
Chapter 8

Plate-beam system

8.1 Introduction

The differences between the Euler-Bernoulli, Rayleigh and Timoshenko beam
models can be investigated by comparing the natural frequencies predicted
by the different models. It is well known that in general, the shear correc-
tions introduced by the Timoshenko model are larger than the rotary inertia
corrections of the Rayleigh model. For the first (smallest) eigenvalue these
corrections are small, but for the higher eigenvalues they are of significance.
See Section 8.1.1 for a numerical example.

The same tendency is seen when we compare the eigenvalues for the classical
plate models, i.e. the Kirchhoff model with and without rotary inertia, with
those of the Reissner-Mindlin plate model. See Section 8.1.2 for a numerical
example.

8.1.1 Pinned-pinned beam

For a pinned-pinned beam the eigenvalues and eigenfunctions for the Euler-
Bernoulli model, the Rayleigh model and the Timoshenko model can be
obtained in closed form.
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152 CHAPTER 8. PLATE-BEAM SYSTEM

Euler-Bernoulli model

The eigenvalues are

λ =
k4π4

βb
, k = 1, 2, . . . ,

with associated eigenfunctions

w(x) = sin kπx.

Rayleigh model

The eigenvalues are

λ =
k4π4

βb(1 + α−1
b k2π2)

, k = 1, 2, . . . ,

with associated eigenfunctions

w(x) = sin kπx.

Timoshenko model

The eigenvalues are the roots of

λ2 −
(
αb +

(
1 +

αb

βb

)
k2π2

)
λ+

αb

βb
k4π4 = 0 for k = 1, 2, . . .

For each k, two eigenvalues λk and λ∗k are obtained. If λ∗k denotes the larger
one of the two, it is known that λ∗k > αb for all k. In the numerical examples
the first few eigenvalues are considered and the λ∗k will not feature. The
associated eigenfunction pairs are

wk(x) = sin kπx, φk(x) =
k2π2 − λk

kπ
cos kπx and

w∗
k(x) = sin kπx, φ∗k(x) =

k2π2 − λ∗k
kπ

cos kπx.
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8.1. INTRODUCTION 153

Comparison of eigenvalues

As an example we present some numerical results for a pinned-pinned beam
with a length to depth ratio of 20:1 and a square profile, i.e. αb = 4800. We
choose βb = 0.25. The percentage differences for the first five eigenvalues
are shown in Table 1, where λ

(EB)
i , λ

(R)
i and λ

(T )
i denote the i-th eigenvalue

for the Euler-Bernoulli, Rayleigh and Timoshenko models respectively. The
percentage differences are calculated with respect to the Euler-Bernoulli ei-
genvalues. Clearly, the shear corrections are larger than the corrections due
to rotary inertia and the corrections for larger eigenvalues are significant. For
a “shorter” beam (smaller αb) these corrections are even larger.

Table 1: Corrections for a pinned-pinned beam

Rotary inertia Shear

i
λ
(EB)
i −λ

(R)
i

λ
(EB)
i

λ
(EB)
i −λ

(T )
i

λ
(EB)
i

1 0.21 % 1.02%
2 0.82 % 3.93%
3 1.82 % 8.36%
4 3.19 % 13.85%
5 4.89 % 19.01%

8.1.2 Rigidly supported plate

For a plate supported rigidly on all four sides, the eigenvalues and eigen-
functions can be determined in closed form for all the different plate models,
i.e. the Kirchhoff model with and without rotary inertia and the Reissner-
Mindlin model.

Kirchhoff model without rotary inertia

The eigenvalues are

λ =
π4(n2 +m2)2

βp(1− ν2p)hp
, n = 1, 2, . . . and m = 1, 2, . . .
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154 CHAPTER 8. PLATE-BEAM SYSTEM

with associated eigenfunctions

w(x1, x2) = sin(nπx1) sin(mπx2).

Kirchhoff model with rotary inertia

The eigenvalues are

λ =
π4(n2 +m2)2

βp(1− ν2p)(hp + Ipπ2(n2 +m2))
, n = 1, 2, . . . and m = 1, 2, . . .

with associated eigenfunctions

w(x1, x2) = sin(nπx1) sin(mπx2).

Reissner-Mindlin model

The eigenvalues are the solutions of the quadratic equation

rλ2 − (1 + (r + γ)f)λ+ γf 2 = 0.

In this equation

r =
h2p
12

and γ =
1

2βp(1− ν2p)hp
.

A sequence of values for f are used, each yielding two eigenvalues.

f = π2(n2 +m2) for n = 1, 2, . . . and m = 1, 2, . . . .

The associated eigenfunction pairs are of the form

w(x1, x2) = sin(nπx1) sin(mπx2),

ψ1(x1, x2) = Anm cos(nπx1) sin(mπx2),

ψ2(x1, x2) = Bnm sin(nπx1) cos(mπx2).

Since these formulae will not be used in our calculations, we do not display
the closed form expressions for Anm and Bnm.
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8.1. INTRODUCTION 155

Comparison of eigenvalues

For the numerical calculations we use a square plate with dimensionless thick-
ness hp = 0.05, Poisson’s ratio νp = 0.3 and shear correction factor κ2p = 5/6.
The first six eigenvalues for the three different models are given in Table 2.
Note that due to the spatial symmetry of the problem, repeated eigenvalues
occur, e.g. Eigenvalues 2 and 3, and also, 5 and 6.

Table 2: Eigenvalues for rigidly supported plate

Kirchhoff without Kirchhoff with Reissner-
i rotary inertia rotary inertia Mindlin

1 0.2783 0.2772 0.2733
2 1.7394 1.7217 1.6643
3 1.7394 1.7217 1.6643
4 4.4530 4.3809 4.1540
5 6.9578 6.8176 6.3849
6 6.9578 6.8176 6.3849

The percentage differences for the first six eigenvalues are shown in Table 3,
where λ

(K)
i , λ

(KR)
i and λ

(RM)
i denote the i-th eigenvalue for the Kirchhoff

model without rotary inertia, the Kirchhoff model with rotary inertia and the
Reissner-Mindlin model respectively. The percentage differences are calcu-
lated with respect to the Kirchhoff eigenvalues. It is clear that the corrections
due to shear are larger than the corrections due to rotary inertia.

Table 3: Corrections for rigidly supported plate

Rotary inertia Shear

i
λ
(K)
i −λ

(KR)
i

λ
(K)
i

λ
(K)
i −λ

(RM)
i

λ
(K)
i

1 0.41 % 1.78 %
2 1.02 % 4.32 %
3 1.02 % 4.32 %
4 1.62 % 6.71 %
5 2.01 % 8.23 %
6 2.01 % 8.23 %
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156 CHAPTER 8. PLATE-BEAM SYSTEM

8.1.3 Plate-beam system

In [ZVGV3] a plate-beam system consisting of the classical plate model and
the Euler-Bernoulli beam model is investigated. It is shown that introducing
rotary inertia into the model does not causes a significant change in the
eigenvalues. It is also shown that when the ratio db/hp is increased, the
eigenvalues of the plate-beam system tend to those of the rigidly supported
plate.

An initial aim is to compare the eigenvalues of the Reissner-Mindlin-Timoshenko
(RMT) plate-beam system with those of the Kirchhoff-Euler-Bernoulli (KEB)
plate-beam system. We will also consider the asymptotic behaviour of the ei-
genvalues of the RMT system when ratio db/hp is increased. Some interesting
phenomena present themselves and will be discussed in Section 8.5.5.

8.2 The eigenvalue problems

In this section the variational forms in Chapter 3 for the different plate-beam
systems are used to derive the associated eigenvalue problems.

8.2.1 Reissner-Mindlin-Timoshenko plate-beam system

As explained in Section 3.9, if w̃(x, t) = T (t)w(x) and ψ̃(x, t) = T (t)ψ(x)
is considered as a possible solution for Equations (3.6.6) and (3.6.12), the
following eigenvalue problem is obtained.

Problem RMT

λ

{
hp

∫∫

Ω

wv dA+ η1

[∫ 1

0

wv dx1

]

x2=0

+ η1

[∫ 1

0

wv dx1

]

x2=a

}

= hp

∫∫

Ω

(∇w +ψ) · ∇v dA+ η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=0

+η2

[∫ 1

0

(∂1w + ψ1)∂1v dx1

]

x2=a

(8.2.1)
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8.2. THE EIGENVALUE PROBLEMS 157

for all v in T1(Ω) and

λ

{
Ip

∫∫

Ω

ψ · φ dA+
η1
αb

[∫ 1

0

ψ1φ1 dx1

]

x2=0

+
η1
αb

[∫ 1

0

ψ1φ1 dx1

]

x2=a

}

= bB(ψ,φ) + hp

∫∫

Ω

(∇w +ψ) · φ dA

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂1ψ1∂1φ1 dx1

]

x2=a

+η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=0

+ η2

[∫ 1

0

(∂1w + ψ1)φ1 dx1

]

x2=a

(8.2.2)

for all φ in T2(Ω).

(T1(Ω), T2(Ω) and bB are defined in Section 3.6.1.)

8.2.2 Kirchhoff-Rayleigh plate-beam system

If w̃(x, t) = T (t)w(x) is considered as a possible solution for Equation
(3.6.15), the following eigenvalue problem is obtained.

Problem KR

λ

{
hp

∫∫

Ω

wv dA+ Ip

∫∫

Ω

(∇w) · ∇v dA
}

+λ

{
η1

[∫ 1

0

wv dx1

]

x2=0

+ η1

[∫ 1

0

wv dx1

]

x2=a

}

+λ

{
η1
αb

[∫ 1

0

(∂1w)v dx1

]

x2=0

+
η1
αb

[∫ 1

0

(∂1w)v dx1

]

x2=a

}

= bB(w, v) +
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=0

+
η2
βb

[∫ 1

0

∂21w∂
2
1v dx1

]

x2=a

(8.2.3)

for all v ∈ T (Ω).

(T (Ω) and bB are defined in Section 3.6.2.)
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158 CHAPTER 8. PLATE-BEAM SYSTEM

8.2.3 Kirchhoff-Euler-Bernoulli plate-beam system

The eigenvalue problem for the case where rotary inertia is ignored, is ob-
tained by ignoring the terms containing Ip and η1/αb in (8.2.3). We refer to
the corresponding problem as Problem KEB.

8.3 Galerkin approximations for the

eigenvalue problems

For all three eigenvalue problems we consider an approximate solution

wh(x) =
N∑

i=1

wiγi(x), ψh
1 (x) =

N∑

i=1

ψ1iγi(x) and ψh
2 (x) =

N∑

i=1

ψ2iγi(x)

in terms of the bicubic basis functions

γi, i = 1, 2, . . . N,

where the functions ψh
1 and ψh

2 are only applicable for Problem RMT.

As wh ∈ T1(Ω) and ψh = [ψh
1 ψ

h
2 ]

T ∈ T2(Ω), some of these coefficients will
be equal to zero.

8.3.1 Galerkin approximation for Problem RMT

Ifw = [w1 w2 . . . wN ]
T , ψ1 = [ψ11 ψ12 . . . ψ1N ]

T andψ2 = [ψ21 ψ22 . . . ψ2N ]
T ,

the Galerkin approximation for Problem RMT is given by three matrix equa-
tions. These equations are obtained by choosing v = γj in (8.2.1) and
φ = [γj 0]

T and φ = [0 γj]
T in (8.2.2). Recall that v ∈ T1(Ω) and φ ∈ T2(Ω)

and that only admissible basis functions should be used.

8.3.2 Galerkin approximation for Problem KEB

If w = [w1 w2 . . . wN ]
T , the Galerkin approximation for Problem KEB is

given by a matrix equation. This equation is obtained by choosing v = γj
in (8.2.3). Recall that v ∈ T (Ω) and that only admissible basis functions
should be used.
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8.4. MATRIX FORMULATION OF GALERKINAPPROXIMATIONS159

8.4 Matrix formulation of Galerkin

approximations

The eigenvalue problem for both Problem RMT and KEB can be represented
in matrix notation as

Kz = λMz.

The following matrices are required for defining the matrices K and M for
the different eigenvalue problems.

IΩ12ij =

∫∫

Ω

∂1∂2γj∂1∂2γi dA ,

JΩ11ij =

∫∫

Ω

∂21γj∂
2
1γi dA , JΩ22ij =

∫∫

Ω

∂22γj∂
2
2γi dA , JΩ12ij =

∫∫

Ω

∂21γj∂
2
2γi dA ,

J0ij =

∫ 1

0

∂21γj(x1, 0)∂
2
1γi(x1, 0) dx1 , J1ij =

∫ 1

0

∂21γj(x1, a)∂
2
1γi(x1, a) dx1 ,

KΩ11
ij =

∫∫

Ω

∂1γj∂1γi dA , KΩ22
ij =

∫∫

Ω

∂2γj∂2γi dA , KΩ12
ij =

∫∫

Ω

∂1γj∂2γi dA ,

K0
ij =

∫ 1

0

∂1γj(x1, 0)∂1γi(x1, 0) dx1 , K1
ij =

∫ 1

0

∂1γj(x1, a)∂1γi(x1, a) dx1 ,

LΩ1ij =

∫∫

Ω

γj∂1γi dA , LΩ2ij =

∫∫

Ω

γj∂2γi dA ,

L0ij =

∫ 1

0

γj(x1, 0)∂1γi(x1, 0) dx1 , L1ij =

∫ 1

0

γj(x1, a)∂1γi(x1, a) dx1 ,

MΩ
ij =

∫∫

Ω

γjγi dA ,

M0
ij =

∫ 1

0

γj(x1, 0)γi(x1, 0) dx1 , M1
ij =

∫ 1

0

γj(x1, a)γi(x1, a) dx1.
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160 CHAPTER 8. PLATE-BEAM SYSTEM

8.4.1 Construction of K and M for Problem RMT

We define the following matrices which are needed to construct K and M.

Kw = hp
(
KΩ11 +KΩ22

)
+ η2

(
K0 +K1

)
,

L1 = hp L
Ω1 + η2

(
L0 + L1

)
,

L2 = hp L
Ω2 ,

K1 =
1

βp (1− ν2p)

(
KΩ11 +

1− νp
2

KΩ22
)
+
η2
βb

(
K0 +K1

)

+hpM
Ω + η2

(
M0 +M1

)
,

Kν =
1

βp (1− ν2p)

(
νp
(
KΩ12

)T
+

1− νp
2

KΩ12
)
,

K2 =
1

βp (1− ν2p)

(1− νp
2

KΩ11 +KΩ22
)
+ hpM

Ω ,

Mw = hpM
Ω + η1

(
M0 +M1

)
,

M1 = IpM
Ω +

η1
αb

(
M0 +M1

)
,

M2 = IpM
Ω .

We define the matrices KRMT and MRMT by

KRMT =



Kw L1 L2
LT
1 K1 Kν

LT
2 KT

ν K2


 and MRMT =



Mw 0 0
0 M1 0
0 0 M2


 .

The matrices K andM that are needed for Problem RMT are found from the
matrices above by omitting rows and columns according to the restrictions
on the test functions.
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8.5. NUMERICAL RESULTS 161

8.4.2 Construction of K and M for Problem KEB

We define the matrices

KKEB =
1

βp(1− ν2p)

(
JΩ11 + JΩ22 + νp ( J

Ω12 + JΩ21 )
)

+
2

βp(1 + νp)
IΩ12 +

η2
βb

(
J0 + J1

)
,

MKEB = hpM
Ω + η1(M

0 +M1).

The matrices K and M that are needed for Problem KEB are constructed
from the matrices above by omitting rows and columns in accordance to the
restrictions on the test functions.

8.5 Numerical results

8.5.1 Parameters

For the numerical results we consider consider a square plate and beams
with a rectangular profile of thickness d and height 5d. The dimensionless
thickness db of the beams is denoted by db = d/`. For both the plate and
the beams, we choose Poisson’s ratio νp = νb = 0.3 and the shear correction
factors κ2p = κ2b = 5/6. We also assume that the plate and the beams are

made of the same isotropic material and therefore we use G =
E

2(1 + ν)
.

For this special case the dimensionless constants reduce to

η1 = 5d2b ,

η2 = 5

(
κ2b
κ2p

)
d2b ,

Ip =
h3p
12
,

1

αb

=
25d2b
12

,

1

βp
=

(1 + νp)h
3
p

6κ2p
,

1

βb
=

25(1 + νb)d
2
b

6κ2b
.
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162 CHAPTER 8. PLATE-BEAM SYSTEM

In all the numerical experiments a square plate is considered (i.e. a = 1) and
the value of hp is fixed at hp = 0.05, while the value of db is varied to allow
for different values of the ratio db/hp.

8.5.2 Convergence

MATLAB programs have been written for calculating the eigenvalues of the
RMT and KEB plate-beam systems, using the finite element method. The
results of convergence tests are discussed briefly for Problem RMT. In this
case hp = db = 0.05.

In Table 4 the first ten eigenvalues of the RMT plate-beam system are listed
for a 2 × 2, 4 × 4, 8 × 8 and a 16 × 16 grid. The value λ

(k)
i denotes the

approximation for eigenvalue i when using a k ×k grid for the finite element
calculations. When the grid is refined, the eigenvalues form a decreasing
sequence, which is in line with the theory.

Table 4: Convergence

i λ
(2)
i λ

(4)
i λ

(8)
i λ

(16)
i

1 2.3517× 10−1 2.3412× 10−1 2.3401× 10−1 2.3400× 10−1

2 7.9829× 10−1 7.7665× 10−1 7.7474× 10−1 7.7443× 10−1

3 1.1934× 100 1.1822× 100 1.1790× 100 1.1785× 100

4 1.9352× 100 1.6459× 100 1.6408× 100 1.6406× 100

5 2.8759× 100 2.4348× 100 2.4271× 100 2.4266× 100

6 4.4995× 100 3.9430× 100 3.9317× 100 3.9311× 100

7 8.6576× 100 6.4642× 100 6.3653× 100 6.3615× 100

8 9.8681× 100 7.4870× 100 7.3860× 100 7.3816× 100

9 1.0396× 101 8.7615× 100 8.6805× 100 8.6743× 100

10 1.3119× 101 1.0499× 101 1.0391× 101 1.0386× 101

The relative errors for the first 10 eigenvalues are displayed in Table 5.
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Table 5: Convergence

i

∣∣∣∣∣
λ
(4)
i − λ

(2)
i

λ
(4)
i

∣∣∣∣∣

∣∣∣∣∣
λ
(8)
i − λ

(4)
i

λ
(8)
i

∣∣∣∣∣

∣∣∣∣∣
λ
(16)
i − λ

(8)
i

λ
(16)
i

∣∣∣∣∣
1 4.4676× 10−3 4.5354× 10−4 6.5675× 10−5

2 2.7862× 10−1 2.4688× 10−3 3.9173× 10−4

3 9.4811× 10−3 2.6543× 10−3 4.4116× 10−4

4 1.7577× 10−1 3.1193× 10−3 1.1919× 10−4

5 1.8115× 10−1 3.1752× 10−3 2.2742× 10−4

6 1.4113× 10−1 2.8553× 10−3 1.6457× 10−4

7 3.3931× 10−1 1.5547× 10−1 5.9373× 10−4

8 3.1804× 10−1 1.3668× 10−1 6.0509× 10−4

9 1.8660× 10−1 9.3339× 10−3 7.1587× 10−4

10 2.4949× 10−1 1.0448× 10−1 4.1081× 10−4

We find that the first six eigenvalues, which we will consider in the following
experiments, are accurate to three significant digits for a 16× 16 grid.

8.5.3 Comparison of Reissner-Mindlin-Timoshenko
system with Kirchhoff-Euler-Bernoulli system

In [ZVGV3], a numerical investigation of a similar plate-beam system is done
for a combination of the classical plate model and the Euler-Bernoulli beam
model. It was found that the inclusion of rotary inertia in the plate and
beam models had little effect on the eigenvalues.

We now compare the eigenvalues for the RMT system to those of the KEB
system for db/hp = 1 and show that the shear corrections on the higher
eigenvalues are of more significance than the corrections due to rotary inertia.
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Table 6: Eigenvalues for plate-beam system

i KEB RMT Shear correction

1 0.2413 0.2340 3.03 %
2 0.8765 0.7744 11.65 %
3 1.3715 1.1785 14.07 %
4 1.7197 1.6406 4.60 %
5 2.6642 2.4266 8.92 %
6 4.2835 3.9311 8.23 %

8.5.4 Comparison of Kirchhoff-Euler-Bernoulli system
with a rigidly supported Kirchhoff plate

[ZVGV3] contains a numerical experiment where the eigenvalues of the KEB
plate-beam system is compared to the eigenvalues of a rigidly supported
Kirchhoff plate, for different values of the ratio db/hp . The experiment is
repeated for the sake of completeness, as well as the fact that a different
time scaling is used in [ZVGV3]. The exact eigenvalues for the supported
Kirchhoff plate appear in the last column. From Table 7 it is clear that the
eigenvalues of the KEB plate-beam system tend to the eigenvalues of the
rigidly supported plate as the ratio db/hp is increased.

Table 7: Kirchhoff-Euler-Bernoulli

λi Plate-beam system hp = 0.05 λi
i db/hp = 1 db/hp = 2 db/hp = 4 db/hp = 8 Supported plate

1 0.2413 0.2760 0.2782 0.2783 0.2783
2 0.8765 1.6853 1.7368 1.7393 1.7394
3 1.3715 1.7383 1.7394 1.7395 1.7394
4 1.7197 4.4436 4.4525 4.4530 4.4530
5 2.6642 5.2472 6.9312 6.9574 6.9578
6 4.2835 6.1048 6.9587 6.9687 6.9578
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8.5.5 Comparison of Reissner-Mindlin-Timoshenko
system with a rigidly supported Reissner-Mindlin
plate

In Table 8 the eigenvalues of the Reissner-Mindlin-Timoshenko plate-beam
system are compared to the eigenvalues of a Reissner-Mindlin plate that is
rigidly supported on all four sides. The exact eigenvalues for the rigidly
supported plate is presented in the last column.

It is clear that, as expected, the eigenvalues of the Reissner-Mindlin-Timoshenko
plate-beam system tend to the eigenvalues of the rigidly supported Reissner-
Mindlin plate as the ratio db/hp is increased.

Table 8: Reissner-Mindlin-Timoshenko

λi Plate-beam system hp = 0.05 λi
i db/hp = 1 db/hp = 2 db/hp = 4 db/hp = 8 Supported plate

1 0.2340 0.2702 0.2730 0.2733 0.2733
2 0.7744 1.5695 1.6552 1.6627 1.6643
3 1.1785 1.6619 1.6639 1.6642 1.6643

3.0030
3.0030

4 1.6406 3.2510 4.1503 4.1532 4.1540
5 2.4266 3.5914 5.8931 6.3471 6.3849
6 3.9311 4.1320 6.3844 6.3849 6.3849

Two interesting phenomena in this table warrant some further comment. The
first is that the eigenvalues of the plate-beam system corresponding to the
the double eigenvalues of the supported plate remain further apart for the
RMT system than for the KEB system.

Secondly, for large values of the ratio db/hp, an “extra” pair of eigenvalues
appear for the Reissner-Mindlin-Timoshenko system. For db/hp = 8 in Ta-
ble 8, the double eigenvalue λ ≈ 3 does not correspond to an eigenvalue
of the supported plate. These eigenvalues did not appear in numerical ex-
perimentation with the Kirchhoff-Euler-Bernoulli system. The explanation
for these extra eigenvalues for the RMT system lies in the fact that “pure
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shear” modes exist for the RMT system under consideration. These modes
are discussed in the next section.

8.5.6 Pure shear modes

A fact that is often overlooked is that for certain configurations, “pure shear”
modes exist for the Timoshenko beam model and for the Reissner-Mindlin
plate model.

Timoshenko model

For a pinned-pinned Timoshenko beam it is easy to see that λ = αb is an
eigenvalue with the associated pair of eigenfunctions

w(x) = 0, φ(x) = 1.

Reissner-Mindlin-Timoshenko plate-beam system

Returning to the numerical results for the RMT plate-beam system in Ta-
ble 8, note that if db/hp = 8 and hp = 0.05, then db = 0.4 and hence αb = 3.
It seems likely that the pair of “extra eigenvalues” in Table 8 is a consequence
of the pure shear mode of the Timoshenko beam model. This conjecture is
supported by the graphs of the eigenfunction pairs of the system in Figure 1.

Remark

Note that as the height of the beam is 5db, it means that in this case, the
length to height ratio for the beam is 1 : 2. One would not expect the
Timoshenko beam model to yield realistic results and consequently the RMT
plate-beam system will also not be a reasonable model to use. Hence this
phenomenon is only of theoretical significance.
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Figure 8: Eigenfunctions for the RMT plate-beam system

(Note the differences in scaling.)
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