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Abstract

We use a method based on the division algorithm to determine all the values of the real parametersb andc for which the
hypergeometric polynomials2F1(−n, b; c; z) haven real, simple zeros. Furthermore, we use the quasi-orthogonality
of Jacobi polynomials to determine the intervals on the realline where the zeros are located.
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1. Introduction

The2F1 hypergeometric function is defined by (cf. [1])

2F1 (a, b; c; z) = 1+
∞
∑

k=1

(a)k(b)k

(c)k

zk

k!
, |z| < 1,

wherea, b andc are complex parameters,−c < N0 = {0, 1, 2, . . .} and

(α)k =















α(α + 1) . . . (α + k− 1) , k ∈ N,
1 , k = 0, α , 0

is Pochhammer’s symbol. This series converges when|z| < 1 and also whenz= 1 provided that Re(c− a− b) > 0 and
whenz = −1 provided that Re(c− a− b+ 1) > 0. When one of the numerator parameters is equal to a nonpositive
integer, saya = −n, n ∈ N0, the series terminates and the function is a polynomial of degreen in z.

The problem of describing the zeros of the polynomials2F1 (−n, b; c; z) when b and c are complex arbitrary
parameters, has not been solved. Even whenb and c are both real, the only cases that have been fully analyzed
impose additional restrictions onb andc. Recent publications (cf. [4], [6], [7], [8], [11] and [13])considered the zero
location of special classes of2F1 (−n, b; c; z) with restrictions on the parametersb andc. Results on the asymptotic
zero distribution of certain classes of2F1 (−n, b; c; z) have also appeared (cf. [5], [10], [14], [15] and [27]).
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Different types of2F1 (−n, b; c; z) have well-established connections with classical orthogonal polynomials, no-
tably the Jacobi polynomials and the Gegenbauer or ultraspherical polynomials (cf. [1]). For the ranges of the pa-
rameters where these polynomials are orthogonal, information about the zeros of2F1 (−n, b; c; z) follows immediately
from classical results (cf. [1], [28]). The asymptotic zerodistribution of2F1 (−n, b; c; z) whenb andc depend onn
can be deduced from recent results by Kuijlaars, Martı́nez-Finkelshtein, Martı́nez-González and Orive (cf. [20], [21],
[22], [23]) on the asymptotic zero distribution of Jacobi polynomialsP(α,β)

n (x) when the parametersα andβ depend
onn. Conversely, if the distribution of the zeros of2F1 (−n, b; c; z) is known, this leads to information about the zero
distribution of other special functions (cf. [6]). This makes knowledge of the zero distribution of2F1 (−n, b; c; z)
extremely valuable.

The orthogonality of the polynomials2F1 (−n, b; c; z) given in the next theorem follows from the orthogonality of
the Jacobi polynomials (cf. [25, p. 257-261]) and can also beproved directly using the Rodrigues’ formula for the
polynomials2F1 (−n, b; c; z) (cf. [1, p. 99]) as was done in [9] and [21].

Theorem 1 (cf. [9]). Let n∈ N0, b, c ∈ R and−c < N0. Then2F1 (−n, b; c; z) is the nth degree orthogonal polynomial
for the n-dependent positive weight function|zc−1(1− z)b−c−n| on the intervals

(i) (−∞, 0) for c > 0 and b< 1− n;
(ii) (0, 1) for c > 0 and b> c+ n− 1;
(iii) (1,∞) for c+ n− 1 < b < 1− n.

As a consequence of orthogonality, we know that for eachn, then zeros of2F1 (−n, b; c; z) are real, simple and lie
in the interval of orthogonality for the corresponding ranges of the parameters (see, for example, [12], Theorem 4) as
illustrated in Figure 1.

G1

G2
G3

c

b

b = 1− n

b = c+ n− 1

Figure 1: Values ofb andc for which2F1(−n, b; c; z) is orthogonal and hasn real simple zeros in the intervals (0, 1), (−∞,0) and (1,∞) are indicated
by regionsG1, G2 andG3 respectively .

In his classical paper (cf. [19]), Felix Klein obtained results on the precise number of zeros of2F1 (a, b; c; z)
that lie in each of the intervals (−∞, 0), (0, 1) and (1,∞) by generalizing earlier results of Hilbert (cf. [17]). These
Hilbert-Klein formulas are valid for hypergeometric functions and not only for polynomials. Szegö recaptured these
results for the special case of Jacobi polynomialsP(α,β)

n (x), which have a representation as2F1 (−n, b; c; z), in the
intervals (−∞,−1), (−1, 1) and (1,∞) (cf. [28], p.145, Theorem 6.72). The number and location ofthe real zeros of
2F1 (−n, b; c; z) for b andc real can be deduced as follows.
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Theorem 2 (cf. [11], Theorem 3.2). Let n∈ N, b, c ∈ R and c> 0. Then,

(i) For b > c+ n, all zeros of2F1 (−n, b; c; z) are real and lie in the interval(0, 1).

(ii) For c < b < c+ n, c+ j − 1 < b < c+ j, j = 1, 2, . . . , n, 2F1 (−n, b; c; z) has j real zeros in(0, 1). The remaining
(n − j) zeros of2F1 (−n, b; c; z) are all non-real if(n − j) is even, while if(n − j) is odd,2F1 (−n, b; c; z) has
(n− j − 1) non-real zeros and one additional real zero in(1,∞).

(iii) For 0 < b < c, all the zeros of2F1 (−n, b; c; z) are non-real if n is even, while if n is odd,2F1 (−n, b; c; z) has
one real zero in(1,∞) and the other(n− 1) zeros are non-real.

(iv) For −n < b < 0, − j < b < − j + 1, j = 1, 2, . . . , n, 2F1 (−n, b; c; z) has j real negative zeros. The remaining
(n − j) zeros of2F1 (−n, b; c; z) are all non-real if(n − j) is even, while if(n − j) is odd,2F1 (−n, b; c; z) has
(n− j − 1) non-real zeros and one additional real zero in(1,∞).

(v) For b< −n, all zeros of2F1 (−n, b; c; z) are real and negative.

The values of the parametersb andc for which 2F1 (−n, b; c; z) has exactlyn real simple zeros in (0, 1) given in
Theorem 2 (i) and (ii) correspond to those in Theorem 1(ii) while the parameter values in Theorem 1(i) that ensure
that all the zeros of2F1 (−n, b; c; z) are real, simple and negative are the same as those in Theorem2 (iv) and (v). The
values ofb andc in Theorem 1 (iii) for whichn zeros are in (1,∞) can also be obtained from Theorem 2 (iv) and (v)
using the transformation (cf. [1, p. 79, (2.3.14)])

2F1 (−n, b; c; z) =
(c− b)n

(c)n
2F1 (−n, b; 1− n+ b− c; 1− z)

due to Pfaff.
A natural question to ask is whether the parameter ranges in Theorems 1 and 2 are the only values ofb, c ∈ R for

which 2F1 (−n, b; c; z) haven real simple zeros. In this paper, we use a method that does notrely on orthogonality to
determine all the real values of the parametersb andc for which 2F1 (−n, b; c; z) haven real simple zeros. We apply
an algorithm which counts the zeros of polynomials with realcoefficients and their multiplicities. We also determine
the intervals where the real zeros are located for these values ofb andc.

2. The algorithm

Recall that given two polynomialsf (x) andg(x), with deg(f ) ≥ deg(g), there exist unique polynomialsq(x) and
r(x) such thatf (x) = q(x)g(x) + r(x) with deg(r) < deg(g). We will denote the leading coefficient of a polynomial
f (x) = anxn + an−1xn−1 + · · · + a0 by lc( f ) = an.

We use the following algorithm (cf. [24]).
Let f (x) be a real polynomial with deg(f ) = n ≥ 2. Define

f0(x) := f (x) and f1(x) := f ′(x)

and proceed fork ∈ N as follows:
If deg(fk) > 0 perform the division offk−1 by fk to obtain

fk−1(x) = qk−1(x) fk(x) − rk(x).

Define

fk+1(x) =















rk(x) if rk(x) . 0

f ′k(x) if rk(x) ≡ 0

and generate the sequence of numbersc1, c2, . . . where

ck =



















lc( fk+1)
lc( fk−1)

if rk(x) . 0

0 if rk(x) ≡ 0
.
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When fk is constant, the algorithm terminates.
Note that the algorithm must terminate, since the degrees ofthe polynomialsfk(x) decrease on each step.

Then we have the following theorem which we will apply to2F1 (−n, b; c; z) .

Theorem 3 (cf. [24], Theorem 10.5.7, p.339). Let f be a polynomial of degree n with real coefficients. Then f has
only real zeros if and only if the above algorithm produced n− 1 non-negative numbers c1, . . . , cn−1. Moreover, the
zeros of f are all real and simple if and only if the numbers c1, . . . , cn−1 are all positive.

3. Main results

We shall assume throughout our discussion thatb, c ∈ R with b, c , 0,−1, . . . ,−n+ 1. The assumption onb is
made to ensure that2F1 (−n, b; c; z) is a polynomial of degreen.

Proposition 4. Let b, c ∈ R. Then,

1. The zeros of2F1 (−2, b; c; z) are real and simple if and only if either (see Figure 2):

(i) c < −1 and c< b < 0.
(ii) −1 < c < 0 and b> 0 or b < c.
(iii) c > 0 and b< 0 or c < b.

2. The zeros of2F1 (−3, b; c; z) are real and simple if and only if either (see Figure 3):

(i) c < −2 and1+ c < b < −1.
(ii) −2 < c < −1 and−1 < b < 1+ c.
(iii) c > −1, c , 0 and b< −1 or b > c+ 1.

c

b

-1

b = c

Figure 2: Values ofb andc for which 2F1(−2, b; c; z)
has only real simple zeros

c

b

-1-2

-1

b = c+ 1

Figure 3: Values ofb andc for which 2F1(−3, b; c; z)
has only real simple zeros

Theorem 5. For any integer n≥ 4, the polynomial2F1 (−n, b; c; z) has only real and simple zeros if and only if(c, b)
belongs to one of the four n-dependent regionsR1, . . . ,R4 defined by

R1 = {c+ n− 2 < b < 2− n} ,
R2 = {c > −1, b < 2− n} ,
R3 = {c > −1, b > n− 2, b > c+ n− 2} ,
R4 = {−1 < c < 0, c+ n− 2 < b < n− 2} .
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0 c

b

−1

c = −1

b = c+ n− 2

b = c+ n− 1

b = 2− n

b = 1− n

c = 0

b = n− 2

Figure 4: Values ofb andc for which 2F1(−n, b; c; z), n = 4, 5, . . . hasn real simple zeros

The parameter values(c, b) ∈ R1 ∪ R2 ∪ R3 ∪ R4 described in Theorem 5 for which2F1 (−n, b; c; z), n = 4, 5, . . .
hasn real simple zeros are illustrated by the grey and diagonallyshaded regions in Figure 4 with the grey regions
indicating those parameter values that extend the results in Theorems 1 and 2.

Next, we turn our attention to the location of the zeros of2F1 (−n, b; c; z) for those parameter values located in
the grey shaded regions in Figure 4 where the polynomials areno longer orthogonal and the location of the real zeros
cannot be obtained using Theorems 1 and 2. For these values ofb andc, the polynomials2F1 (−n, b; c; z) are quasi-
orthogonal of order 1 and, in some cases, order 2 (cf. [3] and [2]). Theorem 3 in [2] and Theorem 6 in [18] yield
information on the zero location of quasi-orthogonal polynomials with non-varying weight functions. However, these
results cannot be applied to2F1 (−n, b; c; z) since their weight function depends onn. We use information about the
zeros of Jacobi polynomials to obtain the following three results.

Theorem 6. Let n∈ N and b, c ∈ R. Then,2F1 (−n, b; c; z) has all its zeros real and simple and(n− 2) of them lie in

(i) (0, 1) for −1 < c < 0 and c+ n− 2 < b < c+ n− 1. One of the remaining zeros lies in(1,∞) and the other one
in (−∞, 0).

(ii) (1,∞) for 1− n < b < 2− n and b− n+ 1 < c < b− n+ 2. One of the remaining zeros lies in(−∞, 0) and the
other one in(0, 1).

(iii) (−∞, 0) for −1 < c < 0 and1− n < b < 2− n. One of the remaining zeros lies in(1,∞) and the other one in
(0, 1).

Theorem 6 applies to the parameter values illustrated in Figure 5.

Theorem 7. Let n∈ N and b, c ∈ R. Then,2F1 (−n, b; c; z) has all its zeros real and simple and(n− 1) of them lie in

(i) (0, 1) for −1 < c < 0 and b> c+ n− 1. The remaining zero is negative.
(ii) (1,∞) for 1− n < b < 2− n and c< b− n− 1. The remaining zero is negative.
(iii) (−∞, 0) for −1 < c < 0 and b< 1− n. The remaining zero lies in(0, 1).

The parameter values described in Theorem 7 are illustratedin Figure 6.

Theorem 8. Let n∈ N and b, c ∈ R. Then,2F1 (−n, b; c; z) has all its zeros real and simple and(n− 1) of them lie in

(i) (0, 1) for c > 0 and c+ n− 2 < b < c+ n− 1. The remaining zero is in the interval(1,∞).
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0 c

b

−1

c = −1

b = c+ n− 2

b = c+ n− 1

b = 2− n

b = 1− n

c = 0

b = n− 2

Figure 5: Values ofb andc corresponding to those described in Theorem 6

(ii) (1,∞) for b < 1− n and c+ n− 2 < b < c+ n− 1. The remaining zero lies in(0, 1).
(iii) (−∞, 0) for c > 0 and1− n < b < 2− n. The remaining zero lies in(1,∞).

Figure 7 illustrates the range of the parametersb andc referred to in Theorem 8.

4. Proofs

Proof of Proposition 4.

1. Since

2F1 (−2, b; c; z) = 1− 2b
c

z+
b (b+ 1)
c (c+ 1)

z2,

we see that2F1 (−2, b; c; z) = 0 if and only if

z=
b (c+ 1) ±

√
b (c+ 1) (b− c)

b (b+ 1)
.

Hence, the zeros of2F1 (−2, b; c; z) are real and simple if and only ifb (c+ 1) (b− c) > 0.
2. The discriminant of

2F1 (−3, b; c; z) = 1− 3b
c

z+
3b (b+ 1)
c (c+ 1)

z2 − b (b+ 1) (b+ 2)
c (c+ 1) (c+ 2)

z3

is given by∆3 = 108
b2(b+ 1)(b− c− 1)(b− c)2

c4(c+ 1)3(c+ 2)2
(cf. [16]) and therefore2F1 (−3, b; c; z) has real simple roots

if and only if∆3 > 0.

The following two lemmas will be used in the proof of our main result.
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0 c

b

−1

c = −1

b = c+ n− 2

b = c+ n− 1

b = 2− n

b = 1− n

c = 0

Figure 6: Values ofb andc corresponding to those described in Theorem 7

Lemma 9. Let

αk,l =

(

k−n
2

)

l

(

2k−n−b−3
4

)

l

(

k−b−1+c
2

)

l
(

k−b−2
2

)

l

(

2k−b−1−n
4

)

l

(

k−n−1−c
2

)

l

and let the sequenceθk be recursively defined by

θk+1 = αk,1 θk−1, (1)

for k ∈ {2, . . . , n− 2}, with

θ1 = −
nb
c
, θ2 =

(b− c) (n− 1)
c (b+ n− 1)

.

Then,

θ2k =
(b+ 1)(n+ c)
c(n+ b+ 1)

α1,k , k = 1, 2, . . .

⌊

n− 1
2

⌋

, (2)

and

θ2k+1 = −
nb
c
α2,k , k = 0, 1, . . .

⌊

n− 2
2

⌋

. (3)

Proof of Lemma 9. We prove the result by induction onk. Whenk = 1, the right-hand side of (2) is

(b+ 1)(n+ c)
(

1−n
2

) (

− n+b+1
4

) (

c−b
2

)

c(n+ b+ 1)
(

− b+1
2

) (

− n+b−1
4

) (

− n+c
2

) =
(b− c)(n− 1)
c(b+ n− 1)

which isθ2 as required.

We now assume the result is true fork = t and prove the result true fork = t + 1. If we let k = t + 1 on the
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0 c

b

−1

c = −1

b = c+ n− 2

b = c+ n− 1

b = 2− n

b = 1− n

c = 0

Figure 7: Values ofb andc corresponding to those described in Theorem 8

right-hand side of (2), we obtain

RHS =
(b+ 1)(n+ c)
c(n+ b+ 1)

α1,t+1

=
(b+ 1)(n+ c)
c(n+ b+ 1)

(

1−n
2 + t

) (

c−b
2 + t

) (

− n+b+1
4 + t

)

(

− b+1
2 + t

) (

− n+c
2 + t

) (

− n+b−1
4 + t

) α1,t since (a)k+1 = (a+ k)(a)k

= θ2t
(1− n+ 2t) (c− b+ 2t) (−n− b− 1+ 4t)

(−b− 1+ 2t) (−n− c+ 2t) (−n− b+ 1+ 4t)
by the inductive hypothesis

= α2t+1,1 θ2t

= θ2t+2 from (1)

and the result follows by induction.

The second relation (3) may be proved by induction in a similar way.

Lemma 10. Let n≥ 4. Then, for all k∈ {2, . . . , n− 1},

(n− k)(n+ c− k)(b+ 1− k)(b− c+ 1− k)
(n+ b+ 2− 2k)(n+ b− 2k)(n+ b+ 1− 2k)2

(4)

and
(n− 1) (n+ c− 1) (b− c)

(n+ b− 2) (n+ b− 1)2
(5)

are positive if and only if(c, b) ∈ R1 ∪ R2 ∪ R3 ∪ R4.

Proof of Lemma 10. Sincen− 1 > 0 and (n+ b− 1)2 > 0 for all n ∈ N, b ∈ R, we see that (5) is positive if and only
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if

(c, b) ∈ {c < 1− n, b > c, b < 2− n} = A1 ⊃ R1 or

∈ {c > 1− n, b < c, b < 2− n} = A2 ⊃ R2 or

∈ {c > 1− n, b > c, b > 2− n} = A3 ⊃ (R3 ∪ R4) or

∈ {c < 1− n, b < c, b > 2− n} = ∅.

Clearly
(n− k)

(n+ b+ 1− 2k)2
> 0 for all k ∈ {2, . . . , n− 1}, n ∈ N andb ∈ R, b ,, 3− n, 5− n, . . . , n− 5, n− 3.

Furthermoreb > n− 2 if and only ifn+ b+ 2− 2k > 0, n+ b− 2k > 0 andb+ 1− k > 0 for all k ∈ {2, . . . , n− 1}.
Hence, whenb > n− 2, (4) will be positive for allk ∈ {2, . . . , n− 1} if and only if

(c, b) ∈ {b > c+ k− 1, c+ n− k > 0, k = 2, . . . , n− 1} = {b > c+ n− 2, c > −1} = R3 or

∈ {b < c+ k− 1, c+ n− k < 0, k = 2, . . . , n− 1} = {b < c+ 1, c < 2− n} = ∅ or

∈ {b < c+ k− 1, c+ n− k < 0, k = 2, . . . , l} ∩ {b > c+ k− 1, c+ n− k > 0, k = l + 1, . . . , n− 1} = ∅ or

∈ {b > c+ k− 1, c+ n− k > 0, k = 2, . . . , l}∩
{b < c+ k− 1, c+ n− k < 0, k = l + 1, . . . , n− 1} ∩ {b > n− 2} = ∅.

Similarly,b < 2− n if and only if b+ 1− k < 0, n+ b+ 2− 2k< 0 andn+ b− 2k < 0 for k ∈ {2, . . . , n− 1}. Hence,
whenb < 2− n, (4) will be positive for allk ∈ {2, . . . , n− 1} if and only if

(c, b) ∈ {b > c+ k− 1, c+ n− k < 0, k = 2, . . . , n− 1} = {b > c+ n− 2, c < 2− n} = A4 ⊃ R1 or

∈ {b < c+ k− 1, c+ n− k > 0, k = 2, . . . , n− 1} = {b < c+ 1, c > −1} = A5 ⊃ R2 or

∈ {b > c+ k− 1, c+ n− k < 0, k = 2, . . . , l} ∩ {b < c+ k− 1, c+ n− k > 0, k = l + 1, . . . , n− 1} = ∅ or

∈ {b < c+ k− 1, c+ n− k > 0, k = 2, . . . , l} ∩ {b > c+ k− 1, c+ n− k < 0, k = l + 1, . . . , n− 1} = ∅.

For the remaining case where 2−n < b < n−2 or, more specifically,−2 < b+n−2k < 0 with b− k+1 < 0 for all
k ∈ {2, . . . , n−1}, the only non-empty possibility is that (4) is positive fork = n−1 if and only ifc > −1,b > c+n−2
andn−4 < b < n− 2 whereas (4) is positive fork ∈ {2, 3, . . . , n− 2} if and only if c > −1, b > c+ n− 2 andb > n− 3.
Hence, when 2− n < b < n− 2, (4) is positive for allk ∈ {2, . . . , n− 1} if and only if (c, b) ∈ R4.

SinceA1 ∩A4 = R1 andA2 ∩A5 = R2, the result follows.

Proof of Theorem 5. We apply the algorithm to the polynomial

f (z) = 2F1 (−n, b; c; z) .

We have (cf. [25], p.69, ex.1)

f1(z) = f ′(z) = −nb
c 2F1 (−n+ 1, b+ 1;c+ 1;z) .

Using Raimundas Vidũnas’ Maple package for contiguous relations of2F1 hypergeometric series (cf. [29], [30]), we
obtain

f0(z) =
1
n

(

z− c+ n− 1
b+ n− 1

)

f1(z) − (b− c) (n− 1)
c (b+ n− 1) 2F1 (−n+ 2, b; c+ 1;z) .

This relation can easily be verified by comparing coefficients. Thus,

f2(z) = r1(z) =
(b− c) (n− 1)
c (b+ n− 1) 2F1 (−n+ 2, b; c+ 1;z) .

In the next step (k = 2), we get
f1(z) = q1(z) f2(z) − r2(z),
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with

q1 (z) =
n (b+ n− 1)2 (b+ n− 2)
(n− 1) (c+ n− 1) (b− c)

[

z+
(n− 2) (c+ n− 2)

b+ n− 3
− (n− 1) (c+ n− 1)

b+ n− 1

]

and

r2 (z) =
(b+ n− 1) (b− 1− c) n (n− 2)

c (c+ n− 1) (b+ n− 3) 2F1 (−n+ 3, b− 1;c+ 1;z) .

Setting
fk(z) = θk 2F1 (−n+ k, b+ 2− k; c+ 1;z) , k ∈ {1, . . . , n− 1},

we see that in general we need a contiguous relation of the form

2F1 (−n+ k− 1, b+ 3− k; c+ 1;z)

= qk−1 (z)
θk

θk−1
2F1 (−n+ k, b+ 2− k; c+ 1;z) − θk+1

θk−1
2F1 (−n+ k+ 1, b+ 1− k; c+ 1;z) ,

for k ∈ {2, . . . , n− 2}, with

θ1 = −
nb
c
, θ2 =

(b− c) (n− 1)
c (b+ n− 1)

.

Using Vidũnas’ package, we obtain (1) fork = 2, 3, . . . and from Lemma 9 we conclude thatθk is well defined
and non-zero for allk ∈ {1, . . . , n− 1} whenc , 0 and(c, b) ∈ R1 ∪ R2 ∪ R3 ∪ R4. Thus,

ck =
lc ( fk+1)
lc ( fk−1)

, k ∈ N,

which implies that

c1 =
(b− c) (n− 1)
c (b+ n− 1)

(−n+ 2)n−2 (b)n−2

(c+ 1)n−2 (n− 2)!
(c)n n!

(−n)n (b)n
=

(n− 1) (c+ n− 1) (b− c)

(b+ n− 2) (b+ n− 1)2

and, fork ∈ {2, . . . , n− 1},

ck =
θk+1

θk−1

(−n+ k+ 1)n−k−1 (b+ 1− k)n−k−1

(c+ 1)n−k−1 (n− k− 1)!
(n− k+ 1)! (c+ 1)n−k+1

(−n+ k− 1)n−k+1 (b+ 3− k)n−k+1

=
(n− k)(n− k+ c)(b− k+ 1)(−c+ 1+ b− k)
(n− 2k+ b+ 2)(n− 2k+ b)(b− 2k+ 1+ n)2

.

From Lemma 10, we know thatck > 0 for all k ∈ {1, . . . , n− 1} when(c, b) ∈ R1 ∪ R2 ∪ R3 ∪ R4. The result now
follows from Theorem 3.

Proof of Theorem 6. From [2], Corollary 4 (i), we know that for−1 < α < 0 and−1 < β < 0, the Jacobi polynomials
P(α−1,β−1)

n (x) have real simple zeros and (n−2) of them are in the interval (−1, 1). The smallest zero is smaller than−1
and the largest zero is larger than 1. Equivalently, the sameis true for the zeros of Jacobi polynomialsP(α,β)

n (x) when
−2 < α < −1 and−2 < β < −1.

(i) One of the connections between Jacobi polynomials and the polynomials2F1 (−n, b; c; z) is given by (cf. [25],
p. 254, eq. 3)

P(α,β)
n (x) =

(−1)n(1+ β)n

n! 2F1

(

−n, 1+ α + β + n; 1+ β;
x+ 1

2

)

(6)

whereα = b− n− c andβ = c− 1. The conditions−2 < β < −1 and−2 < α < −1 are equivalent to−1 < c < 0
andc + n − 2 < b < c + n − 1. Furthermore, the intervals (−1, 1), (1,∞) and (−∞,−1) are transformed to
(0, 1), (1,∞) and (−∞,−1) respectively under the linear mappingx = 2z− 1. Thus, whenc ∈ (−1, 0) and
b ∈ (c+ n− 2, c+ n− 1), 2F1 (−n, b; c; z) hasn− 2 real, simple zeros in the interval (0, 1), one zero in (1,∞)
and one zero in (−∞, 0) for eachn ∈ N.
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(ii) The representation ([25], p. 255, eq. 9)

P(α,β)
n (x) =

(1+ α + β)2n

n!(1 + α + β)n

(

x+ 1
2

)n

2F1

(

−n,−β − n;−α − β − 2n;
2

x+ 1

)

(7)

whereα = b− c−n andβ = −b−n yields the stated result, since the restrictions−2 < α < −1 and−2 < β < −1
will correspond to 1+ b− n < c < 2+ b− n and 1− n < b < 2− n while the intervals−1 < x < 1, x > 1 and

x < −1 are mapped toz> 1, 0< z< 1 andz< 0 respectively under the fractional transformationz=
2

x+ 1
.

(iii) For this case we use the representation (cf. [25], p. 255, eq. 8)

P(α,β)
n (x) =

(1+ β)n

n!

(

x− 1
2

)n

2F1

(

−n,−α − n; β + 1;
x+ 1
x− 1

)

(8)

whereα = −b− n andβ = c − 1. Under the transformationz=
x+ 1
x− 1

, the interval−1 < x < 1 is mapped to

the negative real line while the intervalsx > 1 andx < −1 are mapped toz= 1+
2

x− 1
> 1 and 0< z < 1

respectively. Also, since−2 < α < −1 and−2 < β < −1 correspond to 1− n < b < 2− n and−1 < c < 0, the
result follows.

Proof of Theorem 7. From [2], Corollary 4 (ii) (a), we know that for−1 < α and−1 < β < 0, the zeros of the
Jacobi polynomialP(α,β−1)

n (x) are all real and simple, and (n− 1) of them lie in the interval (−1, 1). The smallest zero
is less than−1. We may equivalently say the same about the zeros of the Jacobi polynomialP(α,β)

n (x) for α > −1 and
−2 < β < −1. Using transformations (6), (7) and (8) the results can be proven following the same reasoning as in the
proof of Theorem 6.

Proof of Theorem 8. From [2], Corollary 4 (ii) (b), we know that for−1 < α < 0 and−1 < β, the zeros of the
Jacobi polynomialP(α−1,β)

n (x) are all real and simple, and (n − 1) of them lie in the interval (−1, 1). Moreover, the
largest zero is greater than 1. We may equivalently say the same about the zeros of the Jacobi polynomialP(α,β)

n (x) for
−2 < α < −1 andβ > −1. The results now follow from (6), (7) and (8) as before.
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