


Chapter 1

Informally, a hash function is defined as a function that compresses an input string of arbi-

trary length to an output string of fixed length (see Figure 1.1).

I Message M

~ HashFunctionhO

I Hash Result h(M)

Definition 1.1 (Hash Function) A hash function is defined as an easily computable func-

tion, hO, that maps every binary sequence of length fJ or greater to a binary sequence of

length m, where fJ and m are specified parameters.

A wide range of terminology exists for hash functions used in security applications [2],[3].

These terms include message integrity codes, message authentication codes, manipulation

detection codes, cryptographic hash functions or simply hash functions. In this document

hash functions used for security applications are referred to as cryptographic hash functions

or hash functions for conciseness.

Hash functions have their origin in the field of computer science and were originally used

for data storage and retrieval [4]. For data storage applications a hash function is used to

compute an abbreviated representation of a filename. This abbreviation is then used to index

and store the file. When the file is retrieved, the hash value for the given filename is used to

retrieve the data. Using a hash function reduces the storage requirements for a data retrieval

system, since only the hash value has to be stored, instead of the entire filename.

 
 
 



Chapter 1

A number of other uses have been found for hash functions. Amongst others, hash functions

are used in compiler symbol tables, graph theory problems, transposition tables in computer

games, spell checkers, tests for set equality and security applications [2], [3]. It is the appli-

cation of hash functions in security solutions that constitutes the topic for this dissertation.

A short list of security applications that rely on the use of cryptographic hash functions is

shown below:

Because of the wide ranging applications of hash functions in security solutions they are

considered important cryptographic primitives. The above list of applications can roughly

be split into two categories:

The list of security applications primarily represents authentication and non-repudiation ser-

vices. When using a cryptographic hash function in an authentication scheme the authenticity

of the message is transferred to the hash value. It is then necessary to provide protection and

authentication for the hash value only, instead of the entire message. The hash value serves

as an authentication tag for the message, and can be appended to a message. A number

of cryptographic protocols and electronic commerce implementations rely on cryptograph-

ic hash functions to provide these services. These protocols include S/MIME, SSL, TLS,

WTLS, SET as well as the EMV specifications.

 
 
 



Chapter 1

The non-linear and one-way property of cryptographic hash functions are exploited when

used in encryption schemes. Cryptographic hash functions can be used as non-linear ele-

ments in block ciphers based on the Feistel structure. Four block ciphers, LION, BEAR,

LIONESS and AARDVARK that are based on the existence of secure cryptographic hash

functions were recently proposed in [7], [8] and [9]. It is also possible to exploit the non-

linear and one-way properties of a cryptographic hash functions in the construction of stream

ciphers.

Earlier in this section a hash function is defined as a function that compresses an input string

of arbitrary length to an output string of fixed length. The inherent weakness of all hash func-

tions is contained within this definition. An intuitive explanation of the inherent weakness

of hash functions is presented in this section.

Consider the projection of an M dimensional space onto an N dimensional space with M >
N, f is the mapping (hash) function (see Figure 1.2).

From Figure 1.2 it is clear that the projection of all possible representations in M onto N

is not unique if M > N. The lack of uniqueness of the mapping function f 0 implies that
more than one vector in M is mapped to the same vector in N. This is known as a collision.

A graphical representation of the above statement is given for M = 3 and N = 2 in Figure
1.3.

 
 
 



Chapter 1

10: ml H nl
10: m2 H nl

From the above it follows intuitively that the number of collisions increases as the ratio ~

increases.

This argument leads to the conclusion that collisions exist for all hash functions as previously

defined. The existence of collisions for all possible hash functions is an inherent weakness.

This weakness is, by definition, also present in cryptographic hash functions. Consequently

it is required that cryptographic hash functions exhibit the properties of one-wayness and

collision resistance. These properties make it computationally intractable to find collisions.

The properties of one-wayness and collision resistance allow hash functions to be used in

order to provide the services of integrity, digital signatures and non-repudiation.

 
 
 



Chapter I

From a cryptographic point of view one-way hash functions are of particular interest. The

one-way property is defined in [1] as:

Definition 1.2 (One-Way Hash Functions) A one-way hash function is defined as a hash

function such that, for virtually every binary string y of length m it is infeasible to find a

binary string x of length fL or greater such that y = h(x).

A further desirable property of cryptographic hash functions is that of collision resistance.

The concept of a collision was introduced earlier in this section. It is appropriate to introduce

a more formal definition of a collision before defining the concept of collision resistance [59].

Definition 1.3 (Collisions) A collision is obtained for a given hash function h() if two dis-

tinct messages, M and 1\1, are found, such that for a specific initial value (denoted by IV):

h(IV, M) = h(IV, 1\1).

Definition 1.4 (Collision Resistant Hash Function) A collision resistant hash function is

defined as a hash function for which it is computationally intractable to find collisions.

Generally when referring to cryptographic hash functions it is expected that they exhibit the

properties of one-wayness and collision resistance.

It can be shown that the presence of collisions is a pre-requisite for one-wayness by applying

the principles of information theory and source coding to the hashing problem.In this model

 
 
 



Chapter 1

the message to be hashed represents the source, the hash result corresponds to the encoded

symbols or messages, and the hash algorithm represents the source encoding algorithm. Let

H(X) be the entropy of the message source (X is a random variable). Let each symbol

Xi represent a message for i = 1,2,3, ... ,M. It is then known that H(X) ~ log2 M. It
is also known that for each symbol to be encoded uniquely with N bits, N is chosen such

that N = log2 M. This implies that M should not exceed 2N if no collisions are required.

However, remember that for cryptographic hash functions:

Hash functions used in cryptographic applications have to be one-way. If the hash result

corresponds to one, and only one input, the property of one-wayness is violated.

The requirement that the input alphabet should have an arbitrary size implies that M ~ 2N

or M < 2N• If M < 2N the source encoding algorithm may become inefficient. From

a cryptographic point of view this is a minor problem. If M ~ 2N the probability of an

encoding error, Pe, becomes non-zero. If Pe =1= 0, collisions exist. If Pe approach 1, the

function becomes one-way. In order for Pe to approach 1, N ~ H(X) - E, for any E > O.

By setting N to a fixed size and choosing M ~> 2N, the above condition is satisfied. Thus

the source coding algorithm becomes one-way but produces collisions. Thus collisions exist,

not only as a result of the requirement of encoding messages of arbitrary length but also as a

result of the requirement for one-wayness. As long as it remains difficult to obtain messages

that have the same hash result, the function is called collision resistant.

In order to demonstrate the need for cryptographically secure hash functions consider the
following example:

Consider a typical electronic transaction. Two parties agree to the sale of a specified item for

RlOOOO,OO.An (electronic) contract is drafted. The seller computes the hash value of the

contract and applies his digital signature to the hash value. The buyer does the same and the

sale is agreed upon. However the parties involved did not utilise a collision resistant hash

 
 
 



function. Consequently the seller was able to draft an alternative contract which has the same

hash result as the original, except that the agreed upon price is changed from RI0000,00 to

R20000,00. The buyer now finds that he is committed to purchase the item in question at

twice the agreed upon price.

In the above example the participating parties relied upon the hash function to provide as-

surance of the data integrity. In effect the message integrity was transferred to the integrity

of the hash function. It is shown that the use of a weak hash function compromises the

security objective of data integrity. Similar examples pertaining to authentication protocols

and encryption schemes may be listed where the failure of the hash function undermines

the security objective. For this reason efficient and strong cryptographic hash functions are

required.

Hash functions are widely used in cryptographic applications. As demonstrated in the pre-

vious section the properties of one-wayness and collision resistance are of particular im-

portance in security applications. During the last decade numerous proposals were made to

construct dedicated hash functions that are both one-way and collision resistant. These pro-

posals include MD4, MD5, SHA, SHA-l, HAVAL, RIPEMD-128 and RIPEMD-160. MD4

was published in 1990 by Rivest [10]. By the end of 1991 it was demonstrated that neither the

first two rounds (Merkle) nor the last two rounds of MD4 (Bosselaers and den Boer [11]) are

collision resistant. The lessons learned from these attacks led to the design of MD5 [12] and

SHA [13]. In 1996 Dobbertin showed that MD4 is not a collision resistant hash function by

demonstrating a technique which allowed the construction of collisions for all three rounds

of MD4 [14]. Within six months Dobbertin demonstrated that collisions may be found for

the compress function of MD5 [12]. Although details of this attack have not been published,

it is believed to be based on similar techniques as described in [14]. Dobbertin has also

shown that these attacks are applicable to RIPEMD-128. The speed with which these attacks

could be adapted to different hash functions derived from the same basic construction is a

cause for concern since it may be indicative of a fundamental flaw in the design of the basic

construction. This concern has led to the design of RIPEMD-160 to replace RIPEMD-128

[15]. In 1998 Dobbertin showed that the first two rounds of MD4 are not one-way. The at-

tacks formulated by Dobbertin utilises techniques borrowed from a wide range of disciplines

ranging from genetic algorithms to Boolean algebra. These hash functions are all based on

 
 
 



Chapter 1

the same design principles and criteria. The weaknesses found in these hash functions may

be indicative of a common design weakness.

As shown above a number of the popular dedicated hash function constructions were found

to be cryptographically inadequate. In particular it was found that the requirement for colli-

sion resistance is hard to satisfy. One of the reasons for this is the threat model used when

considering the property of collision resistance. In this threat model the cryptanalyst not only

has full knowledge of the algorithm used (Kerckhoff's principle [59]) but also has control

over all aspects of the input to the hash function. The attacker is often a legitimate participant

in the system and is trusted to a certain extent. Given the above threat model it should remain

computationally difficult to construct collisions or find a specified hash results.

Cryptographic hash functions are important cryptographic primitives and are widely used in

security applications where message integrity is required. The design of cryptographic hash

functions have proved to be a difficult task. A recent spate of attacks showed that a number

of commonly used hash functions exhibit cryptographic weaknesses. The absence of secure

cryptographic hash functions will make dependable message integrity, non-repudiation and

message authenticity impractical. It is therefore important to understand the basis of the

attacks, determine if they share common elements and establish design criteria to foil these

attacks.

It is the hypothesis that the recent spate of attacks formulated by Dobbertin has a common

underlying structure and that these attacks exploit certain architectural properties of the MD4

family of hash functions.

In this dissertation only dedicated, iterated cryptographic hash functions are studied. In

particular the MD4 family of hash functions are considered. Although a general review of

 
 
 



Chapter 1

generic attacks are included in this dissertation only the attacks formulated by Dobbertin are

considered in depth.

3. Generalise the analysis of MD4 and MD5 to create a framework for the analysis of

iterated dedicated hash functions.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

In order to lay a foundation for the analysis and design of cryptographic hash functions we

present an in-depth study of the current state of cryptographic hash functions. Included in

this study are the definitions (Chapter 1), taxonomy (Chapter 2), generic threats (Chapter

3), common requirements (Chapter 4) and general designs of cryptographic hash functions

(Chapter 5). Once a general foundation is laid for the understanding of cryptographic hash

functions the focus is shifted to practical dedicated cryptographic hash functions.

As part of the focus on dedicated cryptographic hash functions the attacks on MD4 and MD5

are reconstructed (Chapters 6 and 7). The C-programs used to reconstruct these attacks are

attached as Appendix B, C, D and E. This is one of the main objectives of the dissertation. A

novel approach is derived that allows the attack on MD4 to be optimised to obtain a reduction

in computation time for a collision by a factor 64.

Based on the reconstruction of these attacks a generalised attack is formulated (Chapter

8). The generalised attack provides a framework for the analysis of the collision resistant

property of any cryptographic hash function.

 
 
 



Chapter 1

The newly derived framework for analysing a cryptographic hash functions is applied to

reduced versions of SHA and HAVAL (Chapters 9 and 10). Extensive simulations were

performed using the C programming language. A sample of the resulting source code is

included as Appendices F and G. To the best of our knowledge this is the first cryptanalytical

result that has been published on the HAVAL hash function. The result shows that a collision

can be established for a reduced version of HAVAL in less than a minute on a 200 MHz

Pentium Pro. This result suggests that three and even four round HAVAL should not be used

for security applications where message integrity and non-repudiation is required.

The dissertation is concluded by presenting design criteria for dedicated cryptographic hash

functions (Chapter 11). The design criteria is based on the common weaknesses identified

in the analysis of MD4, MD5, SHA, SHA-l and HAVAL. It is the intention that the applica-

tion of these design criteria will defeat the generalised attack on iterated cryptographic hash

functions presented earlier in the dissertation.

3. Create a generalised framework for the analysis of iterated dedicated hash functions

based on the MD4 family.

5. Formulate design criteria to prevent the successful application of the generalised anal-

ysis framework.

 
 
 



CHAPTER 2: TAXONOMY OF CRYPTOGRAPHIC HASH

FUNCTIONS

In Chapter 1 the relevant definitions and properties related to hash functions were defined.

In this chapter a taxonomy of practical cryptographic hash functions is presented, along with

the common approaches to the design and analysis of cryptographic hash functions.

The taxonomy is based on the terminology that exists in the banking community and is taken

from [3]. Cryptographic hash functions are divided into the following categories:

Informal definitions for the categories of hash functions are suggested in [16] and refined

in [3]. The distinction made between the different cryptographic hash functions is based

quantitatively on the following definitions.

 
 
 



Taxonomy of Cryptographic Hash Functions

A MAC is a hash function for which a secret key is required. This adds to the security of the

hash scheme, since the attacker's abilities decrease as his knowledge decreases. However the

requirement for a secret key does not protect the users against an attack by an insider. The

addition of a secret key leads to the additional problem of key management. It does ·however

have the advantage that a secure channell is no longer required for the hash value, since the

secret key protects the hash value. It is however necessary to provide a secure channel for

the key used in the MAC. More formally:

1. The description of h() must be publicly known and the only secret information lies in

the key, K, (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result h(K,x) has a fixed length of

n bits (n ::;32 ... 64).

4. Given h() and X, it is hard to determine h(K,x) with a probability of success signif-

icantly higher than 2-n. Even where a large set of pairs {Xi, h(Xi, K)} is known,

where Xi have been selected by the opponent, it is "hard" to determine the key K or
to compute h(K,x' )for any Xi =I=- X'.

A MDC is a hash function that is computed without knowledge of a secret key. These

functions are known publicly. For these hash functions, no key management is required, but

an authentic channel needs to be provided for the hash value.

Two variants of MDCs are identified in [16] and [3]. The following definitions are used to

distinguish between one way hash functions (OWHF) and collision resistant hash functions

(CRHF).

IAn authentic or secure channel could be provided through encryption of the hash value, a separate channel

or a courier.

 
 
 



Taxonomy of Cryptographic Hash Functions

Definition 2.2 A One Way Hash Function is a function h() satisfying the following condi-

tions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length ofn

bits (n :s; 64).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

Definition 2.3 A Collision Resistant Hash Function is a function h() satisfying the follow-

ing conditions:

1. The description of h() must be publicly known and should not require any secret infor-

mation for its operation (extension of Kerkhoff's principle).

2. The argument X can be of arbitrary length and the result heX) has a fixed length of n
bits (n :s; 128).

(a) given a Y in the image of h(), it is "hard" to find a message X such that heX) = y.

(b) given X and H(X) it is "hard" to find a message X' =I- X such that h(X) =

h(X').

 
 
 



Taxonomy of Cryptographic Hash Functions

5. The hash function must be collision resistant: This means that it is hard to find two

distinct messages that hash to the same result.

The nature of the differences between OWHF and CRHF is discussed in [17]. The underlying

difference between OWHF and CRHF is related to the the type of attack the respective hash

functions are required to withstand. For cryptographic purposes a CRHF is of greater value
than an OWHF.

Implicit to the above definitions are the requirements for one-wayness, computational in-

tractability, collision resistance and simplicity. These requirements are related to both the

functional and security properties of cryptographic hash functions.

A new hash function should therefore be designed to adhere to the above definitions and im-

plied requirements. The definitions and requirements can be made more formal by specifying

quantitative criteria for the terms hard and easy.

2.2 APPROACHES TO THE DESIGN AND ANALYSIS OF CRYPTOGRAPHIC
HASH FUNCTIONS

Two approaches could be considered for the analysis, design and classification of crypto-

graphic hash functions. Since hash functions are used extensively in authentication applica-

tions and protocols [17], hash functions could be classified along the same lines as authenti-

cation codes. In [18] the following classification is given for authentication schemes:

The above classification is not satisfactory when dealing with hash functions. As explained

in Chapter 1 collisions exist for all hash functions. This property of hash functions leaves

only the computation ally secure classification as a viable option. The above classifications

does not contribute a great deal to design criteria for cryptographic hash functions.

 
 
 



Taxonomy of Cryptographic Hash Functions

In [3] Preneel suggests that the same classification scheme be used as that proposed by

Rueppel for stream ciphers. Accordingly one of three approaches are available:

The information theoretic approach and complexity theoretic approach yields interesting

constructions of variable security. In general the constructions based on these two approach-

es are impractical. This leaves the system based or practical approach. In the system based

approach, practical schemes with fixed parameters and dimensions are studied.

There has been numerous proposals for the design of cryptographic hash functions based on

the system based approach to hash functions. Many of these designs are based on existing

cryptographic primitives such as block and stream ciphers. Other proposals utilise modular

arithmetic and the hardness of number theoretical problems as a basis for design. However

the hash functions which have found the widest acceptance in industry are dedicated hash

functions. The following definition of a dedicated cryptographic hash function is presented:

Definition 2.4 (Dedicated Cryptographic Hash Functions) A dedicated cryptographic hash

function is a hash function which has been designed to meet the requirements set for crypto-

graphic applications and is to be used explicitly for hashing purposes.

One family of dedicated hash functions, known as the MD4-family of hash functions, has

found widespread acceptance in industry. Members of this family of dedicated hash func-

tions are used by the Secure Electronic Transaction (SET) protocol specified by Mastercard

and Visa, Secure Socket Layer (SSL) protocol commonly used for securing Internet com-

merce as well as the Secure MIME (S/MIME) protocol used to secure electronic mail to

name a few of the more popular protocols.

In this dissertation the practical approach is used to analyse dedicated cryptographic hash

functions and establish suitable design criteria for dedicated cryptographic hash functions.

 
 
 



Before proceeding to establish requirements for hash functions, it is appropriate to consider

the threats against hash functions. In this chapter both the attackers as well as the attacks

they are capable of are considered.

Attackers are classified with regard to their capabilities and their position regarding the sys-

tem under attack. As the wealth and resources of an opponent increases, the difficulty of

designing a secure hash function increases. For this reason it is important to be aware of

the capabilities of various classes of attackers. When designing a hash function it should be

decided which class of attacker is to be denied a successful attack.

In addition to the attackers and their capabilities, the attacks they are capable of are consid-

ered. A taxonomy of these attacks are presented in this chapter. For the attacks described in

this chapter, the computational power and storage capabilities required for the execution of

these attacks are emphasised. These requirements are stated as a function of the number of

bits, n, contained in the hash length. In this report the attacks specific to MDCs, MACs and

hash algorithms based on block ciphers are considered.

A distinction is made between the capabilities of attackers and their position with regard to

the hash function they seek to attack.

The capability of an attacker is measured in terms of the resources available to him. In

[19] a taxonomy of attackers on tamper resistant devices is presented. This classification is

based on the resources available to the attackers. This taxonomy can be extended to security

mechanisms in general, including hash algorithms. Attackers are categorised as follows:

Class I (clever outsiders): They are often very intelligent but may have insufficient knowl-

edge of the system. They may have access to only moderately sophisticated equipment.

 
 
 



Threats Against Hash Functions

They often try to take advantage of an existing weakness in the system, rather than try

to create one.

Class II (knowledgeable insiders): They have substantial specialised technical education

and experience. They have varying degrees of understanding of parts of the system,

but potential access to most of it. They often have access to highly sophisticated tools

and instruments for analysis.

Class III (funded organisation): They are able to assemble teams of specialists with relat-

ed and complementary skills backed by great funding resources. The are capable of

in-depth analysis of the system, designing sophisticated attacks, and using the most

advanced analysis tools. They may use Class II adversaries as part of the attack.

The threat from Class I and Class II attackers can be dealt with by placing a hash algorithm

in the public domain and allowing experts in the field to analyse and review the algorithm

before widespread implementation. This approach will also ensure that the threat from Class

III attackers are minimised. When designing a hash function it is advised that the hash

function should be able to withstand attacks from a Class III opponent. This is difficult since

it is not always known what a Class III opponent's capabilities are.

In addition to the taxonomy of attackers based on their capabilities, a taxonomy of attackers

is presented with regard to their position concerning the system they seek to attack. Regard-

ing cryptographic hash f~nctions the following attackers are identified:

Legitimate Participants: These are participants who rightfully share in a communication

process. They are allowed to generate, sign and transmit messages. In the case of

MACs they have access to the shared secret key. These attackers can generate two

messages that yield the same hash value and substitute the one message for another
when convenient.

Active Eavesdroppers: These attackers are not allowed to generate, sign and transmit mes-

sages. They are hostile eavesdroppers who seek to intercept and modify messages

without detection. This imply that they would attempt to construct a false message

 
 
 



Threats Against Hash Functions

that has a specific hash value and replace a valid message when intercepted. They are

not expected to have access to shared secret keys for MACs.

These attackers can belong to Class I, Class II or Class III attackers, depending on their
capabilities. The taxonomy of attackers is summarised in Figure 3.1.

} Position

Before proceeding with a description of the generic attacks on hash Functions, it is useful

to consider the terminology used in describing the generic attacks. The terminology intro-

duced in this section serves as an indication of what an attacker could hope to achieve when

attacking a hash function.

 
 
 



Threats Against Hash Functions

Pre-image: Establishing a pre-image is equivalent to finding a message that results in a

specified hash value.

Second pre-image: A second pre-image requires the attacker to find two messages that re-

sults in a specific hash value.

Pseudo-pre-image: A pseudo-pre-image requires that two messages, X and X', with t-

wo different initial values, IV and IV' should be found such that the h(IV, X) and

h(IV', X') result in the same specified hash value.

Collision: A collision is established if an attacker can find two messages X and X' such

that h(IV, X) and h(IV, X') result in the same unspecified hash value.

Collision for different IV's: A collision for different IV's is established if two messages

and two IV's can be found such that h(IV, X) and h(IV', X') hash to the same hash

value.

Pseudo-collision: A pseudo collision is established if an attacker can find two messages X

and X' such that h(IV, X) and h(IV', X') yield the same hash value for two specified
IV's.

Constructing collisions, collisions for different IV and pseudo-collisions are easier than con-

structing a second pre-image or pseudo pre-image. Attacks specific to MDCs are considered
in Section 3.4.

A MAC makes use of a secret key to compute a hash value. Thus for a MAC the collision

is dependent on both public knowledge (the message) and secret knowledge (the key). The

attacker is therefore faced with two problems. The first deals with the key, the second deals

with the construction of collisions. When dealing with a MAC, an attacker could hope to

achieve one of the following objectives [3]:

 
 
 



Chapter 3

Universal forgery: The attacker constructs an alternative algorithm that mimics the MAC

algorithm.

Selective forgery: For a message chosen by the attacker the correct MAC can be deter-

mined.

Existential forgery: An attacker can determine a correct MAC for at least one plaintext.

The resulting plaintext may be random or non-sensical.

Once the secret key is known to an attacker, he can determine the MAC for any message.

With the MAC algorithm and the secret key known, an attacker can proceed to construct a

collision. Techniques describing key retrieval and the construction of forgeries are consid-

ered in Section 3.5. The objectives for generating a collision for a MAC when the secret key

is known are similar to those for a MDC.

In this section a number of generic attacks on MDCs are considered. These attacks can be

classified as belonging to one of two categories. They are:

These attacks are generic and could be used against any hash function. In this section,

these attacks are summarised and evaluated according to the computational power required

to execute them successfully.

For MDCs two attacks are considered to be independent of the algorithm. This implies that

these attacks can be carried out against the ideal cryptographic hash function described in

Chapter 1. These attacks are known as the random attack and the birthday attack.

21
\ 't..< So b3SLt x
±:. ',-, ~ s; (;;,S '1..L

 
 
 



Threats Against Hash Functions

In this attack it is assumed that the attacker is given a message X and requires a message

X' such that X' =1= X and h(IV, X') = h(IV, X) (i.e. the attacker has to find a second pre-
image). This can be accomplished by randomly selecting X' from all possible admissible
messages. The probability of success is 2-n with n the length in bits of the hash value. If

an attacker performs T trials, the probability of finding a valid value for X' so that X' =1= X
and h(X') = h(X) becomes T . 2-n. Thus, the larger n the larger number of trials Tare
required. According to [1] approximately 0.7· 2-n trials are required to find a collision using

this technique. Thus for a n-bit hash value the expected workload to find a second pre-image

is in the order of O(2n).

This attack is based on the the birthday paradox from probability theory. According to this

paradox, it can be shown that the probability that two individuals in a group of 23 people

share a birthday, is approximately 52%. The number of people in the group is much smaller

than expected. A related problem states that for two groups of 17 people, the probability that

two people have a common birthday, is larger than 50%. This property can be exploited to

attack hash functions as explained below.

Pr(h(X) = h(X')) = 1- e-~

 
 
 



Threats Against Hash Functions

1. Fora n bit hash value letTl = T2 ~ 0(2%)

4. Compare the hash values for the Tl variations of X with the T2variations of X'. When

a message X and X' is found for which h(IV, X) = h(IV, X'), a collision is estab-
lished.

The attacker can now generate a message that contains X and then later replace X with X'
and claim that he originally generated X', since the hash values for both messages are the
same.

In [20] and [21] alternative algorithms for efficient collision search is proposed. These tech-

niques are based on Pollard's p method for finding cycles in periodic functions in a finite

domain. These techniques were used in the analysis of DES.

The significance of this attack is that the number of operations required to find a collision

is 0(2%) instead of 0(2n) for the random attack. A similar order of magnitude is required
in storage capabilities. Thus a birthday attack requires less operations than a random attack.

The only way to defend against birthday attacks is by increasing the number of bits n in

order to make it computationally infeasible to launch a birthday attack.

If a message is longer than the maximum block length of the hash algorithm, the message

is segmented. The segments are then processed iteratively (Chapter 5 Section 5.3). This is

known as the Damgard-Merkle scheme [22], [23]. A number of attacks have been derived

which are only applicable if an iterated structure is used. The attacks are summarised below.

 
 
 



Chapter 3

This is a variation of the birthday attack. This attack allows the attacker to construct two

messages, X and X', for which h(X) = h(X'). The messages X and X' should be at least

twice as long as the elementary block length of the hash function. The following algorithm

describes the meet in the middle attack.

Algorithm 3.2 Meet in the middle attackfor hash functions
Consider Figure 3.2.

4. Work forward from the IV and compute rl variations of the intermediate values I Ml

with I Ml = h(IV, XD and save this in a buffer of intermediate values I Ml.

5. Work backward from h(X) and compute r2 variations on h(X) = h(I M2, X~) and

save the intermediate values in a buffer of intermediate values 1M2•

6. Use a search algorithm and search for two intermediate values that are equal in I Ml

and 1M2 respectively. If two equal values are found, a collision is established.

IMI 1M2

Og~oI II t
I II I

[jbj

As in the case of the birthday attack the number of operations required to establish a collision

are in the order of O(2~). The advantage of this attack is that it allows an attacker to hit a

 
 
 



Threats Against Hash Functions

specific hash value. This attack is only possible if the message is longer than an elementary

message block.

It is possible to defend against these attacks by increasing the number of bits in a hash value

to such an extent that the meet in the middle attack is computationally infeasible. Another

defence against this attack is to constrain the message lengths to less than the elementary

block length.

When imposing constraints on the solutions obtained with the meet in the middle attack, the

attack is called the constrained meet in the middle attack.

To avoid the meet in the middle attack, two-fold iterated schemes were suggested in [6].

These schemes include computing two hash values for a given message using two differen-

t IV's (h(IV, X) and h(IV', X)) or computing the hash value on the concatenation of the

message to itself (h(IV, XliX)). These schemes can be extended to so-calledp-fold schemes

where p hash values are computed for the same message using p initial values, or by concate-

nating the message p times to itself and then computing a hash value (h(IV, XIIXII ... X)).

A graphical representation of these p-fold schemes are shown in Figure 3.3.

 
 
 



Chapter 3

It has been shown in [24] and [25] that the meet in the middle attack can be extended to break

these schemes. The extension of the meet in the middle attack to attack p-fold schemes is

called the generalised meet in the middle attack. For this attack only O(lOP. 2~) operations

are required instead of O(2T) [24], [25].

This attack can be foiled by choosing the number of bits, n, large enough in order to make

the attack computationally infeasible.

Several variants of the correcting block attack exists. The first variant assumes that an attack-

er has a message X for which a forgery, X', has to be constructed. All the blocks in X' are

then changed so that they differ from X. One message block in X', XI is then constructed so

that h(X) = h(X'). The block XI is then designated as the correcting block. The correcting

block is usually inserted as the last block in the message, but may be inserted at the beginning

of a message or in the middle of a message. For this variant of the correcting block attack,

the construction of the correcting block XI may be accomplished with the random attack.

Since a specific hash value has to be generated, the birthday attack cannot be used. If two

correcting blocks are allowed, it is possible to use the meet in the middle attack to generate

two blocks, XI and XI+l' that together cancel the effect that message blocks Xh to XI-l have
on the chaining variable. Another alternative in constructing the correcting block requires

the attacker to have knowledge of the algorithm. By manipulating the algorithm a correcting

block XI can be constructed. Note that the construction of a message block by manipulat-
ing the algorithm depends on the algorithm. If the construction of XI is independent of the
algorithm, the amount of work required is 0 (2~).

Another variant of the correcting block attack is described next. An attacker generates two

messages X and X' and then generates two correcting blocks Y and Y'. The correcting

blocks are then concatenated to X and X'. The correcting blocks Y and Y' should be chosen
such that h(IV, XIIY) = h(IV, X'IIY'). If the final hash value is specified, the correcting
blocks Y and Y' can be constructed using the random attack. If the final hash value is not

specified, the birthday attack can be used to generate a collision. If more than one block is

allowed as a correcting block, the meet in the middle attack can be used. Note that with the

meet in the middle attack the attacker can generate a specific hash value. It is also possible

to construct the correcting blocks Y and Y' by manipulating the algorithm. The attack then

 
 
 




















































	Front
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	Chapters 5-8
	Chapters 9-12
	Back

