from asthmatic BALB/c mice showing thick, 143 major fibres as well as thin, minor fibres. Label A ¼ thick, matted, major fibres; Label B ¼ thin, minor fibre forming a dense network. (b) Platelet aggregate from asthmatic BALB/c mice forming course, granular aggregate.
- Figure 6.3. (a) Fibrin network from LHC (100 mg/kg) asthmatic BALB/c 144 mice, forming flimsy fibrin network. Label A ¼ flimsy fibres with breakages. (b) Platelet aggregate from LHC (100 mg/kg) asthmatic BALB/c mice. Label A ¼ granular platelet aggregate.
- Figure 6.4. (a) Fibrin network from HHC treated (125 mg/kg) asthmatic 146
 BALB/c mice network. Label A ¼ Flimsy fibre network. (b)
 Platelet aggregate from high dose HC-treated (125 mg/kg)
 asthmatic BALB/c mice forming granular aggregate
- Figure 6.5. (a) Fibrin network from asthmatic BALB/c mice treated with E. 146 hirta (0.01 ml of 62.5mg/kg plant material) showing fibrin network with thick, major fibres as well as thin, minor fibres.
 Label A ¼ thick, major fibres; Label B ¼ thin, minor fibres. (b) Round aggregate with pseudopodia. Label A ¼ pseudopodia

- Figure 7.1: Histological cross sections of control mice lungs showing A) 166 and B) thin and continuous alveolar walls; regular shaped alveoli. H and E staining. Magnification X 100
- Figure 7.2: Histological cross sections of asthma mice lungs showing A) 167 thick and discontinuous alveolar walls and B) thick smooth muscle mass in walls of distal airways indicated with arrows. H and E staining. Magnification X 100
- Figure 7.3: Histological cross sections of the lungs of mice treated with 168 HHC showing A) and B) alveoli that are relatively small but numerous; alveolar walls moderately thick, alveoli compact and irregular in shape; alveolar walls discontinuous; smooth muscle thickenings of terminal airways seen, shown with arrows. H and E staining. Magnification X 100
- Figure 7.4: Histological cross sections of the lungs of mice treated with low 169 HC showing A) and B) alveolar walls discontinuous and irregular; smooth muscle, masses seen in walls of distal airways) H and E staining. Magnification X 100
- Figure 7.5: Histological cross sections of the lungs of mice treated with 170 high EH showing A) and B) thick alveolar walls; alveoli very compact and irregular in shape; alveolar walls discontinuous (shown with arrows in B). H and E staining. Magnification X 100
- Figure 7.6: Histological cross sections of the lungs of mice treated with low 171 EH showing A) thin alveolar walls; less compact and more patent alveoli; alveolar walls are only partially discontinuous (shown with arrows) and B) thinner alveolar walls; alveoli less compact and irregular in shape; alveolar walls only partially

discontinuous (arrowed). H and E staining. Magnification X 100

- Figure 7.7: TEM micrograph of lung tissue from control mice showing A = 175 Fibroblast (F), scanty collagen fibres [x7500]; B = Macrophage and lymphocytes in interstitium [x9800]; C = Collagen fibres [x13000]; D = Neutrophil, macrophage [x7500]; E = Fibroblast, neutrophils scanty fibres x5900; F = Lymphocytes and macrophage in lung interstitium [x4300]
- Figure 7.8: TEM micrograph of lung tissue from asthma mice showing A = 176 Types 1 and 2 (T1; T2); thick walls [x3600]; B = Fibroblasts (F), many collagen fibres, smooth muscle [x5900]; C = Thick walls (TW), Type 1 cells (T1); macrophage (Ma) [x4300]; D = Macrophage (Ma), collagen fibres, smooth muscle [x9800]; E = Large Lymphocytes (LL); fibres (F), mitochondria (Mi) [x18000]; F = Many collagen fibres (CF), fibroblast, striations [x5900]
- Figure 7.9: TEM micrograph of lung tissue from asthma mice treated with 177 LHC showing A = Monocyte (Mo), lymphocytes (L) [X5900]; B
 = Fibroblast, collagen fibres (CF) [X7500]; C = Mucous secreting structures [X4300]; D = Thick walls, lamellar bodies LB, Types 1, 2 cells [X3600]; E = Lymphocyte with vesicles (LV), Types 1, 2 cells [X2800]; F = Thick walls, macrophages (M), T2 cells [x3600]
- Figure 7.10: TEM micrograph of lung tissue from asthma mice treated with 178 HHC showing A = Fibroblast and scanty collagen fibres [x9800], B = Fibroblast and scanty collagen fibres [x9800], C = Fibroblasts, few fibres, many mitochondria [x9800], D = Fibroblast (F), relatively more fibres (CF) [x9800], E = Unmyelinated nerves and collagen fibres [x13000], F = Very scanty collagen fibres, red blood cells [x4300]

- Figure 7.11: TEM micrograph of lung tissue from asthma mice treated with 179 HEH showing A = Highly fibrous lung parenchyma, fibroblast [x5900]; B = Highly fibrous lung parenchyma, fibroblast [X5900]; C = Fibroblasts (F) and fibres [x7500]; D = Smooth muscle (SM) cell, many fibres [x9800]
- Figure 7.12: TEM micrograph of lung tissue from asthma mice treated with 180 LEH showing A = Mucus gland (Mu) and many fibres [x3600];
 B = Fibroblast (F), many fibres [x13000]; C = Alveolar walls, Type 1 (T1) cells, lamellar bodies [x4300]; D = Bronchioles: Plasma cell (P), lymphocyte (L), Rough ER [x4300]; E = Bronchial seromucous gland and cell [x7500]; F = Bronchial artery containing red blood cells [x5900]

LIST OF ABBREVIATIONS AND SYMBOLS

AHR	Airway hyperresponsiveness
ASM	Airway smooth muscle
AI (OH)₃	Aluminium trioxide
ANOVA	Analysis of Variance
AS	Asthma
ACD	Atopic contact dermatitis
PWDs	Percentage weight differences
BTG	Beta-thromboglobulin
BALF	Bronchoalveolar lavage fluid
Ca ²⁺	Calcium ion
CD4+	Cluster of differentiation 4
cm ²	Centimetre squared
CAM	Complimentary and Alternative Medicine
Conc.	Concentration
СТ	Control
CV	Crystal Violet
DCM	Dichloromethane
DMSO	DImethyl sulphoxide
DNA	Deoxyribonucleic acid
DPBS	Dulbecco's Phosphate Buffered Saline
ddH ₂ O	Double distilled and deionized water
EMEM	Eagles Minimum Essential Medium
EIA	Exercise induced asthma
ECP	Eosinophil cationic protein

EDTA	Ethylene diamine tetra acetate
ECM	Extracellular matrix
FCS	Foetal Calf Serum
FER	Food efficiency ratio
GM-CSF	Granulocyte monocyte colony stimulating factor
HBSS	Hanks Balanced salt solution
HC	Hydrocortisone
HASMC	Human airway smooth muscle cells
Hu-PBMC	Human peripheral blood Mononuclear cells
IFN-γ	Interferon-gamma
IL	Interleukin
lgE	Immunoglobulin E
ICS	Inhaled corticosteroids
IFN-a	Interferon-alpha
KCI	Potassium chloride
KH_2PO_4	Potassium dihydrogen phosphate
Kg	Kilogram
LT	Long-term
LEH	Low EH
LHC	Low HC
М	Molar
MIP	Macrophage inflammatory protein
MBP	Major basic protein
MPM	Malleable Protein Matrix
Mg/ml	Milligram/Millilitre

- MTT [3-(4, 5-dimethylthiazol-zyl) 2, 5-dimethyl tetrazolium bromide]
- NR Neutral Red
- NA Not available
- NOS Nitric Oxide Synthase
- NSD No significant difference
- Na₂HPO₄ Disodium hydrogen phosphate
- NaHCO₃ Sodium hydrogen carbonate
- OsO₄ Osmium tetraoxide
- OVA Ovalbumin
- PAI_{act} Plasminogen activator inhibitor
- pH Measure of the acidity or basicity
- PBS Phosphate Buffered Saline
- PHA Phytohemagglutinin
- PA Plasminogen activator
- PRP Platelet rich plasma
- PAF Platelet-activating factor
- PF Pulmonary fibrosis
- SEM Scanning Electron Microscope
- ST Short-term
- SD Standard deviation
- SD Significant difference
- SO Superoxide
- Th1 T helper type 1 lymphocytes
- TNF-α Tumour Necrosis Factor-α
- TEM Transmission Electron Microscope

- TGF Transforming Growth Factor
- μ Micro
- β Beta
- μl Micro litre
- g Gram
- % Percent
- ≤ Equal or less than
- µg/mL Microgram per millilitre
- ⁰C Degree Celsius