Capitol adapted SBAT System

9.1 Introduction

The SBAT System (Sustainable Building Assessment Tool) has been adapted by the author for the Capitol intervention. The assessment is intended to evaluate the performance of the intervention setting benchmarks for the project. The assessment focuses on social, environmental and economic domains, all of which are pertinent to the construction and performance of the intervention (Figure 9.1).

9.1.1 Social Issues

9.1.1.1. Occupant Comfort

According to Gibberd (2005: 4) it has been shown that the quality of environments inside and around a building affect the health, mental state and productivity of people. “Healthier, happier, and more effective people contribute to sustainability by being more efficient and therefore reducing resource consumption and waste. However the quality of this environment needs to be achieved with minimal cost to the environment.”

9.1.1.2 Acoustics

The dome structure of the Capitol has been treated with Sabine Acoustic Plaster (Figure 9.2); acoustics have also been enhanced with the electrical installation of loud speakers. The loud speakers render the sound distribution of the actual performance throughout the arena, regardless of how far from the stage the viewer sits. “The audience is assured of hearing with ease the quietest whisper.”

9.1.1.3 Day Lighting

The Entrance Foyer, where the restaurant is situated receives the most natural light from the openings in its northern facade. The Grand Foyer receives natural light in the latter part of the day through textured windows on the western facade. This space is artificially lit, to enhance the space as well as the artworks and the costumes of the exhibition. The openings (entrances and exits) of the auditorium are closed during performances to reduce any natural light entering the auditorium, and the skylight can close electronically. The auditorium is by default a darker space. The stage has skylights which can be closed and receives good natural daylight. Each dressing room has a window thereby, receiving sufficient natural light.

9.1.1.4 Ventilation

The Capitol is ventilated mechanically. The current energy intensive ventilation equipment has been replaced with a more efficient system.

9.1.1.5 Thermal comfort

The internal temperature of the spaces is maintained manually and constantly controlled.

9.1.1.6 Views

The flat concrete roofs of the foyers have been redesigned as a terraced roof garden. The roof space affords the viewer a good view of Church Square as well as the extended interior. A walkway system is suspended off the eastern facade of the building which also allows for views of the extended interior and the roof terraces. From these spaces (including the walkways) viewers can watch performers. Fixed binoculars have been placed on the roof garden (Figure 9.4).
9.1.2 Inclusive Environments

“Buildings should be designed to accommodate and should be accessible to everyone, or specially designed buildings need to be provided. Ensuring that buildings are inclusive supports sustainability as replication is avoided and change of use supported.” (ibid).

9.1.2.1 Transport
Capitol is in close proximity to a frequently used bus stop on Church Square. This transport system connects people located elsewhere in the city as well as beyond its borders. Parking is for patrons of the Capitol are located within Church Square as well as the basement of the TPA. Parking for delivery vehicles is provided in Fountain lane on the western side of the building or in the auditorium itself depending on height restrictions.

9.1.2.2 Legibility
A well defined entry point to the extended interior is provided aside from that of the existing Foyer entrance. Spaces for staff and that for viewers (private and public) are demarcated. The buildings branding is positioned on the roof of the building, standing out to those passing by. At night this signage lights up, establishing the Capitol within Church Square (Figure 9.7).

9.1.2.3 Social Spaces
The Capitol, including the foyers, auditorium and extended interior link connect together and allowing for interaction between space, user, and object. These social spaces become shared spaces where viewers can gather, relax, watch a performance and play. Capitol, although defined connects with Church Square and becomes part of a network of public spaces within the CBD (Figure 9.9).

9.1.3 Access to Facilities
“Conventional living and working patterns require regular access to a range of services” (ibid: 5). Access basic facilities such banking, retail transport and eateries services are located within a close proximity to the Capitol project. For special/specific events patrons may be brought in on busses to the interchange in Church Square. Within the SchizoCity Framework, the manipulation of the city makes it easier to access and spaces within the CBD, reducing environmental impact and creating a more dynamic environment.

9.1.4 Education, health and safety
“Buildings need to cater for the well-being, development, health and safety of the people that use them. Learning and access to information is increasingly seen as a requirement of a competitive work force.” (ibid: 6).

9.1.4.1 Education
Information will be provided on the current and forthcoming events happening at the Capitol. The Boswell Wilkie Circus School in collaboration with the Tshwane Cultural Centre will train youths into world-class performers. Access to support for learning will also be provided for the staff of the Capitol as well as the users.

9.1.4.2 Safety and security
Safety of the occupants and users is of utmost importance. Twenty four hour surveillance will be employed for the Capitol. The building must comply with all national and international health and safety regulations. A balustrade wraps around the roof terraces and the facade walkways of the building, whilst the extended interior is designed at increments of 500mm as to negate the use of balustrades within the landscape.
9.1.5 Economic Issues

“The adaptive-reuse and management of buildings can have a major impact on the economy of the area. The economy of an area can be stimulated and sustained by buildings that make use of, and develop, local skills and resources” (ibid: 8).

9.1.5.1 Local contractors

The intervention, as far as possible will be carried out by local contractors within the greater Tshwane area. With this, people will be trained where required to complete aspects of the intervention.

9.1.5.2 Local materials

The majority of materials, products, components and fittings specified should be manufactured and sourced from within the Greater Tshwane. If this cannot be achieved all materials should be manufactured in South Africa. For the Capitol intervention, all products are produced locally with one exception, that of the hollow core plastic. Through the use of local contractors and local materials the local economy is strengthened.

9.1.6 Efficiency of use

“Effective and efficient use of buildings supports sustainability by reducing waste and the need for additional buildings.” (ibid: 8).

9.1.6.1 Occupancy

To ensure that the Capitol has a maximum occupancy the various spaces can support various functions. Space can be rented out to organisations separately even though the Boswell Wilkie Circus is the resident tenant. Events and facilities that can be accommodated include: car launches, conference facilities, fashion shows, receptions, music events and theatrical events.

9.1.7 Adaptability and flexibility

“Buildings, which can accommodate change easily, support sustainability by reducing the requirement for physical adaption and associated disruption, energy consumption and cost as well as the need for new buildings.” (ibid: 9.)

9.1.7.1 Vertical Dimension

The various volumes of the space from floor to ceiling are greater than 3m. Within the auditorium the height is used effectively by performers, forming another layering of private space.

9.1.7.2 Structure and services

The intervention latches onto the existing structure of the building with minimal adaptation to the original structure, with exception of stripping the structure to reveal the dome. This alludes the viewer to the ‘mystery’ that the building contains.

9.1.8 Ongoing Costs

“Buildings cost money to operate. These costs include cleaning, maintenance, security and energy.” (ibid)

9.1.8.1 Maintenance

Due to the fact that Capitol is within the public realm, materials selected are hardy and durable. Materials on the exterior such as the synthetic grass are UV resistant and those on the interior such as the hollow core plastic are lightweight but strong.
9.1.9 Capitol Costs

9.1.9.1 Local Need
A percentage of the capital cost of the Capitol intervention will be allocated to train people with construction skills during the implementation of the project.

9.1.9.2 Shared Need
The project is funded through a private/public partnership, the Tshwane Metropolitan Municipality and the Boswell Wilkie Circus, the initial and future costs will be shared. Maintenance costs will be generated through the sharing of the buildings facilities with other established organisations.

9.1.10 Environmental Issues

9.1.10.1 Water
Water usage is reduced to a minimum through the implementation of auto flow taps and the installation of dual flush toilets. Water saving awareness it to be promoted amongst staff as well as in the public WC’s.

9.1.11 Energy

"Using less energy or using renewable energy in buildings can make a sustainable contribution" (ibid: 11)

9.1.11.1 Location
As the building is located nearby a public transport system, people that may generally use cars have the opportunity to use public transport.

9.1.11.2 Passive environmental Control
Due to the nature of the existing structure of the building, a mechanically controlled system is unavoidable.

9.1.11.3 Energy Efficiency
Old mechanical ventilation and cleaning systems have been removed and replaced with more energy efficient systems, housed in the same location. Only energy efficient light fixtures are used.

9.1.12 Site
The site on which the Capitol stands was first developed in the late 1800’s. The Capitol Theatre is pump-planned to re-inject it with energy that previously made it a successful public space.

9.1.13 Materials and Components
The ecological impact of materials must be assessed to inform the selection of materials. The following are to be taken into account:

- The low embodied energy of materials such as concrete, brick and timber. Bricks removed from the facade of the building are to be re-used in the masonry construction of the extended interior.
 - Locally sourced or manufactured materials
 - Materials that can be recycled such, as steel and aluminium.
 - Modular dimensions of materials
 - Durable and low-maintenance materials
9.2 Materials

9.2.1 Polycarbonate
Classified as an engineering plastic, polycarbonate has better mechanical properties than other polymers. Although it requires a higher energy input during manufacture than other plastics and can be recycled. For the Capitol intervention, polycarbonate is used for the exterior signage (branding) of the building. To increase its strength, the polycarbonate panels have embossed ribs. The panels are fixed to a steel frame (Figure 9.15).

9.2.2 Stainless Steel
Used for the exterior columns in the extended interior. The metal can is either highly polished or brushed and laser cut with a Corinthian column pattern. It is selected for the columns firstly for its corrosion resistance, secondly its strength and thirdly for the ease of fabrication (Figure 9.16).

9.2.3 Nylon
Used as a textile in the Capitol intervention, it is combined with a low percentage of spandex to improve its flexibility. It is used as an interior and exterior application. A splayed finish has been applied which gives it a metallic finish whilst maintaining translucency under light. The nylon is treated using a spinning process through which 13½ spandex is added to enhance its mechanical properties. A vacuum method of coating, called sputtering, is used to add small metallic particles which create a metallic finish.

9.2.4 Hollow Core Plastic
Rigid translucent TRIcore honeycomb cores with transparent thermoplastic top sheets results in a strong panel with good optical features. Of the five types available, the clear-PET UV PC stage is used. The clear-PET UV PC stage consists of 2mm UV protected PC top sheets and the hollow core structure. It is suitable for flooring as it has load carrying capacity whilst being lightweight. Used for the floor system in the auditorium, various stage configurations are possible, and the stages can be lit individually. The material has a high scratch resistance and an anti-slip surface (Figure 9.17).

9.2.5 Synthetic grass
Manufactured by attaching polyvinylchloride blades to a durable porous backing, synthetic grass has an average lifespan of 10 years. The turf is unrolled and fixed to the desired surface, and once in place a mixture of rubber and sand is raked into the turf. The rubber is manufactured from old tyres and places in a ratio of 2:1 with sand. Synthetic grass is used as cladding in the extended interior for both the floor plane and the rear of the remaining TPA wall, becoming a synthetic green wall (Figure 9.18).

9.2.6 Glazing
Laminated reflective coated safety glass
Solarshield consists of a combination of a metallic coating and a clear tinted PVB (polyvinyl butyral). The PVB is designed to keep out the heat of the sun. The glazing is treated to limit the amount of light entering the building as well as blocking out damaging UV radiation. The appearance of the glazing is determined by the colour of the glass, the sun angle, reflections and the viewing angle (Solarshield, 2009). Acting as a mirror in the extended interior the glazing will create a textured quality where used on the facade of the entrance foyer (Figure 9.19).

/106/
9.2.7 Concrete
Concrete comprises of components from a non-renewable resource, can achieve large spans and is a low-demand material. Concrete is used for the patterned pathway as well as parts of the manipulated floor plane of the extended interior.

9.2.8 Rosco mirror
A lightweight and flexible substitute for heavy glass mirror, the material comprises of a tear resistant plastic film. The material has a mirror-like reflective quality and is self-extinguishing. The film is used on the rear wall of the stage. Fixed to a curved frame, the mirror reflects and distorts the stage workings as well as reflects light.

9.2.9 Timber
As the only timber used in the original build of the Capitol Theatre in 1930 in the doors and windows, the doors of the Capitol interventions are also of timber. Timber, parallel to the grain is strong and tough. The doors are fire treated and the timber selected is Pinus elliotti.

9.2.10 Polymethylmethacrylate, PMMA
PMMA, an Acrylic, is a thermoplastic material that may resemble glass. Like glass, it has a sense of fragility which is overcome by blending the PMMA with an acrylic rubber to increase its strength. PMMA can be moulded or cast in thicknesses up to 100 millimetres. As it is a thermoplastic material, it will retain the shape in which it is produced. The luminaire is designed in accordance with PMMA that has already been set as upon setting; PMMA shrinks by approximately 2% in both length and breadth. PMMA can be joined using a variety of methods such as epoxy adhesives.

9.3 Conclusion
The SBAT system was used as a guideline for the basic requirements of the building, in order to pump-plan the Capitol. Redundant equipment is to be replaced to increase its sustainability. According to the SBAT system an overall rating of 3.4 was achieved, the system however, appears to be designed toward the development of a new building, and guidelines for the pump-planning of existing buildings should be established.

Figure 9.20 The patterned pathway, extending from the entrance of the extended interior and through to the western interior facade is shuttered in salvaged pressed ceiling panels.

Figure 9.21 Timber doors used on the eastern facade. Photograph taken in Brick Lane, London, 2009

Figure 9.22 Tofu table light by Tokuji Yoshikawa, material same as that of niche plinth. PMMA with halogen diffuser.

Overall 3.4
Overall value 0-1 1-2 2-3 3-4 4-5
Classification Very Poor Poor Average Good Excellent

Figure 9.23 Result of SBAT analysis undertaken by author for Capitol

/107/
“Sympathy for context is by no means an automatic response. We have all confronted situations which require dramatic intervention, just as we have discovered those which call forth a profound regard for continuity.”

HODGETTS & FUNG - Scenarios and Spaces
Figure 9.26 Demolition Elevation of eastern side of auditorium, illustrating removal of infill.

Figure 9.27 View of theatre from Church Square 2009, illustrating the skin extending the skin.

Figure 9.28 East Elevation of Capitol, illustrating the intervention, refer to figure 9.26. Hand drawn by author.

Figure 9.29 View of Capitol from Church Square illustrating Capitol intervention. Refer to figure 9.27.
extending the skin

700 X 700 X 50MM HIGH SOLID PMMA FIXED WITH EPOXY ADHESIVE TO 200 MM Ø HOLLOW SECTION; LED UPLIGHTER TO BE PLACED IN HOLLOW PMMA SECTION. PLINTH PLACED IN NICHE; ELECTRICAL WIRING AT REAR

ENTRANCE FOYER
GRAND FOYER
300 SQM
GROUND FLOOR
AUDITORIUM
PROMENADE

HANDWASH BASINS
URINALS
PARTITION
SERVICE AREA
GENTS TOILET
LADIES TOILET

260 SQM

AUDITORIUM
GROUND FLOOR
1500 SQM
PAX: 1100
(STAGE)
ORCHESTRA PIT/NEW EXTENDED STAGE
MILD STEEL COLUMNS SUPPORTING EXPANDED METAL FLOORING
EXISTING FIRE ESCAPE FROM BALCONY
ADDITIONAL EXISTING FIRE ESCAPE FROM BALCONY
EXISTING FIRE CURTAIN

STORE
STAGE ENTRANCE DRESSING ROOM
STORAGE

AIR DUCT
AIR DUCT
UP: STAIRS TO DRESSING ROOMS
DOWN: STAIRS TO GARDEROBE/LAUNDRY
EXIT TO FOUNTAIN LANE

GRAND FOYER AND MEZZANINE PROMENADE TO BE RESTORED AND PROGRAMMED AS GALLERY SPACE
RESTORATION TO INCLUDE: PAINTING, PLASTERING, CARPETING, REPLACEMENT OF MARBLE TILES AND TIMBER FINISHES, RESTORATION OF FRESCO’S BY SPECIALIST

ENTRANCE FOYER TO BE RESTORED TO ORIGINAL AND PROGRAMMED AS KARIBA RESTAURANT, TICKET OFFICE AND TSHWANE CULTURAL...
CURATOR’S OFFICE ON MEZZANINE FLOOR
40 SQM
STEPS TO FUNCTION ROOM
FIRE ESCAPE TO EXTENDED INTERIOR VEHICULAR ENTRANCE/FIRE ESCAPE TO EXTENDED STAGE

STAGE: HOLLOW CORE FLOOR; EDGED WITH TEFLON. PLACED IN GALVANIZED MILD STEEL FRAME. LEG: SQUARE HOLLOW SECTION, HOLES DRILLED IN SPECIFIC PLACES TO ALLOW MAXIMUM ANGLE OF 30°, NON-SLIP SURFACE. HOLLOW CORE FLOOR SUPPORTED BY MILD STEEL PLATE WELDED TO ANGLES, WELDED TO LEG.

TPA FOYER EXTENSION
100 SQM
ORIGINAL TPA WALL
SYNTHETIC GREEN WALL
MEMORY OF TPA WALL, SCORED INTO EXTRUDED FLOOR PLANE
RE-USED KIRKNESS BRICK CIRCULAR PATTERN
SHOWTEX MIRROR FOIL; FIX TO GALVANIZED MILD STEEL FRAME OF STAGE BACKDROP SUBSTRUCTURE; HOLES TO BE DRILLED AT CERTAIN INTERVALS TO AND MIRROR FOIL FIXED WITH STAINLESS STEEL SCREWS.
SYNTHETIC GRASS
CAST IN-SITU CONCRETE WALKWAY. SHUTTERED WITH RE-USED PRESSED CEILING PANELS

UNISEX TOILET (AS PER MONICA BONVICINI DESIGN)
2800Ø HYDRAULIC ELEVATOR SURROUNDED ON GROUND FLOOR BY GLAZED SAFETY BARRIER

MILD STEEL COLUMN, CLAD IN 2MM POLISHED STAINLESS STEEL, BRUSHED AT BOTTOM. CAST RC BASE

UNISEX INCLUSIVE TOILET
EXISTING NEDERLANDSCHE BANK TOILET. CONVERTED INTO UNISEX INCLUSIVE TOILET. SOUTHERN WALL REPLACED WITH REFLECTIVE GLAZING

Figure 9.30 Ground Floor Plan of Capitol, hand drawn by author. Illustrating extended interior, example of stage configuration, orchestra pit flooring and mirrored backdrop.
extending the skin

UP: STAIRS TO DRESSINGROOMS
DOWN: STAIRS TO STAGE
EXIT TO FOUNTAIN LANE
EXIT TO SCULPTURE GARDEN

Figure 9.31 Balcony Plan of Capitol, hand drawn by author. Illustrating placement of ribs and roof terrace.
8MM TRANSLUCENT POLYCARBONATE SIGNAGE FIXED TO HOT DIPPED GALVANISED MILD STEEL FRAME

8MM EXPANDED HOT DIPPED GALVANISED METAL WALKWAY WELDED TO 75X75 COLD ROLLED STEEL EQUAL ANGLE FRAME BOLTED TO EXISTING COLUMNS

8MM STRUCTURAL GLASS SET IN HOT DIPPED GALVANISED MILD STEEL FRAME FIXED IN BETWEEN EXISTING COLUMNS

Figure 9.32 East Elevation of Capitol illustrating the interventions, refer to figure 9.26. Hand drawn by author extending the skin
Figure 9.33 Digital collage of auditorium, view from below illustrating underside of balcony, stage, placement of ribs and skylight extending the skin
Figure 9.34: Section A-A, illustrating rear of auditorium, balcony and southern facade of Entrance Foyer. TPA building is being located extending the skin.
DETAIL A: ELEMENTS OF THE EXTENDED INTERIOR

Figure 9.35 Detail A: elements of the extended interior, including:
- patterned walkway, re-used materials,
- re-used bricks in paving
- extending the skin

CAST IN-SITU ROUGH AGGREGATE CONCRETE SLAB
- extending the skin
- CAST IN-SITU ROUGH AGGREGATE CONCRETE SLAB

RE-USED KIRKENESS BRICKS REMOVED FROM FACADE,
LAID ON 25mm COMPACTED SAND BED, WITH FINE JOINTING
AND SWEEP AND VIBRATED INTO JOINTS.

200mm CAST IN-SITU CONCRETE BAND TO DEFINE EDGE
BETWEEN BRICK AND SYNTHETIC GRASS, RUNNING LENGTH
OF EDGE

SUB BASE FROM 150mm SCARIFIED, STABILISED AND COMPACTED FROM IN-SITU MATERIAL - 93% MODAASHTO

30mm BEDDING

IMPORTED CRUSHER RUN, 150mm PAVING BASE

PATTERNED WALKWAY - 100mm
CONCRETE SLAB CAST IN-SITU,
SHUTTERED WITH PRESSED
CEILING PANELS, RANDOMLY
ORDERED, CONCRETE CLASS 25/6

150 X 150 X 10 EQUAL HD MILD GALVANISED STEEL ANGLE

120 X 10 GALVANISED WILD STEEL REARING PLATE WITH GRANITE
GRADE BETWEEN ANGLE TO ALLOW EXPANSION

30mm PRECAST ECHO SLAB
WITH HOLE DRILLED INTO IT
TO PROVIDE SPACE FOR BOLT

120mm PRECAST ECHO SLAB
WITH HOLE DRILLED INTO IT
TO PROVIDE SPACE FOR BOLT

CAST IN-SITU CONCRETE FOUNDATION WALL

CAST IN-SITU CONCRETE BAND TO DEFINE EDGE
BETWEEN BRICK AND SYNTHETIC GRASS, RUNNING LENGTH
OF EDGE

150 X 150 X 10 EQUAL HD MILD GALVANISED STEEL ANGLE
EXTENDING THE SKIN

10MM BASE PLATE BOLTED TO EXISTING STRUCTURAL COLUMNS USING M10 EXPANSION BOLTS

10MM GUSSET PLATE WELDED TO BASE PLATE, ANGLES BOLTED TO GUSSET PLATE

80X80X6 HOT ROLLED AND BENT GALVANISED MILD STEEL ANGLE, R=3000MM

EXISTING STRUCTURE

DETAIL B: BRACKET AND BALUSTRADE

10MM BASE PLATE WELDED AND BOLTED TO ANGLES, BALUSTRADE BOLTED TO BASE PLATE

80X60X3 HOT ROLLED UNEQUAL LEG GALVANISED MILD STEEL ANGLE, LASER CUT AT BOTTOM, WIDTH OF 20MM INCREASING TO 80MM.

60X60X3 HOT ROLLED EQUAL LEG GALVANISED MILD STEEL ANGLE, LASER CUT AT BOTTOM, WIDTH OF 20MM INCREASING TO 60MM. USED AS FRAME FOR EVENT POSTERS AND ARTWORKS

50MM Ø GALVANISED MILD STEEL ROUND HOLLOW HANDRAIL, WELDED TO BALUSTRADE

EXPANDED METAL WALKWAY SPOT WELDED TO ANGLES, SPANNING 2000MM

25MM GALVANISED MILD STEEL ROD WELDED TO BALUSTRADE

EXISTING BEAM OR COLUMN

DETAIL C: FIXING OF BALUSTRADE ONTO EXISTING STRUCTURE OF ENTRANCE FOYER FACADE

Figure 9.36 Detail B: Detail of bracket and balustrade of the cantilevered walkway of eastern facade extending the skin

DETAIL C: FIXING OF BALUSTRADE ONTO EXISTING STRUCTURE OF ENTRANCE FOYER FACADE

Figure 9.37 Detail C: Fixing of balustrade to northern facade of entrance foyer

DETAIL D: DETAIL OF BALUSTRADE

Figure 9.38 Detail D: Detail of balustrade illustrating hollow sections and grab rail
Figures 9.39 Section C-C illustrating extended interior, reflecting walls, stage and proscenium, trusses, hydraulic elevator and walkways on auditorium facade extending the skin.
extending the skin

100X80X6 GALVANISED MILD STEEL HOT ROLLED UNEQUAL LEG ANGLE

10mm GUSSET PLATE. ANGLES BOLTED TO GUSSET PLATE WITH M10 BOLTS, ALL HOLES PREDRILLED AND EVENLY SPACED.

10mm GUSSET PLATE. ANGLES BOLTED TO GUSSET PLATE WITH M10 BOLTS, ALL HOLES PREDRILLED AND EVENLY SPACED.

10mm GUSSET PLATE. ANGLES BOLTED TO GUSSET PLATE WITH M10 BOLTS, ALL HOLES PREDRILLED AND EVENLY SPACED.

50X50X3 GALVANISED MILD STEEL COLD FORMED EQUAL LEG ANGLE

BOLTED TO GUSSET PLATE AND ANGLE WITH M10 BOLTS.

20mm BASE PLATE FIXED TO EXITING COLUMNS USING M20 EXPANSION BOLTS. AT REGULAR INTERVALS ON TRUSS.

11000mm 8000mm

DETAIL E: DETAIL OF TRUSS

Figure 9.40 Detail E: Detail of truss in auditorium space

10MM STRUCTURAL GROUTING

100MM Ø HOLLOW GALVANISED MILD STEEL SECTION

PRE DRILLED HOLES IN FLANGE AND STAINLESS STEEL CLADDING. ALLOWS FOR ATTACHMENT OF CABLES AND SHADE CLOTH

200MM, 10MM THICK GALVANISED MILD STEEL FLANGE CLASS 50 CLASS 316. STEEL. EITHER POLISHED OR BRUSHED BOTTOM 300MM BRUSHED FOR PROTECTION.

600X600X400MM PRE-CAST CONCRETE PLINTH, MOULDED CORINTHIAN CAPITAL.

700X700X500 CAST IN-SITU CONCRETE FOUNDATION

200MM, 5MM THICK GALVANISED MILD STEEL PLATE CLAD ON 30MM CLASS 316 STAINLESS STEEL. EITHER POLISHED OR BRUSHED BOTTOM 300MM BRUSHED FOR PROTECTION.

600X600X400MM PRE-CAST CONCRETE PLINTH, MOULDED CORINTHIAN CAPITAL.

700X700X500 CAST IN-SITU CONCRETE FOUNDATION

DETAIL F: DETAIL OF EXTERIOR COLUMN

Figure 9.41 Detail E: Detail of column of extended interior
extending the skin

Figure 9.42 Digital collage of extended interior illustrating patterned pathway, manipulated ground plane and synthetic green wall. Church Square in background.
Extending the skin

HOLLOW CORE FLOOR; EDGED WITH TEFLON. PLACED IN GALVANISED MILD STEEL FRAME.

10mm GALVANISED MILD STEEL SQUARE STEEL ROD

SQUARE HOLLOW SECTION, HOLES DRILLED IN SPECIFIC PLACES TO ALLOW LEG TO BE EXTENDED.

ADJUSTABLE FOOT FIXED TO BOTTOM OF LEG. MAXIMUM ANGLE OF 30°, NON-SLIP SURFACE.

STAGE: HOLLOW CORE FLOOR; EDGED WITH TEFLON. PLACED IN GALVANISED MILD STEEL FRAME.

SQUARE HOLLOW SECTION, HOLES DRILLED IN SPECIFIC PLACES TO ALLOW LEG TO BE EXTENDED. ADJUSTABLE FOOT FIXED TO BOTTOM OF LEG. MAXIMUM ANGLE OF 30°, NON-SLIP SURFACE.

DETAIL H: DETAIL OF ORCHESTRA PIT STAGE

EXISTING MARBLE BALUSTRADE OF ORCHESTRA PIT

EXISTING MARBLE BALUSTRADE OF ORCHESTRA PIT

DETAIL I: DETAIL OF NICHE PLINTH

DETAIL G: DETAIL OF FLOOR SYSTEM

Figure 9.43 Detail G: Detail of floor system used in auditorium extending the skin

Figure 9.44 Detail I: Detail of plinth used in niches of auditorium, respecting the memory of previous sculptures

Figure 9.45 Detail H: Detail of flooring used to conceal orchestra pit and extend the existing stage
Figure 9.46: Section B-B through auditorium, illustrating ribs, stage and backdrop, use of textile skin lighting and truss suspended from ribs as well as floor system extending the skin.
EXTENDING THE SKIN

25X25X3 mm COLD FORMED EQUAL LEG ANGLE

M6 BOLTS, BOLT ANGLES TOGETHER, HOLED PRE-DRILLED AND EQUALLY SPACED

5mm SUPER-PLY TIMBER

5mm SUPER-PLY TIMBER

ROSCO MIRROR FILM FIXED TO SUPER PLY, EITHER PINNED OR HEAT SHRUNK BY SPECIALIST

Figure 9.47 Detail J: Detail of truss system used for stage backdrop extending the skin

35X35mm COLD FORMED EQUAL LEG ANGLE

M6 BOLTS, BOLT ANGLES TOGETHER, HOLED PRE-DRILLED AND EQUALLY SPACED

5mm SUPER-PLY TIMBER

ROSCO MIRROR FILM FIXED TO SUPER PLY, EITHER PINNED OR HEAT SHRUNK BY SPECIALIST

Figure 9.48 Digital collage of detailed computer generated design image for stage backdrop extending the skin
The only thing that binds me, to the pedestrians, then to each other
And those passing by is the CAPTÓ, which is interpreted by each individual differently,
the people and noise and sounds and shouts.
This tightrope made of feelings open to interpretation.
People becoming a detective of their thoughts.
Remember us is all we ask.
And if remembered be a task forget us.
Remember me is all I ask.
And if remembered be a task forget me.
But in the Capitol we all realise something and remember something.
Whether future, past or present, it does not matter.
Remember the CAPTÓ, is all I ask.