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Abstract

We use a method based on the division algorithm to deternfiitteeavalues of the real parametérandc for which the
hypergeometric polynomialg=1(—n, b; c; 2) haven real, simple zeros. Furthermore, we use the quasi-orttadigpn
of Jacobi polynomials to determine the intervals on the liralwhere the zeros are located.
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1. Introduction

The,F1 hypergeometric function is defined by (cf. [1])

o (@k(b)k Z

zFl(a,b;c;Z)=1+; o W A<t
wherea, b andc are complex parameters¢ ¢ Ng = {0,1,2,...} and
(@) = ale+1)...(e+k-1) , keN,
1 , k=0, a#0

is Pochhammer’s symbol. This series converges wienl and also whea = 1 provided that Re&(—a—b) > 0 and
whenz = -1 provided that R&(— a— b+ 1) > 0. When one of the numerator parameters is equal to a noiygosit
integer, saya = —n, n € Ny, the series terminates and the function is a polynomial gfetn in z.

The problem of describing the zeros of the polynomidis (—n, b; c; 2 whenb and c are complex arbitrary
parameters, has not been solved. Even wiemdc are both real, the only cases that have been fully analyzed
impose additional restrictions dnandc. Recent publications (cf. [4], [6], [7], [8], [11] and [13{pnsidered the zero
location of special classes g1 (—n, b; ¢; 2) with restrictions on the parametdsandc. Results on the asymptotic
zero distribution of certain classes 4%, (—n, b; ¢; 2) have also appeared (cf. [5], [10], [14], [15] and [27]).
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Different types obF1 (—n, b; ¢; 2) have well-established connections with classical orthadjpolynomials, no-
tably the Jacobi polynomials and the Gegenbauer or ulteagmi polynomials (cf. [1]). For the ranges of the pa-
rameters where these polynomials are orthogonal, inféamabout the zeros 6F; (—n, b; ¢; 2) follows immediately
from classical results (cf. [1], [28]). The asymptotic zelistribution of,F1 (—n, b; ¢; 2 whenb andc depend om
can be deduced from recent results by Kuijlaars, Martifiekelshtein, Martinez-Gonzalez and Orive (cf. [2011]2
[22], [23]) on the asymptotic zero distribution of Jacobiymmials Pﬁ"ﬁ)(x) when the parametersandg depend
onn. Conversely, if the distribution of the zeros 4%, (—n, b; c; 2) is known, this leads to information about the zero
distribution of other special functions (cf. [6]). This neekknowledge of the zero distribution g, (—n, b; c; 2)
extremely valuable.

The orthogonality of the polynomiaj$-1 (—n, b; c; 2) given in the next theorem follows from the orthogonality of
the Jacobi polynomials (cf. [25, p. 257-261]) and can alspitoeed directly using the Rodrigues’ formula for the
polynomials,F1 (—n, b; ¢; 2) (cf. [1, p. 99]) as was done in [9] and [21].

Theorem 1 (cf. [9]). Letne No, b, c € Rand—c ¢ No. ThenyF1 (—n, b; ¢; 2) is the A" degree orthogonal polynomial
for the n-dependent positive weight functjgii*(1 — 2°-°"| on the intervals

(i) (-c0,0)forc>0andb<1-n;
(i) (0,1)forc>0andb>c+n-1;
(i) (L,00)forc+n-1<b<1-n.

As a consequence of orthogonality, we know that for ea¢hen zeros of,F; (—n, b; c; 2) are real, simple and lie
in the interval of orthogonality for the corresponding raa@f the parameters (see, for example, [12], Theorem 4) as
illustrated in Figure 1.

b=c+n-1

N

Figure 1: Values ob andc for which ,F1(—n, b; c; 2) is orthogonal and hasreal simple zeros in the intervals, (), (—c0, 0) and (1 ) are indicated
by regionsg1, G2 andGs respectively .

In his classical paper (cf. [19]), Felix Klein obtained ritswon the precise number of zeros 4%, (a, b; c; 2)
that lie in each of the intervals-¢o, 0), (0, 1) and (1) by generalizing earlier results of Hilbert (cf. [17]). Tde
Hilbert-Klein formulas are valid for hypergeometric fuimeis and not only for polynomials. Szego recaptured these
results for the special case of Jacobi polynoml%ﬁﬁ)(x), which have a representation #8; (—n, b; c; 2), in the
intervals (oo, —1), (-1, 1) and (1 o0) (cf. [28], p.145, Theorem 6.72). The number and locatiothefreal zeros of
2F1(=n,b; c; 2) for b andc real can be deduced as follows.
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Theorem 2 (cf. [11], Theorem 3.2) Letne N, b, ce R and c> 0. Then,
() Forb > c+n, all zeros obF1 (—n, b; c; 2) are real and lie in the interva(0, 1).

(i) Forc <b<c+n,c+j-1l<b<c+j,j=1,2,...,n,2F1(—n,b;c; 2 has jreal zeros if{0, 1). The remaining
(n— j) zeros ofF; (—n, b; c; 2) are all non-real if(n — j) is even, while ifn — j) is odd,>F; (-n, b; c; 2) has
(n—j — 1) non-real zeros and one additional real zero(l «).

(i) For 0 < b < c, all the zeros o§F1 (—n, b; c; 2) are non-real if n is even, while if n is odgk1 (—n, b; c; 2) has
one real zero in(1, o) and the othefn — 1) zeros are non-real.

(iv) For-n<b <0, -j<b<—-j+1,j=12,...,n,2F1(-n,b;c; 2 has j real negative zeros. The remaining
(n— j) zeros ofF1 (—n, b; c; 2) are all non-real if(n — j) is even, while ifn — j) is odd,>F; (-n, b; ¢; 2) has
(n—j — 1) non-real zeros and one additional real zero(l «).

(v) For b< —n, all zeros otF; (—n, b; c; 2) are real and negative.

The values of the parametdssandc for which ;F1 (—n, b; ¢; 2) has exactlyn real simple zeros in (@) given in
Theorem 2 (i) and (ii) correspond to those in Theorem 1(ii)levthe parameter values in Theorem 1(i) that ensure
that all the zeros ofF; (—n, b; c; 2) are real, simple and negative are the same as those in Thedrehand (v). The
values ofb andc in Theorem 1 (iii) for whichn zeros are in (1) can also be obtained from Theorem 2 (iv) and (v)
using the transformation (cf. [1, p. 79, (2.3.14)])

(c—Db)n
(©n

2F1(-n,b;c;2 = 2Fi(-n,b;jl-n+b-cl1-2
due to Pf#.

A natural question to ask is whether the parameter rangeBénrems 1 and 2 are the only valuedp€ € R for
which 2F1 (—n, b; c; 2) haven real simple zeros. In this paper, we use a method that doeelyain orthogonality to
determine all the real values of the parameteasidc for which ,F1 (—n, b; ¢; 2) haven real simple zeros. We apply
an algorithm which counts the zeros of polynomials with maficients and their multiplicities. We also determine
the intervals where the real zeros are located for thesesalib andc.

2. Thealgorithm

Recall that given two polynomials(x) andg(x), with deg(f) > deg@), there exist unique polynomiatgx) and
r(x) such thatf(x) = q(x)g(x) + r(x) with degf) < deg@). We will denote the leading cdiecient of a polynomial
f(X) = anX" + ap_1X" 1 + - - - + @ by Ic(f) = ay.

We use the following algorithm (cf. [24]).

Let f(x) be a real polynomial with dedf = n > 2. Define

fo(x) := f(X) and f1(x) := f'(X)

and proceed fok € N as follows:
If deg(fx) > O perform the division off_; by fi to obtain

fke1(X) = O-1(X) f(X) = r(x).

Define
¥ ifr(®) =0
flr2(5) = {fk’(x) if re(x) = 0

and generate the sequence of numbegrs,, ... where

{'C(fk”) if re(x) £ 0
Ck = .

Ic(fe-1)
0 if re(x) = 0



When fy is constant, the algorithm terminates.
Note that the algorithm must terminate, since the degretigegfolynomialsfy(x) decrease on each step.

Then we have the following theorem which we will apply:te, (—n, b; c; 2).

Theorem 3 (cf. [24], Theorem 10.5.7, p.339) et f be a polynomial of degree n with real gbgents. Then f has
only real zeros if and only if the above algorithm produced h non-negative numbers¢c.., c,-1. Moreover, the
zeros of f are all real and simple if and only if the numbers c., ¢,-; are all positive.

3. Main results

We shall assume throughout our discussion Hate R with b,c # 0,-1,...,—n+ 1. The assumption ob s
made to ensure thaF; (—n, b; c; 2) is a polynomial of degree.

Proposition 4. Leth c e R. Then,

1. The zeros ofF; (-2, b; ¢; 2) are real and simple if and only if either (see Figure 2):

() c<-l1landc<b<O.
(i) -1<c<0andb>0orb<c.
(i) c >0 andb<Oorc<h.
2. The zeros ofF1 (-3, b; c; 2) are real and simple if and only if either (see Figure 3):
() c<-2andl+c<b<-1
(i) 2<c<-1and-1<b<1l+c.
(i) c >-1,c+0andb<-l1orb>c+1

W
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Figure 3: Values ob andc for which 2F1(-3, b; ¢; 2

Figure 2: Values ob andc for which 2F1(-2, b; ¢; 2) >
has only real simple zeros

has only real simple zeros

Theorem 5. For any integer r> 4, the polynomiabF; (—n, b; ¢; Z) has only real and simple zeros if and onlydfb)
belongs to one of the four n-dependent regifias . ., R4 defined by

Ri={c+nh-2<b<2-n},

Rr={c>-1 b<2-n},

Rg—{c> -1, b>n-2, b>c+n-2},
={-1<c<0, c+n-2<b<n-2}.



Figure 4: Values ob andc for which,F1(-n,b; c; 2), n = 4,5, ... hasnreal simple zeros

The parameter valuds, b) € R; U R, U Rz U R, described in Theorem 5 for whiglir, (—n, b; c;2), n = 4,5, ...
hasn real simple zeros are illustrated by the grey and diagorsiided regions in Figure 4 with the grey regions
indicating those parameter values that extend the resultkéorems 1 and 2.

Next, we turn our attention to the location of the zerosfef (—n, b; c; 2) for those parameter values located in
the grey shaded regions in Figure 4 where the polynomials@lenger orthogonal and the location of the real zeros
cannot be obtained using Theorems 1 and 2. For these vallesnafc, the polynomialsF; (-n, b; ¢; 2) are quasi-
orthogonal of order 1 and, in some cases, order 2 (cf. [3] &f)d Theorem 3 in [2] and Theorem 6 in [18] yield
information on the zero location of quasi-orthogonal palyrials with non-varying weight functions. However, these
results cannot be applied &1 (—n, b; c; 2) since their weight function depends onWe use information about the
zeros of Jacobi polynomials to obtain the following thresutes.

Theorem 6. Letne N and hc e R. Then,F; (—n, b; c; 2) has all its zeros real and simple aifd— 2) of them lie in

(i) (0,1)for-1<c<0andc+n-2<b<c+n-1. One of the remaining zeros lies (i, ) and the other one
in (=0, 0).
(i) (L,eo)forl—-n<b<2-nandb-n+1<c<b-n+2. One ofthe remaining zeros lies (R, 0) and the
other one in(0, 1).
(i) (-c0,0)for-1<c<0andl-n< b < 2-n. One of the remaining zeros lies (i «) and the other one in
(0,1).

Theorem 6 applies to the parameter values illustrated iarEig§.
Theorem 7. Letne N and hc e R. Then,F; (—n, b; c; 2) has all its zeros real and simple aifd— 1) of them lie in

(i) (0,1)for-1 < c<0andb>c+n-1. The remaining zero is negative.
(i) (L,0)forl—-n<b<2-nandc<b-n-1. Theremaining zero is negative.
(iii) (=c0,0)for -1 < c < 0and b< 1 - n. The remaining zero lies if®, 1).

The parameter values described in Theorem 7 are illustiat€igure 6.
Theorem 8. Letne N and hc e R. Then,F; (—n, b; c; 2) has all its zeros real and simple aifd— 1) of them lie in
(i) (0,1)forc>0andc+n-2<b<c+n-1. The remaining zero is in the intervél, ).
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Figure 5: Values ob andc corresponding to those described in Theorem 6

(i) (L,eo)forb<l-nandc+n-2<b<c+n-1 Theremaining zero lies ifo, 1).
(iii) (=c0,0)forc>0andl-n< b < 2-n. The remaining zero lies ifi, c).

Figure 7 illustrates the range of the parameteasdc referred to in Theorem 8.

4. Proofs

Proof of Proposition 4.
1. Since
2b_ b(b+1)

Fi(-2,b;c2)=1-
2F1(-2,b;c; 2) ~ ccrD’’

we see thaiF; (-2, b; c; 2 = 0 if and only if

- b(c+1)+ vb(c+1)(b-c)
- b(b+1) '

Hence, the zeros oF 1 (-2, b; c; 2) are real and simple if and onlyfif(c + 1) (b — ¢) > 0.
2. The discriminant of
e 3b. 3b(b+1) bbb+1)(b+2)
2F1(=3,bc7) =1 cZ+ c(c+1) cic+1(c+2)

b?(b+ 1)(o—c—-1)(b-c)?
c(c+1)3(c+2)?

is given byA; = 108 (cf. [16]) and thereforgF; (-3, b; ¢; 2) has real simple roots

if and only if A3 > 0.

The following two lemmas will be used in the proof of our magsult.
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Figure 6: Values ob andc corresponding to those described in Theorem 7

Lemma9. Let

( @) (2k—n—b—3) (k—b—l+c)
_ 2 )| 4 | 2 |
b-2
2

k| = (k— )I (Zk_bil_n)| (k_ngl_c)l

and let the sequenag be recursively defined by

Oe1 = a1 k-1, 1)
forke{2,...,n—2}, with
p_ b _(b-9(n-1
YT 2T cbrn-1
Then,
_(b+1)(n+0) 3 n-1
Ok = c(n+b+1) a1k, k=1,2,... —2 s (2)
and b 5
n n-
= —-— k=0,1,...| —|.
62k+1 C az,k ) 07 ) \‘ 2 J (3)

Proof of Lemma 9. We prove the result by induction da Whenk = 1, the right-hand side of (2) is

(b+ )0+ (32) (-=F) (%) _ (b-9mn-1)

c(n+b+ 1)(—%)(—”%"1)(—%) ~ cb+n-1)

which isé, as required.

We now assume the result is true for= t and prove the result true f&r =t + 1. If we letk = t + 1 on the
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Figure 7: Values ob andc corresponding to those described in Theorem 8

right-hand side of (2), we obtain

_(b+1)(n+c)
cin+b+1)
_b+n+o (BP)(F 1) (-2 +1)
~ co(n+b+1) (—% +t)(—”%°+t)(—”+Tb‘l+t)
(L-n+20)(c—b+20)(~—n—b—1+4t)
(-b-1+2t)(-n—c+2t)(-n—b+1+4t)
= @at11 Ot
= Oy from (1)

RHS a1t+1

a1y since @) = (a+ K)(a)k

= Oy by the inductive hypothesis

and the result follows by induction.
The second relation (3) may be proved by induction in a sirmitay. -
Lemma10. Letn> 4. Then, forallke {2,...,n- 1},

(n-Kn+c-Kb+1-K{b-c+1-Kk)
(n+b+2-2k)(n+b-2K)(n+b+1-2k)?2

(4)
and
(n-)(n+c-1)(b-c)
(n+b-2)(n+b-1)?
are positive if and only ifc,b) € R1 U R, U Rz U Ry.

(5)

Proof of Lemma 10. Sincen—1>0and +b-1)?>> 0forallne N, b € R, we see that (5) is positive if and only



(c,bhyefc<l-nb>c, b<2-n}=A >R 0r
e{c>1-nb<c, b<2-n=A,>R0r
e{c>1-nb>c, b>2-n=A32 (R3URy) or
e{c<l-nb<c b>2-n=0.
(n-K)

(n+b+1-2k)?

Furthermordd > n—2ifandonlyifn+b+2-2k>0,n+b-2k>0andb+1-k>0forallke {2,...,n-1}.
Hence, wherb > n— 2, (4) will be positive for alk € {2,...,n— 1} if and only if

Clearly >0forallke{2,...,n-1},neNandbeR,b#,3-n,5-n,....,n-5n-3.

(c,bye{b>c+k-1, c+n-k>0k=2,...,n-1}
b<c+k-1,c+n-k<0, k=2...,n-1}
b<c+k-1,c+n-k<0, k=2,....1}n{b
e{fb>c+k-1,c+n-k>0k=2,...,1n

{b<c+k-1,c+n-k<0, k=1+1,...,n=-1}n{b>n-2}=0.

{b>c+n-2,¢c>-1} =Rz or
{b<c+1,¢c<2-n}=0 or
>c+k-1,c+n-k>0k=I1+1,...,n-1}=0 or

€ {
€ {

Similarly,b < 2-nifandonlyifb+1-k<0,n+b+2-2k<0andn+b-2k<0forke {2,...,n—1}. Hence,
whenb < 2 —n, (4) will be positive for allk € {2,...,n— 1} if and only if

(cbhyelb>c+k-1,c+n-k<0,k=2,...,n-1={b>c+n-2,¢c<2-n=Ay >Ry or
e{fb<c+k-1,c+n-k>0,k=2,...,n=-1}={b<c+1, c>-1}=As >R, or
e{fb>c+k-1,c+n-k<0, k=2,....ln{b<c+k-1,c+n-k>0, k=I1+1,...,n=-1} =0 or
e{fb<c+k-1,c+n-k>0,k=2,....ln{b>c+k-1, c+n-k<0, k=I1+1,...,n=-1} = 0.

For the remaining case where-2 < b < n— 2 or, more specificallyy2 < b+ n—2k < 0O withb—k+ 1 < O for all
ke{2,...,n-1}, the only non-empty possibility is that (4) is positive fox n—1ifand onlyifc> -1,b>c+n-2
andn-4 < b < n-2whereas (4) is positive fdre {2,3,...,n-2}ifandonlyifc> -1,b>c+n-2andb > n-3.
Hence,when2 n<b<n-2,(4)is positive foralk € {2,...,n— 1} if and only if (c, b) € Rg.

SinceA; N As = Ry andA, N As = Ry, the result follows.
Proof of Theorem 5. We apply the algorithm to the polynomial

f(2 = 2F1(-n,b;c;2).
We have (cf. [25], p.69, ex.1)
nb
19 = (2 = s 2Fi(-n+1b+1;c+1;2).

Using Raimundas Vidiinas’ Maple package for contiguostiais of,F; hypergeometric series (cf. [29], [30]), we
obtain

1 c+n-1 (b-c)(n-1) ] )
fo(Z)—n(Z b+n—1) f1(2 cb+n-1) 2F1( n+2,b,c+1,z).
This relation can easily be verified by comparingf@egéents. Thus,
(b-c)(n-12)

202 =r1(2 = 2Fi(-n+2,b;c+1;2).

c(b+n-1)

In the next stepk = 2), we get
f1(2) = w2 (2 - r2(2),
9



with
nb+n-12%0O+n-2) (n-2)(c+n-2) (n-1)(c+n-1)

“Wd = Dein-Dob-0|?" bin_3 b+n-1
and (b+n-1L)(b-1-c)n(n-2)
+ - - - - . .
I'2(Z)= clcrn-D(+n-23 2F1(—ﬂ+3,b—1,C+1,Z).
Setting

k(@ =60k 2F1(-n+kb+2-kc+1;2, ke{l,...,n-1},
we see that in general we need a contiguous relation of tine for

2Fi(-n+k-1,b+3-kc+1;2

6k+1
Ok-1

=qk_1(z);£2F1(—n+k,b+ 2-kc+1;2 - 2Fi(-n+k+1,b+1-kc+1;2,
k-1

forke {2,...,n— 2}, with
p_ b _(b-9(n-1
=7 2T clb+n-1)

Using Vidlinas’ package, we obtain (1) for= 2, 3,... and from Lemma 9 we conclude th@tis well defined
and non-zeroforak e {1,...,n— 1} whenc # 0 and(c,b) € R; U R, U R3 U R4. Thus,

_le (firn)
lc (1)’

Ck kEN,

which implies that

oo 0-90M-D(n+2ns®hz ©Qun _(-DE+n-1(b-0)
YT e+n-1) €+ 1n2(-2! -Mad)y  (b+n-2)(b+n- 1)

and, forke {2,...,n— 1},

C = 6)k+l (_n +K+ 1)n—k—1 (b +1- k)n—k—l (n - k+ 1)! (C + 1)n—k+1

Ok-1 (C+Dppr(n-k-1)! (=N+K=1)p 1 (0+ 3= K)nke1
 (—K(N—k+0)(b—Kk+1)(-c+1+b-K)
T (n—-2k+b+2)(n—2k+b)(b—-2k+1+n)2

From Lemma 10, we know that > Oforallk € {1,...,n— 1} when(c,b) € R; U R, U R3 U R4. The result now
follows from Theorem 3. -

Proof of Theorem 6. From [2], Corollary 4 (i), we know that forl < @ < 0 and-1 < 8 < 0, the Jacobi polynomials
Pﬁ,“‘l’ﬁ‘l)(x) have real simple zeros and- 2) of them are in the interval{l, 1). The smallest zero is smaller that
and the largest zero is larger than 1. Equivalently, the darrae for the zeros of Jacobi polynomieﬂ%”ﬁ)(x) when
-2<a<-land-2<pB< -1.

(i) One of the connections between Jacobi polynomials aagtiynomialsF1 (—n, b; ¢; 2) is given by (cf. [25],

p. 254, eq. 3)
_1\n
PYA(x) = Hmﬂzﬁ nlta+f+nlep; X%l ©6)

wherea = b—-n-candg = c— 1. The conditions-2 < 8 < -1 and-2 < @ < —1 are equivalenttel < c < 0
andc+n-2 < b < c+n-1. Furthermore, the intervals-{, 1), (1, o) and o0, —1) are transformed to
(0,1), (1, ) and (o, —1) respectively under the linear mappirg= 2z - 1. Thus, wherc € (-1,0) and
be(c+n-2c+n-1),,F1(=n,b;c; 2 hasn - 2 real, simple zeros in the interval,(0), one zero in (1)
and one zero in{c0, 0) for eachn € N.
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(i) The representation ([25], p. 255, eq. 9)

PO() =

(I+a+pB)axn (x+1
"x+1

’ 2
NL+a+p)n\ 2 ) 2F1(—n, -B-n,—a—-p-2n, _) 7)

wheree = b—c—nandg = —b - nyields the stated result, since the restrictie@s< @ < -1 and-2 <8< -1
will correspondto b-n<c<2+b-nand 1- n < b < 2- nwhile the intervals-1 < x < 1,x > 1 and

. . . 2
X < -1 are mappedta> 1, 0< z < 1 andz < 0 respectively under the fractional transformation =1
(i) For this case we use the representation (cf. [25], (b, 2%]. 8)

Pﬁ”ﬁ)(x) = 7(1 :!ﬁ)” (X%l) oF1 (—n, —a—-nB+1; % (8)

. x+1 . .
wherea = —b - nandg = ¢ — 1. Under the transformation= =1 the interval-1 < x < 1 is mapped to

. : . . 2
the negative real line while the intervats> 1 andx < —1 are mapped ta= 1+ 1 >land0O<z<1

respectively. Also, since2 < a < -1 and-2 < g < -1 correspondto :tn<b < 2 —nand-1<c< 0, the
result follows.

]
Proof of Theorem 7. From [2], Corollary 4 (ii) (a), we know that forl < ¢ and-1 < B8 < 0, the zeros of the
Jacobi polynomianf”ﬁ‘l)(x) are all real and simple, and ¢ 1) of them lie in the interval{1, 12. The smallest zero
is less than-1. We may equivalently say the same about the zeros of thé)UpolynomialPﬁ,“’ﬁ (x) fora > -1 and
-2 < B < -1. Using transformations (6), (7) and (8) the results canrbegn following the same reasoning as in the
proof of Theorem 6. -

Proof of Theorem 8. From [2], Corollary 4 (ii) (b), we know that forl < @ < 0 and-1 < 3, the zeros of the
Jacobi polynomiaPﬁ"l’ﬁ)(x) are all real and simple, and ¢ 1) of them lie in the interval{1,1). Moreover, the
largest zero is greater than 1. We may equivalently say time sdoout the zeros of the Jacobi polynorﬁiﬁlﬁ)(x) for
-2 < a < -1andB > —1. The results now follow from (6), (7) and (8) as before. -
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