CHAPTER 1

GENERAL INTRODUCTION

1.1. BACKGROUND AND MOTIVATION OF THE STUDY

Cowpea (*Vigna unguiculata* (L.) Walp) is an indigenous African legume crop that is widely cultivated in the semi-arid tropical regions of Asia, Oceania, Africa, the Middle East, southern United States of America and Central and South America (Singh *et al.* 2002). In South Africa, 7000 t of cowpeas was produced from 13,500 ha during 2003 (FAOSTAT 2004). This production figure compares weakly with other legume crops including soybeans (*Glycine max* L.), groundnuts (*Arachis hypogaea* L.) green peas (*Pisum sativum* L.) and lupines (*Lupinus* spp.) (Table 1.1.).

Table 1.1. Production figures of different grain, pulse and oilseed crops in South Africa for 2003 (FAOSTAT 2004)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Production (t) for 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize (Zea mays L.)</td>
<td>9,714,254</td>
</tr>
<tr>
<td>Wheat (Triticum aestivum L.)</td>
<td>1,600,000</td>
</tr>
<tr>
<td>Sunflower (Helianthus annuus L.) seed</td>
<td>708,000</td>
</tr>
<tr>
<td>Sorghum (Sorghum bicolor (L.) Moench.)</td>
<td>224,818</td>
</tr>
<tr>
<td>Barley (Hordeum vulgare L.)</td>
<td>150,000</td>
</tr>
<tr>
<td>Soybeans (Glycine max L.)</td>
<td>148,000</td>
</tr>
<tr>
<td>Groundnuts (Arachis hypogaea L.)</td>
<td>100,000</td>
</tr>
<tr>
<td>Oats (Avena sativa L.)</td>
<td>35,000</td>
</tr>
<tr>
<td>Peas (Pisum sativum L.), green</td>
<td>18,545</td>
</tr>
<tr>
<td>Millet (Pennisetum glaucum (L.) K Schum.)</td>
<td>12,000</td>
</tr>
<tr>
<td>Lupines (Lupinus spp.)</td>
<td>11,700</td>
</tr>
<tr>
<td>Cowpeas (Vigna unguiculata (L.) Walp)</td>
<td>7,000</td>
</tr>
<tr>
<td>Rice (Oryza sativa L.)</td>
<td>3,200</td>
</tr>
<tr>
<td>Peas, dry</td>
<td>1,033</td>
</tr>
<tr>
<td>Rye (Secale cereale L.)</td>
<td>550</td>
</tr>
</tbody>
</table>
Cowpea is of particular importance to many people living in less developed countries, where resource poor farmers and rural communities rely largely on the crop as a source of nutritious food. The seed contains on average 23-25% protein and 50-67% starch (Quin 1997). The young leaves, green pods and green seeds are used as vegetables whilst the dry seeds are used in the preparation of various food dishes (Singh et al. 2002). The haulms are also used as a quality feed for livestock (Singh et al. 2002). The plant is well adapted to hot and dry climates, has the ability to fix atmospheric nitrogen, curbs soil erosion through good ground cover and contributes to soil fertility through decayed residues (Singh et al. 2002). Furthermore, the trade of the fresh produce, seeds and foods processed from cowpea provides many farmers with a source of income (Singh et al. 2002). Medicinally, the leaves are used to treat burns, a root paste is used as an antidote for snake bites whilst the seeds are used to treat bilharzia, liver complaints and amenorrhoea (Hutchings et al. 1996; van Wyk & Gericke 2000). Previous studies have shown that cowpea leaves contain flavonoids (Lattanzio et al. 1997) of which some are known to exhibit antimicrobial properties (Aziz et al. 1998). However, the direct influence of cowpea extracts on microbes still remains to be established.

As is the case with other food crops, cowpea seeds are susceptible to fungal contamination especially when stored under inadequate and poor storage conditions. As a result, deterioration and spoilage of the seed occurs. It is under these conditions, together with high humidities and high temperatures that certain fungi tend to produce toxic secondary metabolites, namely mycotoxins. Serious health complications in both animals and humans can result from the ingestion of these metabolites through the consumption of infected seed and other foodstuffs (Moss 1996). Although there are reports relating to aflatoxin contamination (Zohri 1993; El-Kady et al. 1996), little information is known about other mycotoxins associated with cowpea seed.

Fumonisins, and in particular the analogue fumonisin B₁ (FB₁), is considered to be of major toxicological significance to animal and human health (Shephard et al. 1996). This toxin is produced mainly by *Fusarium verticillioides* (Sacc.) Nirenberg (formerly known as *F. moniliforme* Sheldon) and *F. proliferatum* (Matsushima) Nirenberg and is the causal agent of the diseases, leukoencephalomalacia (LEM) in horses and pulmonary edema syndrome (PES) in pigs (Harrison et al. 1990; Kellerman et al. 1990). The International Agency for Research on Cancer (IARC) reported that the toxins produced by *F. verticillioides* are possibly carcinogenic to humans (IARC 2002). Fumonisin B₁ has been reported to be associated with other legume seeds (Tseng et al. 1995; Tseng & Tu 1997), but the *Fusarium* spp. responsible for the toxin production were not identified.

Numerous studies have indicated that FB₁ also exhibits phytotoxic activity towards several plants, including economically important crops (McClean 1996). The toxin is reported to cause deleterious
effects in various crops including chlorosis and necrosis of leaves and reduction of root and shoot growth (Abbas & Boyette 1992; Doehlert et al. 1994; Lamprecht et al. 1994). Moreover, van Asch (1990) showed that FB₁ caused ultrastructural changes in maize (Zea mays L.) callus cells. These changes included thickening of the cell wall, the accumulation of phenolics in the vacuoles and accumulation of large starch grains in swollen plastids.

1.2. OBJECTIVES OF THE STUDY

The primary objectives of this study were firstly to investigate the presence and effects of fumonisins associated with cowpea seed and, secondly to evaluate the antimicrobial activity of the leaf extracts. The results that stem from these studies will provide valuable information with regard to further mycotoxin contamination of cowpea seed and the potential use of the plant extracts for antimicrobial purposes.

The specific objectives of this study were to:

- Conduct a survey amongst rural communities in the Mpumalanga Province of South Africa to establish the importance, role and utilisation of cowpea production in this region.
- Investigate the detection and quantification of the fumonisin mycotoxins in cowpea seeds.
- Identify the fumonisin-producing Fusarium spp. from cowpea seeds and to investigate their potential for fumonisin production.
- Investigate the phytotoxic effects of FB₁ on cowpea seed. These include the effect on germination, root and shoot elongation and on the ultrastructure of the cotyledon and embryonic tissue of the seed.
- Investigate the inhibitory effect of cowpea leaf extracts on the growth of selected bacterial and fungal pathogens.

1.3. STRUCTURE OF THESIS

Some of the chapters presented in this thesis have been prepared for publication in peer-reviewed journals. The reader will thus note some inconsistencies within the contents page and format of the chapters. Author citation and literature citation in Chapters 1, 2, 3 and 7 are according to the South African Journal of Botany.
Chapter 2
This chapter provides a concise review of the fungi and mycotoxins associated with cowpea seed. Information has been given on the fumonisin mycotoxins and their toxicological significance. The use of plant extracts for antimicrobial activity and secondary metabolites associated with cowpea have also been briefly discussed.

Chapter 3
The importance and role of cowpea in the livelihoods of rural communities was established by means of a survey conducted in the Mpumalanga Province of South Africa. The survey was aimed to gather information on the utilisation of the crop and to provide insight on the cultivation and storage practices followed.

Chapter 4
Cowpea seeds were analysed for storage fungi and fumonisin contamination. Possible fumonisin-producing *Fusarium* spp. isolated were investigated for potential to produce fumonisins.

Chapter 5
The phytotoxic effects of FB1 on cowpea seed germination and on root and shoot elongation were investigated. The effect of the toxin on the ultrastructure of the cotyledon and embryonic tissue of the seed was also reported. (Submitted to Phytopathology for publication)

Chapter 6
Leaf extracts from two cowpea cultivars were tested for their antimicrobial potential against selected bacterial and fungal pathogens.

Chapter 7
In this chapter, the findings from the research conducted have been interpreted and discussed, and suggestions for future research made.
1.4. LITERATURE CITED

El-Kady IA, El-Maraghy SSM, Zohri AA (1996) Aflatoxin formation and varietal difference of cowpea (Vigna unguiculata (L.) Walp) and garden pea (Pisum sativum L.) cultivars. Mycopathologia 133: 185-188

http://apps.fao.org/faostat/collections

http://monographs.iarc.fr/htdocs/monograph/vol82/82-05.html

Tseng TC, Tu JC (1997) Mycoflora and mycotoxins in adzuki and mung beans produced in Ontario, Canada. Microbios 90: 87-95

