CHAPTER 2

ADVANCED FAILURE INTENSITY MODELS

2.1 Introduction

Advanced failure intensity models are in this thesis defined as mathematical representations
of failure processes that require more than standard distributions or 2-parameter counting
process models to capture their characteristics. This chapter deals with advanced failure

mtensity models found in the literature.

Chapter 2 starts off with a discussion of the concept of intensity with specific reference to
non-repairable and repairable situations. The importance of the difference between these
situations cannot be overemphasized even though it is frequently ignored in statistical failure
analysis. A clear notation with regards to intensities is defined in Section 2.2 and used
throughout this thesis. Deviations from the notation are explicitly indicated. Different
model classes are identified and relevant models are discussed. Some acclaimed applications
of advanced failure intensity concepts are also considered . For most models. the likelihood
or partial likelihood are derived or presented without describing the estimation of regression

parameters. Parameter estimation techniques are considered in Chapter 3.

The chapter ends with a summary of the advantages and disadvantages of the models corn-

sidered.

2.2 Intensity Concepts

The concept of intensity was introduced briefly in Section 1.2.3.2. In this section, the concept
is explained in detail since all reliability models discussed in this chapter strive to represent
the intensity of a certain failure process. It is assumed throughout the thesis that all failure

processes considered are orderly, i.e. simultaneous failures cannot occur ou the same item.
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CHAPTER 2: ADVANCED FAILURE INTENSITY MODELS

This is a reasonable assumption according to most authors, e.g. Hokstad (1997) and Lawless

(1987), and not much generality is sacrificed.

Let N(t) denote the number of failures an item has experienced in the interval (0,t]. The
unconditional intensity (i.e., the rate of failure events) of the process at any instant in time,
t, is then given by

w(t) = lim Pr[Failure occurs in [t. 1+ At)]

At—0) At
_ . EIAN() &)
T Alen | At

where AN(t) represents the increment N(t 4+ At) — N(t). Because it is assumed that the
process is orderly, the following basic relation for counting processes applies:
dM(t)
bu(t) = — (2.2)
dt

with M(t) = E[N(t)]. The time derivative of the expected number of failures as in (2.2), is

referred to as the rate of occurrence of failure (ROCOF) and will often be denoted by pl(t)
(instead of t,(#)), for convenience. From (2.2) it follows directly that the cumulative number
of failures up to time t is equal to the cumulative unconditional intensity, i.e.

"

My(t) = E[N(t)] = /D Ly (u)du (2.3)

Additional information about the failure process is often recorded with the times to failure.
The additional information is referred to as the history, Hy, or filtration of the process.
History is recorded in the form of covariates and could be any quantification of an influence
on the failure process. From Martingale theory (see Hokstad (1997)) it follows that H, is
the o-algebra generated by N(s), s < t, starting from a probability space (Q, H,, I?) that
defines the stochastic process. N(t) = N(t,w), with w € Q. Hence it is possible to define the
Jull intensity (also referred to simply as intensity or conditional intensity), o(t, Hy) = (t|Hy).
which is the conditional rate of occurrence of events, given the state of H,. Thus. u(f, H;) At
is the probability of an event to occur iu [t.t + At). i.e.

t(t, Hy) = lim M"_)

2.
At—0 At (24)

The complete intensity as defined in (2.4) provides a general framework for modeling failure
event processes because the effect of maintenance activities can be recorded in Hy. Conven-
tional failure process modeling concepts such as the FOM and ROCOF are also special cases
of (2.4).

Similar to (2.3), it is possible to define a cumulative intensity process, i.e.

|
M(t, Hy) :] t{u, He)du (2.5)
0
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where M (t, H) is the compensator in Martingale theory. Both u(t, H;) and M(t, H,) are
denoted as predictable which means that for a given Hy, the values of (¢, H;) and M(t, H;)
are known but the value of N(¢)* not vet.

It is important to note that ¢,(f) is a mean function of /(t, Hy), averaged over all possible
sample paths. Suppose N(f,w) is a specific realization of the process of N(t) where w € Q
in the probability space (Q, H;, P). Here, N is not only a function of w for a fixed value of
t but also a function of ¢ for a fixed w (called the sample path of N). Taking the the mean

over the sample space, (1, vields
E[AN(t)] = / AN (¢, w)dP(w) = 1,,(t) (2.6)
J0

Similarly, E[AN(t)|H,]. and thus (¢, H;), is found as the conditional mean.

The last infensity concept to define is that of average intensity. Average intensity is simply
the average of My(t) or M(t, H;) over an interval [0, 7], i.e. 1, = My(7)/7 or t+ = M(T)/T.
The concept of average intensity is not encountered frequently in the literature but is not
without interest. Bodsberg and Hokstad (1995) have shown that the average intensity concept

is very useful in modeling dormant failures.

Table 2.1: Summary of failure intensity concepts

Failure Intensity Concept

Intensity Mean Intensity = Average Intensity
Alternative term  Conditional intensity Unconditional -
intensity
Symbol { by Ly
Definition . E[AN(t)|H;) . E[AN(1)] t= - E[N(t)]
M2 A AT A
Non-repairable /iy (r). truncated at fx(z) = (1 - Rx(x)
case time of failure
Repairable case A sequence of ROCOF or wit) Average ROCOF,
truncated FOMs ie. AROCOF

(defined in local

time)

In Table 2.1, a concise summary (adapted from Hokstad (1997)) of the failure intensity
concepts discussed in this section is presented. Note that local time, denoted by z, is used as
time scale for the non-repairable case. consistent with the terminology introduced in Section
1.2.1.

“N(t) has right continuous sample paths,
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CHAPTER 2: ADVANCED FAILURE INTENSITY MODELS

2.3 Literature survey on advanced failure intensity models

There are countless publications on advanced failure intensity models attempting to represent
the intensity concepts outlined in Table 2.1 as part of practical statistical failure analysis
exercises. Most of these publications consider variations on a small munber of fundamentally
different approaches. The fundamentally different approaches are referred to as model classes

and are listed below:

(i) Multiplicative intensity models
(ii) Additive intensity models
(i) Models with mixed or modified time scales
(iv) Marginal regression analysis
(v) Competing risks

(vi) Frailty or mixture models

These model classes are discussed in Section 2.3. Publications that consider combinations of
fwo or more model classes are discussed as part of the model class where it makes the most
significant contribution. At the end of this section, noteworthy extensions of the listed model

classes are also discussed,

2.3.1 Multiplicative Intensity Models

Multiplicative intensity models represent the intensity of a failure process as the product
of a baseline intensity, that is a function of time only, and a functional term. that may be
a function of both time and covariates. Covariates are allowed to be time-independent or

time-dependent.

2.3.1.1 Proportional Hazards Model (PHM)

Survival data analysis underwent a revolution with the introduction of the PHM by Cox
(1972). The model was originally intended for biomedical applications but was soon applied
in reliability engineering. As the name implies, this model represents the FOM, i.e. the

failure intensity of non-repairable items, as a proportion of different FOMs.

The PHM is constructed as the product of a totally arbitrary and unspecitied baseline FOM,

ho(z), and a functional term A(z,z), where z’s dependence on time is not important, i.e. |

hiz,z) = ho(x) - Az, 2(2)) (2.7)

"The subscript x is dropped here for notational convenience.
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There are several possible forms for the functional term. Some are: the exponential form,
exp(y-2(z)); the logarithmic form, log(1+exp(y-z(z))); the inverse linear form, 1/(14+-2(x));
or the linear form, 1 4+ - z(x), where v is a vector of regression coefficients associated with
a particular data set. The exponential form of the functional term is used most often in

reliability applications and results in the following PHM:
h(x,z) = ho(z) - exp(y - z(x)) (2.8)

The model assumes the following:

(i) Event times are I1D.
(ii) All influential variables are included in the model.
(iii) The ratio of any two hazard rates as determined by any two sets of time-independent
covariates z; and 2z, associated with a particular item has to be constant with respect
to time, i.e. hy(wx,21) x hx(x,22). (This assumption is not valid for time-dependent

covariates).

The biggest advantage of the PHM, as defined in (2.8) in its semi-parametric form, is that
no assumption needs to be made about the baseline FOM when fitting the model. This is a
result of partial likelihood theory developed by Cox (1975). Kalbfleisch and Prentice (1980)
explain partial likelihood in detail. Partial likelihood only yields relative risks but can be

very useful in gross analyses.

Suppose m items are under observation and n events have occurred up to time x. Let F(z;)
be a risk set of the events up to time x; and let | be the number of events yet to occur. The

partial likelihood of (2.8) is then given by

exply - z;) .
H > exply-z) (2.9)

I’cll‘irl

In the case where relatively few ties, d;, are present, the following relation holds:

exp(y - 2;)
L =] z (2.10)
T T ewla)
eF(x;)

It is also possible to stratify the PHM into different strata, i.e.
h(z,z) = hy,(x) - exp(y; - 2(z)) (2.11)

with partial likelihood given by.

=ﬂﬁ e @ (21

e e CJ\D(‘?‘J 'ZU)
' !J ()

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING 28
UNIVERSITY OF PRETORIA
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where 7 denotes the number of strata and &; is the number of events in the j* stratum.

Ascher, Kobbacy, and Percy (1997) applied the stratified PHM successfully.

If absolute risks are required, a fully parameterized PHM is required. A distribution often
used to perform the parameterization is the Weibull distribution because of its flexibility.
Substitution of the Weibull distribution in (2.8) vields

a 7 Bl
h{z,z) = :_j (f}) ~exp(y - z(x)) (2.13)

where (3 and 1) are the shape and scale parameters of the Weibull distribution respectively.

The parameters PHM in (2.13) can be calculated by constructing the full likelihood as,

Ty

L(B8,n7v,2) = H hix;, z)-exp (— ]u
i=1

T -1 rL 7—1
J_)’ Ly i ij r\! %
- | | 5. (J—) 7% Lexp [ — / — - (i) Y3 gy
1 1 1l Jo o7 n

The solution of (2.14) is complex if z is dependent on time. Press et al. (1993) discuss some

h(z, z)c‘l.r-)
(2.14)

numerical techniques with which an economic solution can be obtained.

It is also possible to stratify the fully parametric PHM. Usually, either the baseline FOM
or the regression coefficients are stratified, not both. This is done to limit the number of

parameters in the model and to obtain synergy amongst different strata.

A useful extension of the PHM is Aalen’s Regression Model as discussed in Aalen (1980) and
Aalen (1989). This model can be used to test time dependence of covariates in the PHM
and adds significant value to PHM analysis. In this model. the vector h(x; z) of the FOMs

hj(z;z) for j = 1,2, ...n, is given by:
h(z:2) =Y(2) -a(x) (2.15)
Here Y (z) is an n x (¢ + 1) matrix whose rows at time x; consist of those vectors,
z! = {l,z{(.r'),....zf‘,(.x')} (2.16)

where 2/ (), 1 = 1,2, ..., g are covariate values, corresponding to those failure times that have

not occurred up to time x;. In the vector,

a(z) = [ap(x), ar(x), ..., ag ()] (2.17)
ap(x) is the baseline parameter function, while a;(z), i = 1,2,...,¢q are called regression
functions, defining the effects of covariates. The effect of a covariate is represented by the
cumulative regression function, A(x), defined as:

Ai(z) = /J ails)ds (2.18)

0
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for i = 0,1,...,q. To study the time-varying effect of the i*" covariate, an estimate of the
™" cumulative regression function should be plotted against the failure times. There are 4

possible outcomes:

(i) Straight line with an incline m. The effect is independent of time.
(ii) Constant line at value y. Indicates no effect at all.
(iii) Increasing at a decreasing rate. Indicates a decreasing effect over time.

(iv) Increasing at an increasing rate. Indicates an increasing effect over time.

Aalen’s approach is particularly useful in analyzing condition monitoring data since condition
monitoring data is almost always time-dependent.

2.3.1.2 Proportional Mean Intensity Models (PMIM)

Proportional Mean Intensity Models or Proportional ROCOF Models are constructed by
the product of a baseline ROCOF multiplied with a functional term, dependent on time
and covariates. PMIMs are very similar to PHMs as far as construction and estimation is
concerned but they are based on fundamentally different representations of the intensity of
failure processes. In the literature. the terminology for these concepts are often inconsistent,
e.g. Kumar (1996) investigated the use of “Proportional Hazards Modeling™ on repairable
systems while he was actually using PMIMs.

Suppose the PMIM is constructed as the product of a baseline ROCOF, Luo(t), and a func-

tional term A(t, 2(¢)), where z may or may not depend on time, i.e.

L(t,2) = by (1) - AL, 2(8)) (2.19)

As before, it is possible to estimate the semi-parametric model in (2.19) without making any
assumptions about t,,(¢) by using partial likelihood theory. Let m denote the number of
items under observation and let n represent the total number of failures that have occurred.
Let F(¢;) be the risk set of the failure events and let [ represent the number of events yet to

occur at time. The partial likelihood is then given by

. - exp(y - z;)
L{y) = 2.20
el Hl S exply-20) )
O LlelF(t,)

If the number of ties. d;, in the data set is small, the following relation holds

mn
- exp(y - 2;)
L) =]] - (2.21)
= .
> exp(y-z)
1€F(t,)
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If the PMIM is stratified into r strata, i.e. bugj(t.2) = tygj(t) exp(y; - 2(t)), the partial

likelihood becomes,

ok

exp(y; - 2iy) —
L = 2.22
) H Z exp(y; - ZF,}) {' )
LIEFR ;)

=t
‘here 7 is the number of strata and k; is the number of of events in the j' str:
where r 18 the namber of strata anc 18 the number ol of events in the 3" stratum.

If an absolute mean intensity is required, the PMIM can be parameterized. The log-linear
representation of a NHPP is often used to perform the parameterization, i.c. Ly, (1) = explap+
ay - t). The full likelihood becomes.

n T
L(ag, 01,7, 2) = H tug (t) - exp (—/ .*..”(t.z(!.))dt)

o ! 223

n T ("“ )
= H (e”“Jr"'l'T‘ : r—.-"'z(T')) - exp (— / gk, r"}"z{"')r.lt‘)

=1 J0

As in the case of the parametric PHM. it is difficult to maximize (2.23) if the covariates are

time-dependent.

If the fully parametric PMIM is stratified, usually, either the baseline ROCOF or the regres-
sion coefficients are stratified, not both. This is done to limit the number of parameters in

the model and to obtain synergy amongst different strata.

2.3.1.3 Proportional Odds Model (POM)

The proportional odds model originated from epidemiological studies and was introduced by
Bennet (1983) for use in biomedicine. This model is structurally similar to the PHM, but not
a direct extension. It models the odds of an event occurring and unlike the PHM, the effect
of covariates in the POM model diminishes as time approaches infinity. This diminishing
property of the covariates means that the model is suitable for situations where an item

adjusts to factors imposed on it or the factors only operate in early stages.

For this model the odds of a failure occurring is defined in terms of the survivor function as,

Fx(z) _ 1-Ry(x)

- 2.24
Rx(x) Ry (x) ( )
This definition of odds is used to introduce the POM:
1-— R(I,Z) — . 1— Ry(x) (2.25)
R(z.2) R ()
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Equation (2.25) states that the odds for a failure to occur under the influence of covariates
are ¢ times higher than the odds of a failure without the effects of covariates. If ¢ increases,
so does the probability of a shorter life time. Differentiation of (2.25) with respect to time

leads to,

hz,z) ) hx(x)
Ry (x)

(2.26)

after using the coefficient rule. By rearranging the terms in (2.26) and re-using (2.25), a
FOM ratio can be obtained:

h(z,z) . R(z,z) 1- R(x,z2)

— M1

hx () =¥ Rx(x) 11— Ry(x)

(2.27)

Inspection shows that ¢|,—p = @ and ¥|,—oc = 1 . from there the diminishing effect of the

covariates.

Bennet (1983) derives the full likelihood for the model in his original paper to estimate the
model parameters. Research done by Shen (1998) provides more efficient estimation methods

and methods to enable the model to handle suspended observations.

A special case of the POM arise when it assumed that event times are distributed according

to a log-logistic distribution. Kalbfleisch and Prentice (1980) describe this special case in

detail. The FOM of an item with event times following a log-logistic distribution is given by:
)

- (14279 exp(—y - 2(z)))

hMaiz) = (2.28)
where § is a measure of precision. The FOM is assumed to be increasing first and then

decreasing with a change at time

x={(1—0)exp(—y- z(.r)}}i‘m (2.29)

If # — oo, 7% - exp(—y - z(x)) — 0 (see (B.4)) and subsequently covariates will influence the
FOM less and less as the item ages.

2.3.2 Additive Intensity Models (ATMs)

Additive Intensity Models represent the intensity of a failure process as the sum of a baseline
intensity and a functional term containing covariates. Pijnenburg (1991) deals with AIMs in
completely general terms. Newby (1993) compare this type of model, for the case where the
FOM is used as intensity, to various other regression models. Authors often refer to AIMs
incorrectly as Additive Hazard Models (AHM) in reliability modeling literature. This section

describes AIMs in general terms.
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