THE SCIENTIFIC AND TECHNOLOGICAL LITERACY OF FIRST YEAR PHYSICS STUDENTS: THE EFFECTS OF A TRADITIONAL SCHOOL CURRICULUM

by

Mr. F. Goolam

Submitted in partial fulfilment of the requirements for the degree: Philosophiae Doctor (PhD) in the Faculty of Education, University of Pretoria.

Submitted: December 2001
Supervisor: Dr. A. van Loggerenberg
Abstract (491 words)

This study examined the scientific and technological literacy levels of a cohort of first year physics students at the University of Pretoria who experienced a traditional science school curriculum. Inspired by the concept of innovation as advocated in the White Paper on Science and Technology (Department of Arts, Culture, Science and Technology 1997), this study was informed by two innovations. The first innovation was to develop insights and methods to evaluate science and technology literacy levels of learners in South Africa that were consistent with the Outcomes-Based Education (OBE) paradigm. The second innovation was the use of the Strategic Objectives Learning Outcomes (SOLO) taxonomy to evaluate qualitative responses to questions pertaining to technological literacy as a model for addressing the lack of grade-based benchmarks against which to assess learner performance in Curriculum 2005. The study also examined the nature of the traditional science syllabi and teaching practices that the students experienced at school, and how it differed from transformational OBE in science and technology.

The literature search analyzed and traced the evolution of the concepts of scientific and technological literacy against the backdrop of an examination of the underlying concepts of science and technology. The course of this study was shaped by the Mixed Methodology Design Model of combining qualitative and quantitative research methods. The principal research instrument in this study was a questionnaire on science and technology literacy related issues. The qualitative focus of the research was evident in the use of open-ended questions in parts of the questionnaire and their subsequent analysis using the SOLO taxonomy. The quantitative focus of this research manifested itself in the statistical analyses that were administered.

A principal finding related to the nature of the traditional science curriculum was a striking disconnect between the most frequent teaching and learning experiences of the students. By and large, the most frequent teaching methods were traditional in nature. However, the most frequent learning methods were generally more progressive. The impact of the traditional curriculum was defied once again when the impressive scientific literacy levels of the students were revealed. However, the same kind of relationship did not hold true for technological literacy levels of the students which were acceptable but not as impressive as the scientific literacy scores. This differential was defended by the literature, as technology education does not have a structured body of knowledge, concepts, principles, and ideas that define an academic discipline. Therefore, it follows that there is no valid way of determining curriculum content. Hence, the researcher concluded that what was measured may be more accurately described as intuitive technological literacy.

The success of the innovations used in this study has two main implications. First, we can measure scientific and technological literacy levels of the nation and use the results to develop a strategy for scientific and technological advancement. Second, in terms of curriculum transformation, the SOLO taxonomy is a viable and simple method of facilitating learner performance reviews and learner progression.

10 key words:
Table of Contents

Chapter One – Introduction

1. Orientation to the Chapter ... 1
2. Rationale and Background .. 1
3. The Purpose of this Study ... 6
4. Research Methodology .. 7
5. Literature Review ... 8
6. Orientation to Forthcoming Chapters .. 10
7. Conclusion ... 11

Chapter Two - Literature Review

The Theoretical Underpinnings of Scientific and Technological Literacy ... 12

1. Orientation to the Chapter ... 12
2. An examination of the underlying concepts of Science and Technology ... 12
3. The Evolution of the concepts of Scientific and Technological Literacy ... 16
 3.1. Scientific Literacy in the 30s ... 17
 3.2. Scientific Literacy after the 2nd World War 18
 3.3. Scientific Literacy in the 80s and 90s ... 21
 3.4. Technological Literacy ... 34
4. Is Scientific and Technological Literacy Necessary? 40
5. Conclusion ... 43

Chapter Three - Research Methodology

A Pathway towards examining Scientific and Technological Literacy ... 44

1. Orientation to the Chapter ... 44
2. Critical Questions ... 44
3. The Mixed Methodology Research Approach 45
4. Discussion of Research Instruments and Approaches 47
Chapter Four - Science and Technology: Traditional versus Transformational Outcomes-Based Approaches

4.1. Orientation to the Chapter.. 74
4.2. Science and Technology: Traditional versus Transformational Outcomes-Based Approaches to Teaching and Learning 74
 4.2.1. Underpinning Learning Theory.................................. 76
 4.2.2. Goals... 80
 4.2.3. Objectives/Outcomes.. 83
 4.2.4. Content.. 87
 4.2.5. Teaching Strategies/Methodologies.............................. 89
 4.2.6. Assessment Strategies.. 92
4.3. The Teaching and Learning Experiences of the Students who experienced a Traditional Science Curriculum... 95
 4.3.1. The Kinds of Teaching Experienced by the Students................. 95
 4.3.1.1. Mainly Chalk and Talk.................................... 96
 4.3.1.2. Use of Textbooks to Explain.................................. 96
 4.3.1.3. Questions and Answers...................................... 97
Chapter Six - An Analysis of Technological Literacy Levels of Traditional Science Curriculum Students

6.1. Orientation to the Chapter
6.2. Preview to Data Analysis
6.3. Tests and Plots for Normality of Technological Literacy Scores
6.4. Analysis of Technological Literacy Levels of the Selected Cohort of Science Students
 6.4.1. Analysis of Responses to Technological Literacy Question One
 6.4.1.1. Category One Students' Responses to Technological Literacy Question One
 6.4.1.2. Category Two Students' Responses to Technological Literacy Question One
 6.4.1.3. Category Three Students' Responses to Technological Literacy Question One
 6.4.1.4. Category Four Students' Responses to Technological Literacy Question One
 6.4.1.5. Summary of Responses to Technological Literacy Question One
 6.4.2. Analysis of Responses to Technological Literacy Question Two
 6.4.2.1. Category One Students' Responses to Technological Literacy Question Two
 6.4.2.2. Category Two Students' Responses to Technological Literacy Question Two
 6.4.2.3. Category Three Students' Responses to Technological Literacy Question Two
 6.4.2.4. Category Four Students' Responses to Technological Literacy Question Two
 6.4.2.5. Summary of Responses to Technological Literacy Question Two
 6.4.3. Analysis of Responses to Technological Literacy Question Three
 6.4.3.1. Category One Students' Responses to Technological Literacy Question Three
 6.4.3.2. Category Two Students' Responses to Technological Literacy Question Three
 6.4.3.3. Category Three Students' Responses to Technological Literacy Question Three
 6.4.3.4. Category Four Students' Responses to Technological Literacy Question Three
 6.4.3.5. Summary of Responses to Technological Literacy Question Three
 6.4.4. Analysis of Responses to Technological Literacy Question Four
 6.4.4.1. Category One Students' Responses to Technological Literacy Question Four
 6.4.4.2. Category Two Students' Responses to Technological Literacy Question Four
 6.4.4.3. Category Three Students' Responses to Technological Literacy Question Four
 6.4.4.4. Category Four Students' Responses to Technological Literacy Question Four
 6.4.4.5. Summary of Responses to Technological Literacy Question Four
 6.4.5. Analysis of Responses to Technological Literacy Question Five
 6.4.5.1. Category One Students' Responses to Technological Literacy Question Five
 6.4.5.2. Category Two Students' Responses to Technological Literacy Question Five
Chapter Seven - Synthesis, Recommendations and Conclusion

7.1. Orientation to the Chapter

7.2. Synthesis of Results Related to Critical Question One

7.2.1. Findings Related to Critical Question One

7.2.2. Discussion of Findings Related to Critical Question One

7.3. Synthesis of Results Related to Critical Question Two

7.3.1. Findings Related to Critical Question Two

7.3.2. Discussion of Findings Related to Critical Question Two

7.4. Synthesis of Results Related to Critical Question Three

7.4.1. Findings Related to Critical Question Three

7.4.2. Discussion of Findings Related to Critical Question Three

7.5. Recommendations

7.5.1. Recommendations related to Selected Findings of this Study

7.5.2. Recommendations related to the Limitations of this Study

7.6. Conclusion
List of Figures

Figure 3.1. The Gender Distribution of the Sample...59
Figure 3.2. The Age Distribution of the Sample...59
Figure 3.3. The First Language Distribution of the Sample...............................60
Figure 3.4. The Locations of Schools in the Sample...62
Figure 3.5. The Availability and Condition of Resources in Schools......................63
Figure 3.6. The Matric Symbol Distribution in the Sample.................................64

Figure 4.1. The Frequency with which Chalk and Talk featured as a Teaching Method........96
Figure 4.2. The Frequency with which Textbook Explanations were used as a Teaching Method....96
Figure 4.3. The Frequency with which Questioning was used as a Teaching Method..........97
Figure 4.4. The Frequency with which Problem Solving was used as a Teaching Method........97
Figure 4.5. The Frequency with which Science Experiments were used as a Teaching Method....98
Figure 4.6. The Frequency with which Groupwork was used as a Teaching Method...........98
Figure 4.7. Summary of Frequency of Teaching Methods....................................99
Figure 4.8. The Frequency with which Memorization was used as a Learning Method........101
Figure 4.9. The Frequency with which students solved problems using Numbers Only.........102
Figure 4.10. The Frequency with which students solved problems using Concepts and Principles...102
Figure 4.11. The Frequency with which students solved problems using their Own Ideas to Understand New Information...103
Figure 4.12. The Frequency with which students solved problems by Relating Physics to Real Life Situations..104
Figure 4.13. Summary of Frequency of Learning Methods.....................................105

Figure 5.1. Frequency Plots of Scientific Literacy Scores....................................116
Figure 5.2. The detailed distribution of Scientific Literacy Scores.........................120
Figure 5.3. Distribution of Correct Responses by Scientifically Illiterate (TOTS 1) Students......121
Figure 5.4. Distribution of Correct Responses by Students with a Mediocre Scientific Literacy (TOTS 2)..123
Figure 5.5. Distribution of Correct Responses by Students with Good Scientific Literacy.......125
Figure 5.6. Distribution of Correct Responses by Students with Excellent Scientific Literacy....127
Figure 6.1. Frequency Plots of Technological Literacy Scores................................134
List of Tables

Table 2.1. The Evolution of Scientific Literacy from the 1930's to the 1990's..........................29-32
Table 3.1. The Racial Composition of the Sample...61
Table 3.2. Matric Symbols and Corresponding Scores..63
Table 3.3. The General Distribution of Students’ Scores for Scientific Literacy..........................70
Table 3.4. The Relationship between Research Components and Data Sources..........................73
Table 4.1. Differences between the Traditional and New Curriculum..90
Table 4.2. The Dependence of Teaching and Learning Methods using the Chi-Square Test Statistic – Ranked Distribution..108
Table 5.1. The Classification of Scientific Literacy Questions according to theme, concepts, and Bloom’s levels of educational objectives: cognitive domain..114
Table 5.2. Statistical Overview of Scientific Literacy Levels of the Students...............................117
Table 5.3. Correct Responses to Scientific Literacy Questions..118
Table 5.4. The General Distribution of Students’ Scores for Scientific Literacy..........................118
Table 5.5. The Detailed Distribution of Students’ Scores for Scientific Literacy..........................119
Table 5.6. Most Popular Science Disciplines for Students with Different Scientific Literacy Levels...129
Table 6.1. The SOLO Taxonomy for Classification of Technology Scores.....................................132
Table 6.2. Statistical Overview of Technological Literacy Levels of the Students..........................133
Table 6.3. The General Distribution of Students’ Scores for Technological Literacy.......................136
Table 6.4. The Detailed Distribution of Students’ Scores for Technological Literacy.......................137
Table 6.5. Combined Scientific and Technology Literacy Levels of Students.................................138
Table 7.1. The Scientific Literacy Categories of Students ... 179
Table 7.2. The Distribution of Students Per Scientific Literacy Category .. 180
Table 7.3. Statistical Overview of Scientific Literacy Levels of the Students 180
Table 7.4. Most Popular Science Disciplines for Students with Different Scientific Literacy Levels 181
Table 7.5. The Distribution of Students Per Technological Literacy Score .. 191
Table 7.6. Statistical Overview of Technological Literacy Levels of the Students 191
Table 7.7. Combined Scientific and Technology Literacy Levels of Students 192

List of Appendices

Appendix 1: Questionnaire
Appendix 2: Focus Group Interview Schedule
Appendix 3: Analysis of Focus Group Interviews