
Chapter 5 

Convergence 

In Section 3.4 we presented three general problems, Problems A, Band C. 
In Section 4.1 we formulated the problems for the Galerkin approximations. 
T hese are Problems AG , BG and CG. 

5.1 Equilibrium problem 

In this section we consider the convergence of the solution of Problem BG to 
the solution of Problem B. 

Assume that uh E Sh is the solution of 

b(uh 
, v) = (j,v) for all v E Sh (5.1.1 ) 

and u E V is the solution of 

b(u, v) = (j, v) for all v E V. (5.1.2) 

In the proof of the theorem, we will use the projection P , defined in Sec­
tion 4.6. 

Theorem 5.1. 1 

1. IIuh - u" E -+ 0 if h -+ o. 

74 
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2. If U E H4 n V ; then 

and 

P roof If (5.l.2) is subtracted from (5.l.1), it follows that 

b(u - u\ v) = 0 for all v E Sh 

This means that uk = Pu. The first part of the theorem follows directly 
from Lemma 4.6.2 . The estimates in the second part of the theorem follow 
from Lemma 4.6 .1 and Lemma 4.6.3. 0 
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5.2 Eigenvalue problem 

Our approach is based on the ideas of [BDSW] , [BF] and [SF] and we fol­
low the presentation in [SF]. The theory in the book of Strang and Fix, 
[SF, Section 6.3], concerns eigenvalue problems for general symmetric elliptic 
operators. Most of the presentation is written in a style which encourage 
abstraction. In collaboration with others, [ZVGV2], we verified that the 
theory is valid for abstract eigenvalue problems such as Problem C. In this 
thesis we present this abstract version, and also offer a number of modest 
improvements. 

The rate of convergence for eigenvalue problems also depends on the regula­
rity of the eigenvectors. In the absence of such theory for interface problems, 
we pose the following assumption which we showed to be true in the one­
dimensional case. (See Section 3.5.) 

Regularity Assumption The eigenvectors of the eigenvalue problem, Pro­
blem C, are in Hk n V for k = 4 or 6, and there exists a constant Cb--- ­

depending on th bilinear forms band (')' )- such that for each eigenvector 
y 

5.2.1 T he Rayleigh quot ient and the Minmax principle 

To analyse the convergence of eigenvalues and eigenvectors, some preparation 
is necessary. First we establish bounds for the approximate eigenvalues using 
the Rayleigh quotient and the minimax principle. 

It is well-known that the eigenvalues are the stationary values of the Rayleigh 
quotient. However, the following result gives a more convenient characteri­
zation of the eigenvalues. See [SF, p 221]. 

Lemma 5.2.1 Minmax principle 

Let T denote the class of subspaces of V having dimens'ion J' , then 

Aj = min max R(v) . 
SET vES 
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We may assume that the eigenvalues are ordered 

For some integer m, consider the eigenvalues )'1, A2, ... , Am and corres­
ponding eigenvectors Yl, Y2, ... , Ym' Equal eigenvalues are possible but we 
assume that Aj =I- Am for each J' > m. 

In the finite dimensional subspace S h we have A7, A~, .. . , A~ (also ordered) 
and corresponding eigenvectors y7, y~, ... , y~. (Equal eigenvalues do not 
matter. In the case of multipliCity, yJ is not uniquely determined, but it does 
not influence any proof.) 

5.2.2 Bounds for the approximate eigenvalues 

The minimax principle yields lower bounds for the approximate eigenvalues. 

Lemma 5.2.2 A] 2:: Aj for each j. 

Proof The minmax principle is also true for the space Sh. Any subspace of 
Sh is a subspace of V . 0 

Notation Yi will be used to denote the normalised eigenvectors, i.e. II Yi l1 = 1. 

For j = I, 2, ... , m, let Ej denote the subspace of V spanned by {Yl, Y2, ... , Yj}. 

Consider t he subspaces Sj where 

Sj = P Ej for j = 1, 2, ... , m. 

P = Ph is the projection defined in Section 4.6. 

An upper bound for some approximate eigenvalue depends on the construc­
tion of Sh. Clearly the construction of Sh must be such that 
dim Sh = N > m. However, it is still possible that dim Sm < m . 

Assumption The construction of Sh is such that dim Sm = m. 

We define a quantity f.L~ to measure the "distortion" of the projection of the 
unit ball Em = {y E Em : IIYII = I} : Set 

fL':n = inf{IIPyl1 2 
: Y E Em} . 
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Proposit ion 5.2. 1 M':n > 0 ~f and only if dim Sm = m. 


Proof The function IIPyI1 2 has a minimum on the compact set Bm. Hence 

M':n > 0 if and only if Py -=/:. 0 for each y E Bm· But this is so if and only if 

the vectors PYl, PY2, .. . , pYm form a linearly independent set. D 


P roposition 5.2.2 A':n :::; max{R(Py ) : y E Bm}. 


P roof 


Since dim Sm = m, it follows from the minimax principle that 

A':n :::; max{R(v) : v E Sm}. 

Consider any v E Sm, v-=/:. O. There exists a vector y E Em such that Py = v. 

Note that R(P(ay)) = R(av ) = R(v). Choose a such that ay E Bm. 
Consequently, 

max{R(Pz ) : z E Bm} = max{R(v) : v E Sm}· 

D 

The following result is crucial. 

Lemma 5.2.3 A':n :::; A:. 
Mm 

Proof If y = 2:::':1 CiYi, then b(y, y) = L
m 

c; \, since {Yl, Y2, . . . , Ym} is an 
i=l 

orthonormal set. Hence 
m 

i=l 

Since P is a projection with respect to the inner product b, 

b(Py, Py ) :::; Am for each y E Bm. 

From the definition of M':n, we have 

R(P ) = b(Py , Py) < Am 
y IIPyl12 - M':n ' 

ow use Proposition 5.2.2. D 
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Corollary 5.2.1 J-lr:n :::; 1. 

This is a direct consequence of Lemmas 5.2.2 and 5.2.3. It is convenient to 

formulate error estimates in terms of the quantity 1 - J-l':n. 


N otation CJ':n = 1 - J-l':n. 


Corollary 5.2.2 0:::; CJ~ < 1 and A~ - Am :::; A~P~, 

Since the eigenvalue error is bounded by CJ!, it is sufficient to estimate CJ! 
and prove that CJ! ----> O. 

5.2.3 Estimates 

Proposition 5.2. 3 CJ! = max{2(y, y - Py) - IIY - Pyl12 : y E Em}. 

P roof 

IIPyll2 + lIyll 2 - 2(y, Py) 


IIPyll2 + 2(y, y) - 2(y, Py) - 1 (since lIyll2 = 1). 


As a consequence 1 - IIPyll2 = 2(y , y - Py ) - Ily - p Y11 2. The result follows 
from the definition of CJ!. 0 

Remark In [SF , Section 6.3] CJ! is defined by 

CJ~ = max{12(y, y - Py ) ­ lIy - pYll21 : y E Em}. 

The absolute value is not necessary since 

max{2(y, y - Py) - Ily ­ Pyl12 : y E Em} ~ O. 

The assumption is then made that CJ! < 1, and they prove that dim Sm = m. 

We proved the fact that dim Sm = m is equivalent to CJ! < 1 and we believe 
that it is important to take note of this equivalence. 
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Proposition 5.2 .4 	For any y E Em ! 

(y,y - Py ) = b(y* - Py*,y - Py ). 

Proof 

b(Yi - PYi, Y - Py) = b(Yi, Y - Py ) since b(y - Py, PYi) = O. 

Hence, 

Multiply by ciA;-l and sum over i. We have 

(y, y - Py) = 	 L
m 

Ci\-lb(Yi - Pi, Y - Py) 

i=l 


o 

The following result also differ from [SF]. 

Lemma 5.2 .4 (J~ ~ 	max{2 1Iy* - pY*IIE IIY - pYllE : Y E Em}· 

P roof Consider the result of Proposition 5.2.3. We have demonstrated that 
the quantity 

2(y, Y _ py) _ Ily - pyll2 

must have a non negative maximum (Corollary 5.2.2) . Consequently 

(J~ ~ max{2(y, y - Py ) : y E Em}. 

Use Proposition 5.2.4 and the Schwartz inequality for the inner product b. 0 

Proposition 5.2.5 	For any c > 0 there exists a <5 > 0 such that for h < <5! 

Ily* - Py*I IE < c for each y E Em, 

Ily - pYllE < c for each y E Em· 
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P roof From Lemma 4.6.2 there exist positive numbers 01) 02 ) . . . ) On such 
that for each i 

Now, suppose h < mini Oi, then 
m 

i=l 

The same arguments are valid for Ily* - PY*//E' o 

Lemma 5.2.5 For any c > 0 there exists a 0 > 0 such that 

(J~ < c if h < O. 

Proof 

For any c > 0 there exists a 0 > 0 such that if h < 0, then 

Ilu - PUIlE < c for each u E Em · 

The result follows from Lemma 5.2.4 and Proposition 5.2.5. o 

Proposition 5.2.6 If Problem C satisfies the regularity assumption, then 
for any Y E Em 

and 

Proof We may assume that Ci ~ 0 for each i. 

First estimate: 

IIY* - Py*IIE < 
m

L c),.;-lIlYi - pYiliE 
i=l 

m 

< ~ L 1 P 2c c)\i IYil k· h -
i=l 

< 
'm 

c/] L Ci Af- 1 I1Yill hk*-2 

i=l 

< CCbAr:n- 1 hk' -2. 
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Second estimate: 
m 

i = l 

< CGbAf hY-2, 

using the same arguments as for the first estimate. 	 o 

Lemma 5.2.6 If Problem C satisfies the regularity assumption) then 

CT~ :::; CG A;::-lh2(kO-2)b

P roof 

Use Lemma 5.2.4 and Proposition 5.2.6. 	 o 

5.2 .4 Convergence of e ige nvalues 

We may now use the results of the previous subsection to establish the con­
vergence of A~ to Am. 

Lemma 5.2.7 There e.'Eists a 6 > 0 such that for h < 6, 

A~ - Am :::; 2AmCJ~. 

Proof 

Choose 6 such that CJ~ 	< ~. Consequently A~ < 2Am. o 

Theorem 5.2.1 

1. A~ - Am --t 0 as h --t O. 

2. 	 If Problem C satisfies the regularity assumptwn, then 


. A~ - Am :::; 15Gb A;: h2(k " - 2) . 


Proof 

1. This is a direct consequence of Lemmas 5.2.5 and 5.2 .7. 

2. Use Lemmas 5.2.6 and 5.2.7. 	 o 
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5.2.5 Convergence of eigenvectors 

To estimate the error "ym-y~ll, we need to estimate the difference IIPYm-y~ll· 
It is necessary to consider the possibility that Am has multiplicity more than 
one. Suppose that the multiplicity of Am is r and let 
A = 1, 2, ... , m - r, m + 1, ... , N. From Theorem 5.2.1 it follows 
that there exist real numbers p > 0 and 0 > 0 such that if h < 0, then 

lAm - AJI > p for each j E A. (5.2.1) 

Assumption Assume that h is sufficiently small for (5.2.1) to hold. 

Suppose {y~-r+l' y~-r+2 ' ... , y~} is an orthonormal set of eigenvectors 
corresponding to A~-r+l' A~-r+2 ' ... , A~. The strategy now is to estimate 
the distance between y~-r+i and some (uniquely defined) vector in EAm' the 
eigenspace corresponding to Am. 

We define a projection Pm with domain P(EArn ): 
m 

PmW = L (w, yJ)yJ for each w E P(EArn)' 
j=m-r+l 

This projection enables us to deal with the case of a repeated eigenvalue. 

Here we differ from [SF]. Although most of the computations are the same, 
we believe that our construction of the projection Pm is a worthwhile contri­
bution. We will show that PmP (and hence Pm) is invertible for h sufficiently 
small. 

Proposition 5.2.7 For each j E A and each y E EAmJ 

(AJ - Am)(Py, yJ) = Am(Y - Py , yJ). 

Proof 

It is only necessary to prove that 

AJ(Py, yJ) = Am(Y, yJ) (5.2.2) 

since the term - Am (Py, yJ) appears on both sides of the equation. 

Since yJ and yare eigenvectors, it follows that 

A7(Py, yJ) = b(Py, yJ) and Am(Y, yJ) = b(y, yJ). 

But b(Py - y, yJ) = 0 for each j, thus (5.2.2) follows. o 
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Lemma 5.2.8 

P roof From the assumption we have the estimate 

Am
IAJ - Ami :=:; Pm for each j E 1\ , (5.2.3) 

where Pm = Amp-1. 


The set y~ , yq , ... , Y'N form an orthonormal basis for Sh , hence 


N 

Py = L(Py, yJ)yJ. 
j= l 

Consequently, 

Py - PmPy = I)py, yJ)yJ. 
j Ei\ 

If y E E Arn ' then 

L (Py , yJ? 
jEi\ 

We now use Proposition 5.2.7 . 

~ CAJ ~mAml) ­2 (y Py ,yj)' 

< p~ L(y - Py, yJ)2 (Inequality (5.2.3)) 
jEi\ 

N 

< p~ 'L)y - Py, yJ)2 
j=l 

D 
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Lemma 5.2.9 

Proof 

Ily - PmPy11 	 < Ily - Pyll + IIPy - PmPy11 
< (1 + Amp-I) Ily - pYI!. 

o 

Corollary 5.2.3 PmP is invertible for h sufficiently small. 

Proof Let y 	E Em n EAm' Then 

for h sufficiently small. Since 

it follows that 	IIPmPyl1 > ~. Consequently 

1 
IIPmPyll> Li"YI for each y E EAm . 

o 

Corollary 5.2.4 If h is s'ufficiently small, then for each j, .i = 1, 2 , ... , r 

there exists a unique Xj E EAm w~th IIxj II = 1 such that 

Proof There exists a unique y E EAm such that y = (PmP)-lYm_r+j. Hence , 

Let {3 be a real number such that 1{31 = lIyll and let Xj = {3-1y. 'vVe can choose 
Xj such that {3 > O. As a consequence lIyll = {3. 
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It 	follows that 

Hence 

II Xj - Y~-r+jll 	 < IIXj - yll + Ily - y~-r+jll 
< 2(1+p- 1 Am )lly-Pyll· 

o 

It is important to realise that one compute the approximation y':n-r+j. The 
result above guarantees the existence of an exact eigenvector, with norm one, 
close to the approximate one. 

The following result from [SF] shows that an error estimate in the energy 
norm depends on error estimates in the norm II · II and eigenvalue errors. We 
modified it slightly to make it useful for the case of repeated eigenvalues. 

Lemma 5.2.10 

Proof 

b(Ym - yj, Ym - yj) b(Ym, Ym ) - 2b(Ym, yj) + b(yj , yj) 

2
AmllYmll - 2Am(Ym, yj) + AJIlY~1I2 

Am 	- 2Am(Ym, y~) + AJ 

Am[2 - 2(Ym, y~)] + AJ - Am 

Am [IIYmIl 2 - 2(Ym, yj)] + lIyJ II 2] + AJ - Am 

AmilYm - yj ll2 + AJ - Am. 

o 

Theorem 5.2.2 

1. 	 Let c > 0 be arbitrary. If h is sufficiently small) then for each 
j, j = 1, 2, .. . , r there exists a unique Xj E EArn with IIx j II = 1 
such that 
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2. 	 Suppose Problem C satisfies the regularity assumptwn. If h IS suffi­
ciently small, then for each j, j = I , 2, ... , r there e.'LZsts a unique 
Xj E EArn with IIxj II = 1 such that 

. II h II C~C \ a: h(k*-2)Xj 	- Ym-r+j E :s; bAm . 

Proof 

1. 	 Use Corollary 5.2.4: There exists a unique Xj E EArn such that 

But 

(Lemma 5.2.10). Hence 

Ilxj 	- Y~-r+jll~ :s; 4Am(1 + p-1Am)21Ixj - PXjl12 + A~_r+j - Am 
(5.2.4) 

Now use Proposition 5.2.5 and Theorem 5.2.1. 

2. 	 Consider the Inequality (5.2.4). We have the estimates 

(5.2.5) 

from Proposition 5.2.6 and 

(5.2.6) 

from Theorem 5.2.1. The result follows from (5.2.5) and (5.2.6). 

o 
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5.3 Vibration problem 

Our concern is the difference between the solution u of Problem A and the 
solution Uh of Problem AG. It is possible to estimate this error in terms of 
the projection error (Section 4.6) and errors for the initial conditions. See 
[SF, Section 7.3]. This is called a projection method and was first used for 
parabolic problems. For second order hyperbolic problems, it appear that 
credit is due to [DJ, [De] and [SF]. Research in this direction was also done 
by [Ba]. 

After this it appear that abstract methods became popular. See for example 
[Sh, Section 6.4]. In Section 3 of an invited paper, [BIt], very general results 
are given. (Incidentally they use results in [Sh].) 

A general approximation theory, using functional analysis, is obviously im­
portant. However, we found that the basic error inequality mentioned before 
([SF, Section 7.3] and [D , Lemma 1]) is valid for an abstract problem as 
general as P roblem A. As a final remark we mention the paper [FXX] where 
the authors also use what they term a "partial projection" met hod to obtain 
£ 2-error estimates. 

5.3. 1 Discretization error 

In this section we show that the convergence proof sketched by Strang and Fix 
[SF , Section 7.3] can be applied to Problem A in Section 3.4 and Problem AG 
in Section 4.l. In this proof the projection operator P defined in Section 4.6 
is used to find an estimate on the discretization error 

Ilu(t) - uh(t)IIE for t E [0 , (0). 

vVe also use the symbol P to denote the "projection" Pu of the solution u of 
Problem A , i.e. (Pu)(t) = Pu(t) for each t ?: O. 

Let e(t) = Pu(t) - Uh(t) and ep(t) = u(t) - Pu(t). Then 

Ilu(t) - uh(t)IIE::; Ilep(t)IIE + Ile(t)IIE' (5.3.1) 

The following result is required for the main result of this section. Note that 
differentiability with respect to the energy norm is required to prove that the 
projection function Pu is differentiable. This regularity requirement is not 
stated by [SF]. 
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Lemma 5.3.1 ffu E C2 ([O, 00) , V), then Pu E C2([O, OO), V) wdh 

(Pu)'(t) = Pu'(t) and (Pu)"(t) = Pu//(t). 

P roof As the projection operator P is a bounded linear operator with norm 

less than one, it follows that 


II(ot)-l (Pu(t + c5t) - Pu(t)) - Pu'(t)IIE ::; 11(c5t)-l(u(t + c5t) - u(t)) - u'(t)IIE' 


This implies that Pu E C 1 ([0,00), V) and (Pu)'(t) = Pu'(t). 


In exactly the same way we prove that (Pu)' E Cl ([0 , 00), V) and 

(Pu)//(t) = Pu//(t). 


o 

Since we already have an estimate for the projection error ep(t) , it is only 
necessary to estimate the other part of the error. 

In the next proof the following "energy" expression will be convenient: 

E(t) = 	 ~(e'(t), e'(t) ) + ~b(e(t), e(t)) 

1 1 
- 211 e' (t ) 112 + 211 e(t) II ~. 	 (5.3 .2) 

Lemma 	5 .3.2 Assume that u E C2([O, 00) , V). Then, for any t 2 0, 

Ile(t) liE::; IIPcx - CXhllE + liP;] - ;]h II + it Ile~(s ) II + ~[ Ile~( s ) 110 ds. 

Proof From P roblem A and the Galerkin approximation (Problem AG) we 
deduce that for any v E Sh , 

(u//(t) - u~(t) , v) + a(u'(t) - u~(t) , v) + b(u(t) - Uh(t), v) = O. (5.3.3) 

Since P is a projection, we have 

b(u(t) - Pu(t) , v) = b(u'(t) - Pu'(t), v) = 0 for all v E Sh. 

Using the fact that Pu//(t) = (Pu)//(t) , (5.3.3) can be written as 

(el/(t), v) + b(e(t), v) = -(e~(t), v) - k(e~(t), v )o - k(e'(t) , v)o 

-J-ib(e'(t),v) for all v E Sh. (5.3.4) 
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( ote that a(u, v) = fJb(u, v) + k(u, v)o where fJ or k or both can be zero.) 

We will use the fact that 

E'(t) = (el/(t), e'(t)) + b(e(t), e'(t)). 

As e(t) E Sh it follows that e'(t) E Sh. Choose v = e'(t) in (5.3.4), then 

E'(t) - -(e~(t), e'(t)) - (ke~(t), e'(t))o - k(e'(t), e'(t))o - fJb(e'(t) , e'(t)) 

~ (1/e~(t)11 + ~llle~(t)llo) Ile'(t)ll· 

From (5.3.2), 1/e'(t)11 ~ J2E(t). Thus 

E'(t) ~ J2E(t) (1Ie~(t)11 + ~I II ~(t)llo) 
and consequently 

This yields that 

JE(i5 ~ JE(O) + ~ 1t (1Ie~(s)11 + ~Ille~(s)llo) ds. (5.3 .5) 

As 

1 2 1 2 
E (0) = '2 IIPP' - P'hll + '2 IIPQ - QhllE 

and Ile(t)IIE ~ J2E(t) , again from (5.3.2) , the result follows from (5.3.5). 0 

Theorem 5 .3.1 Assume that u E C2 ([0 ,(0), V). Then , JOT any t ~ O. 

Ilu(t) - uh(t)IIE ~ Ilep(t)IIE + IIPQ - QhllE + IIPp' - P'hll 

+1t (1Ie~(s)11 + ~I Ile~(s)llo) ds. 

Proof Use Lemma 5.3.2 and Equation (5.3.1). 

o 
To prove the convergence results, it is now necessary to consider the terms 
on the right side of the inequality in this theorem. 
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5.3.2 Convergence 

The main factor that determines the rate of convergence of the solution 
Uh of Problem AG to the solution U of Problem A as h tends to zero, is 
the regularity of the weak solution u. The regularity of u depends on the 
regularity of the initial values Q and f3, as we pointed out in Section 3.4. [Raj 
gave an example to show that the regularity of the solution is necessary to 
obtain optimal order convergence. 

The rate of convergence is also directly influenced by the choice of the initial 
values Qh and f3h for the solution Uh of Problem AG. V·..,re will consider two 
cases, i.e. Qh = ITQ, f3h = ITf3 and Qh = PQ , f3h = Pf3. In the following 
result we show that the rate of convergence in the energy norm is of order h2 

if certain regularity conditions are satisfied. The estimates are expressed in 
terms of the constants CJ and CE defined in Section 3.4 as well as Cdefined 
in Section 4.5. 

Theorem 5.3.2 LetQh = ITQ andf3h = ITf3. Assume thatu E C 2([0 , 00), V) 
and that u(t)! u'(t) and ul/(t) are in H4 n V for t 2: O. Then, 

Ilu(t) - uh(t)IIE::; C (IQI4 + Ce1 1f314 + lu(t)14 + k(CECJ)-lt max lu'(s)14
sE[a,t[ 

+Ce1t max lul/(s)14) h2 for t E [0 , 00).
SE[a,f) 

Proof From Theorem 5.3.1, 

Ilu(t) - uh(t)IIE ::; Ilep(t)IIE + II PQ - ITQllE i IIPf3 - IT) II 

+ it ( 1Ie~ (s ) 1 1 + ~J Il e~(s)lla) ds. 

All that remains to be done is to apply the approximation results from Co­
rollary 4.6.1 to each of the terms in this expression: 

and 
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From Lemma 5.3.1 , (Pu)' = Put and hence e~(t) = u'(t) -Pu'(t). This yields 
that 

and 

Similarly, 

o 
Under less strict regularity conditions we can still show that the solution Uh 

of P roblem AG converges to the solution u of Problem A in the energy norm 
if h tends to zero. 

Theorem 5.3.3 Let O:h = ITo: and Ph = ITp. Assume that 0: E V , P E V 
and u E C2([0, 00), V ), then 

lim Ilu(t) - uh (t) II E = 0 jar t E [0 , T].
h-+O 

Proof From Theorem 5.3.1, 

Il u(t) - uh(t)IIE ::; Il ep(t) II E + IIPo: -ITo:IIE+ IIPp - TIp ll 

+ fo·t ( 1I e~( s ) 1 1 + ~J Ile~(s)l l o dS) . 

From the approximation results we know that for any E > 0, each term is 
less than E, provided that h is sufficiently small. 0 

5.3.3 Inertia norm estimate 

In a final result we show that the Aubin-Nitsche trick can also be applied to 
this problem to find inertia norm estimates for the discretization error. 
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Theorem 5.3.4 Let O'.h = PO'. and !3h = P!3. Assume that u(t) , u'(t) and 
ul/ (t) are all in V n H4 for all t ;:: 0. Then, 

Ilu(t) - uh(t)11 :::; 	 C (lu(t)14 + kt(CJCE)-l max lu'(s)14 + tCi/ max lul/(S)14) h4 
SE[O,tl 	 SE[O,tj 

for t E [0, (0). 

Proof From Theorem 5.3.2, 

. I/u(t) - Uh(t)/1 	 < l/ep(t)/1 + /Ie(t )/1 


< /Ie p(t )/1 + Ci11I e(t)/IE 


< l/ep(t) /1 + Ci1 l t 

( lI e~(s) 1I + ~J ll e~(s ) ll o) ds. 


For a fixed t;:: 0, we consider ep(t) = u(t) - Pu(t ). 

We conclude from Corollary 4.6 .2 that 

II ep ( t ) 1/ :::; C I u (t)14 h4 . 

Similar arguments yield that 

lIe~(t)l/o :::; C!llle~(t)1I :::; Ci1Clu'(t)14h4 and lie~(t)1I :::; Clul/(t)14h4. (5.3.6) 

o 

A useful result is also obtained if the Aubin-Nitsche trick is used only for the 
terms containing the integrals. 

Theorem 5.3. 5 Let O'.h = ITO'. and!3h = IT l)', Assume that 0'... ;3 , u(t). u'(t) 
and ul/ (t) are all in V n H4 for all t. Then, 

lI u(t) - Uh(t) liE :::; C (10'.14 + Ci11!314 + lu(t)14) h2+ 

C (ktCi2 max lu'(s)14 + t max lul/(s)14) h4 for t E [0, (0).
SE[O ,t] sE [O,tj 

Proof The proof is exactly the same as the proof of Theorem 5.3.2. The 
estimates in (5.3 .6) are used for the terms containing the integral. D 

Remark We consider this result to be significant. It is advantageous to 
have an error estimate in the energy norm, while the terms containing tare 
"suppressed" by h4. 
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5.4 Finite Differences 

In this section we consider the system of ordinary differential equations, 
Problem AD in Section 4.1, and the finite difference method for approxima­
ting the solution. The objective is to prove that the solution of the discre­
tized problem converges to the solution of the Galerkin approximation. This 
method has been extensively studied- even in the context of finite difference 
methods for second order hyperbolic partial differential equations. However , 
one must be careful when matching the estimates. Although all norms are 
equivalent in the finite dimensional space Sn, the "constants" may depend on 
the dimension of Sh. Presenting error estimates for semi-discrete and fully 
discrete systems in the same presentation is a line also followed by others. 
See for example [D], [Ea] and [FXX]. 

We consider Problem AG in Section 4.1 and the finite difference scheme 
proposed in Section 4.4. In the first subsection we estimate the local error 
and then proceed to establish stability results. 

5.4.1 Local error 

The first step is to derive finite difference formula.s similar to the Newma.rk 
schemes [Zi]. Since we need error estimates in terms of the unknown function 
or its derivatives, it is necessary to derive the formulas . 

We will use Taylor's theorem in the following form: 

(t t ) n -l 
g(t ) = g(to) + (t - to)g' (to) + ... + (~ _o 1)1 g(n-l)(to) + R(t) 

where R(t) = (n ~l)1 ft:(t - e)n-lg(n)(e ) de . It is also true for t < to· 

See [el, p 179] or [Ap, p 279]. 

The following notation is introduced for convenience. 

j tHt 
Notation R~(t)= ( _ 

1 
)1 (t+6t-et- 1g(n)(e)de and 

n 1 . t 

The first proposition contains well-known results and the proofs are trivial. 
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Proposition 5.4.1 

l. 	If the real valued function 9 is m C3 [t - bt, t + bt], then 

g(t + bt) - g(t - bt) = 2btg'(t) + Rj(t) - R3(t). (5.4.1) 

2. 	 If the real valued function 9 is in C4[t - bt, t + btl, then 

g(t + bt) - 2g(t) + g(t - bt) = (bt)2 gl/(t) + Rt(t) + Ri(t). (5.4.2) 

Proof 

1. 	 Use Taylor 's theorem to get: 


(bt )2 

g(t + bt) = g(t) + bt g'(t) + - 2- gil (t) + Rj (t) 


and 

(bt) 2 

g(t - bt) = g(t) - btg'(t) + -2- gl/(t ) + R3 (t). 

Clearly 

9(t + bt) - 9(t - bt) = 2bt g' (t) + Rj (t ) - R3 (t) . 

2. 	 Approximate 9 by a polynomial of degree three and compute 
g(t + bt) + g(t - bt). 

o 
We gave the proof of part one in detail because we use the result. in the next 
proposition. 

Proposition 5.4.2 Let Po and PI be real numbers such that Po + 2PI = l. 

l. 	If the real valued function 9 is in C4[t - bt, t + bt], then 

g(t + bt) - g(t - bt) 

= 2bt (PIg'(t + bt) + Pog'(t) + PIg'(t - bt)) + R4(t), (5.4.3) 
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2. 	 Suppose the real valued function 9 is m C5[t - ot, t + M], then 


g(t + M) - 2g(t) + g(t - M) 


= 	 (M)2 (Plg//(t + M) + Pog"(t) + Plg//(t - M)) + R5(t), (5.4.4) 

where R5(t) =Wl {Rt(t) +Ri(t)} +W2{ Rt(t) +R5(t) ­

(M)2jt+6t (M)2jt-c5t }
- (t + M - 8)2g(5)(8) d8 - - (t - M - 8)2g(5)(8) d8 . 

24 t 24 	 t 

Proof 

1. 	 Use Taylor's theorem to get: 

(M)2 (M)3
9 (t + M) = 9 (t) + Mg' (t) + - 2- g" (t) + -6- g'" (t) + R; (t ) 

and 

(ot)2 (ot) 3 
9 (t - M) = 9 (t) - Mg' (t) + -2- g// (t) - -6- g'" (t) + Ri (t ) . 

This yields 

(M)3
g(t + M) - g(t - M) - 2M g'(t) + -	 g"'(t) + Rt(t) - R; (t).

3 
(5.4.5) 

Applying Taylor 's theorem once more on 	g' we obtain 


(M)2

g' (t + M) = g' (t) + Mg" (t) + -2- g//' (t) + 

6t11t 
- + (t + M - 8)2g(4)(e) de 
2 t 

and 

(M)2
g' (t - M) = g' (t) - Mg" (t) + -2- g//' (t) + 

t c5t 
1 1­- (t-M-8)2g(4)(8)d8.
2 	 t 

The two equations yield 
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g'(t + 5t) + g'(t - 5t) = 2g'(t) + (5t)2 gl/'(t)+ 

From this we get an expression for (5t)2g//'(t) which can substituted 
into (5 .4.5). The result is 

g(t + bt) - g(t - bt) 

(5.4.6) 

Finally we combine (5.4.1) and (5 .4.6) with weights WI and W2 to get 
the desired result. 

2. This proof is similar to the proof in (1) . D 

Remark The results above will also be used in the case where the function 9 
is not defined for t < O. In this case we may extend 9 by using the polynomial 
approximation on [t - 5t ,0). This will only influence the result in so far as 
there will be fewer remainder terms. 

The second step is to apply the difference formulas to Problem AG and to 
estimate the errors. 

A ssumption We assume that f E C3[O ,T] so that the solution Uh of Pro­
blem AG is in C5 [0,T]. 

N otation Illuhlllfmax = L
5 

max Ilu~k)(t)IIE' 
, tE[O,T ] 

k=O 

Notation In the rest of this section Cb will denote a generic constant that 
depends on the bilinear forms, i.e. Cb is a combination of CE and CI . 

Notation Illflhmax = L
3 

max Ilf(k)(t)ll·
tE[O ,TI 

k=O 
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Proposit ion 5.4.3 Suppose Ui E C5 [t - M, t + Ml faT i = 1, 2, ... , nand 
{¢1 , ¢2, ... , ¢n} is the basis faT Sh and let Uh(t) = L~= l Ui(t)¢i' Suppose 
also that Po and P1 aTe Teal numbeTs such that Po + 2P1 = 1. 

If Uh(t + M) - 2Uh(t) + Uh(t - M) 

= (M?(P1U~(t + ot) + Pou~(t) + P1U~(t - M)) + e~, 
(5.4.7) 

Uh(t + M) - Uh(t - M) 

= 2M (P1U~(t + M) + Po 'u~(t) + P1U;1( t - M)) + e~ 
(5.4.8) 

and 

(5.4.9) 

then 

lle~ll S; K(M)3 { max I lu~3)(e)11 + max Ilu~4)(e ) 11 + max Ilu~5)(e)ll }
eE[t,tHt j eE[t,tHtj eE [t,tHt) 

and 

P roof 

Consider (5.4.7) as an example: Use (5.4.4) in P roposition 5.4.2 for Ui and 

denote the remainder by R5i (t), Now, each term in (5.4 .7)can be written as 
a linear combination, for example, 

Uh(t + M) = L
n 

Ui(t + M)¢i. 
i = l 

Consequently we have (5.4.7), if we set e~(t) = L~l R5i (t)¢i' 
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It remains to estimate the error term e~(t), which is actually the sum of six 
error terms. Consider one of the terms: For any v E Sh 

(WIt [+01 (t + 8t - e)3u;41 (e )t/>, de, v) 

- 1[+01 W , (t + 8t - e)3 (u~41 (e), v) del 

I
t+bt 

< t IWII(t+M-e) 31Iu~4)(e ) llll v llde 

< ~ (5t)4IwIl llv ll max Ilu~4)(e ) ll· 
4 eE[t ,l +M) 

Hence there exists a constant K, which depends only on the weights WI and 

W2 such that l ( e~ (t),v )1 :S K (M)3 1Ivll { max Ilu~3)(e)11 + max Ilu~4)(e) 11 
eE[t,t+6tj eEl t ,t+ot) 

+ max lIu~5)(e)II}.
eElt,Hot) 

Note that the worst of the errors are of order (M)3. Since v is arbitrary, we 
have the desired result. The same procedure yields estimates in the energy 
norm. 

o 

Lemma 5.4. 1 Suppose 'uh 'is the solution of Problem AG. Let Po and PI be 
real numbers such that Po + 2Pl = l. If u*(t , M) is defined by 

(u*(t, M) - 2Uh(t) + Uh (t - 5t), v) + (M ) a(u*(t, M) - Uh(t - 5t ), v ) 2 . 
+(M)2b(PIU*(t, M) + POUh(t) + PIUh(t - M), v) 

(M)2 (pI! (t + M) + Pof(t) + pI!(t - M) , v)o for eaxh v E S\ 
(5.4.10) 

Proof Using Proposition 5.4.3 we have 

(M)
(Uh(t + M) - 2Uh(t) + Uh(t - M), v) + - 2- a(uh(t + M) - Uh(t - M), v) 

- (M)2 (PIU~ ( t + M) + Pou~(t) + PIU~(t - M), v) + (e7, v) 

+(M )2 a(pIu~(t + M) + Po 'u~(t) + PIU~(t - M), v ) + (~t) a(e~, v). 
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ow use the fact that Uh is the solution of Problem AG to prove that Uh 
satisfies (5.4.10) with u(t + M) in stead of u*(t, M) provided that the error 
terms (e~, v) and (~t) a(e~, v) are included. 

Consequently, (u(t + M) - u*(t, M), v) = (e~, v) + (~t) a(e~, v) for each v E Sil. 
Replace v by u*(t, M) - Uh(t + M) to obtain the estimate. 0 

Reconsider the semi discrete system in Section 4.4. 

Mul/(t) + Lu'(t) + Ku(t) = J(t) (5.4.11) 

u(O) = Ci , u'(O) = /1 

To estimate the local errors for a finite difference scheme, we consider a 
one-to-one correspondence between Sh and lRn . 

Definit ion 5.4.1 For uh E Sh, the vector u = Quh has components Ui where 
n 

uh 
= LUi(/Ji. 

i = l 

If we use the norm IluliM = (Mu· up 
1 

for lRn , then IIQuhllM = Iluhll· 

In our next result use the fact that u is a solution of (5.4.11) if and only if 
Uh is a solution of Problem AG. 

Corollary 5.4.1 If u is a solution of the system of differ-ential equatzons 
(5.4.11) andu*(t,M) is defined by 

M [u*(t ,M) - 2u(t) + u(t - M) ]+ (M) L [u* (t, M) - u(t - M)] 
. 2 

+(M)2 K [PIU*(t, M) + Po u(t) + PIU(t - M)] 

(M)2[PIJ(t + M) + PoJ(t ) + PIJ(t - M)], (5.4.12) 

then Ilu*(t, M) - u(t + M)IIM :::; Cb(M)311Iuhlllf.max· 

Proof Consider the terms in (5.4. 10) . If fj = Qvh ) then 

(Uh( t + M), vh) = j'\1u(t + M) . v. 

In this way we can associate each term in (5.4.12) with a corresponding term 
in (5.4.10). The resul t follows fom the fact that u*(t , M) = Qu*(t , M) and 
u(t + M) = QUh(t + M). 0 
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2. 	 If we assume that f is merely continuous and hence Uh twice continu­
ously differentiable, we could still estimate the local errors but not 
obtain the same order. The results would be of the form: Given c > 0, 
there exists a real number 6. > 0 such that the error will be less than 
cOt K for Ot < 6.. (K a constant depending on Uh and f. ) 

5.4.2 Transformation 

Due to symmetry considerations , it will be more convenient to consider a 
transformed system for stability analysis. Since !vI is symmetric and posit­
ive definite, there exists a symmetric positive definite matrix N such that 
N 2 = 	 M. Set v(t) = Nu(t), then v is a solution of the problem 

v" + N - 1LN-1v' + N- 1K N - 1v = N- 1J 
or 

v" + Lv' + Kv = .9. 	 (5.4.14) 

where L= N - 1LN- 1 , K = N -l K N - 1 and 9 = N -l ]. 

The advantage of the transformation is that the matrix K is symmetric , and 
hence has orthogonal eigenvectors. 

Let y = Ni , then 

Ki = AjVff 

if and only if 

The eigenvalues of K are the eigenvalues of the eigenvalue problem Pro­
blem CG (See Sections 4.1 and 5.2.) 

We use the norm IIi l12 = (i . i) ~ , and in the remaining part of this section 
II . II will refer to II . 11 2unless stated otherwise. 

Corollary 5.4.3 If v is a solution of the system of differential equations 
(5.4.14), and v*(t, Ot) is defined by 

(Ot) ~ 
[v*(t , Ot) - 2v(t) + v(t - Ot)] + -2- L [v*(t, c5t) - v(t - Ot)] 

+(Ot f i( [PIV*(t, Ot) + Pov(t) + PIV(t - Ot)] 

(Ot)2 [Plg(t + Ot ) + POg(t) + Plg(t - Ot )], 
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Proof Direct from Corollary 5.4.1, since v*(t,M) = N u*(t,M). 

Corollary 5.4 .4 If v is a solution of the system of dIfferential equations 
(5.4.14), and v**(t, M) is defined by 

(M)2
2 [v** (t,M) - v(t )] + -2-K [v**(t, M) + v(t)] 

(6t)2 (6t)3
-2- [g(t + M) + g(t)] + 2Mv'(t) - (M)2 Lv'(t) + - 2-Kv'(t) 

(M)3 _'( )---g t 
2 ' 

then Il v**(t, 6t) - v(t + M)II ::; Cb(6t)3 (1IIuhlllf,max + (M)311Iflhmax) . 

Proof See Corollary 5.4.3. o 

Remark The result remains true for t = o. 

5.4 .3 G lobal error 

vVe approximate the solution of (5.4 .14) on the interval [0 ,T]. Let M indicate 
the time step length , i.e. 6t = T / N, and let Wk denote the approximation for 
v(t k ) . 

We use the difference scheme (which corresponds to (5.4 .12)) 

( - 2- + - ) (M)L-(- -)Wk+ l - Wk Wk-l + -2- Wk+l - Wk-l 


+(M)2 K(PIWk+l + POWk + PIWk-d = (6t)2(Plgk+l + POgk + Plgk-d· 

(5.4. 15) 

The initial conditions for the system of differential equations are 

v(O) = No: and v'(O) = NiJ, 

and the initial conditions of the finite difference system are 

 
 
 



CHAPTER 5. CONVERGENCE 104 

To estimate local errors the following scheme will also be used: 

To estimate the global error wN- V(T) we introduce artificial numerical sol u­

tions wk') For each i, wki 
) satisfies (5.4.14) with w?) = v(ti ) and 

-(i) - _(i) 2 s:t-/(t) N t th t - _ _(0)- - - U Vi. 0 e a Wk - .W i l WHl W k 

For the global error we have 

Ilv(T) - WNII ~ Ilv(T) - wt-l)11 + Ilwt-
l
) - w~V-2)11 + ... + Ilw~) - ~wNII· 

(5.4.17) 

(Note that the global error fo r the original system can be derived fro m this 
error. ) 

It is clearly necessary to estimate Ilw~) - ~w~-l)ll. The next two subsections 
will be devoted to the estimation of the differences between "neighbouring 
numerical solutions" . 

5.4.4 Consistency 

In this subsection we consider the differences Ilw~21 - v(ti+d II and 

II -(i) -(i+l) II F . l"t d t -(t) b - Th fi tId 1W i+2 - W H2 . or Slmp lCl y we eno e v i y Vi. e rs emma ea s 
with the "starting" error. 

Lemma 5 .4.3 

Proof This is a direct consequence of Corollary 5.4.4. o 

1 ext we have the error at the second step. 
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Lemma 5.4.4 

Proof Combine the results of Corollary 5.4.3 and Lemma 5.4.3. 

Lemma 5.4.3 provide an estimate for the difference W~i) - W~21. The following 
result provide an estimate for the difference at the second step. 

Corollary 5.4.5 

Ilw;22 - w;~~l)11 ::; Cb(bt)3 (1IIud;'max + Illflhmax) . 

P roof Use Lemmas 5.4.3 and 5.4.4. 

(i) (Hl) II < II _(i) - II 11- -(Hl) IIII WH2 - W H2 _ Wi+2 - Vi+2 + Vi+l - Wi+2 . 

o 

5.4.5 Stability 

For the stability analysis we introduce the following matrices: 

(bt) - ­
A 1+--L+Pl(bt)2K ,

2
B = -21 + PO(bt) 2K, 
C 1 - (bt) Z+ Pl(bt)2 K. 

2 

The system (5.4.15 ) is now 

(5.4.18) 

As mentioned at the end of Subsection 5.4.3, we need to estimate the differ­
ence w~) _W~+l) for each i. Since both W;i) and wy+l) satisfy the system 

(5.4.18) it follows that the error ej = wJi) - w;Hl) must satisfy 

(5.4.19) 
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with the starting values, the local errors ei+l and ei+2, already estimated. 

For the case L = J.1K , we derive the eigenvalues of A, Band C. If Ky = ).,y, 
then 

- - (cSt) ~ - ~ - ( cSt )Ay Y + J.1--Ky + Pl(cSt)2Ky = 1 + 2(J.1).,) + Pl(cSt)2/\ y,
2


By -2y + Po (cSt)2 Ky = (-2 + Po (cSt)2 ).,) y, 


Cy (1- ~t(J.1).,) + Pl(<5t)2).,) y. 

It is now possible to solve (5.4.19). Let Yl, Y2, ... , Yn denote the normalized 

eigenvectors of K and suppose ei+l = .L~1 TJ(Yi and ei+2 = .L~1 ~iYi' 

Since the eigenvectors are orthogonal , it is sufficient to solve difference equa­
tions of the form 

where ai, {3i and Ii denote the eigenvalues of the matrices A, Band C 
respecti vel y. 

The following result can be obtained by elementary calculations. Note that 
we do not use the subscripts for the coefficients a, {3 and i. We take Tl = ~ 

and TO = TJ· 

Solution of t he difference equation 

Case 1 (32 < 4ai. 

Note that in this case I > O. The solution is of the form 

Tk = pk(A coswk + B sinwk), 

wherep = Vi/Ct., cosw = -(3/(2...flYY), A = TJ and B = (~- PTJCosw)/(sinw). 

Case 2 {32 = 4Ct./, . 

The solution is of the form 
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The solution is of the form 

with 7'1 and r2 the real roots of the equation o:r2 + ;3r +r = O. The constants 
are A = (~ -1]T2)/(rl - r2) and B = (~ -1]Tr)/(r2 - rr). 

We now prove the stability result. Bear in mind that )..k -----+ (X) as k -----+ 00. 

Lemma 5. 4 .5 Stabzlzty 

If Po ::; 2pl) then there exists a constant K -independent of the dimenszon 
of Sh - such that 

(i) (i+l) II K (II (i) II II (i) (i+l) II)II W N - W N ::; 'Ui+l - W i+1 + Wi+2 - Wi+2 . 

Proof For the eigenvalues 

M 
1 + Pl(M) 2).. + 2)..jJ-, 

-2 + Po(M? ).., 
M

l+Pl(M) 
2 

)..-2)..jJ­

of A, Band C, we get 

-4Po(M)2).. + P6(c5t)4)..2 - 8Pl(M)2)"-4pi(M)4)..2 + (M)2 jJ-2)..2 

)"(M)2 [jJ-2).. - 4 + (P6 - 4Pi)(M)2)..] . 

Consider the different cases: 


Case 1 If ;32 < 40:r then rk is bounded if "/ ::; 0:. 


This case, ;32 - 40:r < 0, is possible only for a finite number of small eigen­

values and only if Po ~ 2pl. Since r/O: < I, the corresponding modes will 
not cause error growth. 

Case 2 If ;32 = 40:r then rk is bounded if 1;3/0:1 < 2. 

If PO(M)2).. < 2, we have 1;31/10:1 < f· 
Po (c5 t)2 ).. Po . 

If Po(M)2).. > 2, we have 1/31/10:1 < (c5 )2).. = - ::; 2 If Po::; 2Pl' 
PI t PI 
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Case 3 If 13 2 > 4CYi then Tk is bounded if both roots of CYT 
2 + j3T + /' = 0 are 

less than one in absolute value. Let 

and let T max denote the absolute value of the root largest in absolute value. 

13 + J75, 
Tmax 2cy 

PO(bt)2)... + )"'6t VM2 + (P6 - 4pi)(6t)2
< 

2pl(6t)2)... + 6t)...M 

Po6t + VM2 + (P6 - 4pi)(6t)2 

2P1 6t + M 
Po6t + M< 

2P1 6t + M 
< 1 ( if Po S; 2pl)· 

o 

Remark If damping is excluded, the difference system is considered to be 
unconditionally stable for PI = ~ and Po = ~, see [RM] or [Zi]. However, the 
bound may depend on the eigenvalues. 

-0 - Po (6t )2 )... + 2 
cosw = --' ­

2y1CFi 	 2(1 + PI (6t)2)...) 

-po(bt? + 2)", -1 -Po 
---7 - as )... ---7 00. 

2Pl(bt)2 + 2)...-1 2Pl 

Consequently, sin w ---7 0 as )... 00 and sin w is present in the numerator of---7 

a constant. 

R e marks 

l. 	Exactly the same results hold if we assume that rotary inertia can be 
ignored and we have only viscous damping. In this case L = kMo and 
M=Mo· 

2. 	 The eigenvalues of K i = )...j'vloi are much larger than the eigenvalues 
of Ki = )...j'vli (with rotary inertia). 

3. Rotary inertia and Kelvin-Voigt damping both enhance stability. 
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5.4.6 Convergence 

Lemma 5.4.6 Global error 

(w here 	N is the number of steps). 

Proof 

IleN11 	 < Ilv(T) - w~~-lll + ... + Ilw~ ) - wN11 
< K N max{ Ilvi+l - W;2111 + Ilvi+l - w;2211}.

2 

Now use Lemmas 5.4.3 and 5.4.4. 

o 

To the sequence of finite difference vectors Vk, correspond a sequence of ap­
proximations for uh: u~k) = (Q J)-lVk E Sh. 

Theorem 5.4.1 If Uh is the solution of Problem AG. then 

Proof Since eN = QN(Un(T) - u;:), we have 

Now use Lemma 5.4.6. 

o 

Remark Error estimates for the fully discrete system is obtained by com­
bining Theorem 5.4.1 with the results of Section 5.3. Note that the error 
estimates are with respect to the inertia norm. 
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Application. Damaged beam 

6.1 Introduction 

We consider Problem 1 (from Section 2.3). This model for a damaged beam 
was proposed in [VV] . See also [JVRV]. 

The detection of damage in structures or materials is clearly of great im­
portance. Ideally it should be possible to infer the location and extent of 
damage from indirect measurements or signals. To facilitate such deduction , 
a mathematical model of the object or structure is necessary. See [VV] for 
details and numerous other references. 

Viljoen et al. [VV] use changes in the natural frequencies of the beam to 
locate and quantify the damage. The natural angular frequencies for the 
damaged beam are calculated from the characteristic equation obtained from 
the associated eigenvalue problem. As is well-known, only the first few natu ­
ral angular frequencies and modes are usually calculated with this method, 
because of computational difficulties with the hyperbolic functions. Due 
to this limitation, the need arises for a numerical method to simulate the 
dynamical behaviour of the beam. 

In a joint paper, [ZVV], we developed a finite element method (FEM) to ap­
proximate the solution of the model problem for arbitrary initial conditions. 
(Ironically we also found it possible to calculate eigenvalues and eigenfunc­
tions more accurately with the FEM .) It was necessary to adapt standard 
procedures to deal with the discontinuity in the derivative that arises as a 
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result of the elastic joint. We made the assumption that damping would not 
influence t he solution significantly on a small time scale. We now invest igate 
the validity of this assumption, and also deem it prudent to include the effect 
of rotary inertia. 

In the paper [ZVV], only Hermite piecewise cubics were used as basis func­
tions. In this investigation we also demonstrate the effectiveness of Hermite 
piecewise quintics. 

From Section 3.1 we have the variational formulation. The Galerkin approxi­
mations for the eigenvalue and initial value problems are given in Section 4.l. 
eWe do not consider the equilibrium problem.) In Section 4.2 we showed ho"v 
the standard basis functions are adapted to deal with the discontinuity 111 

the derivative. 

In Section 6.2 we compute the natural angular frequencies and modes of 
vibration from the characteristic equation for comparison purposes. The 
computation of the matrices is discussed in Section 6.3. 

In Sections 6.4 and 6.5 numerical results are presented that demonstrate 
not only the effect of damage on the motion of a beam but also the effect of 
damping and rotary inertia. We also investigate t he use of Hermite piecewise 
quintics as basis functions instead of Hermite piecewise cubics. 
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6.2 	 N atural frequencies and modes of vibra­
t ion 

One way to calculate the natural angular frequencies and modes of vibration 
for the damaged beam is to apply the method of separation of variables 
directly to Problem 1 (from Section 2.3). 

For the case T = 0 (without rotary inertia), we have the following eigenvalue 
problem: 

W(4) - .Aw 0, 0 < x < 1, x I:- a, 

w(O) w'(O) - w" (1) = w"'(l) 0, 

w(a+) w(a-), 

w"(a+) w"(a -) , 
w'" (a+) w '" (a -) , 

w" (a) ~(w'(a+) - w'(a-)). 

For this eigenvalue problem it is possible to find so called exact solutions. 
It is convenient to introduce the positive real number u, with .A = u4 

. Con­
2sequently u = vf).. is a natural angular frequency. Analogous to the case of 

the undamaged beam, the corresponding mode is of the form 

_ ( Asin(ux) - Asinh(ux) + Bcos(ux) - Bcosh(ux) for 0 < x < a , 

w(x) - (C + A) sin(ux) + (D - A) sinh(ux) 
+(E + B) cos(ux) + (F - B) cosh(ux) for a < x < 1. 

Note that the boundary conditions at x = 0 have already been taken into 
account. 

From the continuity conditions and the jump condition at x = a, the con­
stants C, D, E, and F can be expressed in terms of A and B. Finally, from 
the two boundary conditions at x = 1, the characteristic equation for u can 
be constructed from 

(6.2.1) 
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where 

-(sin v + sinh v) + ov (sin va + sinh va) x 
2 

(sin v cos va - sinh v cosh va - cos v sin va + cosh v sinh va), 
ov 

- ( cos v + cosh v) + - (cos va + cosh va) x 
2 

(sin v cos va - sinh v cosh va - cos v sin va + cosh v sinh va) 
ov 

-(cos v + cosh v) + -(sin va + sinh va) x 
2 

(cos v cos va - cosh v cosh va + sin v sin va + sinh v sinh va), 
ov 

(sin v - sinh v ) + -(cos va + cosh //a) x 
2 

(cos v cos va - cosh v cosh va + sin v sin va + sinh v sinh va). 

Solving equation (6.2.1) numerically using the Newton-Raphson method, 
yields the natural angular frequencies for the damaged beam. For each na­
tural angular frequency a corresponding mode can then be obtained. As is 
expected, only the first few natural angular frequencies and modes could be 
calculated, as it is difficult to handle the hyperbolic functions numerically 
for large values of v. 

Numerical results obtained using the finite element method- using cubics as 
well as quintics as basis functions- are given in Section6.4. 
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6.3 Computation of Matrices 

The matrices K , Land M are defined in Section 4.1 in terms of the bilinear 
forms defined in Section 3.1. The computation of the matrices is complicated 
by the interface conditions which results in non-standard basis elements. 
In this section we give an indication of how we went about in computing 
these matrices. The first step is to reorder the basis elements constructed in 
Subsection 4.2.2. 

Consider the matrix j\1o: 

[J\!IoJi j = (¢i' ¢j) cPi1cPjl + 11 cPi2cPj2.= lQ 
ote that ¢i (0, cPi) or (cPi ,O) except when we are dealing with a basis 

element associated with the node xp = 0: , the location of the damage. In 
general then, the entries will be those of the standard mass matrix for an 
undamaged beam. Now suppose one of the basis elements are associated 
with xp : 

- (2)
Again the result will be the same as in the standard case. The same for cPP . 

On the other hand, suppose ¢i = ¢;2) then 

[j\10lij = let cPj1 cPi l + 0, 

which is not the same as for an undamaged beam. Similarly for ¢i = ¢;~. 
Thus the standard matrix has to be modified for the damaged beam. 

We have the same situation for the matrix Mr where we define 

There is an additional complication for the K -matrix: 
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Only four entries in the standard K-matrix will change due to the additional 
term, Cu~(ex) - 'U'l(ex)) (v~(ex) - v~(ex)) /6, in the bilinear form b. 

For greater clarity we will explain the procedure in another way. In the 
discussion that follows, we refer to ¢~k) as a Type k basis function. 

In modifying the matrices for an undamaged beam to the matrices for a dam­
aged beam, we have to keep in mind that the Type 1 basis function associated 
with xp = ex, has changed. By replacing the row and column associated with 
the Type 1 basis function at x P' in the matrix of the undamaged beam, by 
two rows and columns respectively, provision is made for the modified basis 
function. The values in the matrix in these two rows and columns have to be 
modified accordingly. For the K -matrix one must also keep the additional 
term in mind. 

Having computed Mo, Mr and K we are done since L p,K + kMo and 
M = j\!fo + Mr. 
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6.4 N umerical results . Eigenvalue problem 

Cubics as basis functions, are usually sufficiently accurate in solving one­
dimensional vibration problems with the finite element method. In a joint 
paper [ZVV] we discussed the use of cubics as basis functions for the damaged · 
beam. 

In this section of the thesis we also consider numerical convergence of the 
eigenvalues. The order of convergence that is suggested by the numerical 
results is also compared to the order obtained from the theory. Additionally, 
quintics are considered as basis functions. The main reason for this is that 
cubics are not compatible with reduced quintics in plate beam models . We 
also investigate the effect of rotary inertia. 

6.4.1 Cubics 

Natural angular frequencies and modes for the vibration problem are calcu­
lated by solving the eigenvalue problem with the FEM. 'vVe developed the 
code to construct the relevant matrices in Matlab and use standard Matlab 
subroutines to calculate the eigenvalues and eigenvectors of the generalised 
eigenvalue problem. 

It is possible to compare only the first few FEM eigenvalues to the so called 
exact eigenvalues calculated from the characteristic equation. Thereafter 
the exact values can not be computed accurately and the F EM is used to 
calculate the eigenvalues. 

In Table 6.1 we list values for the eigenvalues obtained from the characteristic 
equation (see Section 6.2) and values obtained by the FEM using cubics as 
basis functions with 20, 40, 80 and 160 subintervals respectively. This give 
approximations for respectively the first 40, 80 , 160 and 320 eigenvalues. 
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). (20) ). (80) 
t t 

1 11.81469 1l.81469 11.81469 11.81469 1l.81469 
2 406.01614 406.01757 406.01623 406.01615 406.01615 
3 3806.05283 3806.17742 3806.06067 3806.05332 3806.05287 
4 12544.12940 12545.47137 12544.21439 12544.13473 12544.12972 
5 39943.82322 39957.35763 39944.68387 39943.87724 39943.82661 

Table 6.1: Eigenvalv,es from the characteristzc equation as well as FEM ei­
genvalues using cubics as basis functions with c5 = 0.1 and Ct = 0.5. 

Throughout. t.his sed.inn n clellntp. th>:> num ber of subintervals. (All of equoJ 
length. ) 

To investigate the convergence of the FEM eigenvalues, we calculate the 
relative difference between FEM approximations, that is (). (2n) - ). (n)) / ). (2n). 

These differences are calculated and listed in Table 6.2 for n = 20, 40, 80 
and 160 subintervals respectively. 

n = 20 n = 40 I n = 80 n = 160 

6 6.1 X 10-4 3.9 X 10-5 2.5 X 10-6 l.6 X 10-7 

12 l.1 x 10 -'4 7.6 x 10 4 4.9 x 10 5 3.1 x 10 -b 

24 2.2 x 10-1 l.2 X 10-2 8.6 X 10-4 5.5 X 10-5 

48 - 2.2 x 10 1 1.3 x 10 2 9.2 X 10-4 

Table 6.2: Relative differences fOT FEM eigenvalues using cubics as basis 
functions. 

The tendency of the relative difFerence to decrease (by roughly a factor 10) 
each time that the number of subintervals is doubled , is empirical verifica­
tion that there is convergence of the FEM eigenvalues. Vve found that the 
eigenvalues computed from the characteristic equation were less dependable. 

It is necessary to determine a relationship between the number of FEM eigen­
values that is sufficiently accurate (criterion to be specified) and the number 
of subintervals used. 

A relative difference strictly lCtls than 10-3 is considered sufficiently accurate 
for our purpose. Using this as criterion, we find that approximately a sev­
enth of the 2n eigenvalues calculated using n subintervals, yields a relative 
difference, ( ).(2n) - ).(n))/).(2n) , strictly less than 10-3 , see Table 6.2. 
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The relative difference between the FEM eigenvalues with 160 and 320 subin­
tervals is an indication of the relative error between the exact eigenvalue and 
the FEM eigenvalue using 320 subintervals. 

Since we use (>,(320) >-(160))/ >-(320) as measure of the relative error, 
(>- - >-(320)) / >-, we conclude that the first 90 eigenvalues obtained usmg 
320 subintervals yield a relative error that is sufficiently accurate. 

An indication of the order of convergence of the FEM eigenvalues can be 
obtained from the ratio of two successive differences 

>-(2n) _ >-(n)I/I>-(4n) _ >- (2n) I 
1 t t t t ' 

Typical results are listed in Table 6.3 . 

l>-i:3n ) _ >-~n) I /I >-;4n) _ >-?n) I 
z n = 20 n = 40 n = 80 

1 10.25 0.03 0.14 
3 15.88 16.41 6.57 
6 15.53 15.88 15.72 
12 14.23 15.57 15.90 
24 18.29 14.47 15.62 

Table 6.3 : Relationship between successive relative differences wzth cubzcs as 
basis functions. 

These relative differences decrease by roughly a factor 16 if the number of 
subintervals is doubled. From this it would appear that the convergence is 
of order h4 which matches the theory, Section 5.2. 

It is observed that those differences not yielding a factor 16 typically occur 
in the right top part as well as the left bottom part of Table 6.3. These 
deviations are illustrated by the first , third and 24th eigenvalues: 

Firstly, the accuracy of an approximation can decrease if the number of 
subintervals is increased. This is due to an increase in the roundoff error and 
has significant effects in situations where the errors are already small. For 
example, FEM approximations for the first eigenvalue yield 

(>-i40) _ >-i20)) = -1.1 x 10- 13 while (>-i80) - >-i40)) = 3.8 x 10- 12 . 

From the theory, Section 5.2, we know that the FEM approxirnations of an 
eigenvalue will decrease if the number of subintervals is increased. This can 
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be used to detect cases where the effect of the roundoff error is greater than 
the advantageous effect of an increase in the number of subintervals used. 

Rounding error also explain the decrease in the ratios for the third eigenvalue 
from roughly a factor 16 to 6.5. This situation differ from the first eigenvalue 
in that the decrease (improvement) in the relative difference was just partially 
cancelled by the increase in the roundoff error. 

Secondly, as we have showed previously, there is a relationship between the 
number of FEM eigenvalues that can be calculated sufficiently accurately and 
the number of subintervals used. The 24th eigenvalue is such an example. 
The effect of the poor approximation of .\~~O ), is seen in Table 6.3 in that 
18.29 > 14.47. This is expected as only the first six eigenvalues obtained , 
using 20 subintervals, yield relative errors less than 10-3 

6.4.2 Quintics 

We now consider quintics as basis functions, and compare the results to the 
case where we used cubics. 

In Table 6.4 we list values for the eigenvalues obtained from the characteristic 
equation and values obtained by the FEM using quintics as basis functions 
with 2, 4, 8 and 16 subintervals respectively. This gives approximations for 
respectively the first 6, 12, 24 and 48 eigenvalues. 

1 11.81469 11.81469 11.81469 11.81469 11.81469 
2 406.01614 406.01954 406.01618 406.01614 406.01614 
3 3806.05283 3822.51900 3806.09344 3806.05297 3806 .05283 
4 12544.12940 12844.88875 12544.53719 12544.13441 12544.12941 
5 39943.82322 41569.18041 40042.72518 39944.02589 39943.82387 

Table 6.4: Eigenvalues from the characteristic equation as well as FEM ei­
genvalues using quintics as basis functions with <5 = 0.1 and ex = 0.5. 

If these values are compared to those in Table 6.1, it seems as if the same 
accuracy can be obtained, using quintics as basis functions, with less subin­
tervals, than in the case where cubics were used as basis functions. For 
example, the fifth FEM eigenvalue using quintics as basis functions with 

 
 
 



120 CHAPTER 6. APPLICATION. DAlvIAGED BEAM 

16 subintervals, already yields a better approximation than using cubics with 
80 subintervals. 

As in the case with cubics as basis functions, we investigate the convergence 
of the FEM eigenvalues by considering relative differences, PI (2n) _)., (n)) /)., (2n). 

These values are are listed in Table 6.5 for 2, 4, 8 and 16 subintervals re­
spectively. 

'/, n =2 n=4 n = 8 n = 16 
1 2.1 x 10-8 7.9 X 10- 11 1.2 X 10- 11 1.7 X 10- 11 

2 8.3 X 10-6 9.5 X 10­ 8 3.4 X 10-10 1.3 X 10- 11 

4 2.4 X 10­ 2 3.2 X 10-5 4.0 X 10-7 1.4 X 10-9 

8 - 3.9 X 10-2 7.2 X 10-5 8.2 X 10-7 

Table 6.5: Relative differences for FEM eigenvalues using quintics as basis 
functions . 

The numerical results suggest convergence of the FEM eigenvalues since the 
relative error decreases (by roughly a factor 100) each time that the number 
of subintervals is doubled, see Table 6.5. 

For approximately a third of the 3n eigenvalues computed , using n subinter­
vals , the relative difference ().,(2n) - ).,(n))/).,(2n) is strictly less than 10-3 . 

As with the cubics, we now consider the ratio of two successive differences 

to get an idea of the order of convergence. Typical results are listed in 
Table 6.6. 

As was the case in Table 6.3, the values in the top right of Table 6.6 exhibit 
effect of roundoff error and the values in the bottom left the result of eigen­
values not calculated sufficiently accurately. From this it would appear that 
the order of convergence is h8 which matches the theory, Section 5.2. 

To compare the accuracy of the FEM eigenvalues using quintics as basis 
functions to the case using cubics as basis functions , we choose the number 
of subintervals in each of the cases such that the sizes of the matrices in 
the two cases are equal. For example, using 30 subintervals for cubics yield 
61 x 61 matrices and 20 subintervals for quintics 62 x 62 matrices. We then 
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IAr~n) ­ Ain)I/IAi4n)­ Ai~n)1 

~ n=2 n=4 n=8 
1 265.60 6.75 0.69 
2 87.21 278.22 25.45 
3 405.90 278.67 319.70 
4 745.69 80.59 291.89 
5 15.43 488.57 311.65 
6 16.24 330.71 307.27 
7 304.98 166.95 286.96 
8 302.37 540.94 87.70 

Table 6.6: Relationship between successive relative differences with quintics 
basis functions. 

compare the eigenvalues calculated in the two cases with the eigenvalues 
computed using cubics with 320 subintervals. (We use the first 90 FEM 
eigenvalues using cubics as basis functions with 320 subintervals as the FEM 
approximation to the first 90 exact eigenvalues.) 

Our numerical experiments indicate that using quintics with n subintervals , 
yield at least double the number of eigenvalues to the prescribed accuracy 
(relative error strictly less than 10-3 ) than when cubics are used with 3n/2 
subintervals. In Table 6.7 we give an example of results obtained. 

In Table 6.7 we use the following notation: 

• 	 Let Ai denote the ith FEM eigenvalue that we use as approximation 
for the exact eigenvalue. (In this case those FEM eigenvalues obtained 
using cubics as basis functions with 320 subintervals.) 

• 	 To distinguish between the FEM eigenvalues computed using quintics 
and cubics as basis functions, we denote the ith FEM eigenvalue using 
cubics with 30 subintervals by A~c) and using quintics with 20 subinter­
vals by A~q). 

Note that the FEM approximations for the first eigenvalue are identical in 
both cases . 

From Table 6.7 we see that using cubics, the first 9 eigenvalues (approxim­
ately a seventh of the number of eigenvalues calculated, 61/7 ~ 8.7) have 
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1 2.6 X 10-6 2.6 X lO- b 

5 6.8 x 10 -5 9.6 X 10 9 

9 8.5 X 10-4 4.3 X 10-7 

10 1.2 X 10-3 8.6 X 10-7 

15 6.8 x 10-3 4.6 X 10-5 

20 1.9 X 10­ 2 1.4 X 10-4 

Table 6.7: Comparzng FEM ezgenvalues uszng quintics with 20 subzntervals 
to FEM eigenvalues using cubics wzth 30 subintervals. 

relative difference less than 10-3 . Using quintics , the first 20 eigenvalues, 
that is approximately a third of the number of eigenvalues calculated , have 
relative difference less than 10-3 . 

In conclusion, for the same computational effort (same size of the matrices), 
quintics yield twice as many eigenvalues sufficiently accurate than when cu­
bics are used i.e. to obtain the first k FEM eigenvalues with relative difference 

3less than 10- ) 7k/2 subintervals must be used with cubics as basis functions 
and k subintervals with quintics. 

6.4.3 T he effect of rotary inertia 

We now consider the effect of rotary inertia on the eigenvalues and use 
quintics as basis functions. 

Note that this eigenvalue problem differs from the one excluding rotary iner­
tia, Section 3.5. The parameter r is a measure of the effect of rotary inertia, 
Section 2.2. 

We start by establishing convergence of the FEM eigenvalues for the case 
where rotary inertia is included, thereafter, we investigate the effect of rotary 
inertia on the eigenvalues. 

As for the case without rotary inertia, the numerical results indicate conver­
gence of the FEM eigenvalues. In Table 6.8 typical results for the relative 
differences, (>-(2n) - >- (n))/ >- (2n), including rotary inertia, are listed for 2, 4, 8 
and 16 subintervals respectively. 
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n=2 n=4 I n=8 n = 16 

1 2.1 X 10-8 7.8 X 1O-11 2.9 X 10-11 7.6 X 10-10 

2 7.8 X 10-6 8.9 X 10-8 3.2 X 10-10 1.4 X 10- 11 

4 1.6 x 10 3 4.0 x 10 6 2.0 x 10 -tl 7.9 X 10-11 

8 - 1.6 X 10-2 9.5 X 10-5 3.3 X 10-7 

Table 6.8: Relatwe differences for FEM eigenvalues including rotary inertza 
with 11r = 4800 . 

The numerical results again suggests convergence of the FEM eigenvalues. 
The same pattern with respect to the order of convergence is observed as for 
the case without rotary inertia. 

The presence of rotary inertia decreases the values of corresponding eigenval­
ues in comparison to the case without rotary inertia. Furthermore, the bigger 
the parameter r, the greater the change in the eigenvalues in comparison to 
the case without rotary inertia. In Table 6.9 we list eigenvalues for different 
values of r as well as for the case without rotary inertia (r = 0). We use 32 
subintervals for these approximations. 

In Table 6.9 Ai denotes the ith FEM eigenvalue. 

I i I Aiwith r = 0 I 11r = 19200 I 11r = 4800 I 11r = 1200 I 

1 11.81469 11 .81138 11.80145 11.76186 
2 406.01614 403.97925 397.71100 370.06960 
4 12544.12940 11057.05461 5401.71657 3576.19925 
8 273293.79309 169832.12061 158744.64019 125970.79578 

Table 6.9: FEM eigenvalues for different effects of rotary inertia using 32 
subintervals. 

These results are for the dimensionless case. Where rotary inertia is included , 
two dimensionless constants , T and r, must be calculated if the results is to 
be connected to a specific beam, Section 2.2. 

Modes 

In [ZVV] we showed that only up to the seventh so called exact mode can 
be computed before computational difficulties are encountered. Therefore we 
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consider the convergence of the FEM modes using quintics as basis functions 
and include rotary inertia. 

Let w~n) denote the F EM approximation for the ith mode using n elements, 
normalised with respect to the infinity norm , II . 1100' 

The way in which we ordered our ba5i5 elements implies that the firsL n + 1 
components of w~n) are associated with the function values at the n+ 1 nodes. 
The next n + 2 values represent the values of the first order derivatives at the 
nodes. Two values are associated with the point where the damage occurs. 
Quintics as basis functions also yield approximations for the values of the 
second order derivatives, and the last n + 1 values of w~n) represent the 
values of the second order derivatives at the nodes. 

In Table 6.10 the numerical convergence of the FEM modes are illustrated. 
We list the differences Ilw~ 2n) - w~n)lloo, II(w?n)y - ( w~n)Ylloo and 

II (w?n))" - (w~n))"l l oo for different values of n. 
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Ilw;LnJ - wtJ1100 
II(wi2n)), ­ (win))'lloo 

II (w?n))" - (win))" II 00 
z n=4 n=8 n = 16 

6.83140 X 10-6 4.56592 X 10-7 2.578292 X 10-8 

1 9.65478 X 10 -0 6.45299 X 10 1 3.64876 X 10 -I) 

2.48714 X 10 -0 6.33818 X 10-1) 8.43408 X 10-» 

2.49236 X 10-5 2.09579 X 10-6 1.47615 X 10-7 

1.18092 X 10 -4 9.93009 X 10 -0 6.99423 X 10 12 
1.96527 X 10 -'I 6.46058 X 10 -0 2.06282 X 10 -I 

1.46719 X 10 5 6.47026 X 10-6 5.44719 X 10-7 

1.61154 X 10-4 7.01558 X 10-5 5.90054 X 10-04 
8.16804 X 10 -3 2.53189 X 10 -4 8.28369 X 10 -0 

8 

3.70776 X 10 4 6.16539 X 10 6 1. 75076 X 10-0 

7.90080 X 10-3 1.30886 X 10-4 3.71925 X lO-b 

6.26608 X 10 -L 1.00243 X 10 -j 2.90161 X 10 -b 

3.20162 X 10-4 9.48592 X 10-5 9.65450 X 10-7 

14 1.68312 X 10 -£ 4.23303 X 10 ·3 4.29824 X lOb 

1.17602 1.65933 X 10 1 1.00174 X lO- L 

16 

- 9.03027 X 10-5 4.81429 X 10-6 

- 4.78628 X 10-3 2.60210 X 10-4 

- 1.91004 X 10 -1 2.44992 X 10 -L 

Table 6.10: Convergence of FEM modes with 6 0.1, Go 0.5 and 
1/r = 4800. 

The rate at which convergence of the function values and the first order 
derivatives occur, differ from the convergence rate of the second order de­
rivatives, which is much slower. Those modes that are associated with the 
first eigenvalues, starting with the smallest, converges faster than the modes 
associated with later eigenvalues. (Convergence in the energy norm implies 
that the second order derivative converges in the mean.) 
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6.5 Numerical results. Initial value problem 

Consider the initial value problem. From Section 4.1 we have the following 
system of differential equations 

Mul/(t) = -Lu'(t) - Ku(t). 

For the numerical experimentations) we choose the following initial condi­
tions: u~(O) = 0 and Uh(O) a quintic "solitary wave)). 

To approximate the solution of this problem we use the difference scheme in 
Section 5.4 with Po = 2Pl = 1/ 2. 

( 
1) 1 ) M L (!VI-+-+-K Uk+l+ -2-+-K Uk+

M2 2M 4 bt2 2 

!VI L 1)
( M2 - 2M + 4K Uk-l = O. 

Since t he initial velocity is zero , we have U1 = U-l' 

The results obtained for the eigenvalue problem motivated us to use quintics 
as basis functions. 

Convergence 

The verify convergence) we choose a fixed spacial discretization and a fixed 
final time I. Then) starting with 10 time intervals) we increased the num­
ber of intervals until the relative difference is strictly less than 10-3 . This 
approximation is then considered as sufficiently accurate for the system of 
differential equations. 

Decreasing the time step size, we found the first order derivatives needed 
approximately double the number of time steps to yield the same relative 
difference in II . 1100 than the function values do. It seems as if the the second 
order derivatives do not converge point wise, if they do) the convergence is 
very slow. This is not altogether surprising (see Section 5.4). 

To establish the number of elements needed for our approximation , we choose 
a fixed final time, I) and time step size, M. Then the number of elements, 
starting with 10, is doubled until the relative difference satisfy our criterion. 
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Simulation of the motion of beam 

We are primarily concerned with the detection of damage. In this section we 
give an indication of the effect of respectively damage, damping and rotary 
inertia on the motion of a beam. 

Our experiments indicate that measurable differences between the undam­
aged and damaged beams occur in displacements as well as gradients. 
(Table 6.11.) Viscous damping has no significant effect on the motion. Look­
ing at the modal analysis this was expected, since it only effects the first few 
modes. Adding Kelvin-Voigt damping, the differences between the damaged 
and undamaged cases decrease , but is still clearly detectable. (Table 6.12.) 
The presence of rotary inertia can have a more significant effect on the dif­
ference between the motion of the damaged and undamaged beams. (Tables 
6.13 and 6.14). 

To illustrate the above effects we compare the motion of an undamaged beam 
to that of a damaged beam where the initial velocity is zero and the initial 
position a 'solitary wave". For this simulation we choose C\' = 0.4, 6 = 0.1 
which is rat her excessive, 80 elements , T = 0.02 and 400 time subintervals. 

Almost immediately after the first wave front pass through the damaged 
point, measurable differences in displacements as well as gradients between 
the two cases occur. (See Figure 6.l.) In Table 6.11 we compare the dis­
placement of the damaged and undamaged beams on T = 0.02 at x = 0.3 
and x = 0.7. 

I x I Undamaged beam I Damaged beam I % difference I 

0.3 2.325 x 10-1 l.505 X 10-1 8.2 
0.7 4.733 x 10-1 5.508 X 10-1 7.8 

Table 6.11: Eff·ect oj damage during motion where 6 = 0.1 , C\' = 0.4, T = 0.02. 
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Figure 6.1: Companng the moNon of an undamaged beam to that of a dam­
aged beam where 6 = 0.1, Ct' = 0.4 and T = 0.02. 

vVe now add Kelvin-Voigt damping to the same situation as in the previous 
5
case. We use f-L = 3.469 X 10- . This value for f-L was obtained from [JVRVj. 


I x I Undamaged beam I Damaged beam I % difference I 


1.378 X 10-1
2.099 x 10-1
0.3 7.2 
4.716 x 10-1 
 5.436 X 10-1 
 7.20.7 

Table 6.12: Effect of Kelvin- Voigt damping on the damage during motion 

where 6 = 0.1, Ct' = 0.4, T = 0.02 and f-L = 3.469 X 10-5 . 


The presence of rotary inertia can make the differences more difficult to 
detect. An example is given in Tables 6.13 and 6.14. 
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x I Undamaged beam I Damaged beam I % difference I 

-2.525 x 10 1 
 -2.065 x 10 1
0.2 4.6 
4.762 x 10-1 
 5.248 X 10-1
0.6 4.9 

Table 6.13 : Effect of Rotary inertia on the damage during motion where 
o= 0.1, c¥ = 0.4, T = 0.02 and 11r = 19200. 

I x I Undamaged beam I Damaged beam I % difference I 
0.2 -2.236 x 10-1 -2.092 x 10 1 l.4 
0.6 4.140 x 10- 1 4.287 X 10- 1 l.5 

Table 6.14: Effect of Rotary inertia on the damage during motion where 
o= 0.1 , c¥ = 0.4 , T = 0.02 and 11r = 4800 . 


 
 
 



Chapter 7 

Application. Plate beam model 


7 .1 Introduct ion 

We consider Problem 3 (from Section 2.6). It is a mathematical model for 
a plate connected to two beams. Problems of this type are clearly of great 
practical importance. The plate can be rigidly connected to the beams or 
simply supported by the beams. The same model can be used for an I-shaped 
structural member (depending on the type of vibration) . For simplicity we 
restrict our investigation to the case of a plate supported by beams. If the 
plate is rigidly connected to the beams, it may result in a problem with six 
unknown functions (excluding shear) due to dynamical effects. Even in our 
restricted case, one may easily encounter very large matrices. 

In collaboration with others, [ZVGV1], we considered the equilibrium and 
eigenvalue problems of a rectangular plate supported by two beams at the 
boundary. In this thesis we extend the investigation and include the effect 
of rotary inertia. 

The computation of the matrices is explained in Section 7.2. We use reduced 
quintics for the plate, which necessitates the use of quintics for the beams. 
We treat the equilibrium problem in Section 7.3 and the eigenvalue problem 
Section 7.4. 
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7.2 Computation of matrices 

For the numerical experimentation we consider a square plate, 0, rigidly 
supported at two opposing sides and supported by identical beams at the 
remaining sides. The plate has thickness h and the beams are of square 
profile with thickness d. Furthermore, we assume the plate and beams are of 
the same material. (These restrictions are evidently not necessary.) 

The reference configuration 0 is the rectangle with 0 < Xl < 1 and 
o < X2 < l. Those parts of the boundary where Xl = 0 and Xl = 1 are 
denoted by ~o and ~l respectively and correspond to the rigidly supported 
parts of the boundary. Those parts where X2 = 0 and X2 = 1 are denoted 
by r 0 and r 1 respectively and correspond to the sections of the boundary 
supported by beams. 

7.2. 1 B asis element s 

For the plate we use only reduced quintics as basis functions. These functions 
are in H2(0) or fully conforming, in finite element language. They are defined 
on a triangular mesh. The mesh for the rectangle 0 is generated in the 
following way: The interval [0 , 1] is divided into nl subintervals and the 
interval [0 , 1] into n2 subintervals. This partition of the intervals yields n l x n2 
rectangles. The final triangular mesh is then obtained by dividing each of 
these rectangles into two triangles by connecting the lower left corner with 
the upper right corner. The rectangle 0 is divided into 2nl x n2 triangles. 
Consequently we have 2nl x n2 elements Oi. 

Reduced quintics are defined in Section 4.3.l. The computation of the coeffi­
cients is not trivial and we describe it. in ApppnniY C The choice of reduced 
quintics "force" one to use quintics for the beams. Hermit.e piecewise quintics 
are defined in Section 4.2.l. 
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7.2.2 Standard Matrices 

First we compute standard matrices for the two beams with quintics. The 
procedure is the same as with cubics. 

[Mci°Lj = JO\-YOcPi) C'YOcPj ), [MfOLj = Jo\ , 0cPd C'Yo cPj)' , 

1[Mci1Lj = JO\YlcPi )C'YlcPj) , [MilLj = .Jo C'Yl e,Di)' C'YI e,Dj)' , 

as well as 

Next we compute standard matrices for the plate. These computations are 
quite involved and we provide some detail in Appendix C. 

The bilinear forms are given in Section 3.3. Each basis element is of the 
form ¢i = (cPi, 10cPi, I lcPi)' (The forced boundary conditions are satisfied by 
eliminating certain basis elements.) Now, consider for example 

CO( e,Di , cPj ) involves the restriction of basis functions e,Di and e,D j to the bound­
ary roo These restrictions are non-zero only for some of the basis functions 
associated with nodes on roo (The restriction of a reduced quintic on ro 
is an one-dimensional quintic. ) The result is Mij = lvtg + {3 MDo + {3Mrl. 
Consequently M = Mil. + {3M r o + {3Mr 

l, 

where 

The computation of the K-matrix is the similar , 
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7.3 Equilibrium problem 

To find the Galerkin approximation for the solutions of the equilibrium prob­
lem, we solve a system of linear equations. 

Problem BD 

K ii = F, where Fi = (f, cPi)' 

The parameter a gives an indication of the stiffness of the beams in compa­
rison to that of the plate. Increasing the value of ex implies an increase in 
the stiffness of the beams and a = 0 corresponds to the case where two sides 
are free. 

For different values of a we compare in Table 7.1 the FEN! approximations 
for the maximum displacement, to the so called exact solution. See [TW]. 
(Interesting historical remarks are found in [TW] .) 

Note that the maximum displacement occurs at the centre of the plate as a 
result of symmetry. 

We consider a square plate with the same number of equal intervals per side. 
We denote this number by n , and use it to distinguish between different 
meshes. 

Denote the maximum displacement obtained from the so called exact solution 
by U max and the FEN! approximation of the maximum displacement where n 
subintervals are used, by u~2x. Choose Poisson 's ratio l/ = 0.3. 
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(Umax - u~L) / Umax 

I I Exact n=2 I n=4 I n=8Q 

100 4.09 X 10-3 2.0421 X 10-3 2.9308 X 10-4 2.3653 X 10-4 

30 4.16 X 10-3 1.0507 X 10-3 6.5975 X 10-4 7.1510 X 10-4 

10 4.34 x 10 .j 1. 7896 x lO- j 1. 7460 X 10- 4 1.2220 X 10-4 

6 4.54 X 10-3 3.5724 X 10-3 5.0933 X 10-3 5.1428 X 10-3 

4 4.72 x 10 -j 2.9835 x 10-3 1.547 x lO- j 1.5006 X 10-3 

2 5.29 X 10-3 3.2719 X 10-3 2.0580 X 10-3 2.0181 X 10-3 

1 6.24 x lO- j 1.0228 x lO- j 9.3231 X 10-5 6.2112 X 10-5 

0.5 7.56 x 10- 3 2.2617 X 10-3 1.6195 X 10 - 3 1.5973 X 10- 3 

0 1.309 X 10-2 3.2828 X 10-4 2.8584 X 10-4 2.8129 X 10-4 

Ta.ble 7.1: Comparison oj exact values with FEM approximations oj ma:;;­
imum displacement. 

The fact that the relative error originally improves if we double the number 
of intervals from 2 to 4 and then remains almost the same, suggests that the 
so called exact solution is not very accurate, as could be expected since only 
a few significant digits are given. 

The relative difference between consecutive FEM approximations strenghtens 
this observation as can be seen in Table 7.2. 

Q (u~L - u~~x)/u~~ (u~~x ­ u~~x) / u~~x 
100 1.748505 X 10- 3 5.653982 X 10-5 

30 1.711612 x 10 3 5.539486 x 10 5 

10 1.614713 X 10-3 5.238781 X 10-5 

6 1.528720 x 10 3 4.971930 x 10 5 

4 1.433896 X 10-3 4.677682 X 10-5 

2 1.211367 X 10-3 3.987090 x 10 5 

3.111738 X 10-51 9.294900 X 10-4 

0.5 6.412267 x 10-4 2.214781 X 10-5 

0 4.242264 X 10-5 4.550660 X 10- 6 

Table 7.2: Comparison oj FEM approximations Jar the maximum displace­
ment. 
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7.4 E igenvalue problem 

As mentioned before, Section 4.4, the occurence of eigenvalues has a highly 
irregular pattern in the two-dimensional case. We have an elementary ex­
ample to illustrate this, and also to show how difficult it can be to identify 
eigenvalues with multiplicity. 

7.4. 1 Multiplicity of eigenvalues 

Consider the following eigenvalue problem, 

- \]2U = AU on the unit square with 'U = 0 on the boundary. 

Clearly, 
u(x, y) = sin(mrx) sin(m7fY) is an eigenfunction, for nand m integers. The 

2 + m 2corresponding eigenvalue is A = n . 

The popular difference scheme is 

or 

where h is the length of a subinterval. 

Let U i ,j = sin(iwk) sin(Jwe), then 

Hence 

Ui ,j satisfies the boundary conditions if Wk (br)/(n + 1) and 
We = (t'7f)/(n+ 1). It satisfies the difference equations if Ae = h-2(2 -2 cos we) . 
Hence Ui,j is an eigenvector and every eigenvalue is of the form Ak + Ae. 

In Table 7.3 we list the exact eigenvalues for this problem as well as the nu­
merical approximations obtained for different subinterval lengths. We give 
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I i I Exact I h = 0.2 I h = 0.1 I h = 0.05 I h = 0.005 I 
1 19.7 19.3 19.6 19.7 19.7 
2 49.3 45.6 48.2 49.0 49.3 
3 49.3 45.6 48.2 49.0 49.3 
4 79.0 72 76.8 78.4 78.8 
5 98.7 81.6 93.3 97.2 98.3 
6 98.7 81.6 93.3 97.2 98.3 
7 128 108 122 127 128 
8 128 108 122 127 128 
9 168 118 151 163 167 
10 168 118 151 163 167 
11 178 144 167 175 177 
12 197 144 180 192 196 
13 197 144 180 192 196 
14 247 144 217 240 245 
15 247 144 217 240 245 
16 257 170 225 245 254 
17 257 170 225 245 254 
18 286 180 246 275 283 
19 286 180 246 275 283 
20 316 206 283 307 313 

Table 7.3: Comparison of finite d~fference eigenvalues to the exact eigenva­
lues . 

only three significant digits as it is sufficient to illustrate difficulties of match­
ing exact eigenvalues and approximate eigenvalues. 

Let i denote the number of the eigenvalue and h the length of a subinterval. 

Interpreting numerical results with respect to multiplicity of eigenvalues is 
difficult . Great care should be taken to establish whether approximate ei­
genvalues that are close together are an indication of multiplicity of exact 
eigenvalues, or not. 

For example, for h = 0.2 , the eleventh to fifteenth eigenvalues seem to be one 
eigenvalue with multiplicity five, while it actually approximates three diffe­
rent eigenvalues. Another example is the fifteenth and sixteenth eigenvalues 
for h = 0.05. These eigenvalues seem close and one might expect them to 
approximate the same eigenvalue with multiplicity more than one. 
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7.4.2 P late beam 

The generalized eigenvalue problem associated with the plate beam model is 
given by 

Problem CD 

KiD = AM'w. 

In a joint report [ZVGV1] we consider this eigenvalue problem for the plate 
beam model excluding rotary inertia. In this subsection we investigate the 
effect of rotary inertia if included in the model. 

The ratio CY./{3 of the dimensionless constants, CY. = (Ebh)/(aD) and 
{3 = (PbA)(pah), defined in Section 2.6 , with the plate of thickness hand 
the beams of square profile with thickness d, is a measure of the stiffness of 
the beams in comparison to that of the plate. 

In the special case where both the beams and the plate are of the same 
material, we have 

CY. d 
2 

2 
- = - (1 - l/ ){3 ( h ) . 

As the values of d/h increase, i.e. the stiffness of the beams is increased, the 
situation approaches the plate problem where all four sides of the plate are 
rigidly supported. For this problem the eigenvalues and eigenfunctions are 
known. The eigenvalues are of the form 

((mr)2 + (m7f)2)2 

with corresponding eigenfunctions 

sin(n7fx) sin(m7fY). 

Since the exact eigenvalues for the plate beam problem are not available, 
the FEM approximations for the eigenvalues for large values of d/h can be 
compared to the eigenvalues of this limiting case, see Table 7.4. 

Denote the ith eigenvalue for the case where all four sides are rigidly sup­
ported by Ai. The eigenvalues are ordered according to size. The FEM 
approximation of the ith eigenvalue is denoted by A~n) where n subintervals 
are used. 

Throughout this subsection we use Poisson's ratio as l/ = 0.3. 
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Ai8 
) for different values of d/ h 

'/, d/h = 1 d/h = 10 d/h = 100 d/h = 200 Ai 
1 92.6654 386.3556 389.6361 389.6364 389.6364 
2 250.7783 2359.4575 2435.2366 2435.2398 2435.2273 
3 1264.1968 2433.5697 2435.2500 2435.2525 2435.2273 
4 1514.0745 6221.0210 6234.2338 6234.2346 6234.1818 
5 2142.1461 7345.9342 9741.4914 974l.5319 9740.9091 

16462.13648 7725.6133 11308.1573 16463.7086 16463.7127 
10 11599.1799 16455.3398 28158.9627 28159.0563 28151.2273 

Table 7.4: Comparison of FEM ezgenvalues for different values of d/ h with 
eigenvalues of a rigidly supported plate. Rotary inertza zs e:rcluded. 

As d/h increases, the FEM approximation of the eigenvalues approaches the 
eigenvalues of the plate rigidly supported on all four sides. 

For values of d/h that do not correspond to the limit case, the numerical 
convergence of he FEM eigenvalues are illustrated in Table 7.5. 

d/h = 10 d/h = 100 
( A~2n) _ A~n)) / A?n) iA~2n) ­ A~n)) / A?n) 

i n=2 n=4 n=2 n=4 
1 6.94630 x 10 4 8.2136 x 10 -b 7.0601 x 10 4 8.3506 X 10-6 

2 2.1888 X 10-2 4.0239 X 10-4 l.2764 X 10-2 2.9014 X 10-4 

3 4.1506 x 10 -2 4.2474 x 10 4 5.3144 x 10 2 5.6098 X 10-4 

7.3 537 X 10-44 0.6013 x 10 :J 7.:32b6 x lU ' l 0.0438 x 10 -'L 

5 2.3179 X 10-2 9.5076 X 10-4 4.8512 X 10-2 3.1069 X 10-4 

10 2.3327 x 10 1 5.0927 X 10-3 5.7506 X 10-1 1.3180 X 10-2 

Table 7.5: Numerical convergence of FEM eigenvalues for different values 
of d/h. Rotary inertia is e:rcluded. 

Remark Choosing n = 8, yields (486 x 486) matrices which are already 
very time consuming to handle with our available computer hardware and 
software. Therefore we do not consider more than 8 subintervals. 

Including rotary inertia in the model 

In addition to the joint report [ZVGV1] we now establish the effect of rotary 
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inertia on the eigenvalues of the plate beam problem. 

From Sections 2.5 and 2.6 we have the dimensionless constants rb = hi (a 2d2 
) 

and r = I I (a2h). In the experimentation we work with a fixed plate, i.e. a 
and h are fixed, and modify the beams by changing d. Consequently rb and 
r depend on the relationship dlh and indicate the effect of rotary inertia. 

In Table 7.6 we illustrate numerical convergence of the FEM eigenvalues if 
rotary inertia is included. For dl h = 50 we have rb = 2.083 x 10-2 and 
r = 8.3~:3 x 10-6. 

~ ( A~4) _ A~2)) I A~4) (A~8) _ A;4)) I A~8) 

1 7.0599 X 10-4 8.3271 X 10-0 

5 4.8512 X 10-2 3.1350 X 10- 3 

10 5.7479 X 10- 1 l.312 x 10 2 

Table 7.6: Numerical convergence of FEM e~genvalues fOT dlh = 50. Includ­
ing rotary inertia. 
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For the plate supported on all four sides, repeated eigenvalues are expected­
and indeed observed. For the plate beam problem the symmetry is partially 
lost, and the question arises if repeated eigenvalues will occur, and whether 
those FEM eigenvalues will be observed as repeated eigenvalues? 

As with the case excluding rotary inertia, the exact solution is not avail­
able. Again, the exact eigenvalues for the plate rigidly supported on all four 
sides are used to give an indication of what can be expected of the FEM 
eigenvalues. 

As is expected, the presence of rotary inertia decreases the eigenvalues in 
comparison to the case without rotary inertia. The effect of rotary inertia 
is illustrated in Table 7.7. For d/ h = 50 we have rb = 2.083 x 10-2 and 
r = 8.333 x 10-6 . 

II 
Excluding rotary inertia 

A(8) 
t 

Including rotary inertia 
A(8) 

t 

Exact value 

Ai 
1 389.6313 389.5673 389.6364 
2 2435.1545 2434.1536 2435.2273 
3 2435.2439 2434.2429 2435.2273 
4 6234 .2146 6230.1154 6234.1818 
5 9740.7884 9732.7844 9740.9091 
6 974l.5344 9733.5289 9740.9091 
7 16463.2389 16445.6552 16462.1364 
8 16463.6608 16446.0765 16462.1364 
9 28154.6617 28115.3573 2815l.2273 
10 28158.7179 28119.4013 2815l.2273 
11 31564.1696 31517.5097 31560.5455 

Table 7.7: Effect of rotary inertia on the e7genvalues for d/ h = 10. 

In Table 7.7 the multiplicity of eigenvalues of the plate rigidly supported 
on all four sides are observed. These repetitions give reason to expect that 
the corresponding FEM eigenvalues for the plate beam problem may also be 
repeated eigenvalues. 

The question arises whether the FEM approximation will yield repeated ei­
genvalues or will the eigenvalues only be close? 
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