RELIABILITY MODELLING OF COMPLEX SYSTEMS

by

ALIFAS YEKO MWANGA

Submitted in accordance with the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Industrial Systems,

Faculty of Engineering, Built Environment and Information Technology,

UNIVERSITY OF PRETORIA
PRETORIA

PROMOTER: PROF. V.S.S. YADAVALLI

MAY 2006
ACKNOWLEDGEMENT

I sincerely thank my promoter, Professor V.S.S. Yadavalli for his excellent guidance and patience.

My gratitude also goes to Mr. Johan Joubert and all the members of staff of the Department of Industrial and Systems Engineering for their support and guidance.

A word of thanks to Makerere University and more particularly the Institute of Statistics and Applied Economics for giving me financial support which enabled me to complete the degree.

I have enjoyed continued support from my parents Mr. William Chemutai and Mrs. Mary Chemutai from the time I started school. Their inspiration is what kept me yearning for more knowledge.

My sincere gratitude goes especially to my wife, Betty and my children, for their prayers and words of encouragement.
CONTENTS

1 INTRODUCTION ... 1
 1.1 INTRODUCTION 2
 1.2 FAILURE ... 6
 1.3 REPAIRABLE SYSTEMS 7
 1.4 REDUNDANCY AND DIFFERENT TYPES OF REDUNDANT SYSTEMS 9
 1.4.1 PARALLEL SYSTEMS 9
 1.4.2 STANDBY REDUNDANCY 11
 1.5 MEASURES OF SYSTEM PERFORMANCE 12
 1.5.1 RELIABILITY 13
 1.5.2 AVAILABILITY 15
 1.6 COST FUNCTION 17
 1.6.1 MEAN NUMBER OF EVENTS IN (0,t] 17
1.6.2 CONFIDENCE LIMITS FOR THE STEADY STATE AVAILABILITY 18

1.7 STOCHASTIC PROCESSES USED IN THE ANALYSIS OF REDUNDANT SYSTEMS 18

1.7.1 RENEWAL THEORY 19

1.7.2 SEMI-MARKOV AND MARKOV RENEWAL PROCESSES 26

1.7.3 REGENERATIVE PROCESSES 28

1.7.4 STOCHASTIC POINT PROCESS 29

2 APPLICATIONS OF BIVARIATE EXPONENTIAL DISTRIBUTION IN RELIABILITY THEORY 34

2.1 INTRODUCTION 35

2.2 SYSTEM DESCRIPTION AND ASSUMPTIONS 36

2.3 OPERATING CHARACTERISTICS OF THE SYSTEM 37

2.4 CONFIDENCE INTERVAL FOR STEADY STATE AVAILABILITY OF THE SYSTEM 40

2.4.1 AN ESTIMATOR OF STEADY STATE AVAILABILITY BASED ON MOMENTS 40

2.4.2 APPLICATION OF MULTIVARIATE CENTRAL LIMIT THEOREM 41

2.4.3 CAN ESTIMATOR 41

2.5 CONFIDENCE INTERVAL FOR THE STEADY STATE AVAILABILITY OF THE SYSTEM 42

2.6 SYSTEM DESCRIPTION AND ASSUMPTIONS 43

2.7 ANALYSIS OF THE SYSTEM 44

2.7.1 SYSTEM RELIABILITY 45
2.7.2 MEAN TIME BETWEEN FAILURES (MTBF) 46
2.7.3 PARTICULAR CASE 46
2.8 AN ESTIMATOR OF SYSTEM RELIABILITY BASED ON
MOMENTS . 46

3 RELIABILITY ANALYSIS OF A COMPLEX TWO UNIT
STANDBY SYSTEM WITH VARYING REPAIR RATE 48
3.1 INTRODUCTION . 49
3.2 THE MODEL AND ASSUMPTIONS 50
3.3 ANALYSIS OF THE SYSTEM 51
3.4 RELIABILITY . 52
3.5 MEAN TIME BEFORE FAILURE (MTBF) 54
3.6 STEADY STATE AVAILABILITY 54
3.7 CONFIDENCE INTERVAL FOR STEADY STATE AVAIL-
ABILITY OF THE SYSTEM 56
3.7.1 APPLICATION OF MULTIVARIATE CENTRAL LIMIT
THEOREM . 57
3.7.2 CAN ESTIMATOR . 58
3.7.3 CONFIDENCE INTERVAL FOR THE STEADY STATE
AVAILABILITY . 59
3.7.4 AN ESTIMATOR OF SYSTEM RELIABILITY BASED
ON MOMENTS . 59

4 ASYMPTOTIC CONFIDENCE LIMITS FOR A TWO-UNIT
COLD STANDBY SYSTEM WITH ONE REGULAR RE-
PAIRMAN AND EXPERT REPAIRMAN 61
5 CONFIDENCE LIMITS FOR A COMPLEX THREE-UNIT PARALLEL SYSTEM WITH "PREPARATION TIME" FOR THE REPAIR FACILITY

5.1 INTRODUCTION .. 70
5.2 SYSTEM DESCRIPTION AND NOTATION 71
5.3 AVAILABILITY ANALYSIS 72
 5.3.1 n-UNIT PARALLEL SYSTEM 72
5.4 ESTIMATES FOR STEADY-STATE PROBABILITIES AND SYSTEM PERFORMANCE MEASURES 77
5.5 CONFIDENCE LIMITS FOR AVAILABILITY 78
5.6 NUMERICAL ILLUSTRATION 80

6 AN INTERMITTENTLY USED k OUT OF n : F SYSTEM 85

6.1 INTRODUCTION .. 86
6.2 SYSTEM DESCRIPTION AND NOTATION 87
6.3 AUXILIARY FUNCTIONS 89
6.4 OPERATING CHARACTERISTICS OF THE SYSTEM ... 100
 6.4.1 TIME TO FIRST DISAPPOINTMENT 100
 6.4.2 EXPECTED NUMBER OF DISAPPOINTMENTS 101
 6.4.3 EXPECTED NUMBER OF DISAPPOINTMENTS 102

7 APPLICATIONS OF TIME SERIES IN RELIABILITY MODELLING 105

7.1 INTRODUCTION .. 106
7.2 DEVELOPED MODELS IN RELIABILITY USING TIME SERIES ... 107

7.2.1 TIME SERIES MODELS ... 107

7.2.2 SUMS AND PRODUCTS OF ARMA PROCESSES . . 109

7.2.3 SUM OF TWO OR MORE INDEPENDENT ARMA MODELS ... 110

7.2.4 PRODUCT OF TWO OR MORE INDEPENDENT ARMA PROCESSES 111

7.2.5 SUM OF SUMS AND PRODUCTS OF ARMA PROCESSES .. 115

7.3 SOME DEFINITIONS AND FAILURE LAWS 116

7.3.1 EXPONENTIAL LAW ... 118

7.3.2 WEIBULL FAILURE ... 118

7.4 ESTIMATION OF RELIABILITY ... 119

7.4.1 DISTRIBUTION OF THE FAILURE TIMES UNKNOWN ... 120

7.5 STOCASTIC MODELLING OF THE ESTIMATED RELIABILITY OF SYSTEMS .. 124

7.5.1 A SERIES SYSTEM ... 125

7.5.2 A PARALLEL SYSTEM .. 127

7.5.3 A BRIDGE SYSTEM ... 129
SUMMARY

Two well-known methods of improving the reliability of a system are
(i) provision of redundant units, and
(ii) repair maintenance.
In a redundant system more units are made available for performing the system function when fewer are required actually. There are two major of types of redundancy - parallel and standby. In this thesis we are concerned with both these types.

Some of the typical assumptions made in the analysis of redundant systems are

1. the life time and the repair time distributions are assumed to be exponential
2. the repair rate is assumed to be constant
3. the repairman is assumed to be perfect, and hence go with only one repairman
4. the repair facility can take up a failed unit for repair at any time, if no other unit is undergoing repair
5. the system under consideration is needed all the time
6. usage of only conventional methods for the analysis of the estimated reliability of systems.
However, we frequently come across systems where one or more of these assumptions have to be dropped. This is the motivation for the detailed study of the models presented in this thesis.

In this thesis we present several models of redundant systems relaxing one or more of these assumptions simultaneously. More specifically it is a study of stochastic models of redundant repairable systems with non-exponential life time and repair times, varying repair rate, different types of repairmen, intermittent use and the use of time series in reliability modelling.

The thesis contains seven chapters. Chapter 1 is introductory in nature and contains a brief description of the mathematical techniques used in the analysis of redundant systems.

In chapter 2 assumption (1) is relaxed while studying two models with the assumption of life times and repair times to follow bivariate exponential distributions. Various operating characteristics have been obtained and the confidence limits have been established analytically for the system measure, availability for both the models.

Reliability analysis of a two unit standby system with varying repair rate is studied in chapter 3, by relaxing the assumption (2). In this chapter a similar study of chapter 2 is studied with assumption that the repair time distribution is generalised Erlangian.

Assumption (3) is relaxed in chapter 4, and we introduced two repairman (one regular repairman and the other expert repairman) to so that the system will be more efficient. The asymptotic confidence limits are obtained for the study state availability of such a system.

A three-unit system in which the "preparation time" is introduced, and hence
the assumption (4) is relaxed in this chapter 5. The difference-differential equations for the state probabilities are derived. The confidence limits for the steady state availability are obtained analytically and illustrated numerically.

In chapter 6, assumption (5) is relaxed. An intermittently used k our of n:F system with a single repair facility is condered with the assumption that fail- ures will not be detected during a noneed period. Identyfying regeneration points expressions are derived for the survivor function of the time to the first disappointment and the mean number of disappointments and the sys- tem recoveries in an interval. Expressions are also deduced for the stationary rate of occurrence of these events.

Chapter 7 presents an unconventional but powerful method for the analysis of the estimated reliability of systems constituted of subsystems (compo- nents) operating in series and/or in parallel under varying operational and environmental conditions. In this chapter assumption (vi) is relaxed. The proposed method construes the estimated reliability data as time series which are analysed using the well-known time series techniques.