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CHAPTER 6: THE EVALUATION OF CONTROL SYSTEMS.

6.1. INTRODUCTION.

Process control engineers are concerned with improving the performance of their plants,
both functionally and economically. This often involves performing tests on the existing
plant, to determine the benefits of new control strategies, or a different method of operating
the plant. The problem with this approach is determining whether a real plant change
(often with a small magnitude) has occurred, in the context of background noise and

normal plant variations.

A wide range of statistical procedures is available to evaluate plant performance in the
presence of disturbances. The use of these techniques in control applications however still
seems to be the exception rather than the rule. As a consequence, plant improvement trials
are often inappropriately designed, take too long, and lead to either no conclusion where a

useful conclusion could have been reached, or the wrong conclusion [30].

In this chapter, some of the available evaluation techniques will be discussed and some
other experimental considerations mentioned. An evaluation strategy will be suggested

that will be followed in Chapter 7.

6.2. EXPERIMENTAL TECHNIQUES FOR COMPARATIVE EXPERIMENTS.

Comparative experimental techniques can roughly be divided into 3 categories:
Replication, blocking and randomisation [31]. Most comparative experimental techniques

form part of one of these categories or a combination of two or three.

Replication involves replicating each experiment performed immediately after the initial
experiment. If two controllers, A and B, were to be compared using replication, the
performance of controller A would be measured once, and the experiment repeated at least

once immediately after the initial experiment. Controller B would then be switched on and
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Chapter 6 The evaluation of control systems

the performance measured. The experiment involving controller B would then be repeated
immediately afterwards. By using replication, the variations due to experimental error can
be determined (from the replicated data) as well as the variations due to the different
controllers. As the two sources of variations are separated, a much more accurate

representation of the actual controller performance can be obtained.

Blocking is usually performed if it is expected that some disturbance exists which would
cause data collected at different times or places to differ significantly. Experimental data
collected within a block is compared, and not the data between blocks. For controller
evaluation it can for example be expected that two operators would have different
capabilities in controlling some plant variable effectively. A shift will then typically be
selected as a block, to eliminate the variations due to different operator capabilities. The
advantage of blocking is that the variations due to known parameters (e.g. operators,
temperature differences, and different procedures on weekdays and weekend days) can be

blocked out to improve the accuracy of the final estimate.

Blocking eliminates variances due to known disturbances and replication quantifies the
experimental error more accurately. Random disturbances, disturbances with unknown
frequencies and long term time trends are however not accounted for in any of the above-
mentioned techniques. Randomisation is considered the most important basic principle in
good experimentation [31], and ensures that successive errors are random and
uncorrelated, thus eliminating the influence of any long term trends and systematic
changes. A random testing sequence is easily created, by generating a series of random
numbers, and assigning an experiment to a certain range of random numbers. If controllers
A and B are to be compared, a random sequence consisting of zeros and ones can be
generated, with all zeros indicating the use of controller A, and all ones indicating the use

of controller B.
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Chapter 6 The evaluation of control systems

Replication, blocking and randomisation are seldom used in isolation. Two experimental
combinations are described by Napier-Munn [30]: A replicated block experiment, and a
randomised block experiment that was extended to a replicated randomised block
experiment. For the third case described by Napier-Munn [30], a repeated on-off strategy,
or blocking, was used, but a randomised block experiment is suggested, as time trends

exist.

A method commonly employed by control engineers is a simple comparison of plant data
before automation and after automation (e.g. single month-on, month-off trials). Although
this may at first sight appear to use the blocking experimental procedure consisting of one
block, the fundamental requirement of blocking is not satisfied, as operating conditions
within the block are likely to change. Bergh ez al. [32] quantified the benefits brought
about by a supervisory control system (SCS), by comparing two months' data before
implementation of the SCS to two months' data collected more than one year before, whilst
a DCS was controlling the plant. Unless the improvement is large and the advantages
hence obvious, this technique in general produces statistically invalid data. Changes in
operating conditions will generally overwhelm the effects the experiment was designed to

test for, invalidating any conclusions drawn.

Similar to this scenario, historical data is also used extensively to justify advanced control
upgrades [33]. The "before and after" type experiments (improvement estimates relative to
a base case) used by Marlin and co-workers [34] provides a useful framework in
identifying control upgrade projects. These techniques however have severe shortcomings
in producing statistically significant data required for controller evaluation [35]. Historical
data might in many cases be the only method of control project justification. The
infrastructure required for a new control strategy, or to perform comparative experiments,
often contributes a major cost component to the proposed control upgrade project,
favouring historical data analyses. Results based on historical data should however be
examined with caution and a thorough statistical verification conducted to ensure that
important trends are not overlooked. It is also suggested to perform a thorough audit after
implementation of the new control strategy (using randomisation, blocking and/or

replication) to verify the accuracy of recommendations based on historical data.
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A number of further variations on the experimental procedures can be used to account for
specific plant operating conditions. Craig and Henning [35] compared two controllers on a
flotation circuit using a repeated on-off switching strategy, switching once per day. It is
mentioned that a trial schedule was drawn up to alternate between the two controllers, and
some form of randomisation was thus included. This experimental procedure can be
classified as a random blocking experiment with a block size of 2 days. It might be argued
that numerous changes might occur within each block, as there are for example four shifts
per day. The dynamics of the system should however also be considered to ensure that the
controllers are compared under typical operating conditions, and not just during the
transient period. Craig and Henning [35] stated that the residence time of the circuit, as
well as the frequency with which grades are analysed was used to determine the time
between switching. Although knowledge of shifts could intuitively lead to a selection of a
smaller block size, knowledge of plant dynamics should always carry an appropriate

priority, and no experimental procedure attempted without sufficient process knowledge.

Instead of selecting the block size based on known disturbances, Craig and Henning [35]
suggested switching as frequently as possible, but with each on-period significantly longer
than the longest time constants of the process. These suggestions were further investigated
by Oosthuizen, Craig and Pistorius [36] to determine the optimal switching time between
two controllers, using a simple blocking experiment. It was concluded that an on-off
switching time of 5 times the slowest time constant of the closed loop plant and controller
would minimise the influence of external disturbances. A block experiment with a block
duration of 10 times the slowest time constant of the plant is thus suggested. For a simple
first order system, the time to reach a steady state is approximately equal to 5 times the
slowest time constant. It is thus essential to ensure bumpless transfer of control between
the two controllers to prevent the experiment from including only transient behaviour and
no steady state behaviour. Randomisation was not included in the analysis [36], but it is
expected that randomisation will yield better results (smaller resultant influence due to
disturbances), even if the suggested switching time of 5t is increased, as randomisation
prevents biasing of the test data due to slow varying disturbances. If bumpless transfer of
control is not possible, the best strategy might be a randomised block experiment with a

block size larger than 57, but still as small as possible.
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6.3. STATISTICAL TOOLS.

The test most commonly used for comparative experiments, is the t-test, of which 2
variations will be discussed. A brief discussion of analysis of variance will also be given.
No statistical method is however valid, if the assumptions that are implicit to the test are
ignored. The implicit assumptions for the t-test are the following [30]:

1. The data are normally distributed.

2. Each data point is a random independent sample of the population of all possible

experimental outcomes, for the given system.
3. The two sample variances are estimates of the same population variance (i.e. they are

not significantly different to each other).

For most processes the first assumption on normality can be accepted a priori, and the
distribution can also be verified if necessary. The third assumption can also be checked
easily using the F-test. The second assumption is a frequent cause of trouble as feed
characteristics of processes vary with time and recovery or production is usually correlated
with feed grade. Sequential measurements will thus not be random samples, but will
depend to some extent on the preceding ones. Time trends in data raise the total variance

and can also violate the assumption of sample independence [30].

t-tests are commonly used for comparing the means of two samples of data. In process
control applications, the difference between the mean values of a controlled variable before
and after automation can often be translated directly into increased profit. A null
hypothesis is commonly stated which is assumed true until proven differently. In this case
the null hypothesis would be that the two sample-means are identical. An alternative
hypothesis is then stated that needs to be proven with a defined degree of statistical
significance. In this example the alternative hypothesis will typically be that the two
sample-means are significantly different from each other, or that one mean is larger than
the other. A two-tailed test would be used for the first alternative hypothesis, and a one-

tailed test for the second alternative hypothesis [31].
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In most of the experimental techniques described in Section 6.2, experiments are carried
out in pairs. The difference between each pair of measurements is in general of more
importance than the absolute values. The t-test can be subdivided into a two-sample t-test

and a paired comparison t-test.

For the two-sample t-test, the means of the two sample sets are calculated and compared
using standard statistical formulas. If two controllers, A and B, were tested using a
blocking technique, the mean of all the measurements for which controller A were used
will be calculated, and compared to the mean of all the measurements where controller B
was used. This is in general not a good comparison, since the variations between
compounds will swamp any difference there may be between the two methods (Controllers

A and B) [31]. A better approach would be to use the paired comparison t-test.

For the paired comparison t-test, the difference is calculated between each pair of data,
provided that the data was generated in pairs. If the two controllers to be compared give
similar results, the differences defined above would have a mean of zero. If one controller
has a higher mean than the other does, the sample mean of the differences will be
significantly different from zero. Standard statistical tables can be used to determine with
a certain degree of significance if the means are really different. Napier-Munn [30]
emphasises the advantages of the paired comparison t-test over the two-sample t-test, by
calculating the number of paired measurements required to determine with 90 %
confidence that a statistically significant increase has occurred for a given example. It was
found that double the number of measurements was required for the two-sample t-test than

for the paired t-test, clearly illustrating the increased sensitivity of the paired t-test.

In many process control applications, improved regulatory control due to a new control
strategy enables the operator to move the setpoint of a controlled variable closer to a
limiting value, thereby increasing process efficiency. This can typically be done in
processes with constraints or in processes with non-linear performance functions [9].
Profits (determined by the performance function) are maximised by maintaining a
controlled variable as close to its limits as possible. In statistical terms it can be said that a

reduced variance enabled the operator to increase or decrease the mean. The advantages of
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a controller capable of reducing variations from the setpoint can however not be quantified
by comparing the means, since no difference would exist between the means until the
setpoint is changed. An analysis of the variances of the two controllers would have to be
performed prior to changing the setpoint, to determine if the mean can be shifted due to a
reduced variance whilst still staying within the operational region of the plant. Variances
can be compared using the F-test. The ratio between the two variances can be calculated,

and the significance level (of differences in the variances) read from standard tables.

Analysis of variance (ANOVA) is typically used if several groups exist in which the same
experiments were conducted. If 4 operators for example control the same plant at different
times, ANOVA can be used to determine if the observed product variations can be
attributed only to natural process variations and experimental error, or if the operators have
a significant influence on the final product quality. ANOVA is also used in blocking

experiments to determine the influence of the separate blocks.

The basic principle ANOVA relies on, is that any measurement is made up of the sum of
the population mean, influences that can be accounted for, and unaccounted factors
including natural variations and experimental errors. The total variance of the sample thus
consists of variances due to known causes (e.g. different operators) and natural variations
that cannot be accounted for. ANOVA is in principle an arithmetical process of splitting
up a total variance into its component parts [37]. Once the separate contributions to the
total variance have been determined, the F-test can be used to compare the identified
variances to the variance describing the experimental error. If the variances are
significantly different, it can be concluded that the identified factors have a significant

influence on the measurements, and their expected variances can be determined.

The statistical distribution of variances is described by the y*-distribution. An estimate of
the variances is given by ANOVA, and the expected range of the variances can be
calculated using the y*-distribution. In experiments where the difference between setpoints
and process constraints are determined by the natural variations around the setpoints, an
analysis of the sample variances will give insight into the magnitude of possible setpoint

changes. A more detailed discussion of ANOVA is not within the scope of this work, and
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the complete statistical procedure can be found in Chatfield [31] and Davies [37],

including a number of real test examples.

6.4. THE DURATION OF AN EXPERIMENT.

The duration of an experiment, and thus the number of repetitions required for each
controller is determined by three factors: The degree of precision required, the amount of
variability in the experimental material and the available resources to conduct the
experiment, including time [38]. In general, the smaller the difference that needs to be

detected, the more data is required.

The sample size of an experiment can be determined from the equations that are used to
analyse the effects of the treatments. An example is shown for a one-tailed t-test, as is
commonly used in testing the difference between recovery means, but a similar analysis
can be done for the other tests described in Section 6.3. The equation used for a t-test is
shown in Equation 6.1,

f:(flwfz)_(#|_/uz)ﬂu 6.1)

~

-7
where X, —X, is the difference between the sample means, (u, — u,),, is the hypothesised

difference of the population means (= 0), and &,  is the estimated standard error of

-X;

Grs =107 (=4 ), 62)
n H

where o’ is the variance of the response variable which is assumed to be the same for both

(X, —X,) given by Equation 6.2

controllers. Assuming that both controllers are used equally often, the number of times
each controller is used is thus equal to n and the total number of tests 2n. Substitution of
the t-value for a defined level of significance, the difference in sample means to be tested

(X, —X,) and the estimated standard error of the data (& _; ) thus yields the required value
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of n. The duration of the experiment can now be calculated by multiplying the duration of

each test (controller on or off) as described in Section 6.2, by the number of tests (2n).

6.5. THREATS TO VALIDITY.

In the process of designing an appropriate experimental procedure, it is important to be
aware of a number of threats to the validity of the results. If a threat is identified that
might invalidate the results, the experimental procedure should be revised to eliminate the
potential threat. Tien [39] classified the threats in 5 categories identifying 20 threats.
Although many of these threats are applicable to the social sciences, many can be extended
to the evaluation of engineering processes. A short discussion of the most important
threats follows:
1. Internal validity.
Extraneous events not representing typical operating conditions may occur during the
test period. These incidents should be removed from the test-data if possible. Gradual
deterioration of processes may occur, including cyclical deterioration that may be
observed as a long time trend in product quality. Natural variations in the test-units,
including variations in measurements need to be considered. Instrumentation changes
or calibration may take place during the evaluation and should be accounted for if it
cannot be avoided.
2. External validity.
The sensitivity or responsiveness of a test subject may change since the test subject is
aware of the test. An operator could for example control a plant better than normal
during the test, since he is aware that his actions are being monitored.
3. Construct validity.
Tests conducted under non-typical conditions can prevent the results from being
extended to the general operational case.
4. Statistical conclusion validity.
Manual intervention or the lack thereof, e.g. selecting which data should be omitted, is
a serious threat if not conducted appropriately. This may lead to the rejection of a true

hypothesis (type 1 error) or the non-rejection of a false hypothesis (type 2 error).

Electrical and Electronic Engineering 88



Chapter 6 The evaluation of control systems

5. Conduct conclusion validity.
Design complexity may preclude the complete and successful conduct of the
evaluation. Economic infeasibility, including hidden and unanticipated costs, may lead

to incomplete or inappropriate evaluation methods.

6.6. AN EVALUATION FRAMEWORK.

"The reason most evaluations or purposeful analyses fail — or are not valid — is because
research or evaluation designs are lacking" [39]. According to Napier-Munn [30] plant
improvement trials are often inappropriately designed, take too long and lead either to no
conclusion when a useful conclusion could have been reached, or the wrong conclusion.
"Unless a sensible design is employed, it may be very difficult or even impossible to obtain
valid conclusions from the resulting data" [31]. It is thus clear that a clearly defined
framework should be used to set up and conduct experiments, in order to draw any sensible

conclusions.

The following evaluation framework is suggested by Chatfield [31]:

1. Process understanding.
Define the problem.
Determine which quantities should be measured.

Determine the accuracy of measurements and calibrate instrumentation.

b - ol

If some variable is derived from other measurements, determine the distribution of the

derived variable by examining the distribution of error through the system.

6. Make a list of factors influencing the value of the response variable.

7. Calculate the number of observations that should be made, based on statistical
significance.

8. Decide which values should be used for each factor in each individual test run.

9. Set up a mathematical model to describe the testing procedure (e.g. the difference

between two means).

10. Test the hypothesis and draw conclusions.
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Chapter 6 The evaluation of control systems

The framework suggested by Craig and Henning [35] starts where Chatfield’s [31]
framework ended, although some overlapping occurs. It elaborates much more on the
experimental procedure, whilst Chatfield [31] focuses on the preliminary steps ensuring

good experimental design. The framework proposed by Craig and Henning [35] follows:

1. State the hypothesis that needs to be tested, e.g. "The new controller is better than the
old one".

2. Establish a base case to aid in experimental design.

3. Design an experiment to generate unbiased production data, which captures the

economic performance of the control systems.

Monitor the experiment and make sure it is carried out as planned.

Analyse the generated data and determine the sample statistics for each.

Test and accept or reject the hypothesis.

Estimate the monetary benefits.

o B =T LE

Do an economic project evaluation.

Marlin [34] proposed a benefit analysis method comprising three steps (points 1 to 3 in the
following discussion). These steps however address a wide range of actions, mostly
overlapping with the steps mentioned by Chatfield [31]. After the initial benefit analysis,
two more steps (points 4 and 5) are mentioned, in some ways overlapping with the
procedure proposed by Craig and Henning [35]. The method proposed by Marlin [34] is
however not intended for experimental procedures, but mainly for the estimation of
benefits from historical data. The procedure and a short discussion are given for

completeness:

1. Interviews.
The aim of this step is to become familiar with the plant operation, review control
equipment, inspect field instrumentation, etc.

2. Basis and base case operation.
This step identifies typical plant operation using the existing control system, identifies

time periods where the plant operated in unusual modes, etc.
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3

Opportunity identification.

A brainstorming session usually initiates this step, after which feasible opportunities
are identified. Potential benefits are calculated for the identified opportunities.
Conclusions based on benefits.

Since the aim is to identify benefits and not test them, the conclusions include
estimated control benefits, the control concept, control and process equipment needed,
and the engineering effort required.

Control benefits calculation.

The benefit is calculated taking the improvement, the value of the improvement, the
unit throughput, the operational time and a service factor into account. These factors

will be discussed in more detail in Section 6.6.

The evaluation framework suggested by Tien [39] is subdivided into 3 main steps:

31
3.2,
33.

3.4.
3.5.

A projected look at the range of program characteristics (from its rationale, through its
operation and anticipated findings). This step also includes the identification of the
problem that needs to be solved.
A prospective consideration of the threats to the validity of the final evaluation. The
threats were discussed in detail in Section 6.4.
A more immediate identification of the evaluation design elements. This step is
subdivided into the following categories:

The test hypothesis to be used.

The selection scheme of test groups.

The measuring framework, including the variables to be measured as well as a model

describing their linkages.

The measurement method, e.g. the number of samples, test period, etc.

Selection of the analytical techniques to be used for data analysis.

Many of the steps proposed by Tien [39] overlap with those suggested by Chatfield [31],

Craig and Henning [35] or combine several identified steps. The steps proposed by Craig

and

Henning [35] are in the final stage of the general control problem (GCP) whilst the

preliminary steps (e.g. process understanding) would be covered, by solving the complete
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GCP. It will thus be attempted to create a more comprehensive evaluation framework by
combining the three suggested strategies. Although many of the steps may seem obvious
(e.g. process understanding), their importance are often underestimated, and these steps

will thus form part of the combined evaluation strategy.

The following combined evaluation strategy is thus proposed:

1. Process understanding.
Define the problem to be solved.
Determine the variables that should be measured.

Determine the accuracy of the measurements and calibrate instrumentation.

oL e e B

If some variable is derived from other measurements, determine the distribution of the

derived variable by examining the distribution of error through the system.

6. Make a list of factors influencing the value of the response variable, which could
invalidate the result.

7. State the hypothesis that needs to be tested.

8. Design an experiment to generate unbiased production data, which captures the
economic performance of the control system. This step includes mathematical
modelling of the test procedure, the number of observations required, the test period, a
selection of analytical techniques to be used for analysis, etc.

9. Monitor the experiment and make sure it is carried out as planned.

10. Analyse the generated data and determine sample statistics for each.

11. Test and accept or reject the hypothesis.

12. Estimate the monetary benefits.

13. Do an economic project evaluation.

6.7. THE ECONOMIC EVALUATION OF CONTROLLERS.

The functional evaluation of a controller is often a simple process, since a display of trends
is likely to provide sufficient proof of a controller’s regulatory improvement. The

economic performance evaluation is however a much more complicated process
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necessitating a carefully planned experiment. Such a scenario is described by Craig and
Henning [35], for a flotation circuit. Although the regulatory improvement of the new
controller is clearly discernible from time trends, a carefully planned experiment was
required to measure an improved recovery (proportional to profit) in the presence of noise

with a magnitude of approximately 10 times the measured improvement.

Marlin ez al. [34] defined the following formula describing benefits.

BENEFIT = (IMPROVEMENT) x (INCREMENTAL VALUE) x
(UNIT THROUGHPUT) x (TIME) x (SERVICE FACTOR) (6.3)

Knowledge of the improvement brought about by the new controller, the increase in profit
due to an incremental change, the unit throughput per year, and the proportion of the time
the plant and controller is operational, allows the calculation of the benefits of the new
controller. The improvement can be estimated using any of the experimental techniques
described above. For a multivariable process the determination of the incremental values
1s however a complicated process due to interactions between variables and possible non-
linear characteristics. The format of the cost function (a combination of all the incremental
values and cost of operation) can be rather complex and will depend on the plant

configuration.

The fact that a controller can increase profit is in general not sufficient motivation for a
control upgrade, or sufficient proof that the project is economically viable. An analysis of
the expected cash cost and cash revenues associated with the project throughout the
expected project life needs to be done. A diagram showing the typical characteristics of
the cumulative cash flow for the duration of a project is shown in Figure 6.1 [40]. The aim
of any project should be to ensure that the final positive cash flow at H is as large as
possible, especially compared to the initial negative cash flow at D (see Figure 6.1). A
detailed discussion of capital budgeting tools can be found in Allen [40], but a short

discussion of the most commonly used capital budgeting tools follows.
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Figure 6.1. Typical cumulative cash flow diagram [40].

The simplest capital budgeting tool is the payback time. This is the time that elapses from
the start of the project (A) to the breakeven point (F) (see Figure 6.1). The payback time
thus indicates the time required in recovering early project expenditure and the cumulative
investment, from the cumulative net project income [40]. The shorter the payback time,

the more attractive the project appears.

One variation on the payback time is the time required to recover the initial investment. In
this case the payback time would start at the time where the capital investment has all been
spent, and not at the beginning of the project (A). Payback time provides no indication of
the expected return on the investment and ignores everything in time beyond the breakeven
point. It is thus very limited in its interpretation [40] and other more descriptive capital

budgeting tools are often preferred.
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The second tool is return on investment (ROI). In engineering economic evaluation, ROI
is usually defined as the per cent ratio of the average yearly profit (net cash inflow) over
the productive life of the project, divided by the total initial investmént [40]. This
definition is shown in Equation 6.4.

ROJI = annual _ profit x100

: . Yoper _year (6.4)
capital _investment

For Figure 6.1, the ROI would thus be given by Equation 6.5.

PH %100
ROI =——%per _year 6.5
poxop T =7 (6:3)
Several variations exist on the definition of ROI, but one common argument put forward is
that the original investment should be recovered before the ROI can be calculated. For the
calculation of this type of ROI, the full depreciation of the initial investment is calculated

as a charge against the income over the productive life of the project [40], as shown in

Equation 6.6.

(PH - QD) x100

ROI (includi depreciation) =
_(including _dep ) PDxOD

Yoper _year (6.6)

Both payback time and ROI are very selective in the project cash flow information that
they use, and both techniques ignore important relevant information regarding the
changing pattern of cash flow with time and the time value of money [40]. Two other

measures incorporating these factors will be discussed in turn.

In economic terms a project can be regarded as a series of cash flows throughout the
project's lifetime. To take the time value of money into account, the annual cash flows
have to be discounted to the time of evaluation before they can be compared and used as an
evaluation measure [40]. The present value (PV) of a cash flow (C,) at the end of project

year t, is given by Equation 6.7, for i the applied discount rate.

&

t

¥= 1+1) (6.7)
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The net present value (NPV) of a complete project is the sum of the present values of the
project's individual cash flows. The NPV is given by Equation 6.8, for n the complete

project life in years.

i=n C

NPV = » PV = ’
XPt=d e (6.8)
An effect of the discounting of the project cash flows, is that cash flows later in the life of
the project make progressively smaller contributions to the project NPV [40]. Inaccurate
estimates of the exact project lifetime or cash flows late in the project life would thus not

influence the NPV significantly.

For a project to be viable in terms of generating a profit, the NPV should be positive. The
discount rate would be determined by the effective cost of capital and the risk of the

project [40].

Another economic measure used to determine project viability is the discounted cash flow
rate of return (DCFR). It is also commonly referred to as interest rate of return and internal
rate of return (IRR). DCFR is closely related to NPV, and is defined as the yearly discount
rate that would yield a project NPV equal to zero [40]. The DCFR is thus determined by
solving Equation 6.9 recursively, where 100I = project DCFR, % per year [40].

I=n C
NPV = e
; (A+1) (6.9)

A higher discount rate than the DCFR would thus yield a negative NPV and a lower
discount rate a positive NPV. DCFR provides a measure of the rate of return expected
over the whole project life, and thus the larger the value of the DCFR, the more

economically attractive is the project [40].
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Chapter 6 The evaluation of control systems

The focus of this dissertation is the identification of suitable control strategies to increase
profit, and the estimation of the profits attributable to advanced control. Specific cash flow
calculations used to motivate control upgrades would depend on the level of automation of
a specific steel plant, and can not be extended to a general case. Using the capital
budgeting tools discussed above and the results of the simulation study presented in
Chapter 7, an estimate of the economic viability of the suggested control strategy can be

made to represent the scenario at a specific steel plant.

The advantages of a new control system are often not fully described by a benefit
calculation. Some advantages that are difficult to quantify might include increased field
instrument service factors, better operator displays, automated history data base, and better
regulatory control which results in smoother plant operation [39]. Reduction in pseudo
downtime, i.e. by preventing unscheduled plant shutdowns, by enabling fast recovery after
plant disruptions, and by enabling fast plant start-ups and shutdowns are further
unquantified advantages [35]. Tien [39] suggested listing these factors as additional

advantages to the project, as it may be a determining factor in management decisions.

6.8. CONCLUSION.

A wide range of methods is available to ensure accurate evaluation of control systems.
Unfortunately inappropriate techniques are often used to evaluate control systems or to
justify implementation of new control systems, leading to invalid results. A number of
experimental procedures were discussed (blocking, replication and randomisation),
applicable to processes operating in noisy environments and which are subject to large
natural variations. The most common statistical tools used for comparative experiments
were discussed and a framework for experimental design presented that would ensure the
generation of unbiased data. The process of translating a functional improvement into an
economic benefit was also discussed briefly and some capital budgeting tools mentioned.
The evaluation framework will form the basis of the economic evaluation presented in

Chapter 7, and the tools described will be utilised where applicable.
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