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Abstract

We consider several classes of orthogonal polynomials as well as the Bessel

function where we study the convexity of zeros of these polynomials, sat-

isfying either differential or real difference equations, by applying Sturm’s

comparison and convexity theorems as well as analogues of these theorems.

In addition several results are obtained concerning the distances between

consecutive zeros of some of these classes of polynomials. Further research

possibilities concerning q-polynomials and polynomials satisfying complex

difference equations are discussed.
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Chapter 1

Introduction

Since the first publication of the Sturm comparison and convexity theorems

by Sturm in 1836 [27], many results following either directly or indirectly

from these theorems have been obtained. All of these results have numerous

applications, including finding certain properties of the zeros of second-order

differential equations, as well as difference equations, some of which will be

discussed in detail in this dissertation.

First we consider Sturm’s comparison theorem, which provides information

about the behaviour of solutions of two second-order differential equations

in normal form

y′′ + F (x)y = 0. (1.0.1)

Theorem 1.1 (Sturm’s comparison theorem, cf. [27] and [29])

On the interval (a, b), let y1 and y2 be non-trivial solutions of the differential

equations

y′′ + g1(x)y = 0

y′′ + g2(x)y = 0

respectively, where g1 and g2 are continuous real-valued functions on (a, b),

such that g1 ≤ g2.

Then between any two consecutive zeros of y1 in (a, b), there is at least one

zero of y2.

Proof: Let xk and xk+1 be the consecutive zeros of y1 in (a, b). Since y1(x)

is non-trivial we have that y′1(xk)y
′
1(xk+1) 6= 0. Without loss of generality
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we can assume that y1(x) > 0 on (xk, xk+1) from which it follows that

y′1(xk) ≥ 0 and y′1(xk+1) ≤ 0. Assume now that y2 has no zero in (xk, xk+1).

If y2(x) > 0 on (xk, xk+1), then we consider the equations

y′′1 + g1(x)y1 = 0 , y′′2 + g2(x)y2 = 0

and multiply the first equation by y2 and the second one by y1. Subtracting

these results give

y′′1(x)y2(x)− y′′2(x)y1(x) = [g2(x)− g1(x)]y1(x)y2(x).

Integrating this on [xk, xk+1] we obtain∫ xk+1

xk

[g2(x)− g1(x)]y1(x)y2(x)dx

=

∫ xk+1

xk

[y′′1(x)y2(x)− y′′2(x)y1(x)]dx

= [y′1(x)y2(x)]
xk+1
xk −

∫ xk+1

xk

y′1(x)y′2(x)dx− [y′2(x)y1(x)]
xk+1
xk

+

∫ xk+1

xk

y′2(x)y′1(x)dx

= y′1(xk+1)y2(xk+1)− y′1(xk)y2(xk).

The left-hand side of this equation is positive, since by assumption

g1(x) ≤ g2(x), y1(x) > 0 y2(x) > 0

on (xk, xk+1). The right-hand side is non-positive, since

y′1(xk) ≥ 0, y′1(xk+1) ≤ 0, y2(xk) ≥ 0, y2(xk+1) ≥ 0.

This follows from the assumption that y2(x) > 0 on (xk, xk+1) and y2(x) is

continuous, since it is differentiable, on (a, b). This leads to a contradiction.

If y2(x) < 0, we arrive at the same contradiction by an analogue argument.

Hence, the function y2 should have at least one zero in (xk, xk+1).

�

A result that immediately follows from the comparison theorem, which pro-

vides bounds on the distances between consecutive zeros, is summarised in

the following theorem.

Theorem 1.2 (cf. [2, Theorem 1] )

Let y′′(x) + F (x)y(x) = 0 be a second-order differential equation in normal
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form, where F is continuous in (a, b). Let y(x) be a non-trivial solution on

(a, b), and let x1 < . . . < xk < xk+1 < . . . denote the consecutive zeros of

y(x) in (a, b).

1. If there exists an M > 0 such that F (x) < M in (a, b) then

∆xk ≡ xk+1 − xk >
π√
M
.

2. If there exists an m > 0 such that F (x) > m in (a, b) then

∆xk ≡ xk+1 − xk <
π√
m
.

Proof: Let xk < xk+1 be consecutive zeros of y(x) which is a non-trivial

twice differentiable solution of y′′(x) +F (x)y(x) = 0 in (a, b), with F (x) be-

ing continuous in (a, b). Without loss of generality we can suppose that y(x)

is positive in (xk, xk+1). Then y′(xk) > 0 and y′(xk+1) < 0 and therefore

the function

h(x) = −y
′(x)

y(x)

satisfies limx→x+k
h(x) = −∞ and limx→x−k+1

h(x) = +∞. Furthermore h(x)

is differentiable in (xk, xk+1) and

h′(x) =
−y′′(x)y(x) + [y′(x)]2

y2(x)

=
−y′′(x)

y(x)
+

[
y′(x)

y(x)

]2

= F (x) + h2(x).

Assuming that F (x) > m > 0 in (a, b), it follows that h′ > m + h2 in

(xk, xk+1) and then g(x) ≡ h′(x)/(m+ h2(x))− 1 > 0. Therefore

lim
ε→0+

∫ xk+1−ε

xk+ε
g(x)dx > 0

so that

lim
ε→0+

∫ xk+1−ε

xk+ε

[
h′(x)

(m+ h2(x))
− 1

]
dx

= lim
ε→0+

∫ xk+1−ε

xk+ε

[
h′(x)

(
√
m)2 + h2(x)

− 1

]
dx
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= lim
ε→0+

[
1√
m
tan−1

(h(x)√
m

)
− x

]xk+1−ε

xk+ε

=
1√
m

[π
2
− (−π)

2

]
− (xk+1 − xk)

=
π√
m
− (xk+1 − xk) > 0.

This proves the second part of the theorem. The proof of the first part

follows in a similar way be assuming that F (x) < M in (a, b) which implies

that h′ < M + h2 in (xk, xk+1) and so g(x) ≡ h′(x)/(M + h2(x)) − 1 < 0.

Then

lim
ε→0+

∫ xk+1−ε

xk+ε
g(x)dx < 0

which implies that

lim
ε→0+

∫ xk+1−ε

xk+ε

[
h′(x)

(M + h2(x))
− 1

]
dx

=
π√
M
− (xk+1 − xk) < 0.

This proves the first part.

�

Another consequence of the comparison theorem, is Sturm’s convexity the-

orem.

Theorem 1.3 (Sturm’s convexity theorem, cf. [2])

Let y′′(x) + F (x)y(x) = 0 be a second-order differential equation in normal

form, where F is continuous in (a, b). Let y(x) be a non-trivial solution in

(a, b), and let x1 < . . . < xk < xk+1 < . . . denote the consecutive zeros of

y(x) in (a, b). Then

1. if F (x) is strictly increasing in (a, b), then xk+2 − xk+1 < xk+1 − xk,

2. if F (x) is strictly decreasing in (a, b), then xk+2 − xk+1 > xk+1 − xk.

The following is given in [12],

Proof: (cf. [12])

Let F (x) be strictly decreasing, then we need to show that xk+2 − xk+1 >

xk+1−xk. This follows from the general result that if we rotate the graph of
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y through 180◦ between the zeros xk and xk+1 then the resulting arch will

be contained in the arch between the zeros xk+1 and xk+2. To prove this we

need to show that

y(x) > −y(2xk+1 − x)

where

xk+1 < x < xk+1 + d

and d = xk+1−xk. Without loss of generality we may assume that y(x) < 0

for xk < x < xk+1. Now we can use the fact that

y2(x) = −y(2xk+1 − x)

satisfies the differential equation

y′′2(x) + F (2xk+1 − x)y2(x) = 0.

The result then follows from Sturm’s comparison theorem, i.e. y(x) >

−y(2xk+1 − x).

�

A simpler proof for the case when F (x) > 0 is given in [2] and we include it

for the convenience of the reader.

An alternative proof for Theorem 1.3 which holds for F (x) > 0 is as follows:

Proof: First, we prove part 1. If F (x) is strictly increasing and we let

xk < xk+1 < xk+2 be consecutive zeros of y, then in the interval (xk, xk+1)

we have that F (x) < F (xk+1) and in the interval (xk+1, xk+2), we have

F (x) > F (xk+1).

Then by Theorem 1.2,

xk+1 − xk >
π√

F (xk+1)

and

xk+2 − xk+1 <
π√

F (xk+1)

which implies that

∆2xk = ∆(∆xk)

= ∆xk+1 −∆xk

= xk+2 − 2xk+1 + xk < 0.

7

 
 
 



Hence,

xk+2 − xk+1 < xk+1 − xk.

To prove part 2, we let F (x) be strictly decreasing. Then in the interval

(xk, xk+1) we have that F (x) > F (xk+1), and in the interval (xk+1, xk+2),

we have F (x) < F (xk+1). By Theorem 1.2

xk+1 − xk <
π√

F (xk+1)

and

xk+2 − xk+1 >
π√

F (xk+1)

which implies that

∆2xk = xk+2 − 2xk+1 + xk > 0.

Hence,

xk+2 − xk+1 > xk+1 − xk.

�

In summary we see that by comparing y′′ + F (x)y = 0 with y′′ + m2y = 0

and y′′+M2y = 0, Sturm’s convexity theorem shows that if f is continuous

on (a, b) and m2 < F (x) < M2, where m and M are positive numbers, then

the zeros x1, x2, . . . of y on (a, b) satisfy

π

M
< xi+1 − xi <

π

m

where i = 1, 2, . . . (cf. [12]). In other words, it provides information about

the spacing of the zeros.

Furthermore, it was also mentioned in [12], that Sturm’s convexity theorem

provides information about the shape of the successive arches of the graph

of a nontrivial solution of a second-order differential equation.

Another result, known as Sonin’s theorem, also arises from Sturm’s theorem

and provides information on the monotonicity of the relative maxima of

|y(x)|.

Theorem 1.4 (Sonin’s theorem, cf. [28])

Let y = y(x) satisfy the differential equation

y′′ + F (x)y = 0,
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where F (x) is a positive function having a continuous derivative of a con-

stant sign in x0 < x < X0. Then the successive relative maxima of |y|, as

x increases from x0 to X0, form an increasing (decreasing) sequence when

F (x) decreases (increases).

Proof:

Let

f(x) = [y(x)]2 + [F (x)]−1[y′(x)]2 = [y(x)]2 + r(x)[y′(x)]2

then we have that

f(x) = [y(x)]2

when y′(x) = 0. Also

f ′(x) = 2y′(x)[y(x) + r(x)y′′(x) +
1

2
r′(x)y′(x)]

= 2y′(x)[y(x) + F−1(x)y′′(x) +
1

2
r′(x)y′(x)]

= r′(x)(y′(x))2

since y′′ + F (x)y = 0 implies that y(x) + F−1(x)y′′(x) = 0.

Also,

sgn[f ′(x)] = −sgn[F ′(x)]

since

r(x) =
1

F (x)

which implies that

r′(x) =
−F ′(x)

F 2(x)
.

This implies that when F (x) is increasing (decreasing) then f(x) = [y(x)]2

will be decreasing (increasing). Hence the statement follows.

�

Summarising, this means that if F (x) is positive, continuous and increasing

on an interval I, then the relative maxima of |y| form a decreasing sequence.

On the other hand, if F (x) is decreasing, then the relative maxima of |y|
form an increasing sequence.
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Sonin’s theorem has been generalized by Redheffer (cf. [23]) for second-order

differential equations of the form

P (x)y′′ +Q(x)y′ + y = 0.

Theorem 1.5 (cf. [23, Theorem 5] )

Let y be a nontrivial solution of

Py′′ +Qy′ + y = 0

on an interval (a, b) on which P is differentiable. Then the successive relative

maxima of |y| on (a, b) form an increasing, constant, or decreasing sequence

when P ′ > 2Q, P ′ = 2Q, or P ′ < 2Q, respectively.

Proof: If f = y2 + P (y′)2 the differential equation gives

f ′ = 2yy′ + P ′(y′)2 + 2Py′y′′

= 2yy′ + P ′(y′)2 + 2y′(−Qy′ − y)

= P ′(y′)2 − 2(y′)2Q

= (y′)2(P ′ − 2Q).

Hence f is increasing when P ′ > 2Q, decreasing when P ′ < 2Q and constant

when P ′ = 2Q. At a maximum xk we have y′(xk) = 0, therefore f(xk) =

y(xk)
2, and the result follows.

�

Another related result on the solutions of a second-order differential equation

in normal form is Sturm’s separation theorem. The proof of this theorem

follows from Theorem 1.1 (Sturm’s comparison theorem) and in the litera-

ture the two theorems are often proved together. We will make use of the

proof by Sista in [26]. An alternative proof can be found, for example, in

[19].

Theorem 1.6 (Sturm’s separation theorem, cf. [26])

Suppose that y1 and y2 are a linearly independent pair of solutions of

y′′ + F (x)y = 0.

If x1 and x2 are two consecutive zeros of y1, then y2 has exactly one zero in

(x1, x2).
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Proof: Assume that y2 does not have a zero in (x1, x2). Then y2 does not

have a zero in [x1, x2]. This is due to the fact that y1 and y2 are linearly

independent. Therefore we can define a function ψ on [x1, x2] by

ψ =
y1(x)

y2(x)
.

which has the following properties:

1. ψ is continuous on [x1, x2].

2. ψ′ exists on (x1, x2).

3. ψ(x1) = ψ(x2) = 0.

By Rolle’s theorem, there exists a c such that x1 < c < x2 and ψ′(c) = 0.

This means that

y′1(c)y2(c)− y1(c)y′2(c) = 0,

i.e. the Wronskian is zero, but this is not possible as y1 and y2 are linearly

independent. Therefore, y2 has at least one zero on (x1, x2).

We claim that y2 does not have more than one zero in (x1, x2). If this was not

true, then there would exist at least two zeros of y2 in (x1, x2). Let x3 and

x4 be two consecutive zeros of y2 in (x1, x2) such that x1 < x3 < x4 < x2.

Then, by previous arguments, y1 will have a zero in (x3, x4). This is a

contradiction to the fact that x1 and x2 are two consecutive zeros of y1.

Hence, there is exactly one zero of y2 in (x1, x2).

�

Thus, if a linear second-order differential equation has two linearly indepen-

dent solutions y1 and y2, then the zeros of y1 are separated by the zeros of

y2.

All of these theorems not only provide information about the spacing of the

zeros, but also enable us to place a bound on the distance between con-

secutive zeros under certain conditions, and in some cases we know how

the sequences of relative maxima of the absolute solutions will behave. In

the next chapter we will investigate the possibilities of using these theo-

rems to obtain information about the convexity of the zeros of solutions to

second-order linear differential equations where the differential equation is

not necessarily in normal form.
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Chapter 2

Convexity of zeros

2.1 Introduction

In this chapter we will discuss and prove results that will provide us with

information on the convexity of zeros of solutions of second-order differential

equations. Convexity in relation to the zeros of an equation means that if

the zeros are convex (concave), then the distance between successive zeros

must increase (decrease).

The convexity theorem of Sturm (Theorem 1.3) can be summarised, as was

done in [9], as follows.

Theorem 2.1 ([9, Theorem 2.1])

Let y′′(x) + F (x)y(x) = 0 be a second-order differential equation in the

normal form, where F is continuous in (a, b). Let y(x) be a nontrivial

solution in (a, b), and let x1 < . . . < xk < xk+1 < . . . denote the consecutive

zeros of y(x) in (a, b). Then

1. if F (x) is strictly increasing in (a, b), xk+2 − xk+1 < xk+1 − xk,

2. if F (x) is strictly decreasing in (a, b), xk+2 − xk+1 > xk+1 − xk,

3. if there exists M > 0 such that F (x) < M in (a, b) then

∆xk ≡ xk+1 − xk >
π√
M

4. if there exists m > 0 such that F (x) > m in (a, b) then

∆xk <
π√
m
.
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The zeros of y are concave on (a, b) for the first case and convex on (a, b)

for the second case.

The convexity theorem is only applicable to functions which are solutions of

second-order differential equations in normal form. To satisfy this condition,

the differential equation can be transformed into normal form. This can be

done by changing the dependent variable in the following way. Let

z′′ + g(x)z′ + f(x)z = 0

be a second-order differential equation and let

y = z exp
(1

2

∫ x

g(s)ds
)
. (2.1.1)

For this integral to exist, we assume that g is a continuous function to ensure

that g is an integrable function. The corresponding equation for y in the

normal form (1.0.1) is

y′′ + F (x)y = 0

where

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x). (2.1.2)

This follows from

y′ = z′e
1
2

∫ x g(s)ds +
1

2
zg(x)e

1
2

∫ x g(s)ds

y′′ = z′′e
1
2

∫ x g(s)ds + g(x)z′e
1
2

∫ x g(s)ds +
1

4
zg2(x)e

1
2

∫ x g(s)ds

+
1

2
zg′(x)e

1
2

∫ x g(s)ds

= −f(x)ze
1
2

∫ x g(s)ds +
1

4
zg2(x)e

1
2

∫ x g(s)ds +
1

2
zg′(x)e

1
2

∫ x g(s)ds

= y(x)

[
− f(x) +

1

4
g2(x) +

1

2
g′(x)

]
= −F (x)y(x).

Under this transformation the independent variable does not change and

hence the zeros of y and z remain the same. This transformation (2.1.1) can

be used to prove properties concerning the convexity of the zeros of some

classes of hypergeometric orthogonal polynomials.
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2.2 Hypergeometric polynomials

Firstly we define what is meant by hypergeometric polynomials.

Definition 2.2

The general pFq hypergeometric function is defined by

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
; z

)
= 1 +

∞∑
k=1

(a1)k(a2)k . . . (ap)kz
k

(b1)k(b2)k . . . (bq)kk!
, |z| < 1,

ai, bi ∈ R, bi 6= 0,−1,−2, . . . for i = 1, 2, . . . , q

where

(α)k = α(α+ 1) . . . (α+ k − 1), k ≥ 1, k ∈ N

(α)0 = 1 when α 6= 0,

a product known as Pochhammer’s symbol or the shifted factorial function.

This series will terminate if one of the numerator parameters is equal to a

negative integer, say a1 = −n, n ∈ N, and then the series is a polynomial of

degree n.

2.3 Classical orthogonal polynomials

We define the concept of orthogonal polynomials.

Definition 2.3 (cf. [22])

If {Pn(x)}∞n=0 form a simple set of real polynomials (polynomials that have

only real coefficients) and w(x) > 0 on a < x < b, then the set Pn(x)

are orthogonal with respect to the weight function w(x) over the interval

a < x < b if ∫ b

a
w(x)Pn(x)Pm(x)dx = 0, m 6= n.

Examples of classical orthogonal polynomials include
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Bessel

Bessel polynomials yn(a;x) can be defined by their hypergeometric repre-

sentation (cf. [11, p.244, eqn.(9.13.1)])

yn(a;x) = 2F0

(
−n, n+ a+ 1

−
;
−x
2

)
, n = 0, 1, . . . , N. (2.3.3)

and are orthogonal on (0,∞) for a < −2N − 1 with respect to the weight

function

w(x) = xae
−2
x .

Hermite

Hλ(x) can be defined by their hypergeometric representation (cf. [11, p.250,

eqn.(9.15.1)])

Hλ(x) = (2x)λ 2F0

(
−λ/2, (−λ+ 1)/2

−
;− 1

x2

)
. (2.3.4)

When λ = n, the Hermite polynomials are orthogonal on the interval

(−∞,∞) with respect to the weight function w(x) = e−x
2
.

Laguerre

The Laguerre polynomials (cf. [11, p.241, eqn.(9.12.1)])

L(α)
n (x) =

(α+ 1)n
n!

1F1

(
−n
α+ 1

;x

)
(2.3.5)

which are orthogonal on the interval (0,∞) with respect to the weight func-

tion w(x) = e−xxα for α > −1.

Jacobi

Jacobi polynomials (cf. [11, p.216, eqn.(9.8.1)])

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
(2.3.6)

are orthogonal on (−1, 1) with respect to the weight function (1−x)α(1+x)β

when α, β > −1.

Ultraspherical

Ultraspherical polynomials may be defined by their hypergeometric repre-

sentation (cf. [11, p.222, eqn.(9.8.19)]), where we let α = β = λ − 1
2 in the
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definition of the Jacobi polynomials.

C(λ)
n = P (α,α)

n (x) =
(α+ 1)n

n!
2F1

(
−n, n+ 2α+ 1

α+ 1
;
1− x

2

)
(2.3.7)

=
(2λ)n
n!

2F1

(
−n, n+ 2λ

λ+ 1
2

;
1− x

2

)
or

Hahn

Hahn polynomials are defined, as in (cf. [11, p.204, eqn.(9.5.1)]), by

Qn(x;α, β,N) = 3F2

(
−n, n+ α+ β + 1,−x

α+ 1,−N
; 1

)
(2.3.8)

with n = 0, 1, 2, . . . , N .

They are orthogonal for α > −1 and β > −1 or α < −N and β < −N with

respect to a discrete weight function, w1(x) =

(
α+ x

x

)(
β +N − x
N − x

)
with masses at x = 0, 1, . . . , N . They have n simple zeros on (0, N) with

any two consecutive zeros being more than one unit apart (cf. [14]).

Meixner

Meixner polynomials Mn(x; b, c) are orthogonal for b > 0 and 0 < c < 1,

with respect to the weight function w2(x) = (b)x
x! c

x with x = 0, 1, . . ., and

can be defined by (cf. [11, p.234, eqn.(9.10.1)])

Mn(x; b, c) = 2F1

(
−n,−x

b
; 1− 1

c

)
. (2.3.9)

Chebychev

Chebychev polynomials of the first kind, Tn(x), are a special case of the

Jacobi polynomials and can be found by setting α = β = −1
2 . Similarly, if

we let α = β = 1
2 we obtain the Chebychev polynomials of the second kind,

Un(x).

Chebychev polynomials of the first kind may be defined by their hypergeo-

metric representation (cf. [11, p.225, eqn.(9.8.35)])

Tn(x) = 2F1

(
−n, n

1
2

;
1− x

2

)
(2.3.10)
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and are orthogonal on (−1, 1) with respect to the weight function w(x) =

(1− x2)−
1
2 .

Chebychev polynomials of the second kind can be defined by their hyperge-

ometric representation (cf. [11, p.225, eqn.(9.8.36)])

Un(x) = (n+ 1) 2F1

(
−n, n+ 2

3
2

;
1− x

2

)
(2.3.11)

and are orthogonal on (−1, 1) with respect to the weight function w(x) =

(1− x2)
1
2 .

Pseudo Jacobi

Pseudo Jacobi polynomials can be defined by (cf. [11, p.231, eqn.(9.9.1)])

Pn(x; v,N) = (x+ i)n 2F1

(
−n,N + 1− n− iv

2N + 2− 2n
;

2

1− ix

)
, (2.3.12)

are orthogonal on R with respect to the weight function

w(x) = (1 + x2)−N−1e2vtan−1x.

Dual Hahn

Dual Hahn polynomials can be defined by (cf. [11, p.208, eqn.(9.6.1)])

Rn(λ(x), γ, δ,N) = 3F2

(
−n,−x, x+ γ + δ + 1

γ + 1,−N
; 1

)
(2.3.13)

where

λ(x) = x(x+ γ + δ + 1).

They are orthogonal for γ > −1 and δ > −1 or γ < −N and δ < −N with

respect to the discrete weight function

w(x) =
(2x+ γ + δ + 1)(γ + 1)x(−N)xN !

(−1)x(x+ γ + δ + 1)N+1(δ + 1)xx!

with masses at x = 0, 1, . . . , N.

Charlier

Charlier polynomials can be defined by their hypergeometric representation

(cf. [11, p.247, eqn.(9.14.1)])

Cn(x; a) = 2F0

(
−n,−x
−

;−1

a

)
(2.3.14)
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and are orthogonal with respect to the weight function w(x) = ax

x! provided

that a > 0.

Krawtchouk

Krawtchouk polynomials are defined by their hypergeometric representation

(cf. [11, p.237, eqn.(9.11.1)])

Kn(x; p,N) = 2F1

(
−n,−x
−N

;
1

p

)
(2.3.15)

and are orthogonal for 0 < p < 1 with respect to the discrete weight function

w(x) =

(
N

x

)
px(1− p)N−x.

Further classes of orthogonal polynomials include the Wilson, Racah, Con-

tinuous Dual Hahn, Continuous Hahn and Meixner-Pollaczek polynomials

whose definitions are not needed for the purpose of this dissertation.

All these classes of polynomials can be categorised according to whether

they are continuous (satisfying a differential equation) or discrete (satisfying

a difference equation).

2.3.1 Continuous classical orthogonal polynomials

Continuous orthogonal polynomials are polynomials which satisfy a second-

order differential equation. This class consists of Hermite, Laguerre, Bessel,

Jacobi and Pseudo Jacobi polynomials as well as the ultraspherical and

Chebychev polynomials which are special cases of the Jacobi polynomials.

2.3.2 Discrete classical orthogonal polynomials

This class of polynomials can be divided into two groups where the poly-

nomials either satisfy a real or a complex second-order difference equation.

The class of discrete orthogonal polynomials satisfying a real second-order

difference equation consists of Charlier, Meixner, Krawtchouk, Hahn and

Dual Hahn polynomials and the class of discrete orthogonal polynomials

satisfying a complex second-order difference equation consists of Wilson,

Racah, Meixner-Pollaczek, Continuous Dual Hahn and Continuous Hahn

polynomials.
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In this dissertation we will be investigating the convexity of the zeros of all

of these classes of polynomials.

Although we will be applying the theorems to orthogonal polynomials, we

note that Sturm’s theorems do not require the functions satisfying the differ-

ential (or difference) equations to be orthogonal or even polynomials. The

only requirement is that the functions must be oscillating to ensure that the

function will have zeros. This is discussed by J. Segura in [25] and [24] for

Laguerre polynomials and Jacobi polynomials respectively.

2.4 Applications

In the literature Theorem 2.1 has been used in various cases. Hille [8] used

the transformation (2.1.1) to prove the convexity of the zeros of Hermite

polynomials while Jordaan and Toókos [9] used the same transformation to

prove convexity properties of the zeros of Laguerre, Jacobi and ultraspherical

polynomials. Further detail will be given in Chapter 3.

Szegő [28] considered a different change of variable to obtain information on

the convexity of the transformed zeros of the ultraspherical polynomials and

this change of variable was applied to hypergeometric functions by Deaño,

Gil and Segura in [2].

In [20] Muldoon provides an overview of how the convexity theorem can

be used to obtain information about convexity properties of the zeros of

gamma, q-gamma and Bessel functions with respect to either a parameter

or the order of the zeros and convexity of the Hermite functions is also briefly

discussed. In Chapter 3 we will provide a more detailed exposition of these

results for the Bessel and Hermite functions, supported by proofs.

2.5 Discrete versions of Sturm’s theorems

So far we have only discussed the applications of Sturm’s theorem for the

continuous case of differential equations, but the comparison and convexity

theorems have analogues for difference equations, i.e. for the discrete case.

In [4] Gishe and Toókos discuss and apply the convexity and comparison

theorems for difference equations to the Hahn and Meixner polynomials.
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Although the classical comparison and convexity theorems can be directly

applied to difference equations of the type ∆2y(x− 1) + F (x)y(x) = 0, this

class of equations is too narrow. We know that any second-order linear dif-

ferential equation can be transformed into normal form, while for difference

equations this is too complicated and after such a transformation it is not

possible to determine the monotonicity properties of the function F (t) and

therefore we need a more general approach. This will be discussed in more

detail in Chapter 4.

In [4] second-order self-adjoint equations of the form

∆[p(x− 1)∆y(x− 1)] + q(x)y(x) = 0 (2.5.16)

with p(x) > 0 are considered.

Lemma 2.4 (cf. [10, Lemma 6.1])

Let y(t) be a nontrivial solution of (2.5.16) with y(t0) = 0. Then y(t0 −
1)y(t0 + 1) < 0.

We note that the discrete versions of Sturm’s separation and comparison

theorems hold for self-adjoint equations. Before stating these theorems, we

first need to define the concepts of a generalized zero and disconjugacy.

Definition 2.5 (cf. [10])

A solution y(x) of (2.5.16) has a generalised zero at x0 if either y(x0) = 0

or y(x0 − 1)y(x0) < 0.

Definition 2.6 (cf. [7])

Equation (2.5.16) is called disconjugate on [a, b] if no nontrivial solution has

two or more generalised zeros on [a, b]. Otherwise it is called conjugate.

Discrete versions of Sturm’s separation and comparison theorems are given

below.

Theorem 2.7 (cf. [10])

Two linearly independent solutions of (2.5.16) cannot have a common zero.

If a nontrivial solution of (2.5.16) has a zero at x1 and a generalised zero

at x2 > x1, then any second linearly independent solution has a generalised

zero in (x1, x2]. If a nontrivial solution of (2.5.16) has a generalised zero at
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x1 and a generalised zero at x2 > x1, then any second linearly independent

solution has a generalised zero in [x1, x2].

Let

Liy(x) = ∆[pi(x− 1)∆y(x− 1)] + qi(x)y(x) = 0, i = 1, 2

where pi(x) > 0 in [a, b+ 1] and qi(x) is defined on [a+ 1, b+ 1].

Theorem 2.8 (cf. [10, Theorem 8.12])

Assume that q1(x) ≥ q2(x) on [a+1, b+1] and p2(x) ≥ p1(x) > 0 on [a, b+1].

If L1y(x) = 0 is disconjugate on [a, b + 2], then L2y(x) = 0 is disconjugate

on [a, b+ 2].

A new version of the Sturm comparison theorem and the consequence of

that, which is the convexity theorem, are discussed in [4]. These theorems

can be used to obtain results on the convexity of the zeros of solutions

of self-adjoint difference equations. These results were also applied to the

Hahn and Meixner polynomials, which we will discuss, together with the

appropriate theorems, in Chapter 4.

2.6 Brief overview

We have observed that if a class of orthogonal polynomials satisfies a dif-

ferential equation in normal form, then under certain conditions we will be

able to determine where the zeros of these polynomials are convex (concave)

and one can then often place bounds on the distances between consecutive

zeros. We have also seen that these results might be extended to difference

equations. In the next chapter we will apply these convexity results to Bessel

functions and Hermite, Laguerre, Jacobi and ultraspherical polynomials as

was done in [9] and [20].

In Chapter 4 we investigate results on the convexity of zeros of solutions of

polynomials which satisfy difference equations with applications to Hahn and

Meixner polynomials as was done in [4]. In Chapter 5 we consider Cheby-

chev, Bessel, Pseudo Jacobi and Dual Hahn polynomials and obtain con-

vexity results by making use of the known results for polynomials satisfying

differential or difference equations. In Chapter 6 Charlier and Krawtchouk

polynomials are investigated and we find that the existing theorems do not
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yield results on the convexity of these polynomials. We also briefly discuss

polynomials which satisfy complex difference equations and q-orthogonal

polynomials.
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Chapter 3

Convexity of the zeros of

some special functions

In this chapter we review the results from [9] and [20] on the convexity of

the zeros, as well as bounds on the distances between consecutive zeros, of

Bessel functions, Hermite, Laguerre, Jacobi and ultraspherical continuous

orthogonal polynomials, together with detailed proofs. We will make use

of Theorem 2.1, an application of Sturm’s comparison theorem that can be

used for second-order differential equations in normal form. This theorem

is applicable to the above mentioned classes of polynomials since they all

satisfy a second-order differential equation which is in normal form, or can

be transformed into normal form.

We start by considering the Bessel functions for which various results on

convexity, as well as on the spacing of its zeros, have been discussed in [12],

[13], [20] and [25].

3.1 Bessel functions

Firstly, we consider convexity results for the zeros of Bessel functions.

Bessel functions y(x) = Jν(x) of the first kind can be defined on (0,∞) by

[28]

Jν(x) =

∞∑
n=0

(−1)n(x/2)2n+ν

n!Γ(ν + n+ 1)

23

 
 
 



or by their hypergeometric representation (cf. [22, p.108, eqn.(1)])

Jν(x) =
(x/2)ν

Γ(ν + 1)
0F1

(
−

ν + 1
;
−x2

4

)
.

They satisfy the differential equation (cf. [22, p.109, eqn.(4)])

x2y′′ + xy′ + (x2 − ν2)y = 0 (3.1.1)

and have all their zeros real when ν ≥ −1 (cf. [30]). A second solution of

the differential equation (3.1.1), the Bessel function of the second kind, is

given by

Yν(x) =
Jν(x)cos νπ − J−ν(x)

sin νπ

where we take an appropriate limit when ν is an integer. The general solu-

tion is then given by

Cν(x) = cos αJν(x)− sin αYν(x)

where Cν(x) are referred to as cylinder functions (cf. [30]).

We will denote the respective k-th positive zeros of Jν(x) and Cν(x) by

jνk and cνk. It was shown by Sturm [27] that if |ν| is greater than or less

than 1/2, the positive zeros of the function Cν(x) form a concave or convex

sequence respectively.

The differential equation (3.1.1) for y(x) = Cν(x) can be transformed to

normal form

y′′ + F (x)y = 0

as described as in Chapter 2 using equation (2.1.2) where

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)

=
x2 − ν2

x2
− 1

4x2
+

1

2x2

=
4x2 − 4ν2 + 1

4x2

= 1 +
1/4− ν2

x2

which results in the transformed differential equation

y′′ +
[
1 +

1/4− ν2

x2

]
y = 0
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satisfied by the functions y(x, ν) = x
1
2Cν(x). It follows that the zeros cνk of

Cνk are also the zeros of y(x, ν).

Theorem 3.1 (cf. [20])

The zeros of Cν(z) are

1. convex on (0,∞) if |ν| < 1
2

2. concave on (0,∞) if |ν| > 1
2 .

In addition,

∆cνk < π, for |ν| < 1

2

and

∆cνk > π, for |ν| > 1

2
.

Proof: We have that

F ′(x) =
4ν2 − 1

2x3

Let j(x) = 4ν2 − 1, then j(x) > 0 when |ν| > 1
2 and j(x) < 0 when

|ν| < 1
2 . This implies that F (x) will be increasing on (0,∞) when |ν| > 1

2

and decreasing on (0,∞) when |ν| < 1
2 . Hence, the zeros of Cν(z) are

concave for |ν| > 1
2 and convex for |ν| < 1

2 . Also

|ν| >
1

2

ν2 >
1

4
1

4
− ν2 < 0

1 +
1/4− ν2

x2
< 1

F (x) < 1.

Similarly, if |ν| < 1/2, F (x) > 1.

By Theorem 2.1 (3) and (4) we can now come to the conclusion that

∆cνk < π, for |ν| < 1

2

and

∆cνk > π, for |ν| > 1

2
.

�
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Lorch and Szegő [17] considered higher monotonicity properties of the Bessel

function and proved that for |ν| > 1
2 , we have

(−1)n∆n+1cνk > 0, n = 0, 1, . . . , k = 1, 2, . . . (3.1.2)

where

∆n+1cνk = ∆(∆(....(∆(cνk))))

with ∆ applied n+ 1 times to cνk.

From this extended and more general results followed (cf. [15] and [16]). It

was also proved by Gori, Laforgia and Muldoon in [5] that (3.1.2) remains

valid when we replace cνk by jνk and the difference operation is replaced by

a derivative operator. It is not as easy to derive higher monotonicity results

for 0 ≤ ν ≤ 1
2 . In [15] it was conjectured that (3.1.2) should be replaced by

(−1)n∆n+2cνk > 0, n = 0, 1, . . . , k = 1, 2, . . . . (3.1.3)

In [21] it was proved by Muldoon that (3.1.3) does hold for 1
3 ≤ ν ≤

1
2 .

An indirect application of Sturm’s convexity theorem was used by Porter

and Bôcher in [1] to show that each zero jνk of the Bessel function increases

as ν increases, with 0 < ν < ∞. Makai [18] also used Sturm’s convexity

theorem to show that jνk/ν decreases as ν increases.

The following general result concerning the convexity of the zeros jνk of the

Bessel function Jνk was proved by Elbert and Laforgia (cf. [3]).

Theorem 3.2

Let jνk be defined as above and let

k0 = inf
{
k > 0 : j′νk =

d

dv
jνk > 1, for all ν ≥ 0

}
.

Then, j2
νk is convex for ν ≥ 0 and for every k ≥ k0.

3.2 Hermite polynomials

Hermite polynomials y(x) = Hλ(x), as defined in (2.3.4), satisfy the differ-

ential equation (cf. [11, p.250, eqn.(9.15.5)])

y′′ − 2xy′ + 2λy = 0.
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From their orthogonality it follows that the zeros of Hλ(x) are real, distinct

and located symmetrically with respect to the origin.

Now

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)

= 2λ− 1

4
(−2x)2 − 1

2
(−2)

= −x2 + 2λ+ 1

where F (x) is defined in (2.1.2), the transformed differential equation in

normal form (1.0.1) is

y′′ + (−x2 + 2λ+ 1)y = 0

and the zeros of F (x) are

x1,2 = ±
√

2λ+ 1

where x1 denotes the negative zero and x2 is the positive zero.

Theorem 3.3 (cf. [8])

The zeros of Hλ(x) are concave on (−∞, 0) and convex on (0,∞).

Moreover, we have the estimate

∆xk >
π√

2λ+ 1
if λ > −1

2
.

Proof:

Since F ′(x) = −2x, F (x) will have a local extremum at x = 0. F (x) will be

increasing for x < 0 and decreasing for x > 0. By Theorem 2.1 (1) and (2),

the zeros of y will be concave on (−∞, 0) and convex on (0,∞).The leading

coefficient of F (x) is negative and F (0) = 2λ+ 1, therefore

F (x) ≤ 2λ+ 1 for all x ∈ R.

Since 2λ+ 1 > 0 if λ > −1
2 it follows by Theorem 2.1(3) that

∆xk >
π√

2λ+ 1
for λ > −1

2
.

�
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3.3 Laguerre polynomials

Laguerre polynomials y(x) = L
(α)
n (x), as defined in (2.3.5), satisfy the dif-

ferential equation (cf. [11, p.241, eqn.(9.12.5)])

xy′′ + (α+ 1− x)y′ + ny = 0.

This differential equation can be transformed, by (2.1.1), to

y′′ + F (x)y = 0

where

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x) (3.3.4)

=
n

x
− 1

4
(
α+ 1− x

x
)2 − 1

2
(
−α− 1

x2
)

=
−x2 + 2αx+ 2x+ 4nx− α2 + 1

4x2

with F (x) defined in (2.1.2). We also have that

F ′(x) =
(−2n− α− 1)x2 − (1− α2)x

2x4
.

So when F ′(x) = 0,

x0 :=
α2 − 1

α+ 2n+ 1
. (3.3.5)

Hence F ′(x) changes sign at x0.

Theorem 3.4 (cf. [9, Theorem 3.1])

The zeros of Lαn on (0,∞) are

1. all convex if n > 0 and −1 < α ≤ 3

2. all convex if α > 3 and 0 < n < α+1
α−3

3. concave for x < x0 and convex for x > x0 when α > 3, n > α+1
α−3 and

x0 is defined by (3.3.5).

Moreover, for the distance between consecutive zeros we have the general

estimate

∆xk >
π
√

2√
2αn+ α+ 2n2 + 2n+ 1

, k = 1, . . . , n− 1
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and also if xk > x0, then

∆xk >
π√
F (xk)

, k = 1, . . . , n− 1

and

∆xk <
π√

F (xk+1)
, k = 1, . . . , n− 2

where F is defined by (3.3.4).

Proof:

If |α| < 1, then

α2 < 1
α2 − 1

α+ 2n+ 1
< 0

x0 < 0

and

F ′(x) < 0

(−2n− α− 1)x2 − (1− α2)x < 0.

This quadratic equation will have a negative leading coefficient for all n =

0, 1, . . . if −α − 1 < 0 and this is true for |α| < 1. Therefore F ′(x) < 0

for x > 0 or x < x0 when |α| < 1. Hence, F (x) will be decreasing on

(−∞, x0)
⋃

(0,∞) and increasing on (x0, 0).

For α ≥ 1, x0 ≥ 0, we have that the leading coefficient will be negative,

hence F (x) is increasing on (0, x0) and decreasing on (−∞, 0)
⋃

(x0,∞).

Let the smallest zero of Lαn be denoted by x1, then x1 >
α+1
n (cf. [6]). This

implies that when x0 <
α+1
n , F (x) will be decreasing on the interval (x1,∞),

since we have already shown that F (x) is decreasing on (x0,∞). This will

be true when

x0 <
α+ 1

n
α2 − 1

α+ 2n+ 1
<

α+ 1

n
α− 1

α+ 2n+ 1
<

1

n
, α ≥ 1.
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Solving for α we find that −1 < α < 3n+1
n−1 and for all n > 0, 3n+1

n−1 ≥ 3, hence

−1 < α ≤ 3 and the zeros of Lαn are all convex, by Theorem 2.1 (2). There

is another solution for this inequality, if we solve for n in α < 3n+1
n−1 , we find

that n < α+1
α−3 if α > 3, since n > 0.

From Theorem 2.1(3) we can estimate the distance ∆xk, where we take

M = F (x0) since the maximum of F is at x0 and F (x0) > 0. We get

∆xk >
π√
M

=
π√
F (x0)

=
π
√

2√
2αn+ α+ 2n2 + 2n+ 1

to obtain the first bound. Following from the facts that F (x) is decreasing

on (x0,∞) and F ′(x) changes sign at x0, when xk > x0, F is monotone

decreasing on (xk, xk+1). This means that on (xk, xk+1) we have

F (xk) > F (x) > F (xk+1).

In fact, F is monotone decreasing on (0,∞) and also

lim
t→∞

F (x) = −1

4

so there is exactly one point x1 on (x0,∞) where F crosses the x-axis. From

the form of the differential equation, this now implies that if F (x) < 0 and

y(x) > 0,

y′′ = −F (x)y(x) > 0

hence, the graph will be concave up and similarly, if y(x) < 0, the graph

will be concave down. Hence, there can be at most one zero of the Laguerre

polynomials to the right of x1. This means that F (xn−1) is positive, but

F (xn) may be negative and therefore the index in the last bound on the

zeros only runs up to n− 2.

�

3.4 Jacobi polynomials

Jacobi polynomials y(x) = P
(α,β)
n (x), as defined in (2.3.6), satisfy the differ-

ential equation (cf. [11, p.218, eqn.(9.8.6)])

(1− t2)y′′(x) + (β − α− (α+ β + 2)x)y′(x) + n(n+ α+ β + 1)y(x) = 0.
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This equation can be transformed to the normal form, y′′+F (x)y = 0, where

F (x) =
−zx2 − 2(w − y)x− 2w − 2y + z

4(x2 − 1)2
,

where w = α2 − 1

y = β2 − 1

z = (α+ β + 2n)(α+ β + 2n+ 2)

with F (x) defined as in (2.1.2). Also

F ′(x) =
zx3 + 3(w − y)x2 + (4w + 4y − z)x+ (w − y)

2(x2 − 1)3
:=

j(x)

2(x2 − 1)3

and the discriminant of j′(x) is

D := 12(3w2 + 3y2 + z2 − 6wy − 4wz − 4yz).

It is necessary to restrict the parameters to the following conditions (cf. [2]),

since the solutions need to be oscillating in order to apply Sturm’s convexity

theorem,

n > 0, n+ α+ β > 0, n+ α > 0, n+ β > 0.

In the following theorems we will assume that the parameters satisfy these

conditions.

Theorem 3.5 (cf. [9, Theorem 4.1])

If |α| > 1, |β| < 1 and D < 0, all the zeros of P
(α,β)
n on the interval (−1, 1)

are convex.

Proof:

F (x) is a rational function and it has vertical asymptotes at x = ±1, since

4(x2 − 1)2 = 0

implies that

x = ±1.

If |α| > 1 and |β| < 1, then

w = α2 − 1 > 0

y = β2 − 1 < 0
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and

z = (α+ β + 2n)(α+ β + 2n+ 2) > 0

so

j(−1) = zx3 + 3(w − y)x2 + (4w + 4y − z)x+ (w − y)

= −z + 3(w − y)− (4w + 4y − z)x+ (w − y)

= −8y > 0

and also

j(1) = zx3 + 3(w − y)x2 + (4w + 4y − z)x+ (w − y)

= z + 3(w − y) + (4w + 4y − z) + (w − y)

= 8w > 0.

Then,

lim
x→−1+

F ′(x) = lim
x→−1+

j(x)

2(x2 − 1)3

= lim
x→−1+

j(−1)

2(x2 − 1)3
< 0

and similarly,

lim
x→1−

F ′(x) < 0.

This implies that

lim
x→−1+

F (x) =∞

and

lim
x→1−

F ′(x) = −∞.

D < 0 implies that j′(x) 6= 0 for x ∈ (−1, 1) and hence j(x) will have no

extreme values on this interval. It follows that F (x) is monotone decreasing

on (−1, 1) and Theorem 2.1 yields the result.

�

For fixed values of α and β the discriminant D is positive for large values

of n and thus the conditions of Theorem 3.5 will not be satisfied. We inves-

tigate this possibility in the next theorem, where we let the degree of the

polynomials be sufficiently large with α and β fixed.

Theorem 3.6 (cf. [9, Theorem 4.2])

Let α and β be fixed and let n→∞, then the convexity of the zeros of P
(α,β)
n

on (−1, 1) changes in the following way (from left to right):
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1. if |α| ≤ 1 and |β| ≤ 1 then convex-concave.

2. if |α| ≤ 1 and |β| > 1 then concave-convex-concave.

3. if |α| > 1 and |β| ≤ 1 then convex-concave-convex.

4. if |α| > 1 and |β| > 1 then concave-convex-concave-convex.

Proof:

If α and β are fixed and n→∞, then the extreme locations of j(x) tend to

±1/
√

3. We can calculate this by first finding the j′(x) as n→∞,

j′(x) = x2(3z) + 6x(w − y) + (4w + 4y − z)

noting that n → ∞ implies that z → ∞, so to find the roots of j′(x) we

have

x2(3z) + 6x(w − y) + (4w + 4y − z) = 0

3x2 +
6x(w − y)

z
+ (4

w

z
+ 4

y

z
− 1) = 0

and if we now let z →∞ then

3x2 − 1 = 0.

Hence the determining the extreme values of j(x) are

x = ± 1√
3
.

Since z > 0, the leading coefficient of j(x) will be positive, which implies

that the local extremum near −1/
√

3 will be the maximum and the local

extremum near 1/
√

3 will be the minimum.

j
( 1√

3

)
= z
( 1

3
√

3
− 1√

3

)
+ y
(
− 2 +

4√
3

)
+ w

(
2 +

4√
3

)
.

j
(
− 1√

3

)
= z
(
− 1

3
√

3
+

1√
3

)
+ y
(
− 2− 4√

3

)
+ w

(
2 +

4√
3

)
.

The maximum value tends to∞ if we let n→∞, i.e. z →∞, and similarly,

the minimum value tends to −∞.

j′′(x) = 0

x(6z) + 6(w − y) = 0

x =
y − w
z

.
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This gives us the inflection point, x0, of j(x) and since z →∞,

x0 =
y − w
z
→ 0

which implies that there is at least one change of concavity in (−1, 1) (from

convex to concave) and whether there are more, depends on the sign of

j(−1) and j(1). We have that

j(−1) = −8y = 8(1− β2)

and

j(1) = 8w = 8(α2 − 1).

For case 1, we get that j(−1) > 0 and j(1) < 0 which implies that

lim
x→1−

F ′(x) =∞ and lim
x→−1+

F ′(x) = −∞.

Hence, we have convex-concave. For case 2, j(−1) < 0 and j(1) < 0,

which means that limx→1− F
′(x) =∞ and limx→−1+ F

′(x) =∞, so we have

concave-convex-concave. Similarly the results for cases 3 and 4 follow.

�

A special case of the Jacobi polynomials is the ultraspherical, also known as

Gegenbauer, polynomials.

3.5 Ultraspherical polynomials

Ultraspherical polynomials y(x) = C
(λ)
n , as defined in (2.3.7), satisfy a dif-

ferential equation (cf. [11, p.223, eqn.(9.8.23)])

(1− x2)y′′(x)− (2λ+ 1)xy′(x) + n(n+ 2λ)y(x) = 0. (3.5.6)

Theorem 3.7 (cf. [9, Theorem 5.1])

If |λ| ≤ 1, the zeros of C
(λ)
n on (−1, 0) are convex and those on (0, 1) are

concave. In addition

∆xk <
π√
F (0)

=
π√

2λn+ λ+ n2 + n+ 1

and for the positive zeros we have

π√
F (xk+1)

< ∆xk <
π√
F (xk)

.
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Proof: First we need to write the differential equation (3.5.6) in the normal

form. We find that

F (x) =
−(λ+ n)(λ+ n+ 1)x2 + (1 + n+ n2 + λ+ 2λn)

(x2 − 1)2
.

The numerator of F ′(x) is

j(x) = 4[(λ+ n)(λ+ n+ 1)x3 − (2 + n+ n2 + λ+ 2λn− λ2)x]

and the discriminant of j′(x) is

D = 192(λ+ n)(λ+ n+ 1)(2 + n+ n2 + λ+ 2λn− λ2).

The leading coefficient of j(x) is positive when λ > −1. The point of

inflection of j(x) is x0 = 0, since

j′′(x) = 0

24(λ+ n)(λ+ n+ 1)x = 0

x = 0

and hence the convexity of the zeros changes exactly at the middle of the

interval (−1, 1). The local extrema of j(x) can be estimated as follows

0 = j′(x)

0 = 12[(λ+ n)(λ+ n+ 1)x2 − (2 + n+ n2 + λ+ 2λn− λ2)]

x1,2 = ±

√
(n+ λ)(n+ λ+ 1)− 2(λ2 − 1)

3(n+ λ)(n+ λ+ 1)

and the two remaining zeros of j(x) are

0 = j(x)

0 = 4[(λ+ n)(λ+ n+ 1)x3 − (2 + n+ n2 + λ+ 2λn− λ2)x]

0 = 4[(λ+ n)(λ+ n+ 1)x2 − (2 + n+ n2 + λ+ 2λn− λ2)]

X1,2 = ±

√
(n+ λ)(n+ λ+ 1)− 2(λ2 − 1)

(n+ λ)(n+ λ+ 1)
= x1,2

√
3 (3.5.7)

where X1 denotes the negative zero and X2 the positive zero.

For |λ| ≤ 1 we have X1 < −1 and X2 > 1, and since the leading coefficient of

j(x) is positive when λ > −1, j(x) will be positive on (−1, 0) and negative on
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(0, 1). But F ′(x) will be negative on (−1, 0) and positive on (0, 1), therefore,

F (x) is decreasing on (−1, 0) and increasing on (0, 1).

The convexity of the zeros now follows from Theorem 2.1(1) and (2). In

addition,

F (0) = 1 + n+ n2 + λ+ 2λn > 0

is a minimum value and so we have an upper bound on the distance between

any two consecutive zeros from Theorem 2.1(4),

∆xk <
π√
F (0)

=
π√

2λn+ λ+ n2 + n+ 1
.

Finally, since F (x) is increasing on (0, 1), for x ∈ (xi, xi+1) we have

0 < F (xi) < F (x) < F (xi+1)

where xi and xi+1 are any two consecutive positive zeros and the last in-

equality follows from Theorem 2.1(3).

�

Theorem 3.8 (cf. [9, Theorem 5.2])

Let |λ| > 1 and (n + λ)(n + λ + 1) ≤ 2(λ2 − 1) then the zeros of C
(λ)
n on

(−1, 0) are concave and those on (0, 1) are convex. Furthermore

∆xk >
π√
F (0)

.

Proof:

If |λ| > 1 and D < 0, then j′(x) has no real roots, hence j′(x) 6= 0 for all

real x ∈ (−1, 1), therefore j(x) will have no local extremum and is monotone

increasing on (−1, 1) since if D < 0 and we let (n+λ)(n+λ+1) ≤ 2(λ2−1)

then we must have (λ+ n)(λ+ n+ 1) > 0 which is the leading coefficient of

j(x). F ′(x) is decreasing on (−1, 1), but j(0) = 0, or equivalently F ′(0) = 0,

which implies that F ′(x) > 0 on (−1, 0) and F ′(x) < 0 on (0, 1).

Now, F (x) is increasing on (−1, 0) and decreasing on (0, 1). From Theorem

2.1, the zeros of P
(λ,λ)
n are concave on (−1, 0) and convex on (0, 1). Further-

more, F (0) is a local maximum, therefore F (x) < F (0) for x ∈ (−1, 1) and

F (0) > 0. By Theorem 2.1(3),

∆xk >
π√
F (0)

.

�
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Theorem 3.9 (cf. [9, Theorem 5.3])

Let |λ| > 1 and (n + λ)(n + λ + 1) > 2(λ2 − 1) then the zeros of C
(λ)
n are

concave on (−1, X1) and (0, X2) and convex on (X1, 0) and (X2, 1), where

X1,2 are as in (3.5.7). We also have that

∆xk >
π√
F (X2)

=
π√
F (X1)

,

moreover, if (xk, xk+1) ⊂ (X1, X2) then

∆xk <
π√
F (0)

,

and if (xk, xk+1) ⊂ (0, X2), then

π√
F (xk+1)

< ∆xk <
π√
F (xk)

.

Proof:

When |λ| > 1 and D > 0, then all the zeros of j(x) are real, hence j(x) has

three zeros on (−1, 1), namely 0, X1 and X2 with

F (0) = (1 + n+ n2 + λ+ 2λn) = (λ+ n)(λ+ n+ 1)− (λ2 − 1)

and

F (X1) =
−[(n+ λ)(n+ λ+ 1)− 2(λ2 − 1)] + (1 + n+ n2 + λ+ 2λn)(

(n+λ)(n+λ+1)−2(λ2−1)
(n+λ)(n+λ+1) − 1

)2

=
F (0) + (λ+ n)(λ+ n+ 1)− 2(λ2 − 1)(

−2(λ2−1)
(n+λ)(n+λ+1)

)2

> F (0)

when (n + λ)(n + λ + 1) > 2(λ2 − 1). Also, F (X1) = F (X2), hence F (x)

has local maxima at X1,2 and a local minimum at x = 0. F (x) is decreasing

on (X1, 0)
⋃

(X2, 1) and increasing on (−1, X1)
⋃

(0, X2). By Theorem 2.1,

the zeros of P λ,λn are concave on (−1, X1) and (0, X2) and convex on (X1, 0)

and (X2, 1).

We also have that limx→−1 F (x) = −∞ = limx→1 F (x), so F (x) < F (X2) =

F (X1) on (−1, 1) and by Theorem 2.1(3)

∆xk >
π√
F (X2)

=
π√
F (X1)

.
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Also, if (xk, xk+1) ⊂ (X1, X2) then F (x) > F (0) where x ∈ (xk, xk+1) and

by Theorem 2.1(4)

∆xk <
π√
F (0)

.

If (xk, xk+1) ⊂ (0, X2), then F (xk) < F (x) < F (xk+1) where x ∈ (xk, xk+1)

since F (x) is increasing on (0, X2). Hence, by Theorem 2.1(3)(4),

π√
F (xk+1)

< ∆xk <
π√
F (xk)

.

�

In this chapter we have discussed and proved results for various classes of

orthogonal polynomials as well as Bessel functions, which all satisfy a second-

order differential equation, where we applied theorems which followed from

Sturm’s comparison theorem. We have also seen that not only can we prove

properties on convexity of zeros but we can also, in some cases, place bounds

on the distances between consecutive zeros.

In the next chapter we will discuss results which can be applied to polynomi-

als which satisfy difference equations and will use the same approach as was

done with differential equations, this time applying analogues of Sturm’s

theorems.
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Chapter 4

Convexity theorems and

results for difference

equations

In this chapter we explore the possibilities of obtaining results on the con-

vexity of zeros of solutions of polynomials that satisfy a difference equation.

We will do this in a similar way as we did for solutions of differential equa-

tions. In Section 2.4 we discussed analogues of Sturm’s theorems that also

hold for difference equations. We now consider further extensions by Gishe

and Toókos [4].

The first theorem we state here may be considered a new version of the

Sturm comparison theorem for difference equations (Theorem 2.8) which

will provide better information about the behaviour of the zeros of solutions

of such second-order difference equations.

Theorem 4.1 (cf. [4, Theorem 1])

For the following pair of second-order difference equations,

∆[p1(x− 1)∆y(x− 1)] + q1(x)y(x) = 0 (4.0.1)

∆[p2(x− 1)∆z(x− 1)] + q2(x)z(x) = 0 (4.0.2)

assume that p2(x) ≥ p1(x) > 0 and q1(x) ≥ q2(x) for x ∈ [x0, x0 + n],

y(x0) = z(x0) = 0, y(x0 + 1) > 0 and z(x0 + 1) > 0. Then if y(x0 + 2) > 0,

y(x0 + 3) > 0, . . ., y(x0 +n) > 0 (n ≥ 2), then z(x0 + 2) > 0, z(x0 + 3) > 0,
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. . ., z(x0 + n) > 0.

This means that “z(x) cannot change sign before y(x) does”.

Proof:

Assume that z(x) does change sign before y(x) does, i.e. assume that y(x0 +

2) > 0, y(x0 + 3) > 0, . . ., y(x0 + n) > 0 and z(x0 + 2) > 0, z(x0 + 3) > 0,

. . ., z(x0 + k − 1) > 0, z(x0 + k) < 0, where 1 < k < n. Then z(x) has two

generalised zeros on [x0, x0 + k], since

z(x0 + k − 1)z(x0 + k) < 0

and y(x0) = 0 which means that x0 as well as x0 + k are generalised zeros.

Therefore, equation (4.0.2) is conjugate on [x0, x0 + k], by Definition 2.6.

According to Theorem 2.8, equation (4.0.1) is also conjugate on [x0, x0 + k],

i.e. it has a nontrivial solution w(x) with at least two generalised zeros on

[x0, x0 + k].

Since k < n, the functions w(x) and y(x) must be linearly independent. By

Theorem 2.7, w(x0) 6= 0 since two linearly independent solutions cannot have

a common zero. Hence, w(x) has two generalised zeros on [x0 + 1, x0 + k].

But then y(x) also has to have a generalized zero on [x0 + 1, x0 + k], which

contradicts the fact that y(x∗0) 6= 0 and y(x∗0)y(x∗0 − 1) > 0 for all x∗0 ∈
(x0 + 1, x0 + k).

Hence, we must have z(x0 + k) > 0 for 1 < k < n.

�

The following theorem may be considered as the Sturm convexity theorem

for second-order difference equations.

Theorem 4.2 (cf. [4, Theorem 2])

Assume that in the equation

∆[p(x− 1)∆y(x− 1)] + q(x)y(x) = 0

p(x) is monotone decreasing, q(x) is monotone increasing on [x0−n, x0 +n],

y(x0) = 0 and y(x0 + 1) > 0. Then if y(x0 + 2) > 0, y(x0 + 3) > 0, . . .,

y(x0 + n) > 0, then y(x0 − 1) < 0, y(x0 − 2) < 0, . . ., y(x0 − n) < 0.
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Proof:

Let p2(x) = p(2x0 − x− 1) and q2(x) = q(2x0 − x).

∆[p2(x− 1)∆z(x− 1)] + q2(x)z(x)

= ∆[p(2x0 − x− 2)∆z(x− 1)] + q(2x0 − x)z(x)

= z(x+ 1)p(2x0 − x− 1)− z(x)[p(2x0 − x− 1) + p(2x0 − x)− q(2x0 − x)]

z(x− 1)p(2x0 − x)

Letting z(x) = −y(2x0 − x) equation (4.0.2) is satisfied and we have

−y(2x0 − x− 1)p(2x0 − x− 1)

+y(2x0 − x)[p(2x0 − x− 1) + p(2x0 − x)− q(2x0 − x)]

−y(2x0 − x+ 1)p(2x0 − x)

= −[y(2x0 − x− 1)p(2x0 − x− 1)

−y(2x0 − x)[p(2x0 − x− 1) + p(2x0 − x)− q(2x0 − x)]

+y(2x0 − x+ 1)p(2x0 − x)].

From the monotonicity assumption, it now follows that p2(x) ≥ p(x) and

q(x) ≥ q2(x) on [x0, x0 + n].

By Theorem 4.1,

z(x0 + 2) > 0, z(x0 + 3) > 0, . . . , z(x0 + n) > 0

but z(x) = −y(2x0 − x), so

y(x0 − 1) < 0, y(x0 − 2) < 0, . . . , y(x0 − n) < 0.

�

Since we are investigating discrete polynomials we have to define a new

type of convexity to ensure that we take all the zeros into consideration.

Therefore we now define the concept of quasi-convexity.

Definition 4.3 (cf. [4, Definition 2.1])

Let y(x) be a continuous function on an interval (a, b) and let x1 < . . . <

xk < xk+1 < . . . denote the consecutive zeros of y(x) in (a, b). Then
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1. if ∆2xk < 1 for all k, then the zeros of y(x) are called quasi-concave

on (a, b),

2. if ∆2xk > −1 for all k, then the zeros of y(x) are called quasi-convex

on (a, b).

We can show that a sufficient condition for quasi-convexity is monotonicity

of the functions p(x) and q(x).

Corollary 4.4 (cf. [4, Corollary 2.2])

Let y(x) be a continuous function on an interval (a, b) and let x1 < . . . <

xk < xk+1 < . . . denote the consecutive zeros of y(x) in (a, b). Assume that

∆xk > 1 for all k and that y(x) satisfies equation (2.5.16) on (a, b).

• If p(x) is monotone decreasing and q(x) is monotone increasing on

(a, b), then the zeros of y(x) are quasi-concave on (a, b).

• If p(x) is monotone increasing and q(x) is monotone decreasing on

(a, b), then the zeros of y(x) are quasi-convex on (a, b).

Proof:

Let xk+1 be a zero of y(t) in (a, b) and assume that y(xk+1 + 1) > 0, then

y(x) must be positive between xk+1 and xk+1 + 1 as well, since ∆xk > 1

by assumption, which would imply that any two consecutive zeros are more

than 1 unit apart, i.e. there cannot be a zero between xk+1 and xk+1 + 1.

Choose n such that

xk+1 + n < xk+2 ≤ xk+1 + n+ 1 (4.0.3)

which implies that the difference between xk+1 and the next zero, xk+2, is

more than n. Then

y(xk+1 + 1) > 0, y(xk+1 + 2) > 0 . . . y(xk+1 + n) > 0

and by Theorem 4.2

y(xk+1 − 1) < 0, y(xk+1 − 2) < 0 . . . y(xk+1 − n) < 0.

This, together with the assumption that ∆xk > 1 and by Lemma 2.4 yields

xk+1 + n < xk+2 which is true for values of k, so we also have that

xk < xk+1 − n. (4.0.4)
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On the other hand, by the choice of n in (4.0.3),

xk+2 − xk+1 ≤ n+ 1. (4.0.5)

By combining equations (4.0.4) and (4.0.5) we obtain

∆2xk < 1.

�

Next we consider the Hahn and Meixner polynomials, which both satisfy

difference equations, and use the above mentioned theorems to obtain results

on the convexity of their zeros as was done in [4].

4.1 Hahn polynomials

Hahn polynomials y(x) = Qn(x;α, β,N), as defined in (2.3.8), satisfy the

difference equation (cf. [11, p.205, eqn.(9.5.5)])

n(n+ α+ β + 1)y(x)

= B(x)y(x+ 1)− [B(x) +D(x)]y(x) +D(x)y(x− 1), (4.1.6)

with

B(x) = (x+ α+ 1)(x−N)

and

D(x) = x(x− β −N − 1).

As discussed in Section 2.5, the zeros of Hahn polynomials lie in the interval

(0, N) and hence we consider values of x such that 0 < x < N .

If α > −1 then

α+ 1 + x > 0 if x > 0.

Also, if x < N then

−α− 1 < x < N

and we have that

B(x) = (x+ α+ 1)(x−N) < 0.
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Similarly, if β > −1 then

β > −N − 1 for all N ∈ Z+

0 < x < β +N + 1 since x < N

which implies that

D(x) = x(x− β −N − 1) < 0.

Theorem 4.5 (cf. [4, Proposition 2.3])

Let α+ β > 0. The zeros of the Hahn polynomials Qn(x;α, β,N) are quasi-

convex or quasi-concave on certain intervals depending on the parameter

values as follows

1. If −1 < α < 0 < β then the zeros are quasi-convex on (0, x1).

2. Let 0 < α < β. If N < α
β then the zeros are quasi-concave on (x1, N).

If α
β < N < α(α+β+2)

(β−α) then the zeros are quasi-concave on (x1, x2). If

N > α(α+β+2)
(β−α) then the zeros are quasi-convex on (x2, x1).

3. If −1 < β < 0 < α then the zeros are quasi-concave on (x1, N).

4. Let 0 < β < α. If N < α
β then the zeros are quasi-concave on (x1, N).

If N > α
β then the zeros are quasi-concave on (x1, x2).

where x1 and x2 are defined as in (4.1.7).

Proof:

First, we notice that since any two consecutive zeros must be more than one

unit apart, ∆x > 1.

In order to apply the convexity theorem we bring the difference equation to

self-adjoint form by multiplying both sides of (4.1.6) by

x−1∏
s=0

B(s)

D(s+ 1)
,

which yields

p(x)y(x+ 1)− [p(x) + p(x− 1)]y(x) + p(x− 1)y(x− 1) + q(x)y(x) = 0.

This is of the form (2.5.16) with

p(x) =
−(α+ 1)x+1(−N)x+1

x!(−β −N)x
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and

q(x) = n(n+ α+ β + 1)
(α+ 1)x(−N)x
x!(−β −N)x

.

Assume that α+ β > 0 and let

x1 =
(α+ 1)N

α+ β + 2
and x2 =

α(N + 1)

α+ β
. (4.1.7)

Then p(x) is monotone increasing when x < x1 since

x1 =
(α+ 1)N

α+ β + 2
> x

x(−α− β − 2) +N(α+ 1) > 0

x(−α− β − 2) +N(α+ 1) +Nx−Nx+ x2 − x2 > 0

x(−β −N + x− 1)− (α+ 1 + x)(−N + x) > 0.

Now, if we consider p(x)− p(x− 1) we find that

p(x)− p(x− 1)

=
−(α+ 1)x+1(−N)x+1

x!(−β −N)x
− −(α+ 1)x(−N)x

(x− 1)!(−β −N)(x−1)

=
x(−β −N + x− 1)(α+ 1)x(−N)x − (α+ 1)x+1(−N)x+1

x!(−β −N)x

=
(α+ 1)x(−N)x[x(−β −N + x− 1)− (α+ 1 + x)(−N + x)]

x!(−β −N)x
.

Note that x! > 0 and (α+ 1)x > 0. Also for

(−N)x
(−β −N)x

=
(−N)(−N + 1) . . . (−N + x− 1)

(−β −N)(−β −N + 1) . . . (−β −N + x− 1)

all the factors are negative, but since the numerator and denominator have

the same number of factors, the resultant fraction must be positive. Hence,

p(x) − p(x − 1) > 0 which implies that p(x) is monotone increasing when

x < x1.

Similarly, q(x) is monotone decreasing for x > x2, since

x2 =
α(N + 1)

α+ β
< x

x(α+ β)− α(N + 1) > 0

x(α+ β)− α(N + 1) + xN − xN + x− x+ x2 − x2 > 0

(α+ x)(−N + x− 1)− x(−β −N + x− 1) > 0.
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Considering q(x)− q(x− 1) we find

q(x)− q(x− 1)

= n(n+ α+ β + 1)
(α+ 1)x(−N)x
x!(−β −N)x

−n(n+ α+ β + 1)
(α+ 1)x−1(−N)x−1

(x− 1)!(−β −N)x−1

=
n(n+ α+ β + 1)(α+ 1)x−1(−N)x−1[(α+ x)(−N + x− 1)]

x!(−β −N)x

−n(n+ α+ β + 1)(α+ 1)x−1(−N)x−1[x(−β −N + x− 1)]

x!(−β −N)x
.

Note that n(n+ α+ β + 1) and x! are positive. Furthermore,

[(α+ 1)x−1][(−N)x−1]

(−β −N)x

=
[(α+ 1) . . . (α+ x− 1)][(−N) . . . (−N + x− 3)(−N + x− 2)]

(−β −N) . . . (−β −N + x− 1)

the numerator and denominator will have an unequal amount of positive

and negative factors for all values of 0 < x < N . Hence, q(x)− q(x− 1) < 0

which implies that q(x) is monotone decreasing for x > x2 and monotone

increasing for x < x2.

This means that for x ∈ (x1, x2), p and q have opposing monotonicity and

Theorem 4.2 is applicable. We also note that 0 < x1 < N because of our

assumptions, however this isn’t true for x2, which may be negative or greater

than N , but this depends on the values of α and β. Whether x1 < x2 or

x2 < x1 will depend on the sign of N(β − α)− α(α+ β + 2), since

x1 − x2 =
(α+ 1)N

α+ β + 2
− α(N + 1)

α+ β

=
(α+ 1)N(α+ β)− α(N + 1)(α+ β + 2)

(α+ β + 2)(α+ β)
= 0

if and only if

(α+ 1)N(α+ β)− α(N + 1)(α+ β + 2) = 0

N(β − α)− α(α+ β + 2) = 0.

�
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4.2 Meixner polynomials

Considering the Meixner polynomials Mn(x; b, c), as defined in (2.3.9), one

can obtain convexity results using the same method that was used for the

Hahn polynomials, however it is easier to consider the limit relation between

the Meixner and Hahn polynomials to obtain these results.

Theorem 4.6 (cf. [4, Proposition 2.4])

The zeros of the Meixner polynomials Mn(x; b, c) are quasi-convex on

1.
(

0, bc
1−c

)
if 0 < b < 1,

2.
(

(b−1)c
1−c ,

bc
1−c

)
if b ≥ 1.

Proof:

Let α = b− 1 and β = N(1− c)/c in the definition of the Hahn polynomials

(2.3.8). Then we have

Qn

(
x; b− 1,

N(1− c)
c

,N

)
= 3F2

(
−n, n+ b+N(1− c)/c,−x

b,−N
; 1

)

=

∞∑
k=0

(−n)k(n+ b+ N(1−c)
c )k(−x)k(1)k

(b)k(−N)kk!
.

Letting N → ∞ yields, by the definition of hypergeometric polynomials in

Section 2.2,

lim
N→∞

Qn

(
x; b− 1,

N(1− c)
c

,N

)
= lim

N→∞

∞∑
k=0

(−n)k(n+ b+ N(1−c)
c )k(−x)k(1)k

(b)k(−N)kk!

=

∞∑
k=0

(−n)k(−x)k(
c−1
c )k

(b)kk!
by L’Hospital’s rule

= 2F1

(
−n,−x

b
; 1− 1

c

)
= Mn(x; b, c).

With these substitutions we have

x1 =
bcN

bc+N(1− c) + c
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and

lim
N→∞

x1 =
bc

1− c
.

Also,

x2 =
c(b− 1)(N + 1)

bc− c+N(1− c)
and taking the limit

lim
N→∞

x2 =
c(b− 1)

1− c
.

From Theorem 4.5(1), making the corresponding substitutions, we obtain

the first result and considering the last case of Theorem 4.5(2) we obtain

the second result.

�

We have seen that it is possible to determine the intervals of quasi-convexity

of polynomials which satisfy difference equations under certain conditions.

In this case we considered the Hahn and Meixner polynomials by applying

theorems which resulted from analogues of Sturm’s comparison and convex-

ity theorems. These theorems can be further applied to other polynomials

that satisfy second-order difference equations, some of which will be dis-

cussed in Chapter 5 and 6. Furthermore, similar theorems can be formu-

lated for q-difference equations, which can then be applied to polynomials

that satisfy a q-difference equation, such as the q-Laguerre polynomials (cf.

[4]), to obtain results on the q-quasi-convexity of the zeros.

In the next chapter we will use the results in Chapter 3 and 4 to investigate

the convexity of the zeros of the Chebychev, Bessel, Pseudo Jacobi and Dual

Hahn polynomials.
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Chapter 5

The Chebychev, Bessel,

Pseudo Jacobi and Dual

Hahn polynomials

In this Chapter we will consider Chebychev polynomials of the first and the

second kind, Bessel polynomials, Pseudo Jacobi polynomials as well as Dual

Hahn polynomials and make use of the same methods used in Chapters 3 and

4 to obtain some results on the convexity of the zeros of these polynomials.

Since Chebychev polynomials of the first kind, Tn(x), are a special case

of Jacobi polynomials and can be found by setting α = β = −1
2 while

α = β = 1
2 yields the Chebychev polynomials of the second kind, Un(x), the

results in the next two sections are special cases of those in Section 3.5.

5.1 Chebychev polynomials of the first kind

These polynomials y(x) = Tn(x), which are defined in (2.3.10), satisfy the

differential equation (cf. [11, p.226, eqn.(9.8.43)])

(1− x2)y′′(x)− xy′(x) + n2y(x) = 0.

In order to write the differential equation in the normal form (1.0.1), we

first need to find the function F (x). We use the definition in (3.3.4) to find

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)
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=
n2

1− x2
− 1

4

x2

(1− x2)2
+

1

2

x2 + 1

(1− x2)2

=
x2(1− 4n2) + 2(2n2 + 1)

4(1− x2)2
.

Therefore, the differential equation in normal form is

y′′(x) +
x2(1− 4n2) + 2(2n2 + 1)

4(1− x2)2
y(x) = 0.

Also,

F ′(x) =
8x(1− 4n2)(1− x2)2 − 8(1− x2)(−2x)[x2(1− 4n2) + 2(2n2 + 1)]

16(1− x2)4

=
x3(1− 4n2) + x(5 + 4n2)

2(1− x2)3
.

Let j(x) = x3(1− 4n2) + x(5 + 4n2) then in order to find the zeros of j(x)

we set j(x) = 0

j(x) = 0

x3(1− 4n2) + x(5 + 4n2) = 0

x = ±
√

4n2 + 5

4n2 − 1
or x = 0. (5.1.1)

Let X1 be the negative zero, X2 the positive zero and X3 = 0. Note that

X2 =

√
1 +

6

4n2 − 1

≤ 1 +

√
6

4n2 − 1

and similarly

X1 ≥ −1−
√

6

4n2 − 1
.

This implies that X1 < −1 and X2 > 1..

We can also find the local extrema of j(x), by setting j′(x) = 0.

j′(x) = 0

3x2(1− 4n2) + (4n2 + 5) = 0

x = ±
√

4n2 + 5

12n2 − 3
.

Let x1 and x2 be the negative and positive extrema respectively. These

extreme values are proportional to the zeros of j(x) with a factor of
√

3, i.e.

X1,2 =
√

3x1,2.

50

 
 
 



Theorem 5.1

The zeros of Tn(x) are convex on (0, 1), and concave on (−1, 0). In addition

∆xk <
π√
F (X1)

=
π√
F (X2)

where X1 and X2 are defined as in (5.1.1).

Proof:

For x < x1 and x > x2, j(x) is increasing and for x1 < x < x2 it is

decreasing. This means that x1 is a local maximum of j(x) and x2 is a local

minimum. Also, considering the interval of orthogonality of j(x), we find

that j(x) is positive on (−1, 0) and negative on (0, 1).

Now, by the definition of F ′(x), F ′(x) is positive on (−1, 0) and negative

on (0, 1) for x ∈ (−1, 1). This means that F (x) is increasing on (−1, 0) and

decreasing on (0, 1).

By Theorem 2.1, the zeros of Tn(x) are convex on (0, 1), and concave on

(−1, 0).

We can also find a bound for the difference between consecutive zeros of

Tn(x). X1, X2 and X3 are possible local extreme values of F (x). Since

lim
x→−1+

F (x) =∞ and lim
x→1−

F (x) =∞.

X1 and X2 must be local minimum values of F (x) for x ∈ (−1, 1), i.e.

F (x) > F (X1) = F (X2).

F (X2) =
[X2]2(1− 4n2) + 2(2n2 + 1)

4(1− [X2]2)2

=
(4n2 + 5) + 2(2n2 + 1)

[4(1− [X2]2)2]
.

The following holds true for all values of n

[4(1− [X2]2)2] > 0

and

(4n2 + 5) + 2(2n2 + 1) > 0.

Hence, F (X2) > 0 for all values of n. Also note that in the expression for

F (x) we only have x2 and X1, X2 are symmetric about the x-axis, therefore

F (X1) = F (X2).
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It follows by Theorem 2.1(4) that

∆xk <
π√
F (X1)

.

�

5.2 Chebychev polynomials of the second kind

Chebychev polynomials of the second kind y(x) = Un(x), as defined in

(2.3.11), satisfy a differential equation (cf. [11, p.225, eqn.(9.8.44)])

(1− x2)y′′(x)− 3xy′(x) + n(n+ 2)y(x) = 0.

In order to transform this differential equation to the normal form (1.0.1)

we first need to calculate F (x).

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)

=
n(n+ 2)

1− x2
− 1

4

9x2

(1− x2)2
+

1

2

3x3 + 3

(1− x2)2

=
−x2(4n(n+ 2) + 3) + (4n(n+ 2) + 6)

4(1− x2)2
.

We can now express the differential equation in the following way

y′′(x) +
−x2(4n(n+ 2) + 3) + (4n(n+ 2) + 6)

4(1− x2)2
y(x) = 0.

We find that

F ′(x)

=
−8x(4n(n+ 2) + 3)(1− x2)2

16(1− x2)4

−16x(1− x2)[x2(4n(n+ 2) + 3)− (4n(n+ 2) + 6)]

16(1− x2)4

=
−x3(4n(n+ 2) + 3) + x[(4n(n+ 2) + 9]

2(1− x2)3
.

Now, in order to find the local extrema of F (x) we find the values of x which

satisfy F ′(x) = 0.

F ′(x) = 0

j(x) := −x3(4n(n+ 2) + 3) + x[4n(n+ 2) + 9] = 0

x = ±

√
(4n(n+ 2) + 9)

(4n(n+ 2) + 3)
or x = 0.
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These are the zeros of j(x) where we let X1 be the negative zero, X2 the pos-

itive zero and X3 = 0. Note that only X3 lies in the interval of orthogonality

(−1, 1), since

X2
1 = X2

2 =
4n(n+ 2) + 9

4n(n+ 2) + 3

> 1 for all values of n.

which implies that X1 < −1 and X2 > 1.

j′(x) = 0

−3x2(4n(n+ 2) + 3) + (4n(n+ 2) + 9) = 0

x = ±

√
4n(n+ 2) + 9

3(4n(n+ 2) + 3)
.

Let x1 be the negative value and x2 be the positive value, then x1 and x2

are the local extrema of j(x).

Theorem 5.2

The zeros of Un(x) are concave on (0, 1), and convex on (−1, 0). In addition,

∆xk <
π√
F (0)

=
π√

n(n+ 2) + 6
.

Proof:

The leading coefficient of j′(x) is negative, which means that j′(x) < 0

on (−1, x1)
⋃

(x2, 1) and positive on (x1, x2). Therefore, j(x) is decreasing

on (−1, x1)
⋃

(x2, 1) and increasing on (x1, x2). Furthermore, x1 is a local

minimum value of j(x) and x2 is a local maximum value.

Considering the zero X3 = 0 of j(x), we can now also see that j(x) is positive

on (0, 1) and negative on (−1, 0), which implies that F (x) is increasing on

(0, 1) and decreasing on (−1, 0).

Hence, by Theorem 2.1, the zeros of Un(x) are concave on (0, 1) and convex

on (−1, 0).

A possible extreme value of F (x) is x = 0. If we consider the limits

lim
x→−1+

F (x) =∞ and lim
x→1−

F (x) =∞
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and note the intervals of increase and decrease of F (x) it follows that X3 = 0

is a minimum value of F (x) which further implies that F (x) < F (0). Now,

to be able to find bounds for the distances between consecutive zeros, i.e.

applying Theorem 2.1(3) and (4), we need to establish whether F (0) > 0.

F (0) = n(n+ 2) + 6 > 0

for all n. Hence, by Theorem 2.1(3),

∆xk <
π√
F (0)

=
π√

n(n+ 2) + 6)
.

�

5.3 Bessel polynomials

Bessel polynomials y(x) = yn(a;x), as defined in (2.3.3), satisfy the second-

order differential equation ([11, p.245, eqn.(9.13.5)])

x2y′′(x) + [(a+ 2)x+ 2]y′(x)− n(n+ a+ 1)y(x) = 0. (5.3.2)

These polynomials are related to the Bessel functions (see Section 3.1) in

the following way (cf. [22])

yn

(
1

ir

)
=

(
1

2
πr

) 1
2

eir

[
i−n−1Jn+ 1

2
(r) + inJ−n− 1

2
(r)

]
,

Jn+ 1
2
(r) = (2πr)−

1
2

[
i−n−1eiryn

(
−1

ir

)
+ in+1e−iryn

(
1

ir

)]
,

J−n− 1
2
(r) = (2πr)−

1
2

[
ineiryn

(
−1

ir

)
+ i−ne−iryn

(
1

ir

)]
.

Theorem 5.3

Let a < −2N − 1, then the zeros of Bessel polynomials yn(a;x) are concave

on the interval (0, x1)
⋃

(x2,∞) and convex on the interval (x1, x2), where

x2 is defined as in (5.3.3).

Proof:
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The differential equation (5.3.2) can be transformed into the normal form

(1.0.1) by first calculating F (x) as it is defined in (2.1.2).

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)

=
−n(n+ a+ 1)

x2
− (a+ 2)2x2 + 4x(a+ 2) + 4

4x4

−(a+ 2)x2 − 2x((a+ 2)x+ 2)

2x4

=
x2(−4n2 − 4na− 4n− a2 − 2a) + x(−4a)− 4

4x4
.

we then have

F ′(x) =
x2(−4n2 − 4na− 4n− a2 − 2a)− 2ax

2x5

−2[x2(−4n2 − 4na− 4n− a2 − 2a)− 4ax− 4]

2x5

=
j(x)

2x5
.

We now determine the zeros and the intervals of increase and decrease of

j(x).

0 = j(x)

0 = x2(−4n2 − 4na− 4n− a2 − 2a) + 6ax

−2x2(−4n2 − 4na− 4n− a2 − 2a) + 8

0 = x2(4n2 + 4na+ 4n+ a2 + 2a) + 6ax+ 8

x =
−3a±

√
9a2 − 8(4n2 + 4na+ 4n+ a2 + 2a)

(4n2 + 4na+ 4n+ a2 + 2a)
(5.3.3)

Since x is real we must have that 9a2 − 8(4n2 + 4na + 4n + a2 + 2a) > 0,

but this is true for all values of n since a < −2N − 1. Both zeros of j(x) are

positive, so let x1 < x2 be the two zeros. Also,

j′(x) = 0

0 = 2x(4n2 + 4na+ 4n+ a2 + 2a) + 6a

x =
−3a

(4n2 + 4na+ 4n+ a2 + 2a)

Let X1 be the turning point of j(x). Note that the leading coefficient of j(x)

is positive, therefore X1 will be a minimum value and j(x) will be positive

on the interval (0, x1)
⋃

(x2,∞) and negative on (x1, x2), since the zeros of
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yn(a;x) lie in (0,∞). This implies that F (x) is increasing on (0, x1)
⋃

(x2,∞)

and decreasing on (x1, x2). Hence, by Theorem 2.1, the zeros of yn(a;x) are

convex on (x1, x2) and concave on (0, x1)
⋃

(x2,∞).

Possible extreme values of F (x) are at x = x1,2 and by the intervals of

increase and decrease we find that x1 is a maximum value and x2 is a

minimum value of F (x). This implies that F (x2) < F (x) < F (x1) for

all x ∈ (0,∞).

F (x2) =
x2

2(−4n2 − 4na− 4n− a2 − 2a) + x2(−4a)− 4

4x4
2

F (x2), and similarly also F (x1), will always be negative for all the possible

values of a and n, therefore Theorem 2.1(3) and (4) are not applicable and

we are not able to place any bounds on the distances between consecutive

zeros of yn(a;x).

�

5.4 Pseudo Jacobi polynomials

Pseudo Jacobi polynomials y(x) = Pn(x; v,N), as defined in (2.3.12), satisfy

the second-order differential equation ([11, p.252, eqn.(9.9.5)])

(1 + x2)y′′(x) + 2(v −Nx)y′(x)− n(n− 2N − 1)y(x) = 0

which can be transformed into the normal form

y′′ + F (x)y = 0.

First we need to calculate F (x).

F (x) = f(x)− 1

4
g2(x)− 1

2
g′(x)

=
n(1 + 2N − n)

1 + x2
+
−(v −Nx)2 +N(1 + x2) + 2x(v −Nx)

(1 + x2)2

=
x2(−n2 + 2nN + n−N2 −N) + x(2vN + 2v)

(1 + x2)2

+
(−n2 + 2nN + n− v2 +N)

(1 + x2)2
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then

F ′(x) =
[2x(−n2 + 2nN + n−N2 −N) + (2vN + 2v)](1 + x2)

(1 + x2)3

−4x[x2(−n2 + 2nN + n−N2 −N) + x(2vN + 2v)]

(1 + x2)3

+
4x[(N − n2 + 2nN + n− v2)]

(1 + x2)3

=
j(x)

(1 + x2)3
.

Furthermore, we have

j′(x) = −6x2(n− n2 + 2nN −N2 −N)− 6x(2vN + 2v)

+2(−N2 − 2nN − 3N + n2 − n+ 2v2).

To determine the intervals of convexity we first need to find the values of x

where j′(x) = 0, which would also be the turning points of F ′(x).

j′(x) = 0

0 = −6x2(−n2 + 2nN + n−N2 −N)− 6x(2vN + 2v)

+2(−N2 − 2nN − 3N + n2 − n+ 2v2)

x =
−3(2vN + 2v)

6(−n2 + 2nN + n−N2 −N)

±
√

9(2vN + 2v)2 + 12(n− n2 + 2nN −N2 −N)(n2 −N2 − 2nN − 3N − n+ 2v2)

6(−n2 + 2nN + n−N2 −N)
.

Let x1 be the negative value and x2 the positive value. These values are real

as long as

9(2vN+2v)2−12(−n2+2nN+n−N2−N)(−N2−2nN−3N+n2−n+2v2) > 0

which will only hold true for certain values of n and v. To calculate the

zeros of j(x) we need to calculate the following

0 = j(x)

0 = −2x3(−n2 + 2nN + n−N2 −N)− 3x2(2vN + 2v)

+2x(−N2 − 2nN − 3N + n2 − n+ 2v2) + (2vN + 2v).

This cubic equation is not easily solvable, but making use of a suitable

software program it does yield three zeros X1,2,3 as solutions. If we assign
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specific values to the variables v and N we should be able to determine

in which of the intervals [−∞, X1], [X1, X2], [X2, X3] and [X3,∞] j(x) is

positive or negative.

Whenever j(x) is positive, F ′(x) will also be positive and F (x) will be in-

creasing, similarly, when j(x) is negative F (x) will be decreasing. According

to Theorem 2.1(1) and (2), this implies that the zeros of Pn(x; v,N) are con-

cave when F (x) is increasing and convex when F (x) is decreasing.

Considering the remaining results of Theorem 2.1, we might also be able to

place bounds on the distances of consecutive zeros of Pn(x; v,N) if we are

able to determine whether F (X1), F (X2) and F (X3) are positive extreme

values of F (x).

5.5 Dual Hahn polynomials

Dual Hahn polynomials y(x) = Rn(λ(x), γ, δ,N), as defined in (2.3.13),

satisfy the following difference equation (cf. [11, p.209, eqn.(9.6.5)])

−ny(x) = B(x)y(x+ 1)− [B(x) +D(x)]y(x) +D(x)y(x− 1) (5.5.4)

where

B(x) =
(x+ γ + 1)(x+ γ + δ + 1)(N − x)

(2x+ γ + δ + 1)(2x+ γ + δ + 2)

and

D(x) =
x(x+ γ + δ +N + 1)(x+ δ)

(2x+ γ + δ)(2x+ γ + δ + 1)
.

Since we are dealing with a difference equation, we will make use of the meth-

ods in Chapter 4 to examine the convexity of the zeros of Rn(λ(x), γ, δ,N).

Theorem 5.4

Let γ + δ > 1 and γ > −1, δ > −1. The zeros of the Dual Hahn polynomi-

als Rn(λ(x), γ, δ,N) are quasi-convex or quasi-concave on certain intervals

depending on the parameter values as follows

1. If x2 > x̄2, γ ≤ δ and N > 2 then the zeros are quasi-concave on

(x̄2, x2).
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2. If x2 < x̄2, γ ≤ δ and N > 2 then the zeros are quasi-concave on

(x2, x̄2).

3. If x2 > x◦2, γ < N
8 and γ ≥ δ then the zeros are quasi-convex on

(x◦2, x2).

4. If x2 < x∗2, γ < N
8 and γ ≥ δ then the zeros are quasi-convex on

(x∗2, x2).

where x2, x̄2, x∗2 and x◦2 are defined as in (5.5.5), (5.5.7), (5.5.8) and

(5.5.10) respectively.

Proof:

We multiply both sides of the difference equation (5.5.4) by

x−1∏
s=0

B(s)

D(s+ 1)

=

x−1∏
s=0

(s+ γ + 1)(s+ γ + δ + 1)(N − s)
(2s+ γ + δ + 1)(2s+ γ + δ + 2)

/

[
(s+ 1)(s+ γ + δ +N + 2)(s+ δ + 1)

(2s+ γ + δ + 2)(2s+ γ + δ + 3)

]

=
(γ + 1)x(γ + δ + 1)x(−1)x(−N)x

2x(1
2γ + 1

2δ + 1
2)x2x(1

2γ + 1
2δ + 1)x

/

[
x!(γ + δ +N + 2)x(δ + 1)x

2x(1
2γ + 1

2δ + 1)x2x(1
2γ + 1

2δ + 3
2)x

]

=
(γ + δ + 1)x(−1)x(−N)x(1

2γ + 1
2δ + 3

2)x(γ + 1)x

x!(γ + δ +N + 2)x(1
2γ + 1

2δ + 1
2)x(δ + 1)x

=
(γ + δ + 1)x(−1)x(−N)x(γ + δ + 2x+ 1)(γ + 1)x

x!(γ + δ +N + 2)x(γ + δ + 1)(δ + 1)x
.

This gives the difference equation (5.5.4) in self-adjoint form (2.5.16), with

p(x) = B(x)

[
(γ + δ + 1)x(−1)x(−N)x(γ + δ + 2x+ 1)(γ + 1)x

x!(γ + δ +N + 2)x(γ + δ + 1)(δ + 1)x

]

=
(γ + δ + 2)x(−1)x(−N)x(N − x)(x+ γ + 1)(γ + 1)x

x!(γ + δ +N + 2)x(δ + 1)x(2x+ γ + δ + 2)

and

q(x) =
n(γ + δ + 1)x(−1)x(−N)x(γ + δ + 2x+ 1)(γ + 1)x

x!(γ + δ +N + 2)x(γ + δ + 1)(δ + 1)x
.

To apply Corollary 4.4, we first have to determine where p(x) and q(x) are

monotone increasing and decreasing. Assume that γ + δ > 0.

p(x)− p(x− 1) =
B(0) . . . B(x)

D(1) . . . D(x)
− B(0) . . . B(x− 1)

D(1) . . . D(x− 1)
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=
B(0) . . . B(x− 1)[B(x)−D(x)]

D(1) . . . D(x)
.

Note that B(x) > 0 and D(x) > 0 by our assumptions. This implies that

p(x)− p(x− 1) is positive if and only if B(x)−D(x) is positive.

B(x)−D(x)

=
(x+ γ + 1)(x+ γ + δ + 1)(N − x)(2x+ γ + δ)

(2x+ γ + δ)(2x+ γ + δ + 1)(2x+ γ + δ + 2)

− x(x+ γ + δ +N + 1)(x+ δ)(2x+ γ + δ + 2)

(2x+ γ + δ)(2x+ γ + δ + 1)(2x+ γ + δ + 2)

which is positive (negative) if and only if the numerator is positive (negative)

since the denominator is always positive. Hence, B(x)−D(x) will be positive

if and only if

(x+ γ + 1)(x+ γ + δ + 1)(N − x)(2x+ γ + δ)

−x(x+ γ + δ +N + 1)(x+ δ)(2x+ γ + δ + 2)

is positive, which implies that

[2x2 + x(δ + 3γ + 2) + (γδ + γ2 + γ + δ)][−x2 + x(N − γ − δ − 1)]

+[2x2 + x(δ + 3γ + 2) + (γδ + γ2 + γ + δ)][(γN + δN +N)]

−[2x2 + x(γ + 3δ + 2) + (γδ + δ2 + 2δ)][x2 + x(γ + δ +N + 1)]

must be positive and if we further assume that γ ≥ δ then

2x2 + 2x(γ + δ + 1)− (γN + δN +N) < 0

which is true whenever

x1 < x < x2

where

x1,2 =
−(γ + δ + 1)±

√
(γ + δ + 1)(γ + δ + 1 + 2N)

2
. (5.5.5)

Hence, p(x) is monotone increasing when 0 < x < x2 and γ ≥ δ, since

x = 0, 1, . . . , N and x1 < 0. Similarly, p(x) is monotone decreasing when

x > x2 > 0 and γ ≤ δ.
Now, we have to determine when q(x) is increasing and decreasing.

q(x)− q(x− 1) = n
B(0) . . . B(x− 1)

D(1) . . . D(x)
− nB(0) . . . B(x− 2)

D(1) . . . D(x− 1)

=
n[B(0) . . . B(x− 2)][B(x− 1)−D(x)]

D(1) . . . D(x)
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which is positive if and only if B(x− 1)−D(x) is positive.

B(x− 1)−D(x)

=
(x+ γ)(x+ γ + δ)(N − x+ 1)(2x+ γ + δ + 1)

(2x+ γ + δ − 1)(2x+ γ + δ)(2x+ γ + δ + 1)

−x(x+ γ + δ +N + 1)(x+ δ)(2x+ γ + δ − 1)

(2x+ γ + δ − 1)(2x+ γ + δ)(2x+ γ + δ + 1)

and noting that the denominator is positive for γ + δ > 1, the fraction is

positive if and only if

(x+ γ)(x+ γ + δ)(N − x+ 1)(2x+ γ + δ + 1)

−x(x+ γ + δ +N + 1)(x+ δ)(2x+ γ + δ − 1) > 0

(x+ γ)(x+ γ + δ)(N − x+ 1)− x(x+ δ)(x+ γ + δ +N + 1) > 0

(x+ γ)(N − x+ 1)− x(x+ δ)(2N) > 0 for N ≥ 2 (5.5.6)

since (2x + γ + δ + 1) > (2x + γ + δ − 1) > 0. A further calculation shows

that (5.5.6) is true if and only if 0 < x < x̄2 where

x̄1,2 (5.5.7)

=
(1 +N − γ + 2δN)±

√
(1 +N − γ + 2δN)2 + 4γ(1 + 2N)(1 +N)

2(1 + 2N)

with x̄1 < x̄2 and x̄1 < 0. Hence q(x) is monotone increasing when 0 < x <

x̄2. Similarly, q(x) is monotone decreasing when x > x∗2 where

x∗1,2 =
(1 +N − γ − δ)±

√
(γ + δ −N − 1)2 + 8γ(N + 1)

4
(5.5.8)

and we also have the condition that

(x+ γ + δ)(N − x+ 1) < 0 and x > 0 (i.e. x ≥ 1) (5.5.9)

which is true if and only if

x < x◦1 and x > x◦2

where

x◦1,2 = −1

2
[(γ + δ −N − 1)

±
√

(N + 1− γ − δ)2 + 4(Nγ +Nδ + γ + δ)] (5.5.10)
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and x◦1 < x◦2, which further implies that q(x) is monotone decreasing when

x > x∗2 and x > x◦2. Note that x∗2 > 1 and x◦2 > 1, so that (5.5.9) holds.

Furthermore, we also have to assume that γ < N
8 to ensure that x̄2 and x∗2

are real numbers.

We now have to determine when x∗2 > x◦2 and when x∗2 < x◦2. We assume

that γ ≥ δ, then we find that x∗2 < x◦2 for γ < 0 and x∗2 > x◦2 for γ > 0.

Hence, q(x) is monotone decreasing for x > x◦2 when γ < 0 and monotone

decreasing for x > x∗2 when γ > 0.

Now, if we can find intervals where either q(x) is decreasing and p(x) is

increasing, or where q(x) is increasing and p(x) is decreasing, then we will be

able to determine intervals where the zeros of the Dual Hahn polynomials are

quasi-convex or quasi-concave. To find these intervals we have to determine

when x2 < x∗2, x∗2 < x2, x2 < x̄2, x2 > x̄2, x2 < x◦2 and x2 > x◦2. We consider

these six cases and the possible results that follow.

Case 1: x2 > x̄2:

The zeros of Rn(λ(x)) are quasi-concave on [x̄2, x2], for γ ≤ δ and N > 2.

Case 2: x2 < x̄2:

The zeros of Rn(λ(x)) are quasi-concave on [x2, x̄2], for γ ≤ δ and N > 2.

Case 3: x2 > x◦2:

The zeros of Rn(λ(x)) are quasi-convex on [x◦2, x2], for γ ≥ δ and g < 0.

Case 4: x2 < x◦2:

This yields no results as there is no interval in which q(x) is decreasing and

p(x) is increasing.

Case 5: x2 > x∗2:.

This yields no results as there is no interval in which q(x) is decreasing and

p(x) is increasing.

Case 6: x2 < x∗2:

The zeros of Rn(λ(x)) are quasi-convex on (x∗2, x2), for γ ≥ δ and γ < N
8 .

�

In this chapter we have applied the theorems from Chapter 2 and 4 to obtain

some results on convexity of the zeros of the Chebychev, Bessel, Pseudo Ja-

cobi and Dual Hahn polynomials. We have also seen that in some cases it is
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more complicated to find exact values for the intervals of convexity and that

we might only be able to place bounds on the distances between consecutive

zeros for certain parameter values. In the next chapter we will consider the

Charlier and Krawtchouk polynomials, both satisfying difference equations,

as well as further possible extensions of Sturm’s comparison theorem.
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Chapter 6

Other classes of orthogonal

polynomials and further

extensions

In the previous chapters we have discussed and proved various results on

both convexity and distances between consecutive zeros of several classes of

orthogonal polynomials as well as the Bessel function. Considering all the

classes of hypergeometric polynomials, as listed in Section 2.3, there are still

a few classes remaining which we haven’t considered. These are the Charlier,

Krawtchouk, Wilson, Racah, Continuous Hahn, Continuous Dual Hahn and

Meixner-Pollaczek polynomials. We will now discuss these classes.

The Charlier and Krawtchouk polynomials satisfy real difference equations,

whereas the Wilson, Racah, Continuous Dual Hahn, Continuous Hahn and

Meixner-Pollaczek polynomials satisfy complex difference equations.

Applying the methods in Chapter 4 to the Charlier polynomials, we find

that the existing theorems don’t produce any results.

6.1 Charlier polynomials

Charlier polynomials y(x) = Cn(x; a), as defined in (2.3.14), satisfy the

following difference equation ([11, p.248, eqn.(9.14.5)])

−ny(x) = ay(x+ 1)− (x+ a)y(x) + xy(x− 1). (6.1.1)
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First we write the difference equation (6.1.1) in self-adjoint form. If we

multiply both sides of the equation with

x−1∏
s=0

B(s)

D(s+ 1)

=
ax

x!

then

ax+1

x!
y(x+ 1)− (x+ a)ax

x!
y(x) +

ax

(x− 1)!
y(x− 1) +

axn

x!
y(x) = 0

ax+1

x!
y(x+ 1)−

[
− axn

x!
+

ax

(x− 1)!
+
ax+1

x!

]
y(x) +

ax

(x− 1)!
y(x− 1) = 0

ax+1

x!
y(x+ 1)−

[
ax+1

x!
+

ax

(x− 1)!

]
y(x) +

ax

(x− 1)!
y(x− 1) +

axn

x!
y(x) = 0.

Now we have

p(x) =
ax+1

x!
and q(x) =

axn

x!
.

Hence we can express equation (6.1.1) in self-adjoint form

∆

[
ax

(x− 1)!
∆y(x− 1)

]
+
axn

x!
y(x) = 0.

We can further see that p(x) is monotone increasing for a > x and monotone

decreasing for a < x, since

a > x

a− x > 0
ax(a− x)

x!
> 0

ax+1 − xax

x!
> 0

p(x)− p(x− 1) > 0.

Similarly, q(x) is monotone increasing for a > x and monotone decreasing

for a < x, since

a > x

a− x > 0

1− a−1x > 0 since a > 0

65

 
 
 



axn(1− a−1x)

x!
> 0

axn

x!
− ax−1n

(x− 1)!
> 0

q(x)− q(x− 1) > 0.

This implies that for all values of x, p(x) and q(x) have the same mono-

tonicity, and therefore we cannot apply any of the theorems that we have

for solutions of differential equations. Another possibility is to make use

of the limit relation between the Meixner and Charlier polynomials, as we

did in finding the results for the Meixner polynomials, but this method also

yields no results.

6.2 Krawtchouk polynomials

Krawtchouk polynomials y(x) = Kn(x; p,N), as defined in (2.3.15), satisfy

the following difference equation (cf. [11, p.238, eqn.(9.11.5)])

−ny(x) = p(N − x)y(x+ 1)− [p(N − x) + x(1− p)]y(x) + x(1− p)y(x− 1).

Let B(x) = p(N −x) and D(x) = x(1−p). In order to express this equation

in the normal form (2.0.2) for difference equations, we multiply both sides

by

x−1∏
s=0

B(s)

D(s+ 1)

=

x−1∏
s=0

p(N − s)
(s+ 1)(1− p)

=
px(−1)x(−N)x
x!(1− p)x

then

0 =
npx(−1)x(−N)x

x!(1− p)x
y(x) +

px+1(−1)x+1(−N)x+1

x!(1− p)x
y(x+ 1)

−

[
px+1(−1)x+1(−N)x+1

x!(1− p)x
+

px(−1)x(−N)x
(x− 1)!(1− p)x−1

]
y(x) +

px(−1)x(−N)x
(x− 1)!(1− p)x−1

.

Now the difference equation is in self-adjoint form (2.0.2) with

p(x) =
px+1(−1)x+1(−N)x+1

x!(1− p)x
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and

q(x) =
npx(−1)x(−N)x

x!(1− p)x
.

We find that p(x) is monotone increasing for x < pN by considering

x2(1− p) + x(Np+ p−N − 1) + p

= p− x(1− p)(N − x+ 1).

which will be positive for x < pN .

This implies that

px(−1)x+1(−N)x+1[p− x(1− p)(N − x+ 1)]

x!(1− p)x
> 0

since x!, px(−1)x+1(−N)x+1 and (1 − p)x are all positive because we know

that 0 < p < 1. Hence

p(x)− p(x− 1) =
px+1(−1)x+1(−N)x+1

x!(1− p)x
− px(−1)x(−N)x

(x− 1)!(1− p)x−1
> 0

for x < pN which implies that p(x) is monotone increasing for x < pN .

Similarly, q(x) is also monotone increasing for x < p(N + 1). Consider the

equation

x2(1− p) + x(Np+ 2p−N − 2) + p

= p− x(1− p)(N − x+ 2)

which is positive for x < p(N + 1). This further implies that

npx−1(−1)x(−N)x[p− x(1− p)(N − x+ 2)]

x!(1− p)x
> 0

since n, x!, px−1, (−1)x(−N)x and (1− p)x are all positive. Hence

q(x)− q(x− 1) =
npx(−1)x(−N)x

x!(1− p)x
− npx−1(−1)x−1(−N)x−1

(x− 1)!(1− p)x−1
> 0

which implies that q(x) is monotone in increasing for x < p(N + 1).

Now since 0 < p < 1 p(x) and q(x) always have the same monotonicity and

therefore the theorems that we have in Chapter 4 are not applicable.
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6.3 Further extensions

It was mentioned in Chapter 4 that we can also obtain results on the q-

convexity of zeros of the solutions of q-difference equations. To(́o)kos and

Gishe [4] considered and found results for the q-Laguerre polynomials, but

it may be possible to also obtain results for other q-orthogonal polynomials.

Furthermore, we cannot yet obtain any results on the convexity of the zeros

of Wilson, Racah, Continuous Dual Hahn, Continuous Hahn and Meixner-

Pollaczek polynomials which satisfy complex difference equations since the

theorems that are currently available only apply to real difference equations.

Thus, whether Sturm’s theorems can be applied to complex difference equa-

tions in a similar manner as was done in Chapter 4, is a question for further

research.
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