Finite element analysis of plate and beam models

by

Anneke Labuschagne

Submitted in partial fulfillment of the requirements for the degree

Philosophiae Doctor

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

July 2006
DECLARATION

I, the undersigned, hereby declare that the thesis submitted herewith for the degree Philosophiae Doctor to the University of Pretoria contains my own, independent work and has not been submitted for any degree at any other university.

Name: Anneke Labuschagne

Date: July 2006
Title: Finite element analysis of plate and beam models
Name: Anneke Labuschagne
Supervisor: Prof N F J van Rensburg
Co-supervisor: Dr A J van der Merwe
Department: Mathematics and Applied Mathematics
Degree: Philosophiae Doctor

Summary

We consider linear mathematical models for elastic plates and beams. To be specific, we consider the Euler-Bernoulli, Rayleigh and Timoshenko theories for beams and the Kirchhoff and Reissner-Mindlin theories for plates.

The theories mentioned above refer to the partial differential equations that model a beam or plate. The contact with other objects also need to be modelled. The equations that result are referred to as “interface conditions”.

We consider three problems concerning interface conditions for plates and beams: A vertical slender structure on a resilient seating, the built in end of a beam and a plate-beam system.

The vertical structure may be modelled as a vertically mounted beam. However, the dynamics of the seating must be included in the model and this increases the complexity of a finite element analysis considerably. We show that the interface conditions and additional equations can be accommodated in the variational form and that the finite element method yields excellent results.

Although the Timoshenko model is considered to be better than the Euler-Bernoulli model, some authors do not agree that it is an improvement for the case of a cantilever beam. In a modal analysis of a two-dimensional beam model, we show that the Timoshenko model is not only better, but it provides good results when the beam is so short that one is reluctant to use beam theory at all.

In applications, structures consisting of linked systems of beams and plates are encountered. We consider a rectangular plate connected to two beams. Combining the Reissner-Mindlin plate model and the Timoshenko beam model can be seen as a first step towards a better model while still avoiding the complexity of a fully three-dimensional model. However, the modelling of
the plate-beam system is more complex than in the case of the classical theory and the mathematical analysis and numerical analysis present additional difficulties.

A weak variational form is derived for all the model problems. This is necessary to apply general existence and uniqueness results. It is also necessary to apply general convergence results and derive error bounds. The setting for the weak variational forms are product spaces. This is due to the complex nature of the model problems.
Contents

1 Modelling interface conditions 1

1.1 Introduction .. 1
 1.1.1 A vertical slender structure on a resilient seating 2
 1.1.2 Boundary conditions for the clamped end of a beam ... 3
 1.1.3 Plate-beam systems ... 3

1.2 Beam theory .. 4
 1.2.1 Equations of motion ... 4
 1.2.2 The Timoshenko model 5
 1.2.3 The Euler-Bernoulli and Rayleigh models 6
 1.2.4 Dimensionless form .. 7

1.3 Plate theory .. 9
 1.3.1 Equations of motion ... 9
 1.3.2 The Reissner-Mindlin and Kirchhoff models 10
 1.3.3 Dimensionless forms ... 11

1.4 Two-dimensional model for a beam 12
 1.4.1 Equation of motion .. 12
 1.4.2 Dimensionless form .. 14
CONTENTS

1.5 Interface conditions .. 15
 1.5.1 Vertical slender structure 15
 1.5.2 Boundary conditions for the clamped end of a beam . . 16
 1.5.3 Plate-beam system 17

2 Model problems .. 19
 2.1 Vertical slender structure 19
 2.1.1 Simplistic Models 20
 2.1.2 The dynamics of the foundation block and resilient seating 20
 2.1.3 Rayleigh models 23
 2.1.4 Timoshenko models 26
 2.2 The cantilever beam 28
 2.3 Two-dimensional model for a cantilever beam 29
 2.4 A plate-beam system 32
 2.4.1 The Reissner-Mindlin-Timoshenko model 33
 2.4.2 Other models 36

3 Variational forms 39
 3.1 Introduction ... 39
 3.2 Vertical slender structure: Rayleigh models 44
 3.2.1 Variational forms 44
 3.2.2 Weak variational forms 47
 3.3 Vertical slender structure: Timoshenko models 55
CONTENTS

3.3.1 Variational forms .. 55
3.3.2 Weak variational forms 57
3.4 The cantilever beam .. 63
3.5 Two-dimensional model for the cantilever beam 64
 3.5.1 Variational forms .. 64
 3.5.2 Weak variational forms 66
3.6 Plate-beam system .. 69
 3.6.1 Variational form of problem RMT 69
 3.6.2 Variational form of Problems KR and KEB 74
 3.6.3 Weak variational form of Problem RMT 76
3.7 Equilibrium problems .. 79
3.8 Vibration problems .. 81
3.9 Modal analysis .. 82
3.10 Nonmodal damping .. 85

4 Interpolation ... 87
 4.1 Hermite cubics .. 87
 4.2 Hermite bicubic functions 89
 4.3 Standard estimates for the interpolation error 90
 4.3.1 One-dimensional domain 91
 4.3.2 Two-dimensional domain 92
 4.3.3 Vector-valued functions 93
 4.4 Interpolation estimates for the one-dimensional hybrid models ... 94
 4.5 Interpolation estimates for the plate-beam system 96
5 Approximation

5.1 Projections ... 99
 5.1.1 One-dimensional models 100
 5.1.2 Two-dimensional models 101

5.2 Equilibrium problems 103

5.3 Symmetrical eigenvalue problems 103

5.4 Non selfadjoint eigenvalue problem 105
 5.4.1 Abstract eigenvalue problem 105
 5.4.2 Galerkin approximation 107
 5.4.3 Operator approximations 108
 5.4.4 Convergence .. 110
 5.4.5 Application .. 111

6 Vertical slender structure 115

6.1 Introduction ... 115

6.2 The eigenvalue problem 116
 6.2.1 The Rayleigh model 116
 6.2.2 The Timoshenko model 117

6.3 Galerkin approximations for the eigenvalue problem ... 119
 6.3.1 Rayleigh models 119
 6.3.2 Timoshenko models 120

6.4 Matrix form of the semi-discrete problem 123
 6.4.1 The Rayleigh models 123
 6.4.2 The Timoshenko models 124
CONTENTS

6.5 Numerical results .. 127
 6.5.1 Physical constants 128
 6.5.2 Convergence 129
 6.5.3 Effect of gravity, rotary inertia and shear 129
 6.5.4 Conclusion 130

7 Cantilever beam ... 133
 7.1 Scope of the investigation 133
 7.2 Boundary conditions and test functions 135
 7.2.1 Boundary conditions 135
 7.2.2 Test functions 138
 7.3 Galerkin approximation 139
 7.3.1 Equilibrium problem 140
 7.3.2 The eigenvalue problem 141
 7.4 Matrix formulation 141
 7.4.1 Construction of the matrices K and M 142
 7.5 Shear strain distribution 143
 7.6 Deflection .. 146
 7.7 Eigenvalues and eigenfunctions 147

8 Plate-beam system ... 151
 8.1 Introduction .. 151
 8.1.1 Pinned-pinned beam 151
 8.1.2 Rigidly supported plate 153
 8.1.3 Plate-beam system 156
CONTENTS

8.2 The eigenvalue problems .. 156
 8.2.1 Reissner-Mindlin-Timoshenko plate-beam system . . . 156
 8.2.2 Kirchhoff-Rayleigh plate-beam system 157
 8.2.3 Kirchhoff-Euler-Bernoulli plate-beam system 158

8.3 Galerkin approximations for the
 eigenvalue problems ... 158
 8.3.1 Galerkin approximation for Problem RMT 158
 8.3.2 Galerkin approximation for Problem KEB 158

8.4 Matrix formulation of Galerkin
 approximations ... 159
 8.4.1 Construction of K and M for Problem RMT 160
 8.4.2 Construction of K and M for Problem KEB 161

8.5 Numerical results .. 161
 8.5.1 Parameters .. 161
 8.5.2 Convergence .. 162
 8.5.3 Comparison of Reissner-Mindlin-Timoshenko
 system with Kirchhoff-Euler-Bernoulli system 163
 8.5.4 Comparison of Kirchhoff-Euler-Bernoulli system with
 a rigidly supported Kirchhoff plate 164
 8.5.5 Comparison of Reissner-Mindlin-Timoshenko
 system with a rigidly supported Reissner-Mindlin plate 165
 8.5.6 Pure shear modes .. 166