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Abstract

We consider several classes of orthogonal polynomials as well as the Bessel
function where we study the convexity of zeros of these polynomials, sat-
isfying either differential or real difference equations, by applying Sturm’s
comparison and convexity theorems as well as analogues of these theorems.
In addition several results are obtained concerning the distances between
consecutive zeros of some of these classes of polynomials. Further research
possibilities concerning g-polynomials and polynomials satisfying complex

difference equations are discussed.
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Chapter 1
Introduction

Since the first publication of the Sturm comparison and convexity theorems
by Sturm in 1836 [27], many results following either directly or indirectly
from these theorems have been obtained. All of these results have numerous
applications, including finding certain properties of the zeros of second-order
differential equations, as well as difference equations, some of which will be

discussed in detail in this dissertation.

First we consider Sturm’s comparison theorem, which provides information
about the behaviour of solutions of two second-order differential equations

in normal form

y" + F(z)y =0. (1.0.1)

Theorem 1.1 (Sturm’s comparison theorem, cf. [27] and [29])
On the interval (a,b), let y1 and y2 be non-trivial solutions of the differential

equations
¥ +a(x)y=0

Y+ g2(z)y =0

respectively, where g1 and go are continuous real-valued functions on (a,b),
such that g1 < go.

Then between any two consecutive zeros of y1 in (a,b), there is at least one
zero of ys.

Proof: Let xj, and xp41 be the consecutive zeros of y; in (a,b). Since y;(x)

is non-trivial we have that vy} (z)y)(xr1+1) # 0. Without loss of generality
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we can assume that y(z) > 0 on (zg,zrr1) from which it follows that
yi(xr) > 0 and ¥ (xk11) < 0. Assume now that y2 has no zero in (zx, g41)-
If yo(z) > 0 on (xg, xk+1), then we consider the equations

Y@y =0 , y5+g2(x)y2=0

and multiply the first equation by y2 and the second one by y;. Subtracting

these results give

i (@)y2(x) — vy (@)1 (2) = [92(2) — g1(x)]y1 (2)ya ().

Integrating this on [z, zp41] we obtain

/xk+1 [g2(x) — g1(2)]y1(x)y2(x)dx

Tk

= [ @) - e @)

T

= [m@)y@)mt - / " i @hle)de - [ya (@)1 ()]

k

Tt /
+ / (@), (2)de

Tk

= Y (@p)y2(zr1) — yi(ar)ya(zr).

The left-hand side of this equation is positive, since by assumption

g1(z) < ga(x), wy1(x) >0 ya(z) >0

on (zk, rk11). The right-hand side is non-positive, since

Yi(ze) >0, yi(zrg1) <0, yalwg) >0, yolzgy1) > 0.

This follows from the assumption that ya2(x) > 0 on (xg, xg4+1) and ya(x) is
continuous, since it is differentiable, on (a, b). This leads to a contradiction.
If yo(x) < 0, we arrive at the same contradiction by an analogue argument.
Hence, the function y2 should have at least one zero in (2, Txt1).

[ |

A result that immediately follows from the comparison theorem, which pro-
vides bounds on the distances between consecutive zeros, is summarised in

the following theorem.

Theorem 1.2 (cf. [2, Theorem 1] )

Let y'(z) + F(z)y(x) = 0 be a second-order differential equation in normal
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form, where F is continuous in (a,b). Let y(x) be a non-trivial solution on

(a,b), and let x1 < ... < x < xR < ... denote the consecutive zeros of
y(x) in (a,b).

1. If there exists an M > 0 such that F(z) < M in (a,b) then

T
Azxp = X1 — T > —.

vM
2. If there exists an m > 0 such that F(x) > m in (a,b) then

0
Az, = Thy1 — T < —F—.

N

Proof:  Let xp < xg41 be consecutive zeros of y(z) which is a non-trivial
twice differentiable solution of y”(x) + F(z)y(z) = 0 in (a, b), with F(z) be-
ing continuous in (a, b). Without loss of generality we can suppose that y(x)
is positive in (zx,xg41). Then y/(xr) > 0 and y'(zx4+1) < 0 and therefore

the function

/
hz) = — ¥ (z)
y(x)
satisfies limmﬁxz h(z) = —oo and limxﬁw; ) h(z) = +o0. Furthermore h(z)
+

is differentiable in (zy, zx41) and

W) — V@) @)

= F(z)+ h*(2).

Assuming that F(z) > m > 0 in (a,b), it follows that A’ > m + h? in
(21, T4 1) and then g(x) = h'(x)/(m + h%(z)) — 1 > 0. Therefore

Tk41—€
li dr >0
Jum f ol
so that
Tr+4+1—¢€ hl
lim # —1|dz
e=0t Jgp 4o (m + h3(x))

Tr4+1—€

L W)
= [<m>2+h2<x> 1]d
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Tk41—€

Tp+e
57 7] — (Tht1 — )

= —= — (Tgt1 —x1) > 0.

vm
This proves the second part of the theorem. The proof of the first part
follows in a similar way be assuming that F'(x) < M in (a,b) which implies
that b’ < M + h% in (2, 2p41) and so g(z) = b’ (x)/(M + h%(z)) — 1 < 0.
Then

Tp+1—€
lim g(z)dr <0

e—0t zpte

which implies that

Tp41—¢€ hl(x)
——— —1|d
(M + h2(x)) ] )

lim
=07 Tp+e

T
= T (@ — ) <O

VM

This proves the first part.
[ |

Another consequence of the comparison theorem, is Sturm’s convexity the-

orem.

Theorem 1.3 (Sturm’s convexity theorem, cf. [2])
Let y"(z) + F(x)y(z) = 0 be a second-order differential equation in normal
form, where F is continuous in (a,b). Let y(x) be a non-trivial solution in

(a,b), and let x1 < ... < x < Tp41 < ... denole the consecutive zeros of
y(x) in (a,b). Then

1. if F(x) is strictly increasing in (a,b), then Tyio — Tpt1 < Tht1 — Tk,
2. if F(x) is strictly decreasing in (a,b), then Tyio — Tpt1 > Tht1 — Tk-
The following is given in [12],
Proof: (cf. [12])

Let F(x) be strictly decreasing, then we need to show that zj o — xgy1 >
i1 — . This follows from the general result that if we rotate the graph of
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y through 180° between the zeros xy and xy41 then the resulting arch will
be contained in the arch between the zeros xy1 and xg1o. To prove this we
need to show that

y(z) > —y(2rp 11 — )
where

Tyl < T < Tyl +d

and d = x4 — xg. Without loss of generality we may assume that y(z) < 0

for z;, < x < xr4+1. Now we can use the fact that

y2(z) = —y(22p41 — )

satisfies the differential equation

Yy (x) + F(2zpy1 — x)y2(z) = 0.

The result then follows from Sturm’s comparison theorem, i.e. y(z) >
—y(2xp41 — ).
[ |

A simpler proof for the case when F'(x) > 0 is given in [2] and we include it

for the convenience of the reader.

An alternative proof for Theorem 1.3 which holds for F'(z) > 0 is as follows:

Proof:  First, we prove part 1. If F(z) is strictly increasing and we let
xp < Try1 < Tpso be consecutive zeros of y, then in the interval (zy, 1)
we have that F(z) < F(xg4+1) and in the interval (zj41,zr12), we have
F(x) > F(zgs1)-

Then by Theorem 1.2,

R ——
F(xpt1)
and
< ™
Ty — Tpp1 < —F————
F(2gq1)

which implies that
Az, = A(Axy)
= Azpy — Az

= Tpio — 2Tp +xf < 0.
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Hence,
Th42 — Thtl < Th41 — T
To prove part 2, we let F'(x) be strictly decreasing. Then in the interval

(zk, xx+1) we have that F(x) > F(zk41), and in the interval (xgi1,2g+2),
we have F(x) < F(xk11). By Theorem 1.2

T
Tyl — T < —F—e—
F(x41)
and
> v
Ty — Thp1 > ————=
F(xpq1)

which implies that
AQ.’Ek = Tpt2 — 2Tp41 + x> 0.

Hence,

Th42 — Th41 > Th41 — Tk-

In summary we see that by comparing y” + F(z)y = 0 with 3’ +m?y =0
and y" + M?y = 0, Sturm’s convexity theorem shows that if f is continuous
on (a,b) and m? < F(z) < M?, where m and M are positive numbers, then
the zeros x1, x2,... of y on (a,b) satisfy

i T

M i+1 i m

where ¢ = 1,2,... (cf. [12]). In other words, it provides information about

the spacing of the zeros.

Furthermore, it was also mentioned in [12], that Sturm’s convexity theorem
provides information about the shape of the successive arches of the graph

of a nontrivial solution of a second-order differential equation.

Another result, known as Sonin’s theorem, also arises from Sturm’s theorem

and provides information on the monotonicity of the relative maxima of

ly ()]

Theorem 1.4 (Sonin’s theorem, cf. [28])
Let y = y(x) satisfy the differential equation

y'+ F(x)y =0,
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where F(x) is a positive function having a continuous derivative of a con-
stant sign in xy < x < Xo. Then the successive relative maxima of |y|, as
x increases from xg to Xg, form an increasing (decreasing) sequence when

F(z) decreases (increases).

Proof:
Let

then we have that

when y'(z) = 0. Also

fll@) = 2 @)y(x) +r(@)y" () +
= 2/ (2)ly(2) + F~'(2)y"(2) +
= () (2))°

since 3 + F(x)y = 0 implies that y(z) + F~1(x)y" (z) = 0.
Also,
sgn[f'(z)] = —sgn[F" (x)]

since
1
"= B
which implies that
— ()
T —
"= T

This implies that when F(z) is increasing (decreasing) then f(z) = [y(x)]?
will be decreasing (increasing). Hence the statement follows.
]

Summarising, this means that if F'(z) is positive, continuous and increasing
on an interval I, then the relative maxima of |y| form a decreasing sequence.
On the other hand, if F(z) is decreasing, then the relative maxima of |y|

form an increasing sequence.
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Sonin’s theorem has been generalized by Redheffer (cf. [23]) for second-order

differential equations of the form

P(x)y" + Q(z)y +y = 0.

Theorem 1.5 (cf. [23, Theorem 5] )

Let y be a nontrivial solution of
Py'+Qy +y=0

on an interval (a,b) on which P is differentiable. Then the successive relative
mazxima of |y| on (a,b) form an increasing, constant, or decreasing sequence
when P’ > 2Q, P' = 2Q, or P' < 2Q, respectively.

Proof: If f = y? 4+ P(y')? the differential equation gives

= 29y + P) +2Pyy"
= 2y + P'(y)* + 20/ (-Qy — v)
= P'(y)*-20y)°Q
= ()P -2Q).

Hence f is increasing when P’ > 2@Q), decreasing when P’ < 2@Q) and constant
when P’ = 2Q. At a maximum z, we have y'(z) = 0, therefore f(zy) =
y(zx)?, and the result follows.

|

Another related result on the solutions of a second-order differential equation
in normal form is Sturm’s separation theorem. The proof of this theorem
follows from Theorem 1.1 (Sturm’s comparison theorem) and in the litera-
ture the two theorems are often proved together. We will make use of the
proof by Sista in [26]. An alternative proof can be found, for example, in
[19].

Theorem 1.6 (Sturm’s separation theorem, cf. [26])

Suppose that y1 and yo are a linearly independent pair of solutions of
y" + F(z)y =0.

If x1 and xo are two consecutive zeros of y1, then yo has exactly one zero in

(xl,xg).

10
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Proof: Assume that y, does not have a zero in (z1,z2). Then ys does not
have a zero in [z1,z2]. This is due to the fact that y; and yo are linearly
independent. Therefore we can define a function ¢ on [z1, 23] by

_ (@)

ya(a)
which has the following properties:

1. 1 is continuous on [z, x3].
2. 9 exists on (1, x2).

3. Y(x1) = P(z2) = 0.
By Rolle’s theorem, there exists a ¢ such that x; < ¢ < x5 and ¢/(¢) = 0.
This means that
Yi(e)ya(c) — yr(e)ya(c) = 0,
i.e. the Wronskian is zero, but this is not possible as y; and y2 are linearly

independent. Therefore, yo has at least one zero on (1, z2).

We claim that y2 does not have more than one zero in (x1, x2). If this was not
true, then there would exist at least two zeros of ys in (z1,22). Let x3 and
x4 be two consecutive zeros of yo in (acl, :Eg) such that 1 < 3 < 14 < Z9.
Then, by previous arguments, y; will have a zero in (z3,z4). This is a
contradiction to the fact that x; and xo are two consecutive zeros of y;.
Hence, there is exactly one zero of ys in (x1, x2).

[ |

Thus, if a linear second-order differential equation has two linearly indepen-

dent solutions y; and yo, then the zeros of y; are separated by the zeros of

Y2.

All of these theorems not only provide information about the spacing of the
zeros, but also enable us to place a bound on the distance between con-
secutive zeros under certain conditions, and in some cases we know how
the sequences of relative maxima of the absolute solutions will behave. In
the next chapter we will investigate the possibilities of using these theo-
rems to obtain information about the convexity of the zeros of solutions to
second-order linear differential equations where the differential equation is

not necessarily in normal form.

11
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Chapter 2

Convexity of zeros

2.1 Introduction

In this chapter we will discuss and prove results that will provide us with
information on the convexity of zeros of solutions of second-order differential
equations. Convexity in relation to the zeros of an equation means that if
the zeros are convex (concave), then the distance between successive zeros

must increase (decrease).

The convexity theorem of Sturm (Theorem 1.3) can be summarised, as was

done in [9], as follows.

Theorem 2.1 (/9, Theorem 2.1])
Let y"(z) + F(x)y(z) = 0 be a second-order differential equation in the
normal form, where F is continuous in (a,b). Let y(z) be a nontrivial

solution in (a,b), and let x1 < ... <z < 41 < ... denote the consecutive
zeros of y(x) in (a, b). Then

1. if F(x) is strictly increasing in (a,b), Tpio — Tpt1 < Tht1 — Tk,
2. if F(x) is strictly decreasing in (a,b), Tgio — Thi1 > Tpt1 — Tk,

3. if there exists M > 0 such that F(x) < M in (a,b) then

T
Azp = Tpqq — T > —F—

vVM
4. if there exists m > 0 such that F(x) > m in (a,b) then

m
Az < ——.

Jm

12
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The zeros of y are concave on (a,b) for the first case and conver on (a,b)

for the second case.

The convexity theorem is only applicable to functions which are solutions of
second-order differential equations in normal form. To satisfy this condition,
the differential equation can be transformed into normal form. This can be

done by changing the dependent variable in the following way. Let
4 (@) + flw)z =0

be a second-order differential equation and let

y==z exp(% /xg(s)ds>. (2.1.1)

For this integral to exist, we assume that g is a continuous function to ensure
that ¢ is an integrable function. The corresponding equation for y in the
normal form (1.0.1) is

y' + F(x)y =0

where
1 2 1 /
F(z) = f(z) = 79°(z) = 59'(2). (2.1.2)

This follows from

y/ _ ZIG% 7 g(s)ds + %zg(x)e% S g(s)ds

y// _ Z//eéfx g(s)ds + g(x)zle% S g(s)ds + 2292(37)6% S g(s)ds

1 z
—i—izg'(x)e%f 9(s)ds
= —f(x)zez T9l)ds 4 izgz(x)e% I a(s)ds 4 ézg/(x)e% 7 g(s)ds

= y@)| - @)+ {92 + 50 @)
= —F@)y()

Under this transformation the independent variable does not change and
hence the zeros of y and z remain the same. This transformation (2.1.1) can
be used to prove properties concerning the convexity of the zeros of some

classes of hypergeometric orthogonal polynomials.

13
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2.2 Hypergeometric polynomials

Firstly we define what is meant by hypergeometric polynomials.

Definition 2.2
The general ,Fy hypergeometric function is defined by

ai,az,...,ap = (a1)k(a2) - - - (ap)p2”
F, iz =14 , zl <1,
p q( bbby ) ; ORI
a;,b; ER b #£0,—1,-2,... fori=1,2,...,¢q

where

() = afla+1)...(a+k—-1), kE>1, keN
()o = 1 when a#0,

a product known as Pochhammer’s symbol or the shifted factorial function.

This series will terminate if one of the numerator parameters is equal to a
negative integer, say a; = —n,n € N, and then the series is a polynomial of

degree n.

2.3 Classical orthogonal polynomials
We define the concept of orthogonal polynomials.

Definition 2.3 (cf. [22])

If {P,(2)}2, form a simple set of real polynomials (polynomials that have
only real coefficients) and w(xz) > 0 on a < x < b, then the set P,(x)
are orthogonal with respect to the weight function w(x) over the interval
a<x<bif

Examples of classical orthogonal polynomials include

14
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Bessel
Bessel polynomials y,(a;x) can be defined by their hypergeometric repre-
sentation (cf. [11, p.244, eqn.(9.13.1)])

-n,n+a+1 —x

yn(a;z) = oF) ( ,2> , n=0,1,...,N. (2.3.3)
and are orthogonal on (0,00) for a < —2N — 1 with respect to the weight
function

w(x) = 2%

Hermite
H) (x) can be defined by their hypergeometric representation (cf. [11, p.250,
eqn.(9.15.1)])

A2, (=A+1)/2 1
Hy(x) = (22)* 2Fy ( / (_ )/ ;—x2> : (2.3.4)
When A = n, the Hermite polynomials are orthogonal on the interval
(—00,00) with respect to the weight function w(z) = e=*".
Laguerre
The Laguerre polynomials (cf. [11, p.241, eqn.(9.12.1)])
Ly (x) = CRR AT e (2.3.5)
n n! o + 1 9 .

which are orthogonal on the interval (0, c0) with respect to the weight func-

tion w(x) = e %z for a > —1.

Jacobi
Jacobi polynomials (cf. [11, p.216, eqn.(9.8.1)])

+1) -n,n+a+pf+1 1—-2x
pla.f) :(057” r ’ . 2.3.6
w7 () o 2h ol 5 (2.3.6)

are orthogonal on (—1, 1) with respect to the weight function (1—2)®(1+x)?
when «a, 5 > —1.

Ultraspherical
Ultraspherical polynomials may be defined by their hypergeometric repre-
sentation (cf. [11, p.222, eqn.(9.8.19)]), where we let & = 3 = A — § in the

15
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definition of the Jacobi polynomials.

+1) -n,n+2a+1 1-x
oW _ ploa)yy — @t Dn o ) : 2.3.7
n n (1‘) n 241 a1 "9 ( )
(2N, —n,n+2\ 1—x
= 2 F1 A+l T
: 2

or
Hahn

Hahn polynomials are defined, as in (cf. [11, p.204, eqn.(9.5.1)]), by

; (2.3.8)
a+1,—-N

—n,n+a+pL+1,—x
Qn(x;aw@aN): 3F2< 1>
withn=0,1,2,..., N.
They are orthogonal for « > —1 and 8 > —1 or « < —N and § < —N with

. . . a+x B+N—x
respect to a discrete weight function, wi(z) =
x N—=zx

with masses at x = 0,1,..., N. They have n simple zeros on (0, N) with

any two consecutive zeros being more than one unit apart (cf. [14]).

Meixner

Meixner polynomials M, (z;b, c) are orthogonal for b > 0 and 0 < ¢ < 1,
with respect to the weight function wy(z) = %CI with z = 0,1,..., and
can be defined by (cf. [11, p.234, eqn.(9.10.1)])

—n,— 1
M, (z;b,¢) = oF) < n;) . 01— c) . (2.3.9)

Chebychev

Chebychev polynomials of the first kind, 7, (x), are a special case of the
Jacobi polynomials and can be found by setting a = § = —%. Similarly, if
we let a = 5 = % we obtain the Chebychev polynomials of the second kind,
Upn(x).

Chebychev polynomials of the first kind may be defined by their hypergeo-
metric representation (cf. [11, p.225, eqn.(9.8.35)])

—-n,n 11—z
2

16
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and are orthogonal on (—1,1) with respect to the weight function w(z) =
(1—22)2.

Chebychev polynomials of the second kind can be defined by their hyperge-
ometric representation (cf. [11, p.225, eqn.(9.8.36)])

mATE w) (2.3.11)

Un(CC) = (TL —+ 1) 2F1 ( 3 -
2

and are orthogonal on (—1,1) with respect to the weight function w(z) =
(1—22)3.

Pseudo Jacobi
Pseudo Jacobi polynomials can be defined by (cf. [11, p.231, eqn.(9.9.1)])

-n,N+1—-n—iv 2

P,(x;v,N) = )" o F —_
n(l’,’l}, ) (1’+Z) 2 1< 2N+2—2n 71—Z$

) . (2.3.12)

are orthogonal on R with respect to the weight function

w(x) — (1 + x2)7N7162vtan_1x'

Dual Hahn
Dual Hahn polynomials can be defined by (cf. [11, p.208, eqn.(9.6.1)])

-n,—z,x+y+0o+1

Ry(M(2),7,6,N) = 3P 1 2.3.13
(A(z),~ )= 3 2( V1N ) ( )

where

AMz)=z(z+~v+d+1).
They are orthogonal for v > —1 and § > —1 or v < —N and é < —N with
respect to the discrete weight function

(22 +7y+ 0+ 1)(y +1)z(=N) N!

w(z) = (D)% +7+0 + 1)ns1(0 + 1)p!

with masses at x =0,1,..., N.

Charlier
Charlier polynomials can be defined by their hypergeometric representation
(cf. [11, p.247, eqn.(9.14.1)])

Cu(a;a) = 2F0< e ;—1> (2.3.14)
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and are orthogonal with respect to the weight function w(z) = ‘;—T provided
that a > 0.

Krawtchouk
Krawtchouk polynomials are defined by their hypergeometric representation
(cf. [11, p.237, eqn.(9.11.1)])

—n,—x 1
K,(x;p, N) = oF; ' ;= 2.3.15
(z;p, N) 2 1< N p) ( )

and are orthogonal for 0 < p < 1 with respect to the discrete weight function

w(x) = ( Y >pw<1 N

Further classes of orthogonal polynomials include the Wilson, Racah, Con-
tinuous Dual Hahn, Continuous Hahn and Meixner-Pollaczek polynomials

whose definitions are not needed for the purpose of this dissertation.

All these classes of polynomials can be categorised according to whether
they are continuous (satisfying a differential equation) or discrete (satisfying

a difference equation).

2.3.1 Continuous classical orthogonal polynomials

Continuous orthogonal polynomials are polynomials which satisfy a second-
order differential equation. This class consists of Hermite, Laguerre, Bessel,
Jacobi and Pseudo Jacobi polynomials as well as the ultraspherical and

Chebychev polynomials which are special cases of the Jacobi polynomials.

2.3.2 Discrete classical orthogonal polynomials

This class of polynomials can be divided into two groups where the poly-
nomials either satisfy a real or a complex second-order difference equation.
The class of discrete orthogonal polynomials satisfying a real second-order
difference equation consists of Charlier, Meixner, Krawtchouk, Hahn and
Dual Hahn polynomials and the class of discrete orthogonal polynomials
satisfying a complex second-order difference equation consists of Wilson,
Racah, Meixner-Pollaczek, Continuous Dual Hahn and Continuous Hahn

polynomials.

18
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In this dissertation we will be investigating the convexity of the zeros of all

of these classes of polynomials.

Although we will be applying the theorems to orthogonal polynomials, we
note that Sturm’s theorems do not require the functions satisfying the differ-
ential (or difference) equations to be orthogonal or even polynomials. The
only requirement is that the functions must be oscillating to ensure that the
function will have zeros. This is discussed by J. Segura in [25] and [24] for

Laguerre polynomials and Jacobi polynomials respectively.

2.4 Applications

In the literature Theorem 2.1 has been used in various cases. Hille [8] used
the transformation (2.1.1) to prove the convexity of the zeros of Hermite
polynomials while Jordaan and Todkos [9] used the same transformation to
prove convexity properties of the zeros of Laguerre, Jacobi and ultraspherical

polynomials. Further detail will be given in Chapter 3.

Szeg6 [28] considered a different change of variable to obtain information on
the convexity of the transformed zeros of the ultraspherical polynomials and
this change of variable was applied to hypergeometric functions by Deafio,

Gil and Segura in [2].

In [20] Muldoon provides an overview of how the convexity theorem can
be used to obtain information about convexity properties of the zeros of
gamma, g-gamma and Bessel functions with respect to either a parameter
or the order of the zeros and convexity of the Hermite functions is also briefly
discussed. In Chapter 3 we will provide a more detailed exposition of these

results for the Bessel and Hermite functions, supported by proofs.

2.5 Discrete versions of Sturm’s theorems

So far we have only discussed the applications of Sturm’s theorem for the
continuous case of differential equations, but the comparison and convexity
theorems have analogues for difference equations, i.e. for the discrete case.
In [4] Gishe and Todkos discuss and apply the convexity and comparison

theorems for difference equations to the Hahn and Meixner polynomials.
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Although the classical comparison and convexity theorems can be directly
applied to difference equations of the type A%y(z — 1) + F(x)y(z) = 0, this
class of equations is too narrow. We know that any second-order linear dif-
ferential equation can be transformed into normal form, while for difference
equations this is too complicated and after such a transformation it is not
possible to determine the monotonicity properties of the function F(t) and
therefore we need a more general approach. This will be discussed in more
detail in Chapter 4.

In [4] second-order self-adjoint equations of the form
Alple — DAy(e — 1)] + g(@)y(z) = 0 (2.5.16)
with p(x) > 0 are considered.

Lemma 2.4 (cf. [10, Lemma 6.1])
Let y(t) be a nontrivial solution of (2.5.16) with y(to) = 0. Then y(ty —
Dy(to+1) <O.

We note that the discrete versions of Sturm’s separation and comparison
theorems hold for self-adjoint equations. Before stating these theorems, we

first need to define the concepts of a generalized zero and disconjugacy.

Definition 2.5 (cf. [10])
A solution y(z) of (2.5.16) has a generalised zero at xq if either y(xg) = 0
or y(zo — 1)y(xo) < 0.

Definition 2.6 (cf. [7])
Equation (2.5.16) is called disconjugate on [a, b] if no nontrivial solution has

two or more generalised zeros on [a,b]. Otherwise it is called conjugate.

Discrete versions of Sturm’s separation and comparison theorems are given

below.

Theorem 2.7 (cf. [10])

Two linearly independent solutions of (2.5.16) cannot have a common zero.
If a nontrivial solution of (2.5.16) has a zero at x1 and a generalised zero
at xo > x1, then any second linearly independent solution has a generalised

zero in (x1,x2]. If a nontrivial solution of (2.5.16) has a generalised zero at
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x1 and a generalised zero at xo > x1, then any second linearly independent

solution has a generalised zero in [x1,x3].

Let
Liy(z) = Alpi(z — 1)Ay(z — 1)] + ¢i(z)y(z) =0, i=1,2

where p;(z) > 0 in [a,b+ 1] and ¢;(z) is defined on [a + 1,b+ 1].

Theorem 2.8 (cf. [10, Theorem 8.12])

Assume that q1(z) > q2(x) on [a+1,b+1] and pa(x) > p1(x) > 0 on [a, b+1].
If Liy(xz) = 0 is disconjugate on [a,b+ 2], then Lay(x) = 0 is disconjugate
on [a,b+ 2].

A new version of the Sturm comparison theorem and the consequence of
that, which is the convexity theorem, are discussed in [4]. These theorems
can be used to obtain results on the convexity of the zeros of solutions
of self-adjoint difference equations. These results were also applied to the
Hahn and Meixner polynomials, which we will discuss, together with the

appropriate theorems, in Chapter 4.

2.6 Brief overview

We have observed that if a class of orthogonal polynomials satisfies a dif-
ferential equation in normal form, then under certain conditions we will be
able to determine where the zeros of these polynomials are convex (concave)
and one can then often place bounds on the distances between consecutive
zeros. We have also seen that these results might be extended to difference
equations. In the next chapter we will apply these convexity results to Bessel
functions and Hermite, Laguerre, Jacobi and ultraspherical polynomials as
was done in [9] and [20].

In Chapter 4 we investigate results on the convexity of zeros of solutions of
polynomials which satisfy difference equations with applications to Hahn and
Meixner polynomials as was done in [4]. In Chapter 5 we consider Cheby-
chev, Bessel, Pseudo Jacobi and Dual Hahn polynomials and obtain con-
vexity results by making use of the known results for polynomials satisfying
differential or difference equations. In Chapter 6 Charlier and Krawtchouk

polynomials are investigated and we find that the existing theorems do not
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yield results on the convexity of these polynomials. We also briefly discuss
polynomials which satisfy complex difference equations and g-orthogonal

polynomials.
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Chapter 3

Convexity of the zeros of

some special functions

In this chapter we review the results from [9] and [20] on the convexity of
the zeros, as well as bounds on the distances between consecutive zeros, of
Bessel functions, Hermite, Laguerre, Jacobi and ultraspherical continuous
orthogonal polynomials, together with detailed proofs. We will make use
of Theorem 2.1, an application of Sturm’s comparison theorem that can be
used for second-order differential equations in normal form. This theorem
is applicable to the above mentioned classes of polynomials since they all
satisfy a second-order differential equation which is in normal form, or can

be transformed into normal form.

We start by considering the Bessel functions for which various results on
convexity, as well as on the spacing of its zeros, have been discussed in [12],
[13], [20] and [25].

3.1 Bessel functions

Firstly, we consider convexity results for the zeros of Bessel functions.

Bessel functions y(x) = J,(z) of the first kind can be defined on (0,00) by
[28]

o (B (/2P
To@) = ;_:0 nI'(v+n+1)
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or by their hypergeometric representation (cf. [22, p.108, eqn.(1)])

_ (=/2)” - -’
JV(UC)—W o1 ( vl ,4>-

They satisfy the differential equation (cf. [22, p.109, eqn.(4)])

22y oy + (2 — vy =0 (3.1.1)
and have all their zeros real when v > —1 (cf. [30]). A second solution of
the differential equation (3.1.1), the Bessel function of the second kind, is

given by
Jy(x)cos v — J_,(x)

sin v

Y, (z) =

where we take an appropriate limit when v is an integer. The general solu-

tion is then given by
Cy(x) = cos aJ,(z) — sin aY,(z)
where C,, (z) are referred to as cylinder functions (cf. [30]).

We will denote the respective k-th positive zeros of J,(z) and C,(x) by

Juk and cyk. It was shown by Sturm [27] that if |v| is greater than or less

than 1/2, the positive zeros of the function C,(x) form a concave or convex

sequence respectively.

The differential equation (3.1.1) for y(z) = C,(z) can be transformed to
normal form

y' + F(x)y =0

as described as in Chapter 2 using equation (2.1.2) where

1 1
F(z) = f(w)—zgz(w)—y/(w)
- x2 — 12 1 n 1
- 22 4x2  2x2
_ 422 — 42 + 1
- 42
1/4 — 12

_ g A

T

which results in the transformed differential equation

1/4 — 12
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satisfied by the functions y(x,v) = x%Cy(x). It follows that the zeros ¢, of

Cyi are also the zeros of y(x,v).

Theorem 3.1 (cf. [20])
The zeros of Cy,(z) are

1. convez on (0,00) if [v] < &
2. concave on (0,00) if [v] > L.

In addition,
1
Acyp <m,  forlv| < 3

and )
Acyp >m,  for|v| > 3

Proof: We have that
4’ —1
223
Let j(z) = 4v* — 1, then j(z) > 0 when |v| > % and j(z) < 0 when
lv| < 5. This implies that F(z) will be increasing on (0,00) when |v| > 3

and decreasing on (0,00) when |v| < 1. Hence, the zeros of C,(z) are

Fl'(z) =

concave for |v| > 3 and convex for [v| < 1. Also

v > =
5 1
2
1

2
> —
v 1

1 2
S <0

4 1%

1/4 —1?
14 1

X

Fz) < 1

Similarly, if |v] < 1/2, F(x) > 1.
By Theorem 2.1 (3) and (4) we can now come to the conclusion that

1
Acyp <m, for |v| < 3

and )
Acy, > m, for |v| > 7
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Lorch and Szeg6 [17] considered higher monotonicity properties of the Bessel

function and proved that for [v| > 3, we have
(-1)"A™" e, >0, n=0,1,....,k=1,2,... (3.1.2)

where
A e = AA(..(Alew))))

with A applied n + 1 times to c,.

From this extended and more general results followed (cf. [15] and [16]). It
was also proved by Gori, Laforgia and Muldoon in [5] that (3.1.2) remains
valid when we replace ¢, by j,r and the difference operation is replaced by
a derivative operator. It is not as easy to derive higher monotonicity results
for 0 < v < 4. In [15] it was conjectured that (3.1.2) should be replaced by

(-1)"A" 2%, >0, n=0,1,....k=1,2,.... (3.1.3)
In [21] it was proved by Muldoon that (3.1.3) does hold for 3 < v < 1.

An indirect application of Sturm’s convexity theorem was used by Porter
and Bocher in [1] to show that each zero j,i of the Bessel function increases
as v increases, with 0 < v < oco. Makai [18] also used Sturm’s convexity

theorem to show that j,x /v decreases as v increases.

The following general result concerning the convexity of the zeros j, of the

Bessel function J,; was proved by Elbert and Laforgia (cf. [3]).

Theorem 3.2
Let j,i be defined as above and let

d
kozinf{k>0:jl',k:%j,,k> 1, for alluZO}.

Then, jfk s convex for v > 0 and for every k > ky.

3.2 Hermite polynomials

Hermite polynomials y(xz) = Hyx(x), as defined in (2.3.4), satisfy the differ-
ential equation (cf. [11, p.250, eqn.(9.15.5)])

y" — 22y’ +2\y = 0.
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From their orthogonality it follows that the zeros of H)(x) are real, distinct

and located symmetrically with respect to the origin.

Now
Fla) = @)~ 6@ — 3/(@)
1 1
= 2\ — Z(—2:1;)2 - 5(=2)
= -2 +2)\+1

where F(x) is defined in (2.1.2), the transformed differential equation in

normal form (1.0.1) is
Y 4+ (—22 224+ 1)y =0
and the zeros of F'(x) are
T12 = V2N +1

where x; denotes the negative zero and x2 is the positive zero.

Theorem 3.3 (cf. [8])
The zeros of Hy(x) are concave on (—00,0) and convex on (0, 00).
Moreover, we have the estimate

T A > 1
—_ 1 ——.
V22 +1 2

Azy, >

Proof:

Since F'(z) = —2z, F(z) will have a local extremum at z = 0. F(z) will be
increasing for z < 0 and decreasing for x > 0. By Theorem 2.1 (1) and (2),
the zeros of y will be concave on (—o0,0) and convex on (0, c0).The leading
coefficient of F'(z) is negative and F'(0) = 2\ + 1, therefore

F(x) <2\+1 forallz eR.

Since 2A +1 > 0 if A > —1 it follows by Theorem 2.1(3) that

1
Azp> ———  for A>—=.

V2A+1 2
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3.3 Laguerre polynomials

Laguerre polynomials y(z) = L%“)(a:), as defined in (2.3.5), satisfy the dif-
ferential equation (cf. [11, p.241, eqn.(9.12.5)])

2y + (a+1—x)y +ny=0.
This differential equation can be transformed, by (2.1.1), to
v '+ F(z)y=0
where

F@) = f(@)—2g?() - og'(2) (3.3.4)

4 2
n 1 a+1—x)2 1(—a—1

R L 2 )
— 224 2ax 42 +4dnxr — a2 + 1

42

with F'(x) defined in (2.1.2). We also have that

(—=2n—a—1)2?> = (1 —a?)z

Fl(z) = 5
So when F'(z) =0,
a?—1

Hence F'(z) changes sign at xo.

Theorem 3.4 (cf. [9, Theorem 3.1])

The zeros of L% on (0,00) are

1. all conver if n >0 and -1 < a <3

2. all convex if a >3 and 0 < n < g—:},’
3. concave for x < xg and convex for x > xg when o > 3, n > g‘[—fé and

xo is defined by (3.3.5).

Moreover, for the distance between consecutive zeros we have the general
estimate
77\/5

Axy > , k=1,....n—1
K V2an+a+2n2+2n+1
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and also if xp > xq, then

Avg> ——\ k=1,...,n—1

and
T
Arpy < ——, k=1,...,n—2

VF (@)

where F' is defined by (3.5.4).

Proof:
If |a| < 1, then
o < 1
2
-1
a 0
a+2n+1
o < 0
and
Fl(z) < 0

(—2n—a—-1)22—(1-a®z < 0.

This quadratic equation will have a negative leading coefficient for all n =
0,1,... if —a—1 < 0 and this is true for || < 1. Therefore F'(x) < 0
for # > 0 or ¢ < xp when |o| < 1. Hence, F(z) will be decreasing on
(—o0,0) |J(0,00) and increasing on (zo, 0).

For a > 1, g > 0, we have that the leading coefficient will be negative,
hence F(x) is increasing on (0, z¢) and decreasing on (—oo,0) | J(xg, 00).

Let the smallest zero of LY be denoted by z1, then z1 > 2t (cf. [6]). This
a+1

implies that when o < =, F(x) will be decreasing on the interval (z1, c0),
since we have already shown that F'(x) is decreasing on (xg,00). This will

be true when

a+1
o <
n
a2 -1 a+1
<
a+2n+1 n
a—1 1
-, a>1
a+2n+1 n
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Solving for o we find that —1 < a < % and for all n > 0, :Zlfll > 3, hence

—1 < a < 3 and the zeros of LY are all convex, by Theorem 2.1 (2). There

is another solution for this inequality, if we solve for n in a < 37?_+11, we find

thatn<§—f§ifa>3,sincen>0.

From Theorem 2.1(3) we can estimate the distance Az, where we take

M = F(x() since the maximum of F' is at xp and F'(xo) > 0. We get

Ax, >

zﬁ*

xo)
Wﬁ
V2an+a+2n2+2n+1

to obtain the first bound. Following from the facts that F'(x) is decreasing
on (xg,00) and F’'(x) changes sign at xg, when xy > zg, F is monotone

decreasing on (xg, zk+1). This means that on (g, zr4+1) we have
F(z) > F(z) > F(Tky1)-

In fact, F' is monotone decreasing on (0, 00) and also

1
fim F(z) = =7
so there is exactly one point z; on (xg, c0) where F' crosses the z-axis. From
the form of the differential equation, this now implies that if F'(z) < 0 and
y(z) >0,
y' = —F(z)y(z) >0
hence, the graph will be concave up and similarly, if y(z) < 0, the graph
will be concave down. Hence, there can be at most one zero of the Laguerre
polynomials to the right of x;. This means that F(x,_1) is positive, but
F(x,) may be negative and therefore the index in the last bound on the

zeros only runs up to n — 2.

3.4 Jacobi polynomials

Jacobi polynomials y(x) = pleP) (x), as defined in (2.3.6), satisfy the differ-
ential equation (cf. [11, p.218, eqn.(9.8.6)])

1 -ty (z)+ (B —a—(a+B+2)z)y (z) +n(n+a+ B+ 1)y(x) =0.
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This equation can be transformed to the normal form, y”+ F(x)y = 0, where

—zz? - 2(w —y)r — 2w — 2y + 2

F =
where w=a’-1
y=p"-1

z=(a+B+2n)(a+L+2n+2)
with F(x) defined as in (2.1.2). Also

F'(z) = 223+ 3(w — y)2® + (4w + 4y — 2)z + (w — y) _ (@)
2(z2 — 1)3 TR 1p

and the discriminant of j'(x) is
D :=12(3w? + 3y° + 22 — 6wy — 4wz — 4y2).

It is necessary to restrict the parameters to the following conditions (cf. [2]),
since the solutions need to be oscillating in order to apply Sturm’s convexity

theorem,
n>0, n+a+B8>0, n+a>0 n+p5>0.

In the following theorems we will assume that the parameters satisfy these

conditions.

Theorem 3.5 (cf. [9, Theorem 4.1])
If la| > 1, |B] < 1 and D < 0, all the zeros of P,&“’ﬁ) on the interval (—1,1)

are conver.

Proof:

F(z) is a rational function and it has vertical asymptotes at x = +1, since
4z —-1)>=0

implies that
r = =+1.

If |a] > 1 and |5] < 1, then
w=a>-1>0
y=p2-1<0
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and
z=(a+B+2n)(a+F+2n+2)>0
SO
Gj(=1) = z2® 4+ 3(w—y)x? + (4w + 4y — 2)z + (w — y)
= —2+4+3w-y)— (dw+4dy — 2)z+ (w—y)
= —8y>0
and also
i) = za®43(w—y)a® + (4w + 4y — 2)z + (w — )
= 2+3w-—y)+ @dw+4y —2)+ (w—y)
= 8w > 0.
Then,
(z
i o) =t ot
= lim ) <0

z——17+ 2(5[)2 — 1)3
and similarly,
lim F'(z) <O0.

r—1—

This implies that

li F =
i, Fw) =0
and
lim F'(z) = —o0.
r—1—

D < 0 implies that j'(z) # 0 for z € (—=1,1) and hence j(z) will have no
extreme values on this interval. It follows that F'(z) is monotone decreasing
on (—1,1) and Theorem 2.1 yields the result.

n

For fixed values of a and [ the discriminant D is positive for large values
of n and thus the conditions of Theorem 3.5 will not be satisfied. We inves-
tigate this possibility in the next theorem, where we let the degree of the

polynomials be sufficiently large with o and S fixed.

Theorem 3.6 (cf. [9, Theorem 4.2])
Let o and B be fixzed and let n — oo, then the convezity of the zeros of Péa’ﬁ)
on (—1,1) changes in the following way (from left to right):
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1. if la| <1 and || < 1 then convex-concave.
2. if la| <1 and |B| > 1 then concave-convex-concave.
3. if la| > 1 and |B| < 1 then convex-concave-conver.

4. if o] > 1 and |B] > 1 then concave-convez-concave-conver.

Proof:
If @ and f are fixed and n — oo, then the extreme locations of j(x) tend to
+1/+/3. We can calculate this by first finding the j’(z) as n — oo,

§'(x) = 2%(32) + 6x(w — y) + (4w + 4y — 2)

noting that n — oo implies that 2 — oo, so to find the roots of j'(x) we

have

2%(32) + 62(w —y) + (4w +4y —2) = 0

6x(w —y)

322 + +Z+4% 1) = 0
z z

and if we now let z — oo then
322 —-1=0.

Hence the determining the extreme values of j(x) are

1
r = +—.
V3

Since z > 0, the leading coefficient of j(z) will be positive, which implies
that the local extremum near —1/4/3 will be the maximum and the local

extremum near 1/4/3 will be the minimum.
j(\}g) :z<3\1/§—\}§> +y(—2+\;1§) +w(2+\j§>.
j(—\}g) :z<—3\1/§+\}§) +y(—2—\%> +w(2—|—j§).

The maximum value tends to co if we let n — oo, i.e. z — 00, and similarly,

the minimum value tends to —oo.

j'(@) =0
z(62) +6(w—y) = 0
z = =Y
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This gives us the inflection point, xg, of j(x) and since z — oo,

_y-w
oz

—0

o

which implies that there is at least one change of concavity in (—1, 1) (from
convex to concave) and whether there are more, depends on the sign of

j(—=1) and j(1). We have that

j(-1) = —8y =8(1 - 5%

and
§(1) = 8w = 8(a® — 1).
For case 1, we get that j(—1) > 0 and j(1) < 0 which implies that
lim F'(x) =oco and lim F'(z)= —oo0.
T—1— r——17F
Hence, we have convex-concave. For case 2, j(—1) < 0 and j(1) < 0,
which means that lim,_,;- F'(x) = co and lim,_, _;+ F’(x) = oo, so we have
concave-convex-concave. Similarly the results for cases 3 and 4 follow.
|
A special case of the Jacobi polynomials is the ultraspherical, also known as

Gegenbauer, polynomials.

3.5 Ultraspherical polynomials

Ultraspherical polynomials y(z) = 07(1)‘), as defined in (2.3.7), satisfy a dif-
ferential equation (cf. [11, p.223, eqn.(9.8.23)])

(1 —2%)y"(z) — X + Day/(z) + n(n + 2\)y(x) = 0. (3.5.6)

Theorem 3.7 (cf. [9, Theorem 5.1])
If |A| < 1, the zeros of c on (—1,0) are convex and those on (0,1) are

concave. In addition

s

T
Axy < =
g VFO) V2xn+A+n2+n+1

and for the positive zeros we have

T T
< Azy <

F(zg41) F(ap)
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Proof: First we need to write the differential equation (3.5.6) in the normal
form. We find that

Fla) = _()\+n)(>\+n+1)(13;22‘1;(11)2—1-71—1-7124—/\—1—2)\71).

The numerator of F'(x) is
j@) =4[(A+n) A +n+1Da® — 24+ n+n+ X+ 2\n — \)z]
and the discriminant of j'(x) is
D =192\ +n)(A+n+1)(2+n+n?+ X+ 2\n — \?).

The leading coefficient of j(x) is positive when A > —1. The point of

inflection of j(x) is g = 0, since

j'(x) = 0
24X +n)A+n+1Lz = 0
r = 0

and hence the convexity of the zeros changes exactly at the middle of the

interval (—1,1). The local extrema of j(x) can be estimated as follows

0 = j(z)
0 = 12[(A+n)A+n+1)2% — (2+n+n>+ X+ 2xn — \?)]

e Nme A+ -2 1)
b2 3n+tANm+A+1)

and the two remaining zeros of j(z) are

0 = Jj=)
0 = 4A+n)A+n+1)z> = (2+n+n2+X+2\n—A\?)z]
0 = 4A+n)A+n+1)z2 =24+ n+n2+X+2n—\?)

T o i\/(n iy —maV3 (3.5.7)

where X7 denotes the negative zero and X5 the positive zero.
For |A] <1 we have X; < —1 and X3 > 1, and since the leading coefficient of

Jj(x) is positive when A > —1, j(z) will be positive on (—1,0) and negative on
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(0,1). But F'(z) will be negative on (—1,0) and positive on (0, 1), therefore,
F(z) is decreasing on (—1,0) and increasing on (0, 1).
The convexity of the zeros now follows from Theorem 2.1(1) and (2). In
addition,

FO)=1+n+n*>+XA+2\n>0

is a minimum value and so we have an upper bound on the distance between

any two consecutive zeros from Theorem 2.1(4),

s

T
Az < = .
g VFO) V2in+A+n2+n+1

Finally, since F(x) is increasing on (0, 1), for x € (z;, z;+1) we have
0< F(.%'Z) < F({B) < F(x2-+1)

where z; and x;41 are any two consecutive positive zeros and the last in-

equality follows from Theorem 2.1(3).
[ |

Theorem 3.8 (cf. [9, Theorem 5.2])
Let [\l > 1 and (n+ X)(n + X+ 1) < 2(\2 — 1) then the zeros of c on

(—=1,0) are concave and those on (0,1) are convexr. Furthermore

A:L‘k > .
£(0)

Proof:

If [\] > 1 and D < 0, then j'(z) has no real roots, hence j'(x) # 0 for all
real z € (—1, 1), therefore j(x) will have no local extremum and is monotone
increasing on (—1,1) since if D < 0 and we let (n4+A)(n+A+1) < 2(\2—1)
then we must have (A +n)(A+n+1) > 0 which is the leading coefficient of
j(z). F'(z) is decreasing on (—1, 1), but 5(0) = 0, or equivalently F’(0) = 0,
which implies that F’(z) > 0 on (—1,0) and F'(x) < 0 on (0,1).

Now, F'(x) is increasing on (—1,0) and decreasing on (0,1). From Theorem
2.1, the zeros of Py"/\)
more, F'(0) is a local maximum, therefore F'(x) < F(0) for z € (—1,1) and

F(0) > 0. By Theorem 2.1(3),

are concave on (—1,0) and convex on (0,1). Further-

Az >

F(0)
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Theorem 3.9 (cf. [9, Theorem 5.3])

Let [A| > 1 and (n+ A)(n+ A+ 1) > 2(A\%2 — 1) then the zeros of M are
concave on (—1, X1) and (0, X2) and convex on (X1,0) and (X2,1), where
Xi2 are as in (3.5.7). We also have that

™ ™
Aﬂfk > - )

VE(Xz) V(X))

moreover, if (xg, xp+1) C (X1, X2) then

Az < L,
£(0)

and Zf (xk7xk+1) - (07X2); then

T T
< Azy <

F(zg41) F(zy)
Proof:

When |A| > 1 and D > 0, then all the zeros of j(z) are real, hence j(z) has
three zeros on (—1,1), namely 0, X; and X5 with

FO)=(1+n+n>+X+2n)=ON+n)(A+n+1)— (1 -1)

and

—[n+Nm+A+1) =20 = D]+ (1 +n+n?+ X+ 2X\n)

((n+>\)(n+)\+1)—2(>\2—1) B 1>2
CESYICES sy

FO) + A4+n)A+n+1)—2(A2—1)

F(X1) =

> F(0)

when (n + A)(n+A+1) > 2(A\2 —1). Also, F(X;) = F(Xz), hence F(z)
has local maxima at X 2 and a local minimum at z = 0. F'(x) is decreasing
on (X1,0)J(X2,1) and increasing on (—1, X1) (0, X2). By Theorem 2.1,
the zeros of P,** are concave on (—1,X;) and (0, X2) and convex on (X1, 0)
and (X2, 1).

We also have that lim,_,_; F(z) = —o0 = lim,_,1 F(x), so F(z) < F(X3) =
F(Xi) on (—1,1) and by Theorem 2.1(3)

T m
Azxy > =

V(X)) F(XD)
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Also, if (zg, zp11) C (X1, X2) then F(x) > F(0) where x € (x,xx+1) and
by Theorem 2.1(4)
T
Az < ——.
£(0)
If (g, zk11) C (0, X2), then F(xg) < F(x) < F(xky1) where x € (xg, Tr11)
since F'(z) is increasing on (0, X2). Hence, by Theorem 2.1(3)(4),

T T
< Az <

F(zk41) F(xy)
|
In this chapter we have discussed and proved results for various classes of
orthogonal polynomials as well as Bessel functions, which all satisfy a second-
order differential equation, where we applied theorems which followed from
Sturm’s comparison theorem. We have also seen that not only can we prove
properties on convexity of zeros but we can also, in some cases, place bounds

on the distances between consecutive zeros.

In the next chapter we will discuss results which can be applied to polynomi-
als which satisfy difference equations and will use the same approach as was
done with differential equations, this time applying analogues of Sturm’s

theorems.
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Chapter 4

Convexity theorems and
results for difference

equations

In this chapter we explore the possibilities of obtaining results on the con-
vexity of zeros of solutions of polynomials that satisfy a difference equation.
We will do this in a similar way as we did for solutions of differential equa-
tions. In Section 2.4 we discussed analogues of Sturm’s theorems that also
hold for difference equations. We now consider further extensions by Gishe
and Todkos [4].

The first theorem we state here may be considered a new version of the
Sturm comparison theorem for difference equations (Theorem 2.8) which
will provide better information about the behaviour of the zeros of solutions

of such second-order difference equations.

Theorem 4.1 (cf. [4, Theorem 1])

For the following pair of second-order difference equations,

Alpr(z = DAy(z — D] + qi(x)y(x) =0 (4.0.1)

Alp2(z — 1)Az(z — 1)] + g2(z)z(x) =0 (4.0.2)

assume that pa(x) > pi(xz) > 0 and qi(x) > q(x) for x € [ro,x0 + n|,
y(xo) = z(x0) =0, y(zo+ 1) >0 and z(zo + 1) > 0. Then if y(xo+2) >0,
y(xo+3) >0, ..., ylxzg+n) >0 (n>2), then z(zg+2) >0, z(xg+3) >0,
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., z2(xo+n) > 0.

This means that “z(z) cannot change sign before y(x) does”.

Proof:

Assume that z(x) does change sign before y(z) does, i.e. assume that y(xo+
2)>0,y(zo+3) >0, ..., y(zo+n) >0 and z(xg+2) >0, z(xg+3) >0,
con 2(wo+k—1) >0, z(xg + k) <0, where 1 < k < n. Then z(z) has two

generalised zeros on [zg, ¢ + k], since
2(xo+k—1)z(xo+ k) <0

and y(zgp) = 0 which means that xo as well as xg + k are generalised zeros.
Therefore, equation (4.0.2) is conjugate on [zg, xo + k|, by Definition 2.6.

According to Theorem 2.8, equation (4.0.1) is also conjugate on [zg, ¢ + k],
i.e. it has a nontrivial solution w(x) with at least two generalised zeros on

[0, zo + K]

Since k < n, the functions w(z) and y(x) must be linearly independent. By
Theorem 2.7, w(xp) # 0 since two linearly independent solutions cannot have
a common zero. Hence, w(z) has two generalised zeros on [z + 1,z¢ + k.
But then y(x) also has to have a generalized zero on [z + 1,z + k|, which
contradicts the fact that y(zj) # 0 and y(z§)y(xf — 1) > 0 for all zf €
(zo + 1,20 + k).

Hence, we must have z(xg + k) > 0 for 1 < k < n.

|

The following theorem may be considered as the Sturm convexity theorem

for second-order difference equations.

Theorem 4.2 (cf. [4, Theorem 2])

Assume that in the equation
Alp(z — DAy(z — 1)] + g(z)y(z) = 0

p(x) is monotone decreasing, q(x) is monotone increasing on [xo—mn, To+n|,
y(xo) = 0 and y(zo + 1) > 0. Then if y(zo+2) > 0, y(xzog+3) >0, ...,
y(xo+mn) >0, then y(zg — 1) <0, y(zo —2) <0, ..., y(xzog — n) < 0.
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Proof:
Let pa(z) = p(2z0 —  — 1) and g2(z) = q(220 — 2).

Alpa(z — DAz(z — 1)) + ga()2(x)
= ApQxo—z—2)Az(x — 1)] + q(2x9 — x)z(x)
= z(z+1)pQ2xo—z —1) — 2(2)[p(2z0 — z — 1) + p(2x0 — x) — q(220 — 7)]

(
z(x — )p(2xg — )

Letting z(z) = —y(2x0 — x) equation (4.0.2) is satisfied and we have

—y(2x0 — 2 — 1)p(2x0 —x — 1)
+y(2z0 — @) [p(2x0 — = — 1) + p(2z0 — ) — (230 — )]
—y(2x0 — x + 1)p(2xo — )
= —[y(2zo—x —1)p(2xg —xz — 1)
2z9 — x)[p(2zo — . — 1) + p(2x0 — x) — ¢(229 — )]
20 — x + 1)p(2z9 — x)].

—y(
+y(
From the monotonicity assumption, it now follows that ps(z) > p(x) and
q(z) = q2(x) on [xo, z0 + 1],

By Theorem 4.1,

z(xg+2) >0,2(xg+3) >0,...,2(xg+n) >0
but z(z) = —y(2z0 — x), so

y(lro—1) <0,y(xo—2) <0,...,y(zo —n) <O0.

Since we are investigating discrete polynomials we have to define a new
type of convexity to ensure that we take all the zeros into consideration.

Therefore we now define the concept of quasi-convexity.

Definition 4.3 (cf. [4, Definition 2.1))
Let y(x) be a continuous function on an interval (a,b) and let 1 < ... <

T < Tpr1 < ... denote the consecutive zeros of y(x) in (a,b). Then
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1. if A%z, < 1 for all k, then the zeros of y(x) are called quasi-concave
on (a,b),

2. if A%z, > —1 for all k, then the zeros of y(z) are called quasi-convex

on (a,b).

We can show that a sufficient condition for quasi-convexity is monotonicity

of the functions p(z) and ¢(z).

Corollary 4.4 (cf. [4, Corollary 2.2])

Let y(x) be a continuous function on an interval (a,b) and let z1 < ... <
T < Tpe1 < ... denote the consecutive zeros of y(x) in (a,b). Assume that
Axy > 1 for all k and that y(x) satisfies equation (2.5.16) on (a,b).

e If p(x) is monotone decreasing and q(x) is monotone increasing on

(a,b), then the zeros of y(x) are quasi-concave on (a,b).

e If p(x) is monotone increasing and q(x) is monotone decreasing on

(a,b), then the zeros of y(x) are quasi-convezr on (a,b).

Proof:

Let zg41 be a zero of y(t) in (a,b) and assume that y(xg41 + 1) > 0, then
y(z) must be positive between xp1 and xp1q1 + 1 as well, since Azy > 1
by assumption, which would imply that any two consecutive zeros are more

than 1 unit apart, i.e. there cannot be a zero between zp; and zpy1 + 1.

Choose n such that
Tl +Nn < Zpgo2 <21 +n+1 (4.0.3)

which implies that the difference between xx1 and the next zero, xgys, is

more than n. Then

Y(@p1 +1) > 0,y(@p41 +2) > 0. y(zp41 +n) >0
and by Theorem 4.2

Y(xpt1 — 1) <0,y(@p41 —2) <0...y(zp1 —n) <O0.

This, together with the assumption that Az > 1 and by Lemma 2.4 yields

ZTk4+1 +n < xpy2 which is true for values of k, so we also have that

Tk < Tpi1 — N. (4.0.4)
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On the other hand, by the choice of n in (4.0.3),
Thto — The1 < n+ 1. (4.0.5)
By combining equations (4.0.4) and (4.0.5) we obtain
A%z, < 1.
|

Next we consider the Hahn and Meixner polynomials, which both satisfy
difference equations, and use the above mentioned theorems to obtain results
on the convexity of their zeros as was done in [4].

4.1 Hahn polynomials

Hahn polynomials y(x) = Qn(z;a, 3, N), as defined in (2.3.8), satisfy the
difference equation (cf. [11, p.205, eqn.(9.5.5)])

n(n+a+ B+ 1)y(z)
= B(x)y(x+1) - [B(z) + D(x)]y(z) + D(x)y(x — 1), (4.1.6)

with
B(z)=(x+a+1)(x —N)

and
D(z)=xz(z—8—N—1).

As discussed in Section 2.5, the zeros of Hahn polynomials lie in the interval
(0, N) and hence we consider values of x such that 0 < z < N.

If &« > —1 then
a+l4+z > 0 ifzx>0.
Also, if x < N then
—a—-1<z <N
and we have that
Bz)=(x+a+1)(z—N) < 0.
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Similarly, if 5 > —1 then
B > —N-1 forall NeZ"
0 < z<fB+N+1 sincex <N

which implies that

Dz)=z(zx—5-N-1) < 0.

Theorem 4.5 (cf. [4, Proposition 2.3])
Let a+ B > 0. The zeros of the Hahn polynomials Qn(z; e, B, N) are quasi-
convexr or quasi-concave on certain intervals depending on the parameter

values as follows

1. If =1 < a <0 < 3 then the zeros are quasi-convezr on (0,x1).

2. Let 0 < a<fB. If N < % then the zeros are quasi-concave on (x1, N).

If% <N < % then the zeros are quasi-concave on (x1,x2). If

N > % then the zeros are quasi-conver on (x2,x1).

3. If =1 < 8 < 0 < « then the zeros are quasi-concave on (x1,N).

4. Let0< B < a. If N < % then the zeros are quasi-concave on (x1, N).

If N > % then the zeros are quasi-concave on (x1,x2).

where x1 and xo are defined as in (4.1.7).

Proof:

First, we notice that since any two consecutive zeros must be more than one
unit apart, Az > 1.

In order to apply the convexity theorem we bring the difference equation to

self-adjoint form by multiplying both sides of (4.1.6) by
’ﬁ B(s)
o Dls+1)
which yields
p()y(z +1) — [p(x) + p(z — D]y(z) + p(z — Dy(z — 1) + q(x)y(z) = 0.

This is of the form (2.5.16) with

—(a+ Dat1(=N)at1
/(=B — N),

p(z) =
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and

2(=N)a

g(x)=nn+a+p+1) 5) N,

(o +
z!(—
Assume that o + 8 > 0 and let

@+ DN gy = VD

at+pf+2 a+p (4.L.7)

Trl =

Then p(x) is monotone increasing when x < z1 since

(a+1)N
a+pB+2
z(—a—p—2)+ N(a+1)

t(—a—pB—-2)+ N(a+1)+ Nz — Nz + 22 — 22
2(-f—N+z—-1)—(a+1+4+2z)(—N + )

xr1 =

vV V. VvV V
o o o

Now, if we consider p(x) — p(z — 1) we find that

p(z) —plz —1)
—(+ 1)zr1(=N)at1 _ —(a+1)s(=N)s
zl (=8 — N), (z = DU =B — N)z—1)

2(—B—N+z—1)(a+1)z(—N)z — (@ 4+ 1)pq1(—N)zy1
z!(=B—N)a

(@ + 1)z (—=N)zglz(=B—N+z2—-1)— (a+1+z)(—N + )]

(G- N) |
Note that 2! > 0 and (o + 1), > 0. Also for

T

(-N)o (=N} (=N +1)...(-N +z—1)
(=8=N)e (=B-N)(=B-N+1)...(-8—=N+z—1)

all the factors are negative, but since the numerator and denominator have
the same number of factors, the resultant fraction must be positive. Hence,
p(z) — p(x — 1) > 0 which implies that p(z) is monotone increasing when

x < xi.

Similarly, ¢(z) is monotone decreasing for x > x9, since

_a(N+1)
T Tays T
zla+pf)—a(N+1) > 0
zla+p)—aN+1)+azN—-aN+z—z+2>2—2> > 0
(a+2)(-N+z2z—-1)—z(-f—N+z-1) > 0.
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Considering ¢(z) — g(x — 1) we find

q(z) —q(z — 1)

_ (@ +1)s(=N)s
= nn+a+p+1) FIEEE
(@+1)z-1(=N)z—1

(= D=8 = N)z
nn+a+pB+1)(a+1)s1(=N)a[la+z)(=N +z —1)]

—nn+a+p+1)

(=8 — N)g
nnt+a+B+(a+ 1) 1(=N)aa[z(=8-N+z—1)]
(=8 — N)g '

Note that n(n + a4+ 5+ 1) and ! are positive. Furthermore,

[(a+ Da1][(=N)a-1]
(_5 - N):r:
(a+1)...(atz—DI[(=N)...(-N + 2 —3)(-N +z —2)]
(CB—N).. (- B—N+z_1)

the numerator and denominator will have an unequal amount of positive

and negative factors for all values of 0 < x < N. Hence, ¢(z) —g(x —1) <0
which implies that ¢(z) is monotone decreasing for = > 5 and monotone

increasing for r < xs.

This means that for x € (z1,22), p and ¢ have opposing monotonicity and
Theorem 4.2 is applicable. We also note that 0 < 21 < N because of our
assumptions, however this isn’t true for xo, which may be negative or greater
than N, but this depends on the values of @ and 8. Whether z1 < zo or
x9 < x1 will depend on the sign of N(8 — a) — a(a+ S+ 2), since

(a+1)N B a(N +1)
a+B+2 a+p
(a+1)N(a+ ) —a(N+1)(a+B+2)

Tr1 — T2 =

- (a+B+2)(a+p) =0
if and only if
(a+1)N(a+p8)—a(N+1)(a+8+2) = 0
NpB—-—a)—ala+5+2) = 0.
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4.2 Meixner polynomials

Considering the Meixner polynomials M, (x;b,c), as defined in (2.3.9), one
can obtain convexity results using the same method that was used for the
Hahn polynomials, however it is easier to consider the limit relation between

the Meixner and Hahn polynomials to obtain these results.

Theorem 4.6 (cf. [4, Proposition 2.4])

The zeros of the Meixner polynomials M, (x;b,c) are quasi-conver on

1.@w%>ﬁo<b<L

2 (G ) ifo > 1.

Proof:
Let a =b—1and f = N(1—c¢)/cin the definition of the Hahn polynomials
(2.3.8). Then we have

_ _ N(1 — _
Qn<$;b—1,N(lc C),N> _ 3F2< n,n—i—b—il-) (1—=2¢)/e, xﬂ)

& () b4+ Ny () (1)
Z‘; (b)k(—=N)ik! '

Letting N — oo yields, by the definition of hypergeometric polynomials in
Section 2.2,

lim Qn( x; _17]\[(10_0)7]\7)

N—o0
= lim i (=n)i(n + b+ Y= (<) (1)F
B Naook:0 (b)k‘(_N)kk!

0 _ c=1\k
_ Z( n)k( x)k( c ) by L’Hospital’S rule

(b) k!
k=0
—n, —x 1

_ F ’ . 1 -

2 1< b ’ C)
= My(z;b,c)

With these substitutions we have

beN
bc+ N(1—¢)+c

Ir1 =
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and
. be
lim z1 = .
N—oo 1—c¢
Also,
vy cb—1)(N+1)
> bc—c+N(1—-c)
and taking the limit
) c(b—1)
lim 29 = —.
N—o00 1—c

From Theorem 4.5(1), making the corresponding substitutions, we obtain
the first result and considering the last case of Theorem 4.5(2) we obtain

the second result.
[ |

We have seen that it is possible to determine the intervals of quasi-convexity
of polynomials which satisfy difference equations under certain conditions.
In this case we considered the Hahn and Meixner polynomials by applying
theorems which resulted from analogues of Sturm’s comparison and convex-
ity theorems. These theorems can be further applied to other polynomials
that satisfy second-order difference equations, some of which will be dis-
cussed in Chapter 5 and 6. Furthermore, similar theorems can be formu-
lated for g-difference equations, which can then be applied to polynomials
that satisfy a g-difference equation, such as the g-Laguerre polynomials (cf.

[4]), to obtain results on the g-quasi-convexity of the zeros.

In the next chapter we will use the results in Chapter 3 and 4 to investigate
the convexity of the zeros of the Chebychev, Bessel, Pseudo Jacobi and Dual

Hahn polynomials.
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Chapter 5

The Chebychev, Bessel,

Pseudo Jacobi and Dual

Hahn polynomials

In this Chapter we will consider Chebychev polynomials of the first and the
second kind, Bessel polynomials, Pseudo Jacobi polynomials as well as Dual
Hahn polynomials and make use of the same methods used in Chapters 3 and

4 to obtain some results on the convexity of the zeros of these polynomials.

Since Chebychev polynomials of the first kind, T,,(x), are a special case
of Jacobi polynomials and can be found by setting o = g = —% while

a=p= % yields the Chebychev polynomials of the second kind, U, (x), the

results in the next two sections are special cases of those in Section 3.5.

5.1 Chebychev polynomials of the first kind

These polynomials y(x) = T, (x), which are defined in (2.3.10), satisfy the
differential equation (cf. [11, p.226, eqn.(9.8.43)])

(1—2%)y"(z) — 2y (x) + n’y(z) = 0.

In order to write the differential equation in the normal form (1.0.1), we
first need to find the function F(z). We use the definition in (3.3.4) to find
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n? 1 2 N 1 22 +1
1—22 4(1—22)?2 2(1—2?)?
22(1 —4n?) +2(2n2 + 1)

4(1 — x2)2 ’
Therefore, the differential equation in normal form is

" 22(1 —4n?) +2(2n% + 1
Y (x) ( 4(1)_+x2§2 ha )y(x):O.

82(1 — 4n?)(1 — 22)? — 8(1 — 22)(—2x)[z%(1 — 4n?) + 2(2n% + 1)]
16(1 — 22)4

23(1 — 4n?) 4 z(5 + 4n?)
2(1 — x2)3 '

Let j(z) = 23(1 — 4n?) + (5 + 4n?) then in order to find the zeros of j(z)
we set j(z) =0

j@) = 0
3 2 2 _
z°(1—4n*)+x2(5+4n°) = 0
4n? +5
x =+ 42:1 or z=0. (5.1.1)
Let X1 be the negative zero, Xs the positive zero and X3 = 0. Note that
6
Xy, = 1
2 T
6
< 1
= b 4n? — 1
and similarly
6
X >—-1- .
b= 4n? — 1

This implies that X; < —1 and X9 > 1..
We can also find the local extrema of j(x), by setting j'(xz) = 0.

j'(z) = 0
322(1 —4n?) + (4n? +5) = 0

An2
r = 4+ ni%
V 12n2 — 3

Let 1 and xo be the negative and positive extrema respectively. These
extreme values are proportional to the zeros of j(x) with a factor of v/3, i.e.
X190 =3712.
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Theorem 5.1

The zeros of Tp,(x) are convex on (0,1), and concave on (—1,0). In addition
™ B T
VEXD) V()

where X1 and Xy are defined as in (5.1.1).

Axg <

Proof:

For z < x; and © > w9, j(x) is increasing and for 1 < x < z2 it is
decreasing. This means that x; is a local maximum of j(x) and x5 is a local
minimum. Also, considering the interval of orthogonality of j(z), we find

that j(z) is positive on (—1,0) and negative on (0, 1).

Now, by the definition of F'(z), F'(x) is positive on (—1,0) and negative
n (0,1) for € (—1,1). This means that F'(z) is increasing on (—1,0) and

decreasing on (0, 1).

By Theorem 2.1, the zeros of T,,(x) are convex on (0,1), and concave on

(—1,0).

We can also find a bound for the difference between consecutive zeros of
T,(x). X1, X2 and X3 are possible local extreme values of F(z). Since

lim F(r)=o0c and lim F(x)= occ.

z——1t z—1—
X1 and X5 must be local minimum values of F(z) for z € (—1,1), i.e.
[X2]2(1 — 4n?) +2(2n2 + 1)
A1 = [X2]?)?
(4n® +5) +2(2n* +1)
[4(1 = [X2]?)?]

F(Xs) =

The following holds true for all values of n
[4(1 = [X2]*)?] > 0

and
(4n? +5) +2(2n% + 1) > 0.

Hence, F(X2) > 0 for all values of n. Also note that in the expression for
F(z) we only have 2 and X1, X are symmetric about the z-axis, therefore
F(X1) = F(X2).
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It follows by Theorem 2.1(4) that

Azy <

VFE(X1)

5.2 Chebychev polynomials of the second kind

Chebychev polynomials of the second kind y(x) = U,(x), as defined in
(2.3.11), satisfy a differential equation (cf. [11, p.225, eqn.(9.8.44)])

(1 - 2)y"(2) — 3zy/(z) + n(n + 2)y(z) = 0.

In order to transform this differential equation to the normal form (1.0.1)

we first need to calculate F'(x).

@) = [(@)- 14 - 59 )
n(n + 2) 922 1 32%+3

1
1—22  4(1—22)2  2(1—a2)2
—22(4n(n +2) + 3) + (4n(n +2) + 6)
4(1 — z2)?
We can now express the differential equation in the following way

L —2(Un(n+2)+3) + (dn(n +2) + G)y .

y”(.%') 4(1 — 1:2)2 ( ) =0.
We find that
F'(x)
_ —=8z(4n(n+2) + 3)(1 — 2?)?
B 16(1 — z2)*
162(1 — 22)[22(4n(n + 2) + 3) — (4n(n + 2) + 6)]
B 16(1 — 22)4
 —23(4n(n+2) + 3) + z[(4n(n + 2) + 9]
N 2(1 — 22)3 '

Now, in order to find the local extrema of F'(z) we find the values of = which
satisfy F'(x) = 0.
F'(z) = 0
j(x) = —z3dn(n +2) +3) + z[dn(n +2) +9] = 0

e +2)+9) B
x_i\/(4n(n+2)+3) or ==0.
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These are the zeros of j(x) where we let X; be the negative zero, X5 the pos-
itive zero and X3 = 0. Note that only X3 lies in the interval of orthogonality

(—1,1), since

dn(n+2) +9
dn(n +2)+3
> 1 for all values of n.

X?=Xx3

which implies that X; < —1 and X5 > 1.

J@) = 0
—32%(4n(n +2) +3)+ (dn(n+2)+9) = 0

. o 4 dn(n+2) +9
B 3(4n(n+2) +3)

Let x1 be the negative value and x2 be the positive value, then x; and x9

are the local extrema of j(z).

Theorem 5.2

The zeros of Uy, (x) are concave on (0,1), and conver on (—1,0). In addition,

s T
Axy < = .
F0) /n(nt2) +6

Proof:

The leading coefficient of j'(x) is negative, which means that j'(z) < 0
on (—1,z1)J(z2,1) and positive on (z1,2z2). Therefore, j(z) is decreasing
on (—1,z1)J(x2,1) and increasing on (x1,z2). Furthermore, z; is a local

minimum value of j(x) and z2 is a local maximum value.

Considering the zero X3 = 0 of j(z), we can now also see that j(z) is positive
on (0,1) and negative on (—1,0), which implies that F'(x) is increasing on
(0,1) and decreasing on (—1,0).

Hence, by Theorem 2.1, the zeros of U, (x) are concave on (0,1) and convex
on (—1,0).

A possible extreme value of F(x) is x = 0. If we consider the limits

lim F(z) =00 and lim F(z) =00

T——1+F z—1—
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and note the intervals of increase and decrease of F'(z) it follows that X3 =0
is a minimum value of F(z) which further implies that F'(z) < F(0). Now,
to be able to find bounds for the distances between consecutive zeros, i.e.
applying Theorem 2.1(3) and (4), we need to establish whether F'(0) > 0.

F(0) = n(n+2)+6>0

for all n. Hence, by Theorem 2.1(3),

s

JEO) /n(n+2)+6)

Az <

5.3 Bessel polynomials

Bessel polynomials y(x) = y,(a; x), as defined in (2.3.3), satisfy the second-
order differential equation ([11, p.245, eqn.(9.13.5)])

2y (x) + [(a+ 2)z + 2]y (x) — n(n + a + 1)y(z) = 0. (5.3.2)

These polynomials are related to the Bessel functions (see Section 3.1) in
the following way (cf. [22])

Theorem 5.3
Let a < —2N — 1, then the zeros of Bessel polynomials y,(a;x) are concave

on the interval (0,z1)J(z2,00) and convex on the interval (x1,x2), where
x2 is defined as in (5.3.3).

Proof:
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The differential equation (5.3.2) can be transformed into the normal form
(1.0.1) by first calculating F'(x) as it is defined in (2.1.2).

Fla) = f() - 6@) - 3d/(@)
_ —n(n+a+1l) (a+2)%2® +4x(a+2)+4
B x? B 4zt
(a+2)2? —2z((a+2)x + 2)
B 224
_ 2?(—4n® — 4na — 4n — a® — 2a) + x(—4a) — 4
N 4zt '

we then have

x?(—4n? — dna — 4n — a® — 2a) — 2ax

/
Fl(z) = 505
2[x2(—4n? — 4na — 4n — a® — 2a) — dazx — 4]
225
_ i)
205

We now determine the zeros and the intervals of increase and decrease of

j(x).

0 = Jj=)

0 = 2%(—4n® —4na — 4n — a® — 2a) + 6ax
—22%(—4n® — 4na — 4n — a* — 2a) + 8

0 = 2%(4n®+4na +4n + a® 4 2a) + 6azx + 8

—3a £ \/9a? — 8(4n? + 4na + 4n + a® + 2a) (53.3)
x = 3.
(4n? + 4na + 4n + a® + 2a)

Since x is real we must have that 9a® — 8(4n? + 4na + 4n + a® + 2a) > 0,
but this is true for all values of n since a < —2N — 1. Both zeros of j(z) are

positive, so let x1 < x2 be the two zeros. Also,

jz) =0
0 = 2x(4n® +4na + 4n + a® + 2a) + 6a
—3a
€T =

(4n? 4 4na + 4n + a? + 2a)

Let X be the turning point of j(z). Note that the leading coefficient of j(z)
is positive, therefore X; will be a minimum value and j(x) will be positive

on the interval (0,z1) J(x2,00) and negative on (z1,x2), since the zeros of
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yn(a; x) lie in (0, 00). This implies that F'(z) is increasing on (0, z1) [J(z2, 00)
and decreasing on (x1,x2). Hence, by Theorem 2.1, the zeros of y,(a; z) are

convex on (x1,z2) and concave on (0, z1) J(x2, 00).

Possible extreme values of F(z) are at * = x12 and by the intervals of
increase and decrease we find that z; is a maximum value and x9 is a
minimum value of F(z). This implies that F(z2) < F(x) < F(z1) for
all z € (0,00).

23(—4n? — 4dna — 4n — a® — 2a) + z2(—4a) — 4
423

F(x2) =

F(z2), and similarly also F'(x;), will always be negative for all the possible
values of a and n, therefore Theorem 2.1(3) and (4) are not applicable and
we are not able to place any bounds on the distances between consecutive

zeros of y,(a;x).

5.4 Pseudo Jacobi polynomials

Pseudo Jacobi polynomials y(x) = P,(z;v, N), as defined in (2.3.12), satisfy
the second-order differential equation ([11, p.252, eqn.(9.9.5)])

(1+2%)y"(z) +2(v — Na)y' (z) — n(n — 2N — 1)y(z) =0
which can be transformed into the normal form
y' + F(z)y =0.

First we need to calculate F'(x).

Fa) = f() - 16°() ~ 3d(@)
n(l1+2N —-n) —(v— Nx)2+ N(1+2?) +22(v — Nx)
- 1+ 22 * (14 22)?
22(—n? +2nN +n — N2 — N) + z(2uN + 2v)
- (1+22)2
(—n? +2nN +n —v? + N)
(1+ 22)?
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then
Flz) = [22(—n? +2nN +n — N? — N) + (20N + 20)](1 + z?)
(14 22)3
_4:E[332(—n2 +2nN +n — N? — N) + z(2uN + 2v)]
(14 22)3
4z[(N —n? + 2nN + n — v?)]
+
(1+22)3
j(x)
(1+22)3
Furthermore, we have
j'(x) = —62%(n—n?+2nN — N? — N) — 6z(2uN + 2v)

+2(=N? —2nN — 3N +n? — n + 20?).

To determine the intervals of convexity we first need to find the values of x
where j'(z) = 0, which would also be the turning points of F'(z).

j'(@) = 0
0 = —62%(—n*+2nN +n— N? - N) —6x(2uN + 20)
+2(=N? —2nN — 3N +n? — n + 2v?)

—3(2vN + 2v)
6(—n? +2nN +n— N2 —N)
VI2uN +20)2 +12(n — n2 +2nN — N2 — N)(n2 — N2 — 2nN — 3N — n + 202)
6(—n%2+2nN +n— N2 - N)

xr =

+

Let 21 be the negative value and x2 the positive value. These values are real

as long as
920N +20v)?—12(—n?*+2nN+n—N?—N)(=N?-2nN—-3N +n*—n+2v?) > 0

which will only hold true for certain values of n and v. To calculate the

zeros of j(z) we need to calculate the following

0 = )
0 = —223%(—n*+2nN +n— N? - N) — 32%(20N + 20)
+22(—=N? = 2nN — 3N +n? — n + 20%) + (20N + 2v).

This cubic equation is not easily solvable, but making use of a suitable

software program it does yield three zeros X 23 as solutions. If we assign
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(@

specific values to the variables v and N we should be able to determine
in which of the intervals [—oo, X1], [X1, X2, [X2, X3] and [X3,00] j(x) is

positive or negative.

Whenever j(z) is positive, F'(z) will also be positive and F'(x) will be in-
creasing, similarly, when j(z) is negative F'(x) will be decreasing. According
to Theorem 2.1(1) and (2), this implies that the zeros of P, (z;v, N) are con-

cave when F'(z) is increasing and convex when F'(z) is decreasing.

Considering the remaining results of Theorem 2.1, we might also be able to
place bounds on the distances of consecutive zeros of P, (z;v, N) if we are
able to determine whether F'(X;), F(X2) and F(X3) are positive extreme
values of F(z).

5.5 Dual Hahn polynomials

Dual Hahn polynomials y(z) = R,(A(z),7,d,N), as defined in (2.3.13),
satisfy the following difference equation (cf. [11, p.209, eqn.(9.6.5)])

—ny(z) = B(x)y(z + 1) — [B(z) + D(@)ly(z) + D(x)y(z — 1)  (5.5.4)

where
(x+y+1)(z+y+6+1)(N —x)
B(z) =
2z +~v+0+1)(2z+7+06+2)
and AN+ (z+6
D(x):a:(x—i-’y—i- + N +1)(x +9)

2r4+y+0)2x+v+d+1)

Since we are dealing with a difference equation, we will make use of the meth-

ods in Chapter 4 to examine the convexity of the zeros of R, (A(x),7,d, N).

Theorem 5.4
Let v+ >1and~y > —1,0 > —1. The zeros of the Dual Hahn polynomi-
als Ry (A (x),7,0,N) are quasi-convex or quasi-concave on certain intervals

depending on the parameter values as follows

1. If xo > Ta, v < 0 and N > 2 then the zeros are quasi-concave on

(fg,:ﬂg).
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2. If xo < Ta, v < & and N > 2 then the zeros are quasi-concave on

(xg,.fg).

3. If xg > 23, v < 7 and v > ¢ then the zeros are quasi-conver on

(.%'g,.%'g).
4. If xo < x5, v < g and v > & then the zeros are quasi-conver on
($§a$2)-
where T2, T, x5 and x5 are defined as in (5.5.5), (5.5.7), (5.5.8) and
(5.5.10) respectively.

Proof:

We multiply both sides of the difference equation (5.5.4) by
i,

i D(s+1)

_ “”Hl(s+7+1)(s+v+5+1)(N—s)

L 25+ +0+ D25+ +5+2)

(s+1)(s+v+06+N+2)(s+06+1)
(2s+~7+0+2)(25+7+6+3)

D+ 0+ Du(=1)"(= )x/ Y+ 6+ N+2)(0+1)a

/

2r(ly+ 20+ )20 (Ay + L6+ 1), |22 (B + 30+ 1)27(Ay + L6+ ),
(Y 4+ 8+ Do (=1)*(=N)a(z37 + 30 + )a(y + 1a
2l (Y + 6+ N+2),(57+ 350+ 3)e(6+ 1),
(Y+ 84+ 1D)a(=1)"(—N)a(y+ 5+ 22+ 1)(y + 1),
oy + 6+ N+2)(y+0+1)(0+ 1),
This gives the difference equation (5.5.4) in self-adjoint form (2.5.16), with
+ 04+ 1) (—1D)*(=N)g(v+ 5+ 22+ 1) (v + 1),
p(x):B(x)(v ')()( )= (v )(y+1)
oy + 0+ N+2)(y+0+1)(6+ 1),

(Y +0+42)2(=D"(=N)a(N —2)(z+7+ Dy + 1o
(Y +0+N+2),(0+1),2z +~v+0+2)

and n(y+0+1)(=1)"(=N)z(v+d+2x+1)(y+ 1),

al@) = D+ 0+ N+20(r+0+ D)6 + 1),
To apply Corollary 4.4, we first have to determine where p(z) and ¢(x) are

monotone increasing and decreasing. Assume that v+ § > 0.

B(0)...B(z) B(0)...B(z —1)

p@)=pe =1 = 50 D@ " DA).. D1
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B(0)...B(x — 1)[B(z) — D(z)]
D(1)...D(x) '

Note that B(z) > 0 and D(z) > 0 by our assumptions. This implies that

p(z) — p(z — 1) is positive if and only if B(x) — D(z) is positive.

B(z) — D(x)

+y+D)(z+~v+0+1)(N —2)2x+7v+9)
Rr+y+0)2x+v+0+1)2x+~v+5+2)
z(z+y+0+N+1D)(z+0)2r+v+5+2)

e +y+0)2x+v+d+1)2x+7+5+2)

which is positive (negative) if and only if the numerator is positive (negative)
since the denominator is always positive. Hence, B(z)— D(x) will be positive

if and only if

(+y+D)(z+v+6+1)(N —2)2x+7v+9)
—z(z+v7+0+N+1)(z+5)2x+v+5+2)

is positive, which implies that
22% + (0 + 3y +2) + (Vo + 2 + v+ 0)][-2* + (N —y— 5 —1)]
+[22% + 2(5 + 37+ 2) + (V0 + 9%+ + 0)][(YN + 6N + N)]
—[22% + 2(y+ 30 +2) + (70 + 6% + 20)][2* + 2(y + 6 + N + 1)]

must be positive and if we further assume that v > § then
222 +22(y+0+1)— (YN + SN + N) <0
which is true whenever
1 << T2

where

—(vy+d6+1)+ 0+1 0+1+2N
- (Y+0+1) JW+2+)W+ +1+2N) (5.55)

Hence, p(z) is monotone increasing when 0 < =z < x9 and v > 4, since

x=0,1,...,N and 1 < 0. Similarly, p(x) is monotone decreasing when

x> a9 >0and v <.

Now, we have to determine when ¢(z) is increasing and decreasing.
B(0)...B(z —1) B(0)...B(x —2)

"D@).. D) "'DQA)...DE-1)

n[B(0)...B(x — 2)][B(x — 1) — D(x)]

q(z) —gq(z —1) =
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which is positive if and only if B(z — 1) — D(z) is positive.

Bz —1) - D(x)
x4+ (z+7+6)N—z+1)2x+~v+0+1)
Qe4+y+0-1)R2r+v+0)2r+v+5+1)
)
)

z(x+y+0+N+D(z+0)2r+v+5—-1)
r4+y+0-1)2r+v+0)2x+~v+0+1)

and noting that the denominator is positive for v + § > 1, the fraction is

positive if and only if

(z+y)(@+y+0)(N—z+1)2x+v+6+1)
—z(x+7+0+N+1)(x+6)2c+7+6-1)>0
(z+)(x+v4+0)(N—z+1)—az(z+d)(z+v+I+N+1)>0
(z+7)(N —z+1) —a(x+0)(2N) >0 for N >2 (5.5.6)

)
)

since 2z +~v+06+1) > 2z +~v+J —1) > 0. A further calculation shows
that (5.5.6) is true if and only if 0 < z < Ty where

T1,2 (5.5.7)

(1+N—v+25N)++/(1+N—~+25N)2+4y(1+2N)(1+ N)
2(1+42N)

with Z; < Zo and Z; < 0. Hence ¢(x) is monotone increasing when 0 < z <

Zg. Similarly, ¢(x) is monotone decreasing when = > 3 where

. 1+ N—7=080)+/(y+d—N—-1)248y(N+1

and we also have the condition that
(+7+0)(N—24+1)<0 and >0 (e z>1) (55.9)
which is true if and only if
x < zfand x > x5
where

. 1
Tig = _5[(74‘5—]\7—1)
+/(N+1-~7-0)2+4(Nvy+N5+~v+0)] (55.10)
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and z§ < x§, which further implies that ¢(x) is monotone decreasing when
x > x5 and > x5. Note that 25 > 1 and 2§ > 1, so that (5.5.9) holds.
Furthermore, we also have to assume that v < % to ensure that Zo and x5

are real numbers.

We now have to determine when x5 > x5 and when 235 < z3. We assume
that v > 6, then we find that x5 < z§ for v < 0 and 3 > x5 for v > 0.
Hence, ¢(x) is monotone decreasing for x > z§ when v < 0 and monotone

decreasing for x > x5 when v > 0.

Now, if we can find intervals where either ¢(z) is decreasing and p(x) is
increasing, or where ¢(x) is increasing and p(x) is decreasing, then we will be
able to determine intervals where the zeros of the Dual Hahn polynomials are
quasi-convex or quasi-concave. To find these intervals we have to determine
when z9 < x5, 5 < X2, T2 < Ta, T2 > T2, 2 < x5 and xg > 5. We consider

these six cases and the possible results that follow.

Case 1: x9 > ZTo:

The zeros of R, (\(x)) are quasi-concave on [Zg, z9], for v < § and N > 2.
Case 2: 19 < ZTo:

The zeros of R, (A(z)) are quasi-concave on [za, Zo|, for v < § and N > 2.
Case 3: xg > z3:

The zeros of R, (A(z)) are quasi-convex on [z, z2], for v > ¢ and g < 0.
Case 4: z9 < 25:

This yields no results as there is no interval in which ¢(z) is decreasing and
p(z) is increasing.

Case 5: xg > z5:.

This yields no results as there is no interval in which ¢(x) is decreasing and
p(x) is increasing.

Case 6: 9 < x35:

The zeros of R, (A(x)) are quasi-convex on (x3,z2), for v > § and v < %.

In this chapter we have applied the theorems from Chapter 2 and 4 to obtain
some results on convexity of the zeros of the Chebychev, Bessel, Pseudo Ja-

cobi and Dual Hahn polynomials. We have also seen that in some cases it is
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more complicated to find exact values for the intervals of convexity and that
we might only be able to place bounds on the distances between consecutive
zeros for certain parameter values. In the next chapter we will consider the
Charlier and Krawtchouk polynomials, both satisfying difference equations,

as well as further possible extensions of Sturm’s comparison theorem.
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Chapter 6

Other classes of orthogonal
polynomials and further

extensions

In the previous chapters we have discussed and proved various results on
both convexity and distances between consecutive zeros of several classes of
orthogonal polynomials as well as the Bessel function. Considering all the
classes of hypergeometric polynomials, as listed in Section 2.3, there are still
a few classes remaining which we haven’t considered. These are the Charlier,
Krawtchouk, Wilson, Racah, Continuous Hahn, Continuous Dual Hahn and

Meixner-Pollaczek polynomials. We will now discuss these classes.

The Charlier and Krawtchouk polynomials satisfy real difference equations,
whereas the Wilson, Racah, Continuous Dual Hahn, Continuous Hahn and

Meixner-Pollaczek polynomials satisfy complex difference equations.
Applying the methods in Chapter 4 to the Charlier polynomials, we find
that the existing theorems don’t produce any results.

6.1 Charlier polynomials

Charlier polynomials y(z) = Cy(x;a), as defined in (2.3.14), satisfy the
following difference equation ([11, p.248, eqn.(9.14.5)])

—ny(x) =ay(zr+1) — (z + a)y(x) + zy(x — 1). (6.1.1)
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First we write the difference equation (6.1.1) in self-adjoint form. If we

multiply both sides of the equation with

786
sl_Io D(s+1)

_a
R
then
x+1 (CL'—FCL)G,‘T x Ty
Vet 1) = R+ e~ ) + ) =
z+1 atn a® ax—i—l a®
1) — | — —_— —-1) =
PG prai e el KA el pep s Al
a:c+1 az’—i—l a® a® atn
1) — —_— -1 =
—y(e 1) [ N +($_1)!]y<x>+(m_1)!y<x )+ (@)
Now we have
a*t1 a*n

T) = and T) = —.
pla) = ale) =%
Hence we can express equation (6.1.1) in self-adjoint form

an

+ o y(z) = 0.

(x —1)!

We can further see that p(x) is monotone increasing for a > = and monotone

A [axAy(:r -1)

decreasing for a < x, since

a > =z
a—zx >
a*(a —x
¥ > O
z!
ax+1_xa:v
0
z!

p(x) —plz—1) > 0.

Similarly, ¢(x) is monotone increasing for a > = and monotone decreasing

for a < x, since

a > T

a—zx > 0

1

l—a "z > 0 sincea>0
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a®n a* 1n

2 (z—1)!
q(z) —q(z—1) > 0.

x

> 0

This implies that for all values of z, p(x) and ¢(x) have the same mono-
tonicity, and therefore we cannot apply any of the theorems that we have
for solutions of differential equations. Another possibility is to make use
of the limit relation between the Meixner and Charlier polynomials, as we
did in finding the results for the Meixner polynomials, but this method also

yields no results.

6.2 Krawtchouk polynomials

Krawtchouk polynomials y(z) = K, (x;p, N), as defined in (2.3.15), satisfy
the following difference equation (cf. [11, p.238, eqn.(9.11.5)])

—ny(z) =p(N —z)y(z + 1) — [p(N — 2) + z(1 — p)ly(z) + (1 — p)y(z — 1).

Let B(z) = p(N —z) and D(z) = (1 —p). In order to express this equation
in the normal form (2.0.2) for difference equations, we multiply both sides
by

x—1 B(S)
81;[) D(s+1)
x—1
B p(N —s)
- e ay
p*(=1)*(=N)s
z!(1—p)*
then

np* (=1 (=N)a P DT (= N)an

S S R

y(x + 1)

P (=1)"(=N)a

[P N | 1N
— p)z—l

zl(1—p)* (z —1)I(1 y(x) +

(=Dt =pyt
Now the difference equation is in self-adjoint form (2.0.2) with

pﬁl(—l)xﬂ(—N)xH
z!(1—p)*

p(x) =
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and
_ np"(=1)"(=N)a

We find that p(z) is monotone increasing for x < pN by considering

2*(1—p)+a(Np+p—N—-1)+p
= p—zxz(1—p)(N—z+1).

which will be positive for x < pIV.
This implies that

P (= N)oralp — 2(1 - p)(N — 2 +1)]
z!(1 —p)*

>0

since x!, p®(—1)**1(—=N),41 and (1 — p)® are all positive because we know
that 0 < p < 1. Hence
PP (N)o PP (=N)e

plz) —ple—1) = 21(1—p)® R

for < pN which implies that p(x) is monotone increasing for x < pN.
Similarly, ¢(x) is also monotone increasing for x < p(N + 1). Consider the

equation

22(1—p)+z(Np+2p—N—2)+p
= p—z(l-p)(N-2+2)
which is positive for z < p(IN 4 1). This further implies that

np™ N (=1)"(=N)alp — 2(1 = p)(N — x + 2)]
z!(1—p)*

>0

since n, z!, p*~ 1, (=1)%(—N), and (1 — p)® are all positive. Hence

AN DTN,
N e

which implies that ¢(x) is monotone in increasing for x < p(N + 1).

Now since 0 < p < 1 p(x) and ¢(z) always have the same monotonicity and

therefore the theorems that we have in Chapter 4 are not applicable.
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6.3 Further extensions

It was mentioned in Chapter 4 that we can also obtain results on the g-
convexity of zeros of the solutions of g¢-difference equations. To(o)kos and
Gishe [4] considered and found results for the g-Laguerre polynomials, but

it may be possible to also obtain results for other g-orthogonal polynomials.

Furthermore, we cannot yet obtain any results on the convexity of the zeros
of Wilson, Racah, Continuous Dual Hahn, Continuous Hahn and Meixner-
Pollaczek polynomials which satisfy complex difference equations since the
theorems that are currently available only apply to real difference equations.
Thus, whether Sturm’s theorems can be applied to complex difference equa-
tions in a similar manner as was done in Chapter 4, is a question for further

research.
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