THE DYNAMICS OF THEORY AND PRACTICE IN INSTRUCTIONAL SYSTEMS DESIGN

A thesis by

MARY RUTH DE VILLIERS

Submitted in partial fulfillment of the requirements for the degree Philosophiae Doctor

in the Department of Teaching and Training Studies
of the Faculty of Education
University of Pretoria

Supervisor: Prof. Dr J.C. Cronje
February 2002
ABSTRACT

This study investigates the dynamics of theory and practice in the design of instructional systems, learning events and learning environments, with a view to synthesizing an integrated metamodel as a framework to facilitate effective learning in systems which use computer technology as a tutor, tool, or environment. This framework can be used as a design aid by instructional designers and instructor-designers, or as a tool to examine existing learning events from the viewpoint of learning and instructional-design theory. The research contributes to inquiry into learning theory by an in-depth study of the elements of the framework itself, investigating how they function in different contexts and contents.

Following an extensive literature survey, the researcher synthesizes a concise integrated framework of learning theories and instructional design practice from the cognitive family. This framework, the Hexa-C Metamodel (HCMm), is generated by a process of criterion-based textual filtration through effectiveness criteria, and encompasses the theoretical concepts of constructivism, cognitive learning and knowledge/skills components, as well as the practical characteristics of creativity, customization and collaborative learning. Using mainly qualitative ethnographic methods within the contexts of action research and development research, case studies are undertaken, applying the elements of the HCMm as an inquiry toolset to investigate three diverse learning events to determine what they reveal about the practice of effective and motivational learning. The learning events - a computer-based practice environment, an Internet-based course, and a fieldwork project – were selected due to the researcher’s close involvement with each intervention. Information from the evaluations of the learning events is then used to further examine in-depth the theories and characteristics which comprise the tool, as well as their interrelationships and ways of implementing them in domains that differ in context and content - distinguishing particularly between well-structured and ill-structured domains.

Key words:
Instructional systems design and development; Learning and instructional theory; Evaluation; Inquiry tool; Computer-integrated learning; Cognitive learning; Collaborative learning; Components of knowledge; Constructivism; Creativity; Customization; Domains of learning.
ACKNOWLEDGEMENTS

I should like to thank:

My supervisor, Prof Johannes Cronjé - for sound, insightful and supportive, as well as consistently enthusiastic and encouraging leadership.

The institutions and academic departments which gave permission for evaluation of the artifacts, course material and learning events investigated in the case studies:

1. Department of Computer Science, University of South Africa - for permission to evaluate the interactive practice environment FRAMES.
2. Department of Teaching and Training Studies, University of Pretoria - for permission to evaluate RBO880, the Internet-based course on Computer-Assisted Communication and Management.
3. School of Tourism Management, University of Pretoria - for permission to evaluate the Mkambati Project of the Ecotourism course.

The academics and students who participated in the three evaluations - for their willing co-operation and contributions.

My young-adult children - for valuable practical assistance. In an unusual variation on the parent-offspring relationship, we mutually support one another in our post-graduate studies. Thank you to:

Adrian - for the CAD charts
Dorothy - for editorial assistance
Gabrielle - for doing the bibliography, and to JP for Figure 4.1
Jonathan - for the diagrams.

My husband André - for assistance, both technical and domestic, in the final stages.

I really do appreciate it!

Ruth de Villiers
September 2001
TABLE OF CONTENTS

Chapter One
Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Real-world problem statement</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Research questions and associated subquestions</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Value of research</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Research goal and criteria</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1 Research goals within educational technology</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2 Research goals of this thesis</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3 Field of investigation</td>
<td>6</td>
</tr>
<tr>
<td>1.4.4 Selection criteria</td>
<td>7</td>
</tr>
<tr>
<td>1.4.5 Motivation for the selection criteria</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Research methods</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1 Research methods for educational technology</td>
<td>9</td>
</tr>
<tr>
<td>1.5.2 Research methods used in this thesis</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Limitations and delimitations of the study</td>
<td>10</td>
</tr>
<tr>
<td>1.6.1 View of instructional systems design and instructional systems</td>
<td>10</td>
</tr>
<tr>
<td>1.6.2 Domain of the study and its literature</td>
<td>11</td>
</tr>
<tr>
<td>1.6.3 Research perspectives of the study</td>
<td>11</td>
</tr>
<tr>
<td>1.6.4 Technology in this study</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Research design</td>
<td>12</td>
</tr>
<tr>
<td>1.7.1 Research design in this thesis</td>
<td>12</td>
</tr>
<tr>
<td>1.7.2 Development research</td>
<td>13</td>
</tr>
<tr>
<td>1.7.3 Development research in this study</td>
<td>14</td>
</tr>
<tr>
<td>1.7.4 Action research</td>
<td>15</td>
</tr>
<tr>
<td>1.7.5 Action research in this study</td>
<td>16</td>
</tr>
<tr>
<td>1.8 Structure and chapters of this thesis</td>
<td>17</td>
</tr>
<tr>
<td>1.8.1 Structure and interrelationships</td>
<td>17</td>
</tr>
<tr>
<td>1.8.2 Development of the reasoning</td>
<td>19</td>
</tr>
<tr>
<td>1.8.3 Content of the chapters</td>
<td>20</td>
</tr>
</tbody>
</table>
Chapter Two Theory

Learning and instructional theory

2.1 Introduction

2.2 Behaviourism

2.2.1 Background and ethos of behaviourist instructional theory

2.2.2 Key characteristics of behaviourism

2.2.3 Behaviourist instruction: associated concepts

2.2.3.1 Gagné's categories of learning outcomes

2.2.3.2 Gagné's conditions of learning

2.2.4 Behaviourist learning theory: related perspectives

2.2.4.1 Objectivism

2.2.4.2 Instructionism

2.2.4.3 Reductionism

2.2.5 Comments on behaviourist instruction

2.3 Cognitivism

2.3.1 Background and ethos of cognitive learning theories

2.3.1.1 Ventures into artificial intelligence

2.3.1.2 Adaptive control of thought: Anderson's ACT model

2.3.2 Characteristics of the cognitive learning perspective

2.3.2.1 Key features of cognitive learning

2.3.2.2 Bloom's taxonomy

2.3.2.3 Gagné-Merrill enterprise schemas

2.3.3 Theories of cognitive instruction

2.3.3.1 Human problem solving: Newell and Simon theory

2.3.3.2 Learning as human information processing

2.3.3.3 Component display theory (CDT)

2.3.3.4 The second generation paradigm (ID2)

2.3.3.5 Instructional transaction theory (ITT):

2.3.3.6 Automaticity

2.3.4 Cognitive learning theory: related perspectives

2.3.4.1 Complexity theory: integrating the affective with the cognitive

2.3.4.2 Transfer
2.6.4 Involvement of user-designers 72
2.6.5 How the new paradigm of instructional theory differs 73

2.7 A theoretical subdivision according to educational psychologists 74
2.7.1 The behaviourist/empiricist view 75
2.7.2 The cognitive/rationalist view 76
2.7.3 The situative/pragmatist-sociohistoric view 77

2.8 The three paradigms - isolationist or integrative? 78
2.9 Conclusion 81

Chapter Three Practice

Learning and instructional systems design in practice 83

3.1 Introduction and discussion of terminology 83
3.1.1 Instruction and learning: theory to practice 84
3.1.2 Terminology 85

3.2 Behaviourist instructional systems 88
3.2.1 Introduction to behavioural instructional systems development 88
3.2.2 Characteristics of behaviourist instruction 89
3.2.2.1 Fleming and Levie's behaviourist principles 89
3.2.2.2 Hannafin and Peck's behaviourist principles 90
3.2.2.3 Gropper's behaviourist skills 91

3.2.3 Behavioural instructional systems development models 91
3.2.3.1 Gagné's events of instruction 91
3.2.3.2 The Dick and Carey model 92
3.2.3.3 Briggs and Wager model 94
3.2.3.4 The Braden model 94

3.2.4 Discussion of behaviourist instructional design 95

3.3 Cognitive instructional systems 97
3.3.1 Introduction to cognitive instruction and systems development 97
3.3.2 Characteristics of cognitive instructional design 97
3.3.2.1 Objectives and task analysis 98
3.3.2.2 Entry characteristics 98
3.3.2.3 Instructional strategies 98
3.3.3 Cognitive ISD models

3.3.3.1 Component display theory (CDT) 100
3.3.3.2 Another perspective on components 102
3.3.3.3 Enterprise schemas 102
3.3.3.4 Second generation instructional design (ID₂) 103
3.3.3.5 Instructional transaction theory (ITT) 104
3.3.3.6 Alternative views to linear ID - 'design alternatives' 105

3.3.4 Cognitive-related aspects: practical applications in ISD 107

3.3.4.1 Implementation of metacognitive strategies 107
3.3.4.2 Instructionism and grounded design 108
3.3.4.3 Five star instructional design rating 109

3.4 Constructivist instructional systems 110

3.4.1 Introduction to constructivist learning and constructivist design 110

3.4.1.1 Differences between assumptions of traditional ID and constructivism 111
3.4.1.2 Towards constructivist instructional design 112

3.4.2 Characteristics and principles of design for constructivist learning 113

3.4.2.1 From objectivist strategies to constructivist methods 114
3.4.2.2 Constructivist values 115
3.4.2.3 Constructivist constructs 117
3.4.2.4 Constructivist instructional principles 119
3.4.2.5 Constructivist design principles 119
3.4.2.6 BIG and WIG constructivism 121
3.4.2.7 Constructivist assessment 121

3.4.3 Frameworks for constructivist learning and constructivist instructional design models 122

3.4.3.1 The recursive, reflective design and development model (R2D2) 122
3.4.3.2 The layers of negotiation model for designing constructivist learning materials 124
3.4.3.3 Constructivism and grounded design 127
3.4.3.4 The revised R2D2 model 128
3.4.3.5 Activity theory as a framework for designing constructivist learning environments 131

3.4.4 Design of learning in perspectives related to constructivism 135

3.4.4.1 Situated cognition, anchored instruction, and cognitive apprenticeship 135
3.4.4.2 Constructivist learning environments (CLEs) 136
3.4.4.3 Open-ended learning environments (OELs) 138
3.4.4.4 Problem-based learning (PBL) 141
3.4.4.5 Implications of chaos theory for instructional design 142
3.5 Cross-paradigms issues 145
3.5.1 Collaborative learning and co-operative learning 145
3.5.2 Learner-centricity, customization, and learner-control 146
3.5.3 Creativity and motivation in instructional methods and resources 147
3.5.4 Five facets of a learning environment 149
3.5.5 Technology 149
3.6 The learning-focused paradigm of instructional-design theory 152
3.6.1 Towards a new paradigm 152
3.6.2 Reigeluth's classification according to instructional goal 153
3.6.3 Implications of the learning-focused paradigm 154
3.6.4 The debate on the learning-focused paradigm 156
3.7 Duchastel's prolegomena to instructional-design theory: a challenge for a full theory of instructional design 157
3.7.1 Many current theories - resulting confusion 157
3.7.2 Issues involved in building a full theory 158
3.7.3 How instruction can influence learning 160
3.7.4 Towards a theory of instructional design 162
3.8 Instructional design approaches - eclectic and pure ... 163
3.8.1 Should aspects of different paradigms be combined in ISD? 163
3.8.2 Research methods to examine different paradigms 165
3.8.3 The practitioner in action 165
3.9 Conclusion 166

Chapter Four Synthesis
Towards a metamodel 168

4.1 Introduction 168
4.2 Comparative analysis of the three major paradigms 169
4.2.1 Comparison and contrast: a summary 169
4.2.2 The different approaches - conflict, convergence or co-existence? 174
4.3 Selection criteria 175
4.4 Selection process - culminating in the Hexa-C Metamodel
4.4.1 How the selection criteria were used to filter textual data
4.4.2 Results of the textual filtration process
4.4.3 Consolidated results of the textual filtration process
4.4.4 Discussion of results of textual filtration
 4.4.4.1 Learning theories and characteristics of instructional design/practice
 4.4.4.2 Further aspects of learning, including context and technology
 4.4.4.3 Aspects of learning theory from the behavioural family
4.5 Elements of the Hexa-C Metamodel
 4.5.1 The six elements: singly and compositely
 4.5.2 Elements examined against the effectiveness criteria
4.6 The Hexa-C Metamodel compared to Duchastel's challenge for a single theory of ID
 and Reigeluth's new paradigm of ID
4.7 Conclusion

Chapter Five Evaluation

What the HCMm toolset reveals about three learning events

5.1 Introduction
 5.1.1 The three learning events
 5.1.2 Research methods for evaluating the learning events
 5.1.3 Structure of learning event evaluations

Section 5A - Case Study One: FRAMES

5A.1 Introduction to FRAMES
 5A:1.1 Immediate domain and purpose
 5A.1.2 Greater environment and learners
 5A.1.3 Roles: the FRAMES designer, lecturer, and researcher
 5A.1.4 Material and approach of the FRAMES practice environment
 5A.1.5 Research design of the FRAMES case study
5A.2 Investigating FRAMES - using the Hexa-C Metamodel
 5A.2.1 Components
 5A.2.1.1 Initial discussion
 5A.2.1.2 Viewpoint of the instructor-designer
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A.2.1.3 Findings from survey of the learners</td>
<td>217</td>
</tr>
<tr>
<td>5A.2.1.4 Concluding discussion</td>
<td>219</td>
</tr>
<tr>
<td>5A.2.2 Cognitive learning theory</td>
<td>220</td>
</tr>
<tr>
<td>5A.2.2.1 Initial discussion</td>
<td>220</td>
</tr>
<tr>
<td>5A.2.2.2 Viewpoint of the instructor-designer</td>
<td>222</td>
</tr>
<tr>
<td>5A.2.2.3 Findings from survey of the learners</td>
<td>223</td>
</tr>
<tr>
<td>5A.2.2.4 Concluding discussion</td>
<td>224</td>
</tr>
<tr>
<td>5A.2.3 Constructivism</td>
<td>225</td>
</tr>
<tr>
<td>5A.2.3.1 Initial discussion</td>
<td>226</td>
</tr>
<tr>
<td>5A.2.3.2 Viewpoint of the instructor-designer</td>
<td>227</td>
</tr>
<tr>
<td>5A.2.3.3 Findings from survey of the learners</td>
<td>228</td>
</tr>
<tr>
<td>5A.2.3.4 Concluding discussion</td>
<td>229</td>
</tr>
<tr>
<td>5A.2.4 Collaborative learning</td>
<td>230</td>
</tr>
<tr>
<td>5A.2.4.1 Initial discussion</td>
<td>230</td>
</tr>
<tr>
<td>5A.2.4.2 Viewpoint of the instructor-designer</td>
<td>231</td>
</tr>
<tr>
<td>5A.2.4.3 Findings from survey of the learners</td>
<td>231</td>
</tr>
<tr>
<td>5A.2.4.4 Concluding discussion</td>
<td>231</td>
</tr>
<tr>
<td>5A.2.5 Customization and learner-centricity</td>
<td>232</td>
</tr>
<tr>
<td>5A.2.5.1 Initial discussion</td>
<td>232</td>
</tr>
<tr>
<td>5A.2.5.2 Viewpoint of the instructor-designer</td>
<td>233</td>
</tr>
<tr>
<td>5A.2.5.3 Findings from survey of the learners</td>
<td>233</td>
</tr>
<tr>
<td>5A.2.5.4 Concluding discussion</td>
<td>235</td>
</tr>
<tr>
<td>5A.2.6 Creativity</td>
<td>236</td>
</tr>
<tr>
<td>5A.2.6.1 Initial discussion</td>
<td>236</td>
</tr>
<tr>
<td>5A.2.6.2 Viewpoint of the instructor-designer</td>
<td>237</td>
</tr>
<tr>
<td>5A.2.6.3 Findings from survey of the learners</td>
<td>238</td>
</tr>
<tr>
<td>5A.2.6.4 Concluding discussion</td>
<td>239</td>
</tr>
<tr>
<td>5A.3 General</td>
<td>240</td>
</tr>
<tr>
<td>5A.3.1 Facets of the FRAMES learning environment</td>
<td>240</td>
</tr>
<tr>
<td>5A.3.2 Technology in FRAMES</td>
<td>240</td>
</tr>
<tr>
<td>5A.4 Conclusion to the FRAMES evaluation</td>
<td>241</td>
</tr>
</tbody>
</table>
Section 5B - Case Study Two: *RBO880*

5B.1 Introduction to RBO880
 5B.1.1 Immediate domain and purpose
 5B.1.2 Greater environment and learners
 5B.1.3 Roles: the RBO880 developer, instructor, and the researcher
 5B.1.4 Approach, the classroom, and tasks in RBO's electronic world
 5B.1.5 Research design of the RBO case study

5B.2 Investigating RBO880 using the Hexa-C Metamodel
 5B.2.1 Cognitive learning theory
 5B.2.1.1 Initial discussion
 5B.2.1.2 Viewpoint of the instructor-designer
 5B.2.1.3 Findings from survey of the learners
 5B.2.1.4 Concluding discussion
 5B.2.2 Constructivism
 5B.2.2.1 Initial discussion
 5B.2.2.2 Viewpoint of the instructor-designer
 5B.2.2.3 Findings from survey of the learners
 5B.2.2.4 Concluding discussion
 5B.2.3 Components
 5B.2.3.1 Initial discussion
 5B.2.3.2 Viewpoint of the instructor-designer
 5B.2.3.3 Findings from survey of the learners
 5B.2.3.4 Concluding discussion
 5B.2.4 Collaborative learning in RBO
 5B.2.4.1 Initial discussion
 5B.2.4.2 Viewpoint of the instructor-designer
 5B.2.4.3 Findings from survey of the learners
 5B.2.4.4 Concluding discussion
 5B.2.5 Customization
 5B.2.5.1 Initial discussion
 5B.2.5.2 Viewpoint of the instructor-designer
 5B.2.5.3 Findings from survey of the learners
 5B.2.5.4 Concluding discussion
 5B.2.6 Creativity
 5B.2.6.1 Initial discussion
5B.2.6.2 Viewpoint of the instructor-designer
5B.2.6.3 Findings from survey of the learners
5B.2.6.4 Concluding discussion

5B.3 General
5B.3.1 Facets of the RBO learning environment
5B.3.2 Technology in RBO

5B.4 Conclusion

Section 5C - Case Study Three: Mkambati 2000
5C.1 Introduction to Mkambati 2000
5C.1.1 Immediate domain and purpose
5C.1.2 Operational environment and learners
5C.1.3 Roles: the project designer, facilitator, and the researcher
5C.1.4 Scope and events of Mkambati 2000
5C.1.5 Research design of the Mkambati case study

5C.2 Investigating Mkambati 2000 - using the Hexa-C Metamodel
5C.2.1 Creativity
5C.2.1.1 Initial discussion
5C.2.1.2 Viewpoint of the instructor-designer
5C.2.1.3 Findings from survey of the learners
5C.2.1.4 Concluding discussion
5C.2.2 Collaborative learning
5C.2.2.1 Initial discussion
5C.2.2.2 Viewpoint of the instructor-designer
5C.2.2.3 Findings from survey of the learners
5C.2.2.4 Concluding discussion
5C.2.3 Customization
5C.2.3.1 Initial discussion
5C.2.3.2 Viewpoint of the instructor-designer
5C.2.3.3 Findings from survey of the learners
5C.2.3.4 Concluding discussion
5C.2.4 Components
 5C.2.4.1 Initial discussion
 5C.2.4.2 Viewpoint of the instructor-designer
 5C.2.4.3 Findings from survey of the learners
 5C.2.4.4 Concluding discussion
5C.2.5 Cognitive learning theory
 5C.2.5.1 Initial discussion
 5C.2.5.2 Viewpoint of the instructor-designer
 5C.2.5.3 Findings from survey of the learners
 5C.2.5.4 Concluding discussion
5C.2.6 Constructivism
 5C.2.6.1 Initial discussion
 5C.2.6.2 Viewpoint of the instructor-designer
 5C.2.6.3 Findings from survey of the learners
 5C.2.6.4 Concluding discussion
5C.3 General
 5C.3.1 Facets of the Mkambati 2000 learning environment
 5C.3.2 Technology in Mkambati 2000
5C.4 Conclusion to evaluation of the Mkambati Project

5.2 Conclusion to the chapter

Chapter Six Reflection

What the case studies reveal about the HCMm toolset

6.1 Introduction
6.2 The three learning events
 6.2.1 Contexts of the learning events
 6.2.2 Use of technology in the learning events
 6.2.3 Learner-responses related to elements of the metamodel
6.3 The Hexa-C elements, i.e. investigating the investigation tools
 6.3.1 Constructivism
 6.3.2 Cognitive learning
Chapter Seven Conclusion

7.1 What has been achieved? 374
7.2 Research questions and answers 375
 7.2.1 Response to Research Question One 375
 7.2.2 Response to Research Question Two 375
 7.2.3 Response to Research Question Three 377
7.3 Final review of the Hexa-C Metamodel 378
 7.3.1 Strengths of the HCMm 378
 7.3.1.1 As an evaluation aid 378
 7.3.1.2 As a design aid 378
 7.3.2 Weaknesses of the HCMm 379
 7.3.2.1 As an evaluation aid 379
 7.3.2.2 As a design aid 379
7.4 Relevance to South Africa 380
7.5 Directions for further research 382
7.6 Conclusion 383

Bibliography 384

Appendices 395
LIST OF TABLES

1.1 Motivation for the selection criteria
1.2 Research goals and methods of this thesis

2.1 Tightly coupled approach to elements of instruction
2.2 Conditions of learning for four of the five types of learning
2.3 Conditions of learning for intellectual skills
2.4 Assumptions of objectivism and constructivism
2.5 How Information Age and Industrial Age instructional theory differ

3.1 Descriptive theories and prescriptive practices

4.1 The paradigms: Their underlying philosophy
4.2 Instructional and learning models: The ISD process
4.3 Actual instruction and learning: The learning process
4.4 Actual instruction and learning: evaluation of learning
4.5.1 Criterion 1: Consensus-builder
4.5.2 Criterion 2: Demonstrates functionality in authentic situations of instruction/training
4.5.3 Criterion 3: Learning-focused
4.5.4 Criterion 4: Pragmatic, not theoretically idealistic
4.5.5 Criterion 5: Incorporates some form of external assessment
4.5.6 Criterion 6: Integrates affective and cognitive aspects
4.5.7 Criterion 7: Has means to communicate domain complexity
4.5.8 Criterion 8: Platform-independent
4.5.9 Criterion 9: Helps learners apply knowledge and skills in practice
4.6.1 Summary and scores from Criterion 1: Consensus-builder
4.6.2 Summary and scores from Criterion 2: Demonstrates functionality in authentic instructional or training situations
4.6.3 Summary and scores from Criterion 3: Learning-focused
4.6.4 Summary and scores from Criterion 4: Pragmatic, not theoretically idealistic
4.6.5 Summary and scores from Criterion 5: Incorporates some form of external assessment 187
4.6.6 Summary and scores from Criterion 6: Integrates affective and cognitive aspects 188
4.6.7 Summary and scores from Criterion 7: Communicates domain complexity 189
4.6.8 Summary and scores from Criterion 8: Platform-independent 189
4.6.9 Summary and scores from applying Criterion 9: Helps learners apply knowledge and skills in practice 190
4.7.1 Consolidated occurrences of learning theories and characteristics 191
4.7.2 Consolidated references to other issues 191
4.7.3 Consolidated occurrences of concepts from the behavioural family 194
4.8 The six elements of the Hexa-C metamodel against the nine selection criteria 197
4.9 Comparison and contrast: Hexa-C Metamodel, Reigeluth’s new paradigm, and Duchastel’s prolegomena 199

5.1 Introduction to the three case studies 203

5.A.1 Profiles of learners surveyed 214
5.A.2 Relationship between FRAMES and CDT 215
5.A.3 Learner-responses to structured questions relating to components 218
5.A.4 Learner-responses to structured questions relating to cognitive learning 223
5.A.5 Constructivist aspects of FRAMES 226
5.A.6 Learner-responses to structured questions relating to constructivism 228
5.A.7 Co-operative learning in FRAMES 230
5.A.8 Customized learning in FRAMES 232
5.A.9 Learner-responses to structured questions relating to customized learning 233
5.A.10 Use of the three modes 234
5.A.11 Learner-responses to structured questions relating to creativity 238
5.A.12 Facets comprising the FRAMES practice environment 240

5B:1 Profiles of the learner population surveyed 251
5B.2 Internet familiarity prior to RBO 256
5B.3 Internet familiarity after RBO 256
5B.4 Aspects of overload/anxiety 257
5B.5 Constructivist aspects in RBO 264
5B.6 Being on the receiving end of constructivism 265
5B.7 How did you find the interaction with classmates? 273
5B.8 Did you use any other means of communication? 274
5B.9 Realization of personal learning preferences in RBO 277
5B.10 RBO and learning preferences 278
5B.11 Would learners like marks on an ongoing basis? 279
5B.12 Was RBO useful in your personal or professional life? 279
5B.13 Innovative aspects of RBO 284
5B.14 Aspects of this approach that I have used / would use in my own teaching 285
5B.15 Facets comprising the RBO virtual classroom 287

5C.1 Profiles of the learner population surveyed 298
5C.2 What motivated you in this experience? 301
5C.3 What did you find innovative in this approach? 301
5C.4 Emotions at the nature reserve during the project 302
5C.5 Motivation at write-up time 303
5C.6 Views on collaborative learning 306
5C.7 Views on learning preferences and personalization of the project to own style, interests, and expertise 310
5C.8 Software packages used in generating collaborative projects 311
5C.9 How I bridged learning gaps 318
5C.10 Elaborations on overload/anxiety 319
5C.11 Learner comments on aspects of constructivist learning 326
5C.12 Correspondence between constructivist features and learner-responses 327
5C.13 Shortcomings identified and suggested remedies 327
5C.14 Facets comprising the Mkambati 2000 fieldwork project 329

6.1 Contexts, conditions and circumstances of the three learning events 336
6.2 Computer usage in the three learning events - categorized according to full and empty instructional technologies 337
6.3.1 Information revealed about constructivism in this study 343
6.3.2 Ways of implementing constructivism 347
6.3.3 Features of instruction in well-structured procedural domains 348
6.4.1 Information revealed about cognitive learning 350
6.4.2 Ways of implementing cognitive learning 353
6.5.1 Information revealed about creativity and motivation 355
6.5.2 Ways of implementing creativity 358
6.6.1 Information revealed about collaborative and co-operative work 360
6.6.2 Ways of implementing collaborative learning 363
6.6.3 Problems incurred in collaborative learning 363
6.7.1 Information revealed about components within instruction and learning 364
6.7.2 Ways of implementing learning of basic components 365
6.8.1 Information revealed about customization of learning 367
6.8.2 Ways of customizing learning 368
6.9.1 Positive relationships between elements of the Hexa-C Metamodel framework 371
6.9.2 Negative relationships between elements of the Hexa-C Metamodel framework 372

7.1 Review of the Research Questions 375
LIST OF FIGURES

1.1 The development approach to research 13
1.2 Structure of the thesis 18
1.3 Chain of reasoning 19

2.1 Stimulus-response-reinforcement 24
2.2 A human information processing system 35
2.3 Interactive learning model 40
2.4 The objectivist-constructivist continuum 79
2.5 The objectivist-constructivist plane 80

3.1 The Dick and Carey instructional design model 93
3.2 Merrill’s performance-content grid for CDT 101
3.3 Jonassen’s web of constructivism 118
3.4 The R2D2 instructional design model 123
3.5 The Cennamo, Abell and Chung ‘Layers of negotiation’ constructivist design model 126
3.6 The revised R2D2 model 129
3.7 Activity system 131
3.8 Model for designing constructivist learning environments 137
3.9 Development cycle of a science-based technology 151

4.1 The framework of the Hexa-C Metamodel 196

5.1 Evaluation perspectives :
How each element is used to investigate each event from three perspectives 205

Text Box 5A: Subject matter and modus operandi of FRAMES and the FRAMES learner evaluations 209

5A.1 A FRAMES introductory screen 212
5A.2 A composite component for analysis of the ‘Kind’ of relation 212
5A.3 Performance-content matrix for the components of FRAMES 217
5A.4 A FRAMES operational screen 221
5A.5 A FRAMES operational screen 222
5A.6 Operational screen showing example synthesis 227
5A.7 The graphic aid components 237
Text Box 5B: The virtual world of an RBO learner
5B.1 Website of the RBO electronic classroom
5B.2 Desks of four of the learners of 2000
5B.3 Mini-desks of the two former learners
5B.4 The RBO timetable for 2000
5B.5 Outcomes and requirements of two RBO activities

5C.1 The Ecotourism tetrahedron
Text Box 5C: The Mkambati 2000 Project
5C.2 Map of Mkambati Nature Reserve
5C.3 Setting the scene
5C.4 Customizing the project to learners’ interests
5C.5 Integration and issues
5C.6 The mission of Mkambati 2000 – in learners’ terms

6.1 Computer Usage in the three learning events
6.2.1 Categorization of FRAMES open-ended responses
6.2.2 Categorization of RBO open-ended responses
6.2.3 Categorization of MKAMBATI open-ended responses

7.1 How the HCMm contributes towards the critical outcomes of OBE

APPENDICES

Appendix A1
Appendix A2
Appendix B
Appendix C
Terminology

This is not a comprehensive glossary of terms. Rather, it is an overview of some generally-accepted, traditional meanings of certain terms in the domain of instruction and instructional design. These terms set the background for this study and form the context out of which the newer approaches such as constructivist learning environments, problem-based learning, etc. evolved.

- **What is an instructional theory?** (Reigeluth, 1996c, 1999)

 Instructional-design theory:
 - is design-oriented - focusing on how to attain goals for learning or development, rather than
description-oriented - focusing on the effects of given events.

 Instructional-design theory identifies:
 - Methods of instruction (ways to support and facilitate human learning and development);
 - Situations in which those methods should and should not be used. A major aspect of any situation is the desired instructional outcome (not the same as a learning goal) which sets out the levels of effectiveness, efficiency, and appeal required from the instruction.

 The methods of instruction are:
 - Componenental, in that they comprise different components or features;
 - Probabilistic, not deterministic, meaning that they increase the chances, but do not ensure, attainment of the goals.

- **How does instructional-design theory differ from learning theory?** (Reigeluth, 1996c, 1999)

 Learning theories are descriptive, in that they describe how learning occurs but do not identify or prescribe methods for promoting learning. By contrast, instructional-design theories are applied in practice; they are theories that identify methods for use in particular situations. In short, an instructional-design theory comprises *methods* and *situations*, and relates to events external to learners rather than describing what takes place within learners when learning occurs.

- **How does instructional-design theory differ from instructional systems development (ISD) processes?**

 Instructional-design theory is concerned with the characteristics of the instruction and its methods, not with the processes an instructional designer or teacher would use to plan the instruction. According to Reigeluth (1999), terms which characterize this distinction are:
 - Instructional theory, instructional model, instructional strategies - to represent instructional-design theory;
 - Instructional development model, instructional systems development (ISD) process -to represent the actual process and procedures of designing instruction. These processes are, however, closely related to underlying theories.
Instructional design (ID) is the link between descriptive learning theory and prescriptive educational practice (Reigeluth, 1997). ID thus comprises prescriptive instructional-design theories and models which set out methods for developing instruction, along with the conditions under which each should be used to produce a desired learning outcome. Instructional designers should be versed both in descriptive learning theories and prescriptive design theories, so that theory and practice can be integrated.

Reigeluth (1983) in his classic, *Instructional-design theories and models, Volume I* describes instructional design:
- As a professional activity, whereby decisions are taken as to what methods of instruction are best for bringing about desired changes in student knowledge and skills in a specific content area, and
- As a discipline concerned with producing knowledge about optimal instructional methods, strategies, and combinations of methods (i.e. whole models).

Reigeluth (1999) proposes that instructional design theory describes the characteristics of the instruction, i.e. what methods should be used. Analogous concepts are instructional theory, instructional model, and instructional strategies. The instructional design process is what a teacher or designer does to plan and prepare for the instruction, also called an instructional development model or instructional systems development (ISD). However, ID theories and ID processes are closely related.

According to Merrill *et al* (1996c), instruction is a science and instructional design is a technology founded on this science.
- Instructional science is concerned with discovering the natural principles involved in instructional strategies. Sciences are verified by discovery, so instruction, like other sciences, is verified by discovery.
- Instructional design is a man-made technology using those principles to invent procedures and tools that will promote learning. Like other technologies, ID is extended by invention. Design research involves deriving procedures and processes that incorporate the theory learned from instructional science. So instructional design is a technology for the development of learning experiences and environments which promote the acquisition of specific knowledge and skill by students. It incorporates known and verified learning strategies into these instructional experiences and environments, so as to make the acquisition of knowledge and skill more efficient, effective, and appealing.
- *Instructional systems development* (ISD) is a set of procedures for systematically designing and developing instructional materials.

Winn (1990) defines instructional design as a set of decision-making procedures by means of which the most effective instructional strategies are developed or chosen.
Willis (1995) uses the following simple and paradigm-independent definitions:

Instructional design refers to the process of designing instructional materials; and

An instructional design model refers to a theory or model that can guide the process of instructional design.

- **What is entailed by instruction?**

Instruction involves directing students to appropriate learning activities, guiding them to appropriate knowledge, helping them rehearse, encode, and process information; monitoring student performance; providing feedback to their learning activities and practice (Merrill *et al.*, 1996c).

Dick (1991) defines *instruction* as an organized set of methods, materials, and assessments designed to promote competence in defined outcomes.

Both of the above are definitions of what is known as ‘direct instruction’.

Models of instruction

Reigeluth (1989) identifies three basic forms for instructional theories and associated models of instruction:

1. *Intact models*, where a different kind of instruction is prescribed for each of a variety of conditions, for example, Merrill's CDT - section 3.3.3.1;
2. *Variations on a model* where there is one general model and variations of it are prescribed for different conditions; and
3. The 'smorgasbord' paradigm, which has no formal model of instruction, but prescribes various methods on a mix-and-match basis according to the conditions.