WATER STORAGE IN RURAL HOUSEHOLDS:
INTERVENTION STRATEGIES TO PREVENT
WATERBORNE DISEASES

NATASHA POTGIETER
WATER STORAGE IN RURAL HOUSEHOLDS: INTERVENTION STRATEGIES TO PREVENT WATERBORNE DISEASES

by

NATASHA POTGIETER

Submitted in partial fulfilment of the requirements for the degree

PHILOSOPIAE DOCTOR
PhD (Medical Virology)

In the Faculty of Health Sciences
Department of Medical Virology
University of Pretoria
Pretoria
South Africa

February 2007
I, the undersigned, declare that the thesis hereby submitted to the University of Pretoria for the degree PhD (Medical Virology) and the work contained therein is my own original work and has not previously, in its entirely or in part, been submitted to any university for a degree.

Signed ___________________, this the _______ day of ____________________ 2007.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>iii</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS AND CONFERENCE CONTRIBUTIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

2.2 WATERBORNE DISEASES

2.3 THE MICROBIOLOGICAL QUALITY OF WATER

2.3.1 Heterotrophic Plate Counts

2.3.2 Total Coliform Bacteria

2.3.3 Faecal Coliform Bacteria

2.3.4 *Escherichia coli* Bacteria

2.3.5 Faecal Enterococci Bacteria

2.3.6 *Clostridium perfringens* Bacteria

2.3.7 Bacteriophages

2.3.7.1 Somatic Bacteriophages

2.3.7.2 *Bacteroides fragilis* HSP40 Bacteriophages

2.3.7.3 Male Specific F-RNA Bacteriophages

2.4 HUMAN AND ANIMAL FAecal POLLUTION OF WATER

2.4.1 The Use of Microorganisms to Determine the Origin of Faecal Pollution

2.4.1.1 The Ratio of Faecal Coliform Bacteria to Faecal Streptococci Bacteria

2.4.1.2 The Ratio of Faecal Coliform Bacteria to Total Coliform Bacteria

2.4.1.3 *Bacteroides* Bacteria and *Bacteroides* HSP40 Bacteriophages

2.4.1.4 *Pseudomonas aeruginosa* Bacteria
CHAPTER 3: MATERIALS AND METHODS

3.1 INFORMED AND ETHICAL CONSENT .. 56
3.2 SCHEMATIC OUTLINE OF STUDY DESIGN .. 56
3.3 OBJECTIVE ONE: TO ASSESS AN INTERVENTION STRATEGY TO IMPROVE THE DRINKING WATER QUALITY IN RURAL HOUSEHOLDS ... 56
 3.3.1 Study Site and Household Selection .. 58
 3.3.1.1 Determination of the Chlorine Demand Curve for Containers Receiving the 1% Sodium Hypochlorite Solution ... 61
 3.3.1.2 Questionnaire Administration at Each Study Household 62
 3.3.2 Assessment of the Effectiveness, Compliance and Sustainability of a Household Intervention using an Improved Storage Container and a Sodium Hypochlorite Solution ... 62
 3.3.2.1 Physico-chemical Analyses of Water Samples 63
 3.3.2.2 Enumeration of Indicator Bacteria in the Water Samples 64
 3.3.2.3 Enumeration of Somatic and Male Specific F-RNA Bacteriophages in the Water Samples 66
 3.3.2.3.1 Preparation of Bacterial Hosts for the Detection of Bacteriophages ... 66
 3.3.2.3.2 Preparation of Bottom Agar Plates for the Detection of Somatic Bacteriophages 67
3.3.2.3 Preparation of Bottom Agar Plates for the Detection of Male Specific F-RNA Bacteriophages

3.3.2.4 Preparation of Top Agar Plates for the Detection of Somatic Bacteriophages

3.3.2.5 Preparation of Top Agar Plates for the Detection of Male Specific F-RNA Bacteriophages

3.3.2.6 Double Agar Layer Plate Assay for the Detection of Somatic and Male Specific F-RNA Bacteriophages in a Water Sample

3.3.2.7 Presence-Absence Spot Test for Determination of Somatic and Male Specific F-RNA Bacteriophages in the Water Samples

3.3.2.4 Compliance of Households in two Villages with the Intervention using an Improved Storage Container and a Sodium Hypochlorite Solution

3.3.2.5 Sustainability of the Intervention Study in Two Rural Villages

3.3.3 Statistical Analyses of Intervention Study Data

3.4 OBJECTIVE TWO: TO DISTINGUISH BETWEEN FAECAL POLLUTION OF ANIMAL OR HUMAN ORIGIN USING MOLECULAR TYPING OF MALE SPECIFIC F-RNA BACTERIOPHAGE SUBGROUPS

3.4.1 Water Sample Collection

3.4.2 Isolation and Identification of Male Specific F-RNA Bacteriophages

3.4.3 Preparation of Phage Plates for Hybridisation, Phage Transfer and Membrane Fixation

3.4.4 Hybridisation of Fixed Male Specific F-RNA Bacteriophages

3.4.5 Chemiluminescent Detection of Hybridised male specific F-RNA Bacteriophage Plaques

3.5 OBJECTIVE THREE: TO DETERMINE THE SURVIVAL OF INDICATOR MICROORGANISMS AND WATERBORNE PATHOGENS IN THE IMPROVED CDC SAFE STORAGE CONTAINER

3.5.1 Water Samples

3.5.2 Laboratory Based Survival Study Outline

3.5.3 Physico-chemical Analyses of Water Samples

3.5.4 Enumeration of Naturally Occurring Indicator Bacteria and Bacteriophages in the Water Samples (Container 1)

3.5.5 Enumeration of Naturally Occurring Enteroviruses in the Water Samples (Container 1)

3.5.6 Enumeration of Selected Seeded Pathogenic Bacteria and Bacteriophages in the Water Samples (Container 2 or 3)

3.5.7 Enumeration of Seeded Enteroviruses in the Water Samples (Container 3)

3.5.8 Statistical Analysis of the Laboratory Based Survival Study

CHAPTER 4: RESULTS AND DISCUSSION

4.1 AN INTERVENTION STRATEGY TO IMPROVE THE DRINKING WATER QUALITY IN RURAL HOUSEHOLDS

4.1.1 Baseline Characteristics of Households in Two Rural Villages Before Intervention Study

4.1.2 The Effectiveness of a Home Chlorination Intervention Study
4.1.2.1 The Physical Quality of the Primary Water Sources and the Container Stored Water Used by the Two Rural Villages... 101
4.1.2.2 The Microbiological Quality of the Primary Water Sources and the Container Stored Water in the Two Rural Villages.. 105
4.1.2.3 Association between Household Demographics and Hygiene Practices and Water Quality in Study Population.. 121
4.1.3 Compliance of Study Households in the Two Villages with the Intervention....................................... 123
4.1.4 Sustainability of Intervention Strategy in Two Rural Villages .. 127
4.1.5 Summary of the Efficiency of the CDC Protocol (CDC safe storage container with a sodium hypochlorite solution) at Improving the Microbiological Quality of Stored Drinking Water in Rural Households in South Africa... 133

4.2 DETERMINATION OF FAECAL SOURCE ORIGIN IN STORED DRINKING WATER FROM RURAL HOUSEHOLDS IN SOUTH AFRICA USING MALE SPECIFIC F-RNA BACTERIOPHAGE SUBGROUP TYPING………………………………………………………………………..136

4.2.1 Prevalence of Male Specific F-RNA Bacteriophages in the Primary Water Sources and the Household Water Storage Containers in Rural Households... 136
4.2.2 Origin of Male Specific F-RNA Bacteriophage Subgroups in the Primary Water Sources.................... 139
4.2.3 Origin of Male Specific F-RNA Bacteriophage Subgroups in the Stored Household Water at the Point-of-use in the Traditional and CDC Safe Water Storage Containers in Rural Households......... 144
4.2.4 Summary of the use of Male Specific F-RNA Bacteriophage Subgroup Typing to Determine the Faecal Source Origin in Primary Water Sources and Drinking Water Stored in Traditional and CDC Safe Storage Containers in Rural Households.. 147

4.3 SURVIVAL OF INDICATOR AND PATHOGENIC MICROORGANISMS IN DRINKING WATER STORED IN AN IMPROVED HOUSEHOLD STORAGE CONTAINER WITH OR WITHOUT THE ADDITION OF A SODIUM HYPOCHLORITE SOLUTION.. 150

4.3.1 Physical Quality of Improved and Unimproved Water Sources inside the CDC Safe Storage Container over a Period of 5 Days .. 150
4.3.2 Free Chlorine Residuals in the Improved CDC Safe Storage Containers after addition of 1% or 3.5% Sodium Hypochlorite Solutions ... 151
4.3.3 Survival of Naturally Occurring Indicator and Pathogenic Microorganisms in the CDC Safe Storage Containers Before and After the Addition of a Sodium Hypochlorite Solution.................. 152
4.3.4 Survival of Seeded Indicator and Pathogenic Microorganisms in the CDC Safe Storage Containers Before and After the Addition of a Sodium Hypochlorite Solution... 159
4.3.5 Summary of the Survival of Selected Indicator and Pathogenic Microorganisms in Drinking Water Stored in an Improved Household Storage Container with or without the addition of a Sodium Hypochlorite Solution.. 167
CHAPTER 5: GENERAL CONCLUSIONS AND RECOMMENDATIONS171

5.1 INTRODUCTION ... 171

5.2 AN INTERVENTION STRATEGY TO IMPROVE THE DRINKING WATER QUALITY IN
RURAL HOUSEHOLDS... 172

5.3 TO DISTINGUISH BETWEEN FAECAL POLLUTION OF ANIMAL OR HUMAN ORIGIN USING
MOLECULAR TYPING OF MALE SPECIFIC F-RNA BACTERIOPHAGE SUBGROUPS 179

5.4 TO DETERMINE THE SURVIVAL OF INDICATOR AND PATHOGENIC WATERBORNE
PATHOGENS IN THE IMPROVED CDC SAFE STORAGE CONTAINER 181

5.5 FUTURE RESEARCH NEEDS ... 182

CHAPTER 6: REFERENCES..186

APPENDIX A: Household Consent Form..224

APPENDIX B: Pamphlets Distributed by the Department of Health and the Department
of Water Affairs on the Use of Jik in South Africa ...227

APPENDIX C: Questionnaire..234
DEDICATION

Just enough light

Sometimes only the step I’m on,
or the very next one ahead,
is all that is illuminated for me.

God gives just the amount of light I need
for the exact moment I need it.

At those times I walk in surrender to faith,
unable to see the future,
and not fully comprehending the past.

And because it is God who has given me
what light I have,
I know I must reject the fear and doubt
that threaten to overtake me.

I must determine to be content where I am,
and allow God to get me where I need to go.

I walk forward,
one step at a time,
fully trusting that the light God sheds,
is absolutely sufficient.

(Stormie Omartian, 1999)

I dedicate this work to my Lord and Saviour, Jesus Christ
He is shaping and building my character each second of my life.
ACKNOWLEDGEMENTS

I would like to sincerely thank:

Dr MM Ehlers, my supervisor, for her encouragement, support and valuable guidance in finishing this thesis.

Prof PJ Becker, from the MRC Statistical Unit, Pretoria, South Africa, for his guidance and analysis of my PhD data.

Mark Vaughn and Mega Pak, Midrand, South Africa, for supporting the study by providing the CDC storage containers.

TS Marketing, Polokwane and Reckitt Benkiser, Boksburg for supplying the sodium hypochlorite solutions.

Dr R Quick from the Centre’s of Disease Control, Atlanta, USA for encouragement and valuable advice on intervention studies.

Prof MD Sobsey from the University of North Carolina, Chapel Hill, USA for donating the male specific F-RNA bacteriophages and Salmonella typhimurium WG49 host.

Prof MB Taylor for valuable advice and assistance during the F-RNA bacteriophage hybridisation studies.

Arina Vrey, for her assistance and support with laboratory experiments and analysis of the results.

My students at the Department of Microbiology, University of Venda who assisted and encouraged me with their enthusiasm and interest in the field of Health and Water related Microbiology since 1997.

My parents, for believing in me and encouraging me to reach for the top, and for always making me feel like a winner. Johan, Jaun Pierre, Johan Jr, Andre, Adel, Ruan, Dinky, Marius, Edelweiss and Rene for loving me and bringing joy, happiness and love to my life.
WATER STORAGE IN RURAL HOUSEHOLDS: INTERVENTION STRATEGIES TO PREVENT WATERBORNE DISEASES

by

NATASHA POTGIETER

PROMOTER: Dr MM Ehlers (University of Pretoria/NHLS)
DEPARTMENT: Medical Virology, Faculty of Health Sciences
DEGREE: PhD (Medical Virology)

SUMMARY

Poor sanitation, unhygienic practices and close living associations between people and animals in rural communities increase the risk of zoonoses and add to faecal contamination of stored drinking water. Point-of-use interventions can improve the microbiological quality of household drinking water and a combination of microbial and chemical indicator tests could identify the origin of faecal pollution. The improvement of the microbiological quality of drinking water in rural households by the implementation of intervention strategies which included the use of traditional storage containers as well as an improved safe storage container (CDC, USA), with or without the addition of a sodium hypochlorite solution were determined. The origin of faecal contamination in the water sources and household stored water were determined using male specific F-RNA subgroup genotyping. This study attempted to assess the survival of indicator microorganisms and selected bacterial pathogens and viruses in the improved safe storage container in borehole and river water samples.

An intervention study was conducted in two rural villages utilising different source water. Results indicated that the improved safe storage container without the addition of a stabilized sodium hypochlorite solution did not improve the microbiological quality of the stored drinking water and had counts of indicator microorganisms similar to that found in the traditional storage containers. However, the households using the 1% and the 3.5% sodium hypochlorite solutions have shown an effective reduction in the counts of indicator microorganisms in both the traditional and the improved safe storage containers. The compliance with the use of the sodium hypochlorite interventions ranged between 60% and 100%, which was in agreement with similar studies carried
out in other developing countries. One village complied with the intervention while the other village did not. Reasons for this included financial factors, an unsupportive infrastructures and lack of education and knowledge on health risks by the households.

Male specific F-RNA bacteriophage genotyping showed that faecal contamination in the water source samples and both the traditional and improved safe storage containers at the point-of-use were primarily of animal origin (Subgroup I). Households using river water had subgroup II F-RNA bacteriophages present in the stored household water, which was associated with human faecal pollution. However, subgroup II F-RNA bacteriophages has been isolated from faeces of cattle and poultry, which indicated that F-RNA subgroup typing might not be a specific tool to determine the origin of faecal pollution in water sources.

Laboratory seeding experiments indicated that 1% sodium hypochlorite solution were less effective in reducing heterotrophic bacteria, *Escherichia coli*, *Salmonella typhimurium*, *Clostridium perfringens*, F-RNA bacteriophages and coxsackie B1 virus counts in the improved safe storage containers filled with river water with a high turbidity. However, the 1% sodium hypochlorite solution did reduce the indicator and seeded microorganisms within 60 min in containers filled with borehole water with a low turbidity. The 3.5% sodium hypochlorite solution effectively decreased the numbers of microorganisms to undetectable limits within 60 min in both the borehole and river filled storage containers irrespective of the turbidity values. This study has showed that a combination of intervention strategies can provide rural communities with microbiologically safe drinking water.

Keywords: improved safe storage container, F-RNA genotyping, intervention strategies, microbiological quality; compliance, sustainability, sodium hypochlorite solution, waterborne diseases.
DIE STOOR VAN WATER IN PLATTELANDSE HUISHOUDINGS:
INTERVENSIE STRATEGIEË OM WATEROORDRAAGBARE SIEKTES TE VOORKOM

deur

NATASHA POTGIETER

PROMOTOR: Dr MM Ehlers (Universiteit van Pretoria/NHLS)
DEPARTEMENT: Geneeskundige Virologie, Fakulteit Gesondheidswetenskappe
GRAAD: PhD (Geneeskundige Virologie)

OPSOMMING

Swak sanitasie, higiene en ‘n noue verblyf verhouding tussen mense en diere in plattelandse gemeenskappe veroor- draag van soonosis en dra by tot die fekale besoedeling van gestoorde drinkwater. Intervensies in die huishoudings en ‘n kombinasie van chemiese en mikrobiologiese indikatore toetse kan moontlik ‘n aanduiding gee van die oorsprong van fekale besoedeling. Verbeteringe in die mikrobiologiese kwaliteit van die huishoudelike drinkwater met die instelling van intervensies soos ‘n verbeterde huishoudelike stoorhouer (CDC, VSA) en die gebruik van ‘n natrium hipochloriet oplossing was ondersoek. Die oorsprong van die fekale besoedeling van die water was bepaal deur gebruik te maak van molekulêre hibridisasie van die F-RNA bakteriofaag isolate. Hierdie studie het ook die oorlewing van indikator en geselekteerde patogene mikroorganismes in die verbeterde huishoudelike stoorhouer gevul met boorgat- en rivierwatermonsters bepaal.

‘n Intervensie studie in twee plattelandse dorpe met verskillende waterbronne was onderneem. Die resultate het gewys dat die verbeterde huishoudelike stoorhouers sonder die gestabiliseerde natrium hipochloriet oplossing nie die mikrobiologiese kwaliteit van die gestoorde water in die huishoudings verbeter nie en het dieselfde mikrobiologiese tellings getoon as die traditionele stoorhouers. Desnieteenstaande het die houers waarby die 1% en die 3.5% natrium hipochloriet oplossings gevoeg is, bewys dat die mikrobiologiese tellings van indikator organismes afgeneem het in beide die verbeterde huishoudelike en die traditionele stoorhouers. Die gebruik van die
natrium hipochloriet oplossings in die huishoudings het gewissel tussen 60% en 100% wat in ooreenstemming was met soortgelyke studies in ander ontwikkelende gemeenskappe. Die intervensie was volhoubaar met een van die studiegroepe maar nie met die ander studiegroep nie. Redes hiervoor het faktore soos onvoldoende finansies, swak infrastrukture en onvoldoende kennis aangaande gesondheids risikos in die huishoudings ingesluit.

Die manlik spesifieke F-RNA bakteriofaag geentiperking het bewys dat fekale besoedeling hoofsaaklik van dierlike oorsprong (supgroep I) was in die waterbron en ook in beide die verbeterde huishoulike en die traditionele stoorhooiers. Huishoudings wat water vanaf die rivier gebruik het, het ook supgroep II faag isolate gehad wat gassosieer word met menslike fekale oorsprong. Nie te wel, supgroep II faag isolate is al geïsoleer uit beeste en pluimvee se mis monsters en dit bewys dat F-RNA bakteriofaag molekulêre hibridisasie nie sodanig ’n spesifiek genoeg metode is om te gebruik om die oorsprong van fekale besoedeling in watermonsters te bepaal nie.

Oorlewings studies in die laboratorium het bewys dat 1% natrium hipochloriet oplossing nie effektief was om Escherichia coli, Salmonella typhimurium, Clostridium perfringens, F-RNA bakteriofage en coxsackie B1 virus tellingsin die verbeterde huishoulike stoorhooiers wat gevul was met rivierwater met ’n hoë turbiditeit, te verminder nie. Die 1% natrium hipochloriet oplossing het wel die tellings van indikatore en geselekteerde patogene in boorgatwater met ’n lae turbiditeit binne 60 min verminder. Die 3.5% natrium hipochloriet oplossing het suksesvol die tellings van indikatore en geselekteerde patogene in beide rivier- en boorgatwater binne 60 min verminder ongeag die turbiditeits waardes van die waterbronne. Hierdie studie het bewys dat ’n kombinasie van intervensie strategiêe wel mikrobiologies veilige drinkwater kan verskaf aan plattelandse gemeenskappe.

Kern woorde: verbeterde huishoulike stoorhooier, F-RNA molekulêre hibridisasie, intervensie strategiêe, gebruik; volhoubaarheid; mikrobiologiese kwaliteit; natrium hipochloriet oplossing, wateroordraagbare siektes.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>AMV</td>
<td>Avian Myeloblastosis Virus</td>
</tr>
<tr>
<td>AOC</td>
<td>Assimilable Organic Carbon</td>
</tr>
<tr>
<td>ARDRA</td>
<td>Amplified Ribosomal DNA Restriction Analysis</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BGM</td>
<td>Buffalo Green Monkey</td>
</tr>
<tr>
<td>ºC</td>
<td>degrees Celcius</td>
</tr>
<tr>
<td>C. perfringens</td>
<td>Clostridium perfringens</td>
</tr>
<tr>
<td>CaCl$_2$.2H$_2$O</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>CaCo-2</td>
<td>colonic epithelial carcinoma continuous cell line</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease Control</td>
</tr>
<tr>
<td>CDP</td>
<td>disodium 2-chloro-5-4 (methoxyspiro{1,2-dioxetane-3,2’,5’-chloro) tricycle [3.3.1.1.3.7] decan}-4-yl)-1-phenyl phosphate</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit(s)</td>
</tr>
<tr>
<td>CH$_3$COOHNa</td>
<td>Sodium Acetate</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>dNTP</td>
<td>dideoxy Nucleotide Tri-Phosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy Ribonucleic Acid</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health</td>
</tr>
<tr>
<td>DPD</td>
<td>N, N-diethyl-phenylenediamine</td>
</tr>
<tr>
<td>DWAF</td>
<td>Department of Water Affairs and Forestry</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EMEM</td>
<td>Eagle’s Minimum Essential Media</td>
</tr>
<tr>
<td>ERIC-PCR</td>
<td>Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction</td>
</tr>
<tr>
<td>FRhK-4R</td>
<td>Foetal Rhesus Monkey Kidney continuous cell line</td>
</tr>
<tr>
<td>FWA</td>
<td>Fluorescent Whitening Agents</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g.cm$^{-3}$</td>
<td>gram per cubic square meter</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning Satelite</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HAV</td>
<td>Hepatitis A Virus</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HH</td>
<td>Household</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standardization Organization</td>
</tr>
</tbody>
</table>
ITS-PCR - Internal Transcribed Spacer Polymerase Chain Reaction
KCl - potassium chloride
km - kilometer
l - litre
LAB - Long Chain Alkylbenzenes
mg - milligram
MgCl₂ - Magnesium Chloride
min - min
ml - millilitre
mm - millimeter
mM - milli Molar
MUG - 4-methyl-umbelliferyl-β-D-glucuronidase
ng - nanogram
NaCl - Sodium Chloride
NaOH - Sodium Hydroxide
NCTC - National Culture Typing Collection
NGO - Non Govermental Organisation
nm - nanometer
NTU - Nephelometric Turbidity Units
PAHO - Pan American Health Organization
PBS - Phosphate Buffered Saline
PCA - Plate Count Agar
PCR - Polymerase Chain Reaction
PEG - Polyethylene Glycol
PFGE - Pulsed Field Gel Electrophoresis
pfu - plaque forming unit (s)
PLC/PRF/5 - Primary Liver Carcinoma continuous cell line
pmol - picomol
% - percentage
RFLP - Restriction Fragment Length Polymorphism
RNA - Ribonucleic Acid
rpm - revolutions per minute
RSA - Republic of South Africa
RT-PCR - Reverse Transcriptase Polymerase Chain Reaction
s - second
SABS - South African Bureau of Standards
SDS - Sodium Dodecyl Sulfate
SSC - Saline Sodium Citrate
S. typhimurium - Salmonella typhimurium
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP</td>
<td>Sodium Tri Polyphosphate</td>
</tr>
<tr>
<td>Temp</td>
<td>Temperature</td>
</tr>
<tr>
<td>Turb</td>
<td>Turbidity</td>
</tr>
<tr>
<td>U</td>
<td>Unit(s)</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Water collection by rural people in the Vhembe Region of the Limpopo Province of South Africa: Dipping containers into the water source</td>
</tr>
<tr>
<td>2.2</td>
<td>Water collection by rural people in the Vhembe Region of the Limpopo Province of South Africa: Collecting rain water from the roof of the household</td>
</tr>
<tr>
<td>2.3</td>
<td>Water collection by rural people in the Vhembe Region of the Limpopo Province of South Africa: Ground water pumped to a communal tap</td>
</tr>
<tr>
<td>2.4</td>
<td>Water transportation by rural people in the Vhembe Region of the Limpopo Province of South Africa: Use of a wheelbarrow</td>
</tr>
<tr>
<td>2.5</td>
<td>Water transportation by rural people in the Vhembe Region of the Limpopo Province of South Africa: Use of a donkey cart</td>
</tr>
<tr>
<td>2.6</td>
<td>Water transportation by rural people in the Vhembe Region of the Limpopo Province of South Africa: Use of a motor vehicle</td>
</tr>
<tr>
<td>2.7</td>
<td>Water transportation by rural people in the Vhembe Region of the Limpopo Province of South Africa: Use of a rolling drum</td>
</tr>
<tr>
<td>2.8</td>
<td>Water transportation by rural people in the Vhembe Region of the Limpopo Province of South Africa: Use of the hands or head</td>
</tr>
<tr>
<td>2.9</td>
<td>Methods used by rural people in the Vhembe Region of the Limpopo Province of South Africa to stop water from spilling while in transport: Use of a leaves/branches</td>
</tr>
<tr>
<td>2.10</td>
<td>Typical 25 litre water storage containers and buckets used for point-of-use water storage by rural people in the Vhembe Region of the Limpopo Province of South Africa</td>
</tr>
<tr>
<td>2.11</td>
<td>Typical 200 litre water storage containers used for point-of-use water storage by rural people in the Vhembe Region of the Limpopo Province of South Africa</td>
</tr>
<tr>
<td>2.12</td>
<td>Possible contamination route of stored drinking water in rural households in the Vhembe Region of the Limpopo Province of South Africa: Animals licking the containers while the containers are filled with water</td>
</tr>
<tr>
<td>2.13</td>
<td>Possible contamination route of stored drinking water in rural households in the Vhembe Region of the Limpopo Province of South Africa: Small children touching water storage containers which are not closed</td>
</tr>
<tr>
<td>2.14</td>
<td>Possible contamination route of stored drinking water in rural households in the Vhembe Region of the Limpopo Province of South Africa: Biofilm formation inside a 25 litre water storage container</td>
</tr>
<tr>
<td>2.15</td>
<td>The CDC safe storage container designed by the CDC and PAHO in the USA for point-of-use treatment</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic outlay of the study design of objective one to assess an intervention strategy to improve the drinking water quality at the point-of-use in rural households in South Africa</td>
</tr>
</tbody>
</table>
3.2: Typical communal taps used by households in village 1 in the Vhembe region of the Limpopo Province of South Africa .. 58

3.3: The Sambandou River used by households in village 2 in the Vhembe region of the Limpopo Province of South Africa .. 59

3.4: Visual presentation of a Box plot used in this study to compare the microbiological counts between the traditional and CDC safe storage containers in the study households from two rural villages in the Vhembe Region, Limpopo Province, South Africa .. 72

3.5: Schematic outlay of the study design of objective two to distinguish between faecal pollution of human and animal origin in the water sources as well as the household traditional and CDC safe storage containers .. 75

3.6: A Petri plate indicating spots of positive male specific F-RNA bacteriophage controls and water samples .. 76

3.7: An X-Ray film showing MS2 probes hybridised to male specific F-RNA bacteriophage nucleic acid in river and tap water samples ... 79

3.8: Schematic outlay of the laboratory study design of objective three to determine the survival of indicator microorganisms and waterborne pathogens in the CDC safe storage container 81

4.1: Traditional households in two study villages in the Vhembe region of the Limpopo Province of South Africa .. 88

4.2: More western type households in two study villages in the Vhembe region of the Limpopo Province of South Africa .. 88

4.3: A female member of the study community in the Vhembe region of the Limpopo Province of South Africa busy smearing the floors of the dwelling with cattle dung using her bear hands 93

4.4: One of the study households in the two rural villages in the Vhembe region of the Limpopo Province of South Africa using a mug to collect water from a water storage container .. 96

4.5: A typical pit toilet used in both study villages in the Vhembe region of the Limpopo Province of South Africa: No toilet paper available and people used old magazines and newspapers 97

4.6: A VIP toilet used in both study villages in the Vhembe region of the Limpopo Province of South Africa .. 97

4.7: Animals like goats moves freely around at one of the study households in the Vhembe region of the Limpopo Province of South Africa .. 99

4.8: Heterotrophic bacteria distributed by primary water sources and stored water in traditional and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province, South Africa .. 109

4.9: Total coliform bacteria distributed by primary water sources and stored water in traditional and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province, South Africa .. 111

4.10: Faecal coliform bacteria distributed by primary water sources and stored water in traditional and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province, South Africa .. 113
4.11: *Escherichia coli* bacteria distributed by primary water sources and stored water in traditional
and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province,
South Africa ... 115

4.12: Faecal enterococci bacteria distributed by primary water sources and stored water in traditional
and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province,
South Africa ... 117

4.13: *Clostridium perfringens* bacteria distributed by primary water sources and stored water in traditional
and CDC safe storage containers from two villages in the Vhembe region of the Limpopo Province,
South Africa ... 119

4.14: Prevalence of male specific F-RNA bacteriophages in primary water sources and stored water in
traditional household water storage containers from two villages using different primary water
sources .. 137

4.15: Presence of male specific F-RNA bacteriophages in the traditional and CDC safe storage containers
in rural households from two villages using different water sources ... 138

4.16: Animals near ground water reservoir pumping water to communal taps used by study households
in village 1 in the Vhembe region of the Limpopo Province, South Africa ... 139

4.17: Animal dung seen in river water source used by study households in village 2 in the Vhembe region
of the Limpopo Province, South Africa .. 140

4.18: Animal drinking and defecating in river water source used by study households in village 2 in
the Vhembe region of the Limpopo Province, South Africa .. 141

4.19: People washing clothes in the river water source used by study households in village 2 in the Vhembe
region of the Limpopo Province, South Africa .. 143
LIST OF TABLES

2.1: Waterborne pathogens and their associated diseases..7
2.2: Microbiological requirements for domestic water in South Africa..................................12
2.3: Summary of studies indicating increased microbiological contamination of stored water and
the associated infectious disease risk due to inadequately storage conditions.........................38
2.4: Efficacy of chlorination and water storage in the CDC safe storage container to disinfect
household water, reduce waterborne diseases and improve the microbiological quality of
water...47
3.1: Summary of the intervention trial carried out in each of two rural villages in the Vhembe
region of the Limpopo Province, South Africa..60
3.2: Nucleotide sequences of male specific F-RNA bacteriophage probes used.........................78
4.1: Summary of the household demographics indicating the number of people in each household and
the educational level of the female head of the household in each of two rural villages in the
Vhembe region of the Limpopo Province of South Africa..89
4.2: Summary of the water sources used by the study households in each of two rural villages
in the Vhembe region of the Limpopo Province, South Africa...90
4.3: Summary of the water storage practices in study households in each of two rural villages in the
Vhembe region of the Limpopo Province, South Africa..92
4.4: Summary of hygiene and sanitation conditions/practices in study households in each of two rural
villages in the Vhembe region of the Limpopo Province, South Africa.......................................95
4.5: Knowledge of waterborne diseases by study households in each of two rural villages in the
Vhembe region of the Limpopo Province, South Africa..100
4.6: Geometric mean values (95% confidence intervals) of the physical parameters of the water
sources and the traditional and CDC safe storage containers of two rural villages using the placebo
solution in the Vhembe region of the Limpopo Province, South Africa.................................102
4.7: Geometric mean values (95% confidence intervals) for the microbiological indicators of water
samples collected over a 4 month period from communal tap water sources and the stored
household water in traditional and CDC safe storage containers used by households together
with the placebo solution from village 1 in the Vhembe region of the Limpopo Province,
South Africa..106
4.8: Geometric mean values (95% confidence intervals) for the microbiological indicators of water
samples collected over a 4 month period from a river water source and the stored household
water in traditional and CDC safe storage containers used by households together with the
placebo solution from village 2 in the Vhembe region of the Limpopo Province, South
Africa..107
4.9: Presence-Absence analyses of source water (communal tap and river water) and stored water (traditional and improved CDC safe storage containers), both using the placebo sodium hypochlorite solution in village 1 and 2 during a 4 month period in the Vhembe region of the Limpopo Province, South Africa…………………………………………………………………………………..120

4.10: Poisson regression analysis with E. coli average counts in households using the placebo solution as measure for water quality………………………………………………………………………………….121

4.11: Compliance by intervention households who used either a 1% or a 3.5% sodium hypochlorite solution as an intervention together with their traditional or a CDC safe water storage container……124

4.12: Summary of the qualitative survey at the end of the intervention study by the study households in each of two rural villages in the Vhembe region of the Limpopo Province, South Africa…………………125

4.13: Geometric mean values (95% confidence intervals) for the microbiological indicators of tap water samples collected 6 month after intervention study in traditional and CDC safe storage containers used by households from village 1 in the Vhembe region of the Limpopo Province, South Africa…128

4.14: Geometric mean values (95% confidence intervals) for the microbiological indicators of tap water samples collected 12 month after intervention study in traditional and CDC safe storage containers used by households from village 1 in the Vhembe region of the Limpopo Province, South Africa…129

4.15: Geometric mean values (95% confidence intervals) for the microbiological indicators of river water samples collected 6 month after intervention study in traditional and CDC safe storage containers used by households from village 2 in the Vhembe region of the Limpopo Province, South Africa…131

4.16: Geometric mean values (95% confidence intervals) for the microbiological indicators of river water samples collected 12 month after intervention study in traditional and CDC safe storage containers used by households from village 2 in the Vhembe region of the Limpopo Province, South Africa….132

4.17: Prevalence of male specific F-RNA bacteriophages in river and communal tap water sources in two rural villages in the Vhembe region of the Limpopo Province, South Africa………………142

4.18: Prevalence of male specific F-RNA bacteriophages in stored drinking water containers from rural households in two villages in the Vhembe region of the Limpopo Province, South Africa…………146

4.19: The survival of naturally occurring heterotrophic bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution…………………………………………………………………………………..154

4.20: The survival of naturally occurring total coliform bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution…………………………………………………………………………………..155

4.21: The survival of naturally occurring faecal coliform bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution…………………………………………………………………………………..156

4.22: The survival of naturally occurring faecal enterococci bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solutions…………………………………………………………………………………..157
4.23: The survival of naturally occurring *Clostridium perfringens* bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution... 158

4.24: The survival of seeded somatic bacteriophages over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution... 160

4.25: The survival of seeded male specific F-RNA bacteriophages over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution .. 162

4.26: The survival of seeded *Escherichia coli* bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution.. 163

4.27: The survival of seeded *Salmonella typhimurium* bacteria over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution .. 164

4.28: The survival of seeded Coxsackie B1 viruse over a 5 day period detected in the borehole and river water samples before and after the addition of a 1% or 3.5% sodium hypochlorite solution.. 166
LIST OF PUBLICATIONS
AND CONFERENCE CONTRIBUTIONS

PUBLISHED REPORTS:

SUBMITTED PUBLICATIONS:

CONFERENCE CONTRIBUTIONS:

Potgieter N, Musie E, Obi CL and Du Toit PJ (2000) Evaluation of different growth media for the recovery of sulfide reducing anaerobic Clostridium perfringens from the environment. Poster presentation at the WISA Biennial Conference, 28 May-1 June, Sun City, South Africa.

