I declare that the dissertation herewith submitted for the degree of MSc (Agric) Food Science and Technology at the University of Pretoria, has not previously been submitted by me for a degree at any other university or institution of higher education.
NUTRITIONAL AND FUNCTIONAL QUALITY OF SOUTH AFRICAN DRY-BASED TEXTURISED SOYA PROTEIN FOODS

ABSTRACT

Rajendran Arunaghary Padayachi

Leader: Prof JRN Taylor
Department: Food Science
Degree: MSc (Agric) Food Science and Technology

As 780 million people in developing countries still do not have access to enough food to meet their basic daily requirements for nutritional well being the provision of affordable and nutritional foods is an on-going challenge. Animal protein resources, e.g., meat, poultry, fish and eggs, are increasingly becoming unaffordable by the disadvantaged masses and their storage is problematic. Alternative protein sources, e.g., seaweed, plankton, single cell protein, fishmeal and legumes are being researched. Soya beans, having a high protein content of 40% is consequently an ideal vehicle for the supply of protein to consumers that cannot afford conventional sources of protein.

In South Africa, soya beans are processed into flavoured dry-based products and marketed extensively as a meat substitute. This is prepared at home as part of a main meal to be consumed with rice or bread. Their affordability and shelf-stability characteristics make them appealing to South Africans constituting the low-income sector and vegetarians.

The quality of mutton and savoury flavoured dry-based soya products manufactured by three Kwa-Zulu Natal companies were investigated and these three manufacturers were designated A, B and C. Proximate analyses and mineral analyses determined the nutritional components. The protein quality in these products was determined by performing Protein Efficiency Ratio (PER) and Net Protein Utilisation (NPU) studies on chickens as biological models. The functionality of these proteins was determined by Nitrogen Solubility Index (NSI) and Protein Dispersibility Index (PDI) studies. The presence of bacteria, yeast, moulds, and mycotoxic fungi were determined by microbiological assay. Consumer acceptability surveys were also undertaken to ascertain appearance, flavour, texture and overall acceptability profiles. The consumer also ranked the products in order of preference. Finally, economic value of these dry-based soya products was determined by comparing the retail price of these products with beef and chicken on a protein basis.

The carbohydrate content of these products was elevated as a consequence of dilution with starch and/or maize flour. The polysaccharides, raffinose and stachyose which are regarded as causing flatulence in soya products apparently were eliminated during processing as the soya products investigated were devoid of them.
The negative consequence of the manufacturers adding starch and/or maize flour was that the protein was diluted. The protein content of 25% was significantly lower than the normal protein content of 40% of soya beans.

A diluting effect occurred in the mineral content of iron, zinc and manganese. Calcium, magnesium and phosphorus was also decreased as a consequence of being lost with the soya oil which was removed in the processing of defatted soya flour. In spite of these reductions, soya products are still a good source of calcium, phosphorus and magnesium. The bioavailability of iron may be constrained by phytic acid, which occurs in soya beans.

Amongst the three manufacturers researched, dietary fibre content was least in products from manufacturer C. Flavour also had a significant influence on dietary fibre content as mutton flavoured products had a higher dietary fibre content compared to savoury flavoured products.

These soya products were a good source of polyunsaturated fatty acids with products from manufacturers A and B having the higher fatty acid level content. Savoury flavoured products had a significantly higher fatty acid content compared to mutton flavoured products.

Protein quality differed significantly amongst the three manufacturers. Products from manufacturer A had very low PER and NPU values. Products manufacturers B and C had acceptable PER/NPU values, similar to peanuts.

Protein functionality values of products indicated that products from manufacturer A were not exposed to severe heat treatment and consequently their anti-nutritional factors were not denatured or inactivated. Consequently their PER/NPU was depressed. Protein functionality values of products from manufacturers B and C were low indicating extensive heat treatment of TVP. This treatment denatured the anti-nutritional factors thus producing acceptable PER/NPU values.

Bacterial loads were minimal in these dehydrated products. Some moulds were found indicating fungal contamination, presumably from the air during processing. An absence of mycotoxins confirmed that mycotoxic fungi are not endemic to dry-based soya products. The processing applied to the ingredients used by manufacturers B and C yielded Salmonella/ Shigella free products.

There was no significant difference in the consumer response to mutton flavoured products from all three manufacturers and savoury products from manufacturers B and C were ranked highest by consumers. With respect to products from manufacturer C this could be linked to them having the least moisture, protein and fat content and the highest soluble carbohydrate and ash contents.
Economically, soya protein is far cheaper than beef and chicken protein. Beef protein was calculated to be 140% of the retail price of soya protein and chicken protein was calculated to be 192% of the retail price of soya protein.

While dry-based soya products seems to be nutritionally acceptable and affordable with an extended shelf life, their protein availability and functionality is dependent on processing parameters. These soya products also received an above average acceptance rating by consumers, although textural and appearance qualities could be improved.
This dissertation is dedicated to my late father,
Arunaghary Padayachi,
who passed away on the 19 February 1999.
He laid the foundation for my education and encouraged me further in this direction. For this I will be eternally grateful.
ACKNOWLEDGEMENTS

My heartfelt gratitude and appreciation go to the following individuals and organisations for their help and assistance with this project:

Prof JRN Taylor, my supervisor, for his leadership, encouragement and constructive, critical review of this dissertation.

Dr. Amanda Minnaar for the guidance in designing and interpretation of the consumer survey.

Prof BH Bester for the initial assistance in microbiological aspects of this project.

Prof MF Dutton and the Physiology Department of the University of Natal (Durban Campus) for assisting me and allowing me to use their laboratories for the aflatoxin assay.

Prof RM Gous and the Department of Animal Science and Poultry Science of the University of Natal (Pietermaritzburg Campus) for assisting me with the animal model determinations.

Mr. H. Narismulu of the Technikon Natal Chemistry Department for assisting me with the HPLC tests.

Mr. Dale Gove of Robertsons (Pty) Limited for assistance with student registration fees and with supplies of soya product samples.

Imana Foods SA (Pty) Limited and Unifoods (Pty) Limited for supplies of soya product samples.

The FRD for financial assistance relevant to the project.

Prof KD Bhoola, Research Director: ML Sultan Technikon-FRD Research Programme, for ensuring that quality research is taken to completion.

The ML Sultan Technikon management and staff for allowing me the use of the technikon infrastructure for the completion of this project.

My wife Shyamala and children Thanishiya, Shalendra and Yerdashin for giving me the opportunity of pursuing my postgraduate aspirations and for their patience in allowing me in reaching my goals.
My initial head of department, Mr. DH Goodes, previous head of department, Mrs. DR Naidoo and present acting head of department and chairperson of the FRD-Mycotoxin Research Group, Dr. B. Odhav for their co-operation in facilitating the fulfilment of my personal post-graduate objectives.

Prof R Bharuthram, Research Director, ML Sultan Technikon for supporting research by academic staff.
TABLE OF CONTENTS

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>-iv-</td>
<td>-iv-</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

CHAPTER 2: LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Economic importance</td>
</tr>
<tr>
<td>2.2</td>
<td>History of soya products</td>
</tr>
<tr>
<td>2.3</td>
<td>Processing of soya bean</td>
</tr>
<tr>
<td>2.4</td>
<td>Nutritional properties of cereals and legumes</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Soya protein in relation to human protein and amino acid nutrition</td>
</tr>
<tr>
<td>2.5</td>
<td>Factors influencing soya nutritional quality</td>
</tr>
<tr>
<td>2.6</td>
<td>Soya proteins</td>
</tr>
<tr>
<td>2.7</td>
<td>Functional properties of soya storage proteins</td>
</tr>
<tr>
<td>2.8</td>
<td>Microbiological quality and shelf life of soya based products</td>
</tr>
<tr>
<td>2.9</td>
<td>Methodologies in determining protein quality</td>
</tr>
<tr>
<td>2.10</td>
<td>Sensoric evaluation of soya based products</td>
</tr>
<tr>
<td>2.11</td>
<td>Overview of the literature</td>
</tr>
</tbody>
</table>

CHAPTER 3: OBJECTIVES

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

CHAPTER 4: MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Materials</td>
</tr>
<tr>
<td>4.2</td>
<td>Methods</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Moisture content</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Protein content</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Fat content</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Fatty acid profile (FAME) analysis</td>
</tr>
<tr>
<td>4.2.1.5</td>
<td>Dietary fibre</td>
</tr>
<tr>
<td>4.2.1.6</td>
<td>Soluble carbohydrates</td>
</tr>
<tr>
<td>4.2.1.7</td>
<td>Carbohydrate content</td>
</tr>
<tr>
<td>4.2.1.8</td>
<td>Ash content</td>
</tr>
<tr>
<td>4.2.1.9</td>
<td>Mineral content</td>
</tr>
<tr>
<td>4.2.1.10</td>
<td>Caloric value</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Microbiological assessment</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Petrifilm E. coli count plates</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>MPN Technique for the identification of bacteria belonging to Enterobacteriaceae</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Analysis of mycotoxins</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Protein quality</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Protein functionality</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Protein dispersibility index (PDI)</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Nitrogen solubility index (NSI)</td>
</tr>
</tbody>
</table>
4.2.5 Consumer evaluation

4.2.5.1 Statistical analysis of order of preference for savoury flavoured dry-based soya products

4.2.5.2 Statistical analysis of order of preference for mutton flavoured dry-based soya products

4.2.6 Statistic

CHAPTER 5: RESULTS

5.1 Chemical composition

5.1.1 Moisture content
5.1.2 Protein content
5.1.3 Fat content
5.1.4 Fatty acid profile
 5.1.4.1 Palmitic acid (C 16: 0) content
 5.1.4.2 Stearic acid (C 18: 0) content
 5.1.4.3 Oleic acid (C 18: 1) content
 5.1.4.4 Linoleic acid (C 18: 2) content
 5.1.4.5 Linolenic acid (C 18: 3) content
5.1.5 Dietary fibre
5.1.6 Soluble carbohydrates
5.1.7 Carbohydrate content
5.1.8 Ash content
5.1.9 Mineral content
 5.1.9.1 Calcium
 5.1.9.2 Magnesium
 5.1.9.3 Sodium
 5.1.9.4 Zinc
 5.1.9.5 Manganese
 5.1.9.6 Potassium
 5.1.9.7 Phosphorus
 5.1.9.8 Iron
5.1.10 Caloric value
5.1.11 Summary proximate composition

5.2 Microbiological assessment

5.2.1 Petrifilm E. coli plate count
5.2.2 Enterobacteriaceae organisms observed on eosin methylene blue (EMB) agar and chromocult plates
5.2.3 Other culture media to test for moulds, yeasts, Shigella, Salmonella and Staphylococcus
5.2.4 Analysis for aflatoxin, moniliformin and fumonisin

5.3 Protein quality

5.3.1 Protein efficiency ratio (PER)
5.3.2 Net protein utilisation (NPU)
5.4 Protein functionality
 5.4.1 Protein dispersibility index (PDI) 70
 5.4.2 Nitrogen solubility index (NSI) 71

5.5 Consumer evaluation
 5.5.1 Consumer evaluation of savoury flavoured soya products 72
 5.5.1.1 The influence of manufacturer on order of preference of savoury flavoured soya products 73
 5.5.2 Consumer evaluation of mutton flavoured soya products
 5.5.2.1 The influence of manufacturer on order of preference of mutton flavoured soya products 75

5.6 Overview of the nutrient content per serving of the dry-based soya products and contribution to the recommended daily dietary allowance (RDA) 76

5.7 Economic comparison of soya protein with beef/ chicken protein 77

CHAPTER 6: DISCUSSION
 6.1 Chemical composition 78
 6.2 Protein quality 86
 6.3 Protein functionality 88
 6.4 Microbiological assessment 90
 6.5 Consumer acceptability 91
 6.6 Economic comparison with alternative protein foods 93

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 94

CHAPTER 8: REFERENCES 97
LIST OF TABLES

Table 1 Composition of some cereals and legume (Utsumi, 1992) 14

Table 2 Suggested patterns of amino acid requirements and amino acid (Utsumi, 1992) 15

Table 3 Functional properties of seed proteins of importance in food applications (Kinsella, 1979) 21

Table 4 Typical properties conferred by seed proteins to food systems (Kinsella, 1979) 22

Table 5 Composition of soya products (Wolf and Cowan, 1971) 23

Table 6 Influence of manufacturer and flavour on the moisture content of dry-based soya products (g/100 g) on an “as is” basis 42

Table 7 Influence of manufacturer and flavour on the protein content of dry-based soya products (g/100 g) on an “as is” basis 43

Table 8 Influence of manufacturer and savoury on the fat content of dry-based soya products (g/100 g) on an “as is” basis 44

Table 9 Influence of manufacturer and flavour on the palmitic acid (C 16: 0) content of dry-based soya products (g/100 g) on an “as is” basis 45

Table 10 Influence of manufacturer and flavour on the stearic acid (C 18: 0) content of dry-based soya products (g/100 g) on an “as is” basis 46

Table 11 Influence of manufacturer and flavour on the oleic acid (C 18: 1) content of dry-based soya products on an “as is” basis 47

Table 12 Influence of manufacturer and flavour on the linoleic acid (C 18: 2) content of dry-based soya products (g/100 g) on an “as is” basis 48

Table 13 Influence of manufacturer and flavour on the linolenic acid (C 18: 3) content of dry-based soya products (g/100 g) on an “as is” basis 49

Table 14 Influence of manufacturer and flavour on the dietary fibre content of dry-based soya products (g/100 g) on an “as is” basis 50

Table 15 Soluble carbohydrates in mutton and savoury flavoured soya products from different manufacturers (g/100 g) on an “as is” basis 51

Table 16 Influence of manufacturer and flavour on the carbohydrate content of dry-based soya products (g/100 g) on an “as is” basis 52
Table 17 Influence of manufacturer and flavour on the ash content of dry-based soya products (g/100 g) on an “as is” basis 53
Table 18 Influence of manufacturer and flavour on the calcium content of dry-based soya products (mg/100 g) on an “as is” basis 54
Table 19 Influence of manufacturer and flavour on the magnesium content of dry-based soya products (mg/100 g) on an “as is” basis 55
Table 20 Influence of manufacturer and flavour on the sodium chloride content of dry-based soya products (mg/100 g) on an “as is” basis 56
Table 21 Influence of manufacturer and flavour on the zinc content of dry-based soya products (mg/100 g) on an “as is” basis 57
Table 22 Influence of manufacturer and flavour on the manganese content of dry-based soya products (mg/100 g) on an “as is” basis 58
Table 23 Influence of manufacturer and flavour on the potassium content of dry-based soya products (mg/100 g) on an “as is” basis 59
Table 24 Influence of manufacturer and flavour on the phosphorus content of dry-based soya products (mg/100 g) on an “as is” basis 60
Table 25 Influence of manufacturer and flavour on the iron content of dry-based soya products (mg/100 g) on an “as is” basis 61
Table 26 Influence of manufacturer and flavour on the calorific content of dry-based soya products (kJ/100 g) on an “as is” basis 62
Table 27 Summary proximate composition of the six dry-based soya products compared to beef (g/100 g) on an “as is” basis 63
Table 28 Influence of manufacturer and flavour on the E. coli plate count of dry-based soya products (cfu/ g) 64
Table 29 Enterobacteriaceae organisms observed on eosin methylene blue (EMB) agar and chromocult plates 65
Table 30 Growth on malt extract agar (ME), Shigella-Salmonella agar and Baird-Parker medium (BP) plated with 10^{-1}, 10^{-2} and 10^{-3} dilutions of dry-based soya products 66
Table 31 Influence of manufacturer and flavour on the presence of aflatoxin, moniliformin and fumonisins in dry-based soya products 67
Table 32 Influence of manufacturer and flavour on the PER of dry-based soya products 68
Table 33 Influence of manufacturer and flavour on the NPU of dry-based soya products on an “as is” basis 69
Table 34 Influence of manufacturer and flavour on the PDI of dry-based soya products on an “as is” basis 70
Table 35 Influence of manufacturer and flavour on the NSI of dry-based soya products on an “as is” basis 71
Table 36 Influence of manufacturer on the appearance, flavour, texture and overall acceptance of savoury flavoured dry-based soya products 72
Table 37 Influence of manufacturer on order of preference of savoury flavoured soya products 73
Table 38 Influence of manufacturer on the appearance, flavour, texture and overall acceptance of mutton flavoured dry-based soya products 74
Table 39 Influence of manufacturer on order of preference of mutton flavoured soya products 75
Table 40 Nutrient content per 33.3 g serving of the dry-based soya products and % contribution to the recommended daily dietary allowance (RDA) 76
Table 41 Economic comparison of soya protein with beef/ chicken protein on an “as is” basis 77