
CHAPTER! 

INTRODUCTION 

Diffusion and inter-diffusion between different solids has long been a subject of scientific 


studies going back to the last century. Roberts-Austen carried out one of the first quantitative 


investigations in 1896, when he reported his work on the fast diffusion of gold into solid lead 


at different temperatures [1]. He stimated the rate of gold diffusion by measuring the weight 


change after sectioning the lead. Diffusion history is reviewed in refs. [2,3]. Over the last 100 


years many researchers studied inter-diffusion of solids and many different models of 


diffusion mechanisms were developed. 


In recent years with the rapid development of semiconductors, diffusion became of great 


technological importance fo r manufacturing p-n junctions in elementary semiconductors. 


Different diffusion models in solids and in particular in semiconductors are discussed in 


chapter 2. 


Aluminium is still widely used for contacts on semiconductors. As a group III element it can 


also be used as an acceptor for group IV elemental semiconductors. 


In the present work the diffusion of aluminium in different semiconductors was investigated. 


For analysing the in-diffusion, aluminium fi lms were deposited onto clean silicon, 


gennanium, gallium arsenide, indium phosphide and indium antimonide surfaces. To activate 


a possible in-diffusion, the semiconductor samples were annealed in vacuum at different 


temperatures. Depth profiles before and after every annealing step were compared to extract 


diffusion coefficients. 


Further research was done on the aluminium diffusion within these semiconductors. Clean 


samples of the above mentioned semiconductors were implanted · with aluminium at room 


temperature and at Ti = 250°C at different dose rates. These samples were annealed for one 


hour in vacuum at different temperatures. The depth profiles of aluminium after implantation 


and after every annealing step were compared and diffusion coefficients were extracted. 
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The aluminium depth profiles were obtained by nuclear reaction analysis (NRA) by making 

use of the narrow 27Al(p,y)28 Si reaction at a proton energy of 992 keY. This non-destructive 

method has various advantages over other methods like Rutherford backscattering (RBS), as 

it is isotope sensitive and light elements in a heavy bulk can be analysed. In some of the 

analysed systems channeling measurements in backscattering geometry were performed to 

obtain additional information on radiation induced damage in the surface region of the 

specimen. 

Chapter 3 summarises the concept of stopping powers of ions in solids. The p-y resonance 

reaction applied in this research is described in chapter 4. Chapter 5 is on the experimental 

set-up as well as the sample preparation for the different diffusion experiments. The 

automatic energy scanning system, which provided a convenient tool for depth profiling with 

NRA is explained. The chrumeling of ex. - particles to determine the radiation induced damage 

befo re and after the different annealing steps is briefly discussed. 

In chapter 6 previously published results in this fi eld of research are reviewed. The discussion 

of the diffusion results of aluminium in the investigated semiconductors is presented III 

Chapter 7. Chapter 8 summarises the results of this work and gives a brief outlook. 
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CHAPTER 2 

DIFFUSION 

Heat conductivity , viscosity and diffusion are transport phenomena. Hence, the existing 

diffusion theories are derived from theories of heat flow through solid media that date back to 

Fourier and Lord Kelvin. In a diffusion process atoms or molecules are transported from a 

region of higher concentration to a region of lower concentration in a system, which can he of 

gaseous, liquid or solid nature. Diffusion alters physical and chemical properties of a system . 

It increases with temperature and can be enhanced by irradiation. 

A proper study of diffusion mechanisms as well as diffusion coefficients for different systems 

is therefore necessary to predict modifications of solids in a hot or radioactive environment. 

More recent diffusion studies are on semiconductor - impurity systems to predict their long 

time thennal stability [4]. 

2.1. DIFFUSION COEFFICIENT 

Fick's first law of diffusion [5,6] macroscopically connects the diffusion coefficient D and the 

gradient of the concentration C to the flow rate 1. In the differential form it can he written as: 

J=-DgradC (1 ) 

In equation 1 the transfer rate of atoms per unit area is calculated. The definition constitutes 

the theoretical basis of most experimental methods for detennining diffus ion coefficients in 

generally used methods such as the chemical and tracer techniques and the p-n- junction 

method which is a specific method for semiconductors (chapter 2.3.). 

Ficks's second law, also called the general diffusion equation, can be derived from equation 

(1 ) by assuming diffusion in the positive x - direction of a cylinder of unit cross section. From 

the continuity equation: 

3 

 
 
 



(2) ac + divJ =0 
at 

Fick' s second law can be derived after inserting equation (1): 

2~~ = D div grad C = D v C (3) 

The solutions of these differential equations depend strongly on the boundary conditions of 

an experiment. Equation (3) is often expressed in spherical polar co-ordinates and in 

cylindrical co-ordinates [7] depending on the geometry of the experimental set-up. 

For a semi-infinite medium equation (3) can be analytically solved [7]: 

C(x,t) = ~r c(;,ol exi-(; -x)' J± exi-(; + x)' JJd; (4)
2-.J1r Dt 0 4Dt 4Dtl l l 

where CC~,O) is the initial distribut ion. The positive sign is for a reflecting surface, the 

negative sign for a permeating surface. 

For high temperatures the diffusion coefficient is found to obey an Arrhenius equation: 

DCT) = Do exp(- ~;) (5 ) 

with the Boltzmann constant k and the Temperature T in units of Kelvin. Here the diffusion is 

characterised by just two quantities, the pre-exponential factor or diffusion constant Do and 

the activation energy for diffusion EA' 

2.2. DIFFUSION MECHANISMS IN SOLIDS 

An ideal crystal consists of a perfectly ordered array of atoms, ions, or molecules in three 

dimensions. There carmot be atomic diffusion in a perfect lattice, which conserves its ideal 

order under all circumstances. But most crystals are far from being ideal. An actual evidence 

of the fact that crystals are not ideally ordered under all conditions lies in the existence of 

diffusion. 

4 


 
 
 



Existing defects in a crystal can be vacancies (Schottky-defects) or displaced atoms from their 

regular lattice sites to intersti tial sites. Such an interstitial atom together with its vacated 

lattice site is called a Frenkel-pair. Extended defects in a crystal are agglomerates of 

vacancies (point defect clusters) or interstitials, dislocations and grain boundaries. 

Investigations on point defects in a crystal can be performed after their artificial creation, 

which is achieved by quenching from high temperatures, through plastic deformation or after 

irradiation with particles or y-rays [8]. 

Some interstitial sites and most of the above mentioned defects are locations of minimum 

energy for displaced and for impurity atoms. For an atom to move from one of these sites to 

another site of minimum energy a certain amount of energy, the so-called activation energy is 

required. A vacated lattice site (vacancy) can also start to move or diffuse when energy above 

a threshold energy is applied. However, the migration energy for vacancies in a solid is much 

larger than that for interstitials (EAV » EAI)' 

00000 000 0 0 0 
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0 0000 0 0 000 
Fig.I: Undisturbed lattice Fig.2: Frenkel disorder in a two 

dimensional lattice. 

In thermal equilibrium the number of vacancies n in a solid with N atoms is given by : 

(6) 

where Ev is the energy to displace one atom from its lattice site to the surface. 

Lattice defects and impurities can influence the thermal atomic diffusion in a solid. The 

diffusing atoms can be trapped at such lattice defects where they can precipitate, segregate or 
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undergo chemical reactions with the matrix elements. To describe a Fickean diffusion process 

in the presence of trapping, a source and a sink term have to be added to equation (3): 

(7) 

CF and CT,i is the concentration of the free and the trapped atoms respectively. fli describes the 

trapping probability for a certain trapping centre as a funct ion of its radius r i (typically a few 

A) and the concentration of traps Fi: 

fJ i =4m;DF; (x ,t) (8) 

Vi is the dissociation frequency of the complex, which fo llows an Arrhenius type behaviour: 

- £ / kT 
Vi =Vi 0 e (9)I 

where Vi ,o is about 10 13 
S·l and Ei is the dissociation energy of the complex, which is typically 

between 0.8 and 2.5 eV. 

The solid solubility of the diffusant in the solid also influences the diffusion behaviour. The 

diffusion constant depends inversely upon the solid solubility and is therefore small fo r self­

diffusion, where the solute and the solvent are identical and the solute can occupy a regular 

lattice site without distorting the lattice. 

It has become customary to classify impurities into ' slow' and ' fast' diffusers. Diffusion 

coefficients of ' slow' diffusers are in the same range or at most about 102 times higher than 

the self-diffusion coefficients of the investigated solids. 'Fast' diffusers usually diffuse 

several orders of magnitudes faster than 'slow' diffusers. 

2.2.1. DIFFUSION IN SEMICONDUCTORS 

With the importance of the semiconductor technology many diffusion data have been 

reported over the last years (see chapter 6) . Diffusion processes play an important role in 
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various aspects of modern semiconductor technology. One of the most important applications 

is the generation ofp -n junctions by diffusing impurity atoms into semiconductors at elevated 

temperatures, without melting the crystal or the formation of a liquid alloy. The diffusing 

impurities are either applied to the semiconductor surface in the gaseous state or as a solid or 

liquid compound. The depth and the sharpness of the junction can be controlled quite 

accurately by applying the desired amount of impurity atoms to the surface with a successive 

heat treatment. 

The diffusion data of the elemental semiconductors silicon and germanium are in several 

respects different from those of metals. In a review on diffusion in silicon and germanium by 

Seeger and Chik [8] the following was reported on self-diffusion: 

I. due to the low point defect concentration in the thermal equilibrium, the 

self-diffusion in semiconductors is much slower than in metals (more 

than 104 times) , 

II. the pre-exponential factor D oSD is at least lO2 times larger in germanium 

and 104 times larger in silicon than in metals, 

Ill. from (i) and eii) it fo llows that the activation energies for self diffusion 

are much larger in silicon and germanium than in metals with 

comparable melting points. 

In semiconductors, intrinsic defects such as vacancies and interstitials may be electrically 

charged and may therefore strongly interact with impurities such as donors and acceptors . In 

general, the intrinsic defects may exist in different charge states. The change in the Fermi 

level due to the addition of electrically active impurities affects the populations of these 

charge states and may thus have a strong influence on the observed diffusion coefficients. 

For the elemental semiconductors silicon and germanium it was found that typical 

representatives of ' slow' diffusers are group III and group V elements of the periodic table, 

i.e. those usually employed as acceptors or donors in p-n-junctions. Group I and group VIII 

elements constitute the most important 'fast' diffusers . Therefore diffusion coefficients of 

group III- impurities are expected to b of the order of the self-diffusion coefficient (see 

Chapter 6). 
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In semiconducting compounds the diffusivity of impurity atoms depends on the vapour 

pressures of the components, since these have an influence on the concentrations of the 

various intrinsic point defects. 

While in-diffusion is widely used to manufacture p-n junctions in elemental semiconductors 

difficulties of this method can occur in 111- V device structures. The high vapour pressures of 

the group V elements lead to incongruent evaporation from the surface unless an overpressure 

or encapsulant is provided [9]. 

Other doping methods like ion-implantation can be applied for JII-V semiconductors. The 

desired impurities are placed into the near surface region of the solid by first accelerating 

them to a high velocity and directing them as a beam onto the semiconductor surface. The 

ions are then able to penetrate the solid, and are gradually brought to rest. However, to anneal 

the damage introduced during the implantation requires displaced atoms to diffuse back to 

appropriate sites. This is sometimes not possible in 111- V semiconductors for the diffusion 

lengths are not large enough to accomplish complete regrowth. An application of this method 

lies in the production of semi-insulating layers in the surface area of the 111- V semiconductor. 

To avoid extended defects, implantations at elevated temperatures are performed into 

elemental and compound semiconductors, where due to an increased mobility of point defects 

radiation induced damage can be largely avoided. This method is also known as dynamic 

annealing. 

2.3. 	 METHODS FOR ANALYSING DIFFUSION 
COEFFICIENTS 

Apart from nuclear reaction techniques, which is used in this study (described in chapter 4) a 

variety of other methods can be applied to analyse the diffusion behaviour of impurities in 

solids. A widely used method for diffusion analysis is secondary ion mass spectroscopy 

(SIMS). In this technique the analysed specimen is subjected to sputtering. The material 

sputtered from the surface is analysed by mass spectrometry . The concentration of the 

investigated elements versus the sputter time is recorded from which the depth profiles are 

calculated. 
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The tracer method consists of introducing radioactive isotopes of the dopant into the studied 

solid. Thin layers of the investigated sample are mechanically or chemically removed and the 

concentration of the isotope in the removed layer is determined by measuring its 

radioactivity. An advantage of this method is the possibility of self-diffusion studies by using 

a radioactive isotope of the sample material as a diffusant. 

The four-point probe method measures the conductivity of a th in layer just below the surface 

of a semiconductor. It can be applied in the investigation of concentration profiles of n-type 

dopants in p-type Sl.lDstrl'l tes or vir.e vt;>rs~. FOT.lr I:'qll~lly<:p~rpn prohpc; :Jre i'lpplied to the 

semiconductor surface. A current 1 is passed between the two outermost probes and the 

voltage V between the two probes in the middle is measured. From the geometry of the 

specimen it is possible to calculate the amount of electrical active dopants. The diffusion 

profi le of the dopant can be obtained by using a sectioning technique. 

A similar method is obtained by carrying out the differential Hall measurements rather than 

simple conductivity measurements. Measurements are again taken before and after stripping 

thin layers from the diffused specimen. The values for mobility and carri r concentration are 

obtained at each stage and these data can be converted to a depth profile. 

The p-n-junction method can be used for diffused acceptors into a homogeneous n-type 

sample. The junction occurs at the depth Xj where the concentration of the acceptors is equal 

to the concentration of the donors. From the concentration of donors No versus the depth Xj in 

the diffused material the depth profile of the acceptor can be extracted. Diffusion coeffic ients 

can be calculated from the difference in shape of the diffused profiles after various annealing 

tern pera tures. 

2.4. THE FINITE DIFFERENCE METHOD 

To evaluate a diffused profile a numerical method based on the fi nite difference method, 

described by Crank [10] was applied in this thesis. This method shall be described for a one­

dimensional solution of Fick's laws. 
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For analysing the diffusion in a plane sheet with a constant diffusion coefficient D, the 

following dimensionless variables are introduced: 

X=~ 
1 ' 

(10) 

where 1 is the thickness of the layer. Co and C are the initial and the diffused concentration, 

respectively. Advantages of these substitutions are that numbers occurring in the computation 

cover roughly the same range for all calculations and that the basic independent parameters 

are isolated. With these variables Ficks second law can be written as: 

DC a"c 
-=-- (11 )
or ax2 

The variation of an initial distribution c(X) at a time To is obtained by dividing the X-T space 

into intervals of 8X and or. For every lattice point CX;,1j) both sides of equation (11) can be 

developed by Taylor' s expansion theorem. An expression for the left-hand side of equation 

(11) can be obtained from : 

. ( aC ] I ( ) 2 ( a2 c ] (1 2) 
c. ·+ 1 = C .. + 67 - + - oT --2 + .. .. 

' J 'J aT 2 aT 
i , j j ,j 

when neglecting second and higher order terms equation (12) is written as : 

( ac ] (1 3)l aT ,. ..J 
oT 

A similar development leads to the expressions of the right hand side of equation (1 1): 

lac] I( )2 [a 2c] (1 4) c i+lj = C ij + oX a X .' + '2 oX a X 2 .. + .... 
I ,j I,J 
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( ac] 1 2( a2c] (15)c · . = c .. - oX - + - oX -- ­
, -I,) ' ,) ax ;, j 2 ( ) ax2 ;,1 

and after neglecting third and higher order terms: 

(1 6) 


Introducing equations (13) and (1 6) into equation (11): 

C. I=C,+/C, I .-2c .+c. I ') (17) I,j+ I,j ~ 1- ,j I,j t+ ,j 

with r = or / (8X)2. 

With this the diffused concentration profile at any time can be calculated from the initial 

profil e. This method converges for r < 0.5. 

The schematic diagram in Fig.3 shows how this method is applied to analyse diffused spectra. 

After setting the required parameters such as boundary conditions and trapping distribution, a 

diffused profile is calculated from the initial profi le with the finite difference method. This 

simulated profile is now compared with the experimentally obtained diffused profile. In case 

of good agreement of the two profiles the product Dt is obtained. In case of disagre ment the 

initial parameters have to be changed and new calculations have to be performed. 

For analysis of our depth profiles the computer code DIFFUS by Kashny [11,12] was used. 

r l
Initial 
: - -, distribution I 

~ I 1 
~ I I----L---,~___I 

~ I ! 
iii I t=t;+dt 

° 1 
I Final 

Parameters 

Dt, C., CT 


Fig.3: Schematic diagram of the data analysis with DIFFUS. The initially obtained aluminium depth 

distribution is used as initial distribution from which d iffused profiles are calculated with the finite 

difference method. 
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CHAPTER 3 

STOPPING OF IONS IN SOLIDS 

When a charged particle with a certain velocity penetrates a solid, elastic and inelastic 

collisions with target atoms slow it down. he magnitude of this slowing down depends on 

the ion, its energy and the target material. For more than the last century stopping powers are 

of fundamental scientific interest. Various authors developed theories about energy loss 

mechanisms of charged particles that penetrate a target material. Several approaches are listed 

in ref. [13]. 

3.1. ENERGY LOSS 

The final range distribution of energetic ions in a solid as well as the defect distribution is 

determined by the nergy loss. The energy loss in a sol id dE / dx is often called stopping 

power or specific energy loss. Here E is the ion energy and x is the distance within the target, 

usually measured along the instantaneous direction of the ion trajectory. 

Two stopping processes that are considered to be ideally independent from each other can be 

distinguished. These processes are nuclear and electronic stopping. From their sum the total 

stopping power S is calculated to: 

S = dE = ( dE ) +( dE ) (18) 
dx dx

ll 
dx e 

The stopping cross section c is calculated from the stopping power divided by the target 

density N: 

1 dE (19)c =---
Ndx 

The relative importance of the interaction process between ion and target medium depends 

mostly on the ion velocity and the charge state of the ion and target material. 
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3.1.1. NUCLEAR CROSS SECTION 


Nuclear stopping of the projectile is caused from the elastic scattering by the screened atomic 

potential. At ion velocities VI' significantly lower than the orbital velocities Vo of the atomic 

electrons, the ion becomes neutralised by electron capture. Energy can be transferred from the 

nucleus of the projectile to that of a target atom by electrostatic interaction between the 

screened charges of the two nuclei. 

The energy transfer T between the projectile and a target atom is calculated from energy and 

momentum conservation. It is a function of scattering angle B(in the centre of mass system), 

projectile energy E, impact parameter b, mass of the projectile (M,), mass of the target atoms 

(M2) and the inter-atomic potential VCr): 

(20) 

The nuclear stopping is calculated from the integration over all impact parameters: 

max
& = (tJ.E ) n = 27r f b r (e E) b db (21 ) 

n N ~ 0 ' 

B depends on the inter-atomic potential VCr). When assuming target atoms as posi tive point 

charges then VCr) is the Coulomb potential. However, it has to be taken into account that 

target atoms are screened by their electrons. After introducing a screening function ¢ with a 

screening length a the inter-atomic potential can be written as [1 4]: 

(22) 

Here r is the distance between the nuclei, e is the unit charge and Z,,2 are the atomic numbers 

of the projectile and the target atom, respectively. 
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The charge distribution in a solid can be approximated by Hartree-Fock calculations. 

However, there is no analytical expression for the inter-atomic potential function VCr) that is 

valid for all interaction radii. Several approximations for ¢ have been derived, each valid for a 

certain distance between the two atoms. 

When separation of the atoms is small, e.g. up to about 0.2 A, then the screening function due 

to Bohr can be applied: 

rr ­
¢ -; = eO
() (23) 

with the Bohr radius ao = 5.29 x 10- 11 m. 

Kalbitzer and Oetzmann [15] suggested a screening function ¢ with the universal screening 

length a: 

;r=f ;e =2.7 18 .... 

(24) 
0.8854ao a 

Z O.23 + Z0 23 
1 2 

With comparable accuracy, using the same universal screening length a, Ziegler, Biersack and 

Littmark (ZBL) (16,17] found the screening function phenomenological to be: 

¢(:) 0.181 8 e-32r l + 0.5099 e-09423 rl a + 0.2802 e -0.4029r /o + 0.0281 7 e - 020162r/a (25) = (I 

This universal screening potential is useful for Monte Carlo calculations. It speeds up these 

calculations, but discrepancies with experimental results are observed for many projectile­

target combinations. 
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3.1.2. ELECTRONIC CROSS SECTION 

The electronic energy loss of an ion penetrating a solid can have different reasons [16]. 

transfer of kinetic energy from the ion to the target electrons, 

plasma oscillations or other collective behaviour of the target electrons, 

charge transfer, e.g. excitation, ionisation or electron capture of the ion. 

Because of the different processes involved it is not possible to describe the stopping of ions 

in a solid with one single theory. Different models are applied for the different ion energies 

and velocities. The validity of a theoretical approach is usually given within multitudes of the 

Bohr velocity vo. A hydrogen atom at 25 ke V atom moves with a comparable velocity as its 

orbital electron. The corresponding energy for a helium atom is at 252 ke V. This energy is a 

4/3 A Ifunction of the ion's mass and atomic number. It calculates to E = 2 1 25 ke V. 

Slow ions ( VI :=; Vo 2 1
2/3 

) cannot transfer enough energy to electrons that are much lower than 

the Fermi level to excite them to an unoccupied state. In this case only electrons that are close 

to the Fenn i level can contribute to the energy loss . 

The electronic stopping reaches its maximum near VI = VO Z/13. For much higher ion velocities 

(VI » Vo 2 [213 ) mainly ionisation of the target atoms takes place. The ions transfer a much 

higher energy to the target electrons than their binding energy (T » II)' 

i. Low Ion Velocities ( VI :::; Vo Z1 2/3 ) 

For low energies (E < 2 1
4/3 A I 25 keY) the stopping of ions in solids was calculated by 

Lindhard, Scharff and Schi0tt (LSS) [18-20]. This projectile velocity is lower than the velocity 

of the target electrons. LSS calculate the electronic stopping by assuming a free electron gas 

with a density p that changes only slightly with the location. 

The electronic cross section of a particle with 21 is obtained by integrating all interactions I 

with the electron gas over all volume elements: 

C = JI(v,p)(Z;(v)) pdV (26) 
e 
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The interaction with a charged particle is treated like a perturbation of the free electron gas. 

Therefore effects like polarisation and screening are taken into account. The state of the 

proj ectile can deviate from Zl through charge transfer and is therefore replaced by the 

projectile's effective charge ZI· ' Electron capture and loss are in an equilibrium which 

depends mainly on the velocity of the projectile. 

Lindhard found that the transferred energy from the projectile to the target electron and 

therefore also the electronic stopping cross section is proportional to the projectile velocity: 

Z7/GZ [V 2] (27) E = 19 2 I 2 2 e em 
e . (Z12/3 + Z~/3 ) 12 Va 1015 at 

with the Bohr velocity Vo = 2.19 x 106 mls. 

II. Bethe - Bloch Region ( VI » Vo Z1 2/3 ) 

The energy loss of a point charge in matter through collisions with electrons in the shell was 

already calculated by Bohr [21] in 1913. Bethe and Bloch [22,23] calculated quantum 

mechanical in Born approximation that the stopping cross section of a point charge can be 

obtained from: 

(28) 


where me is the electron mass, VI the velocity of the projectile, (1) the averaged ionisation 

potential and Ck shell corrections according to Bethe. 

The main contribution for the energy loss in the Bethe - Bloch formula is from the first 

logarithmic term. Bloch estimated the ionisation potential (1) of the electrons to be 

approximately (1) = Z2 10 eV [23]. 

The last term Ck (VI) contributes shell corrections for low projectile velocities. The 

contribution of a certain electron shell in the target disappears when the proj ectile velocity is: 

VI » Vi' with Vi being the electron velocity in the i-shell. This term is ~1 close to the maximum 

of the electronic cross section Ee, where shell corrections come into account that limit the 

application of the Bethe-Bloch theory [24]. 
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The Bethe-Bloch equation describes only the stopping of an ionised point charge correctly. 

Bohr [25,26] already assumed in 1940 that the projectile gets only stripped of those electrons 

whose classic orbital velocity is smaller than the projectile velocity . Therefore the projectile is 

stripped of all its electrons when VI » Vo 2/13 (Fig.4) . This corresponds to a proton energy of 

about 250 ke V and a helium energy of 2500 ke V. 

51 
I 

30 

Fig.4: Nuclear (SII) and electronic (So) stopping powers in reduced units versus energy in reduced units 

3.2. ENERGY LOSS IN COMPOUNDS 

Having a compound AmBn of two different elements A and B one can apply a simple additivity 

rule on the assumption that the interaction processes between ions and component target 

elements are independent of the surrounding Larget atoms. If E! is stopping cross section of 

element A and E! is the stopping cross section of element B one can write for the total 

stopping cross section: 

(29) 


where m and n denote relative fractions of the compound materials; m + n is normalised to 

unity. This equation is known as Bragg's rule. 

The energy loss however is fOlmd to be influenced by the chemical and physical state of the 

medium. Deviations of the order of 10% - 20% to Bragg's rule are found in experimental 

results around the stopping maximum for light organic gases and for solid compOlmds 

containing heavier constituents . 
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A model to correct for the chemical state was developed by Ziegler and Manoyan (1 988) 

which is called 'cores and bonds' (CAB) model [27]. This model assumes the energy loss of 

ions in compounds to be due to the cores (closed electron shell of atoms) and the chemical 

bonds. Some of the so calculated stopping cross sections in organic compounds can be found 

in ref. [27]. However, for the calculation of the CAB corrections one has to know the bond 

structure of the compound. The largest differences between the CAB theory and predictions 

for Bragg' s additivity rule are found near the stopping maximum. Differences reduce with 

increasing energy and finally disappear at about 10 vo' 

3.3. ENERGY STRAGGLING 

Charged particles loose energy through many individual encounters in a target. The number of 

undergone collisions and the energy transferred with each collision is due to statistical 

fluctuations. These fluctuations are reflected in the second moment of the stopping powers of 

ions in a solid. The ions hav an average energy loss IlE due to the stopping powers SeE) of 

the target material. However, the energy distribution also widens to 81lE due to: 

statistical fluctuations in the nuclear energy loss 

statistical fluctuations in the electronic energy loss 

a change of the projectile charge state causes a change of the effective charge which 

results in a variation of the interaction. 

All the above mentioned points contribute to energy straggling. 

Fig. 5 shows a sketch on how the target thickness influences the energy straggling. 
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Fig.S: Influence of the target thickness on the energy loss and straggling [28]. 

I. Nuclear Energy Loss Straggling 

The statistical fluctuations W} of the nuclear energy loss can be calculated in a similar way as 

the nuclear stopping by assuming a universal potential [1 5]: 

° f ro 
~, 

2 
= 0 T 

2 dC5 
(30) 

with' F (£) = 1 
• 1/ 4+0.197 £-1699 1+6.584£ -10494 

When E ~ 00 then the reduced energy c: ~ 00 and F,lc:)~ 0.24. Therefore the maximum of 

the nuclear energy loss straggling tends to: 

For high proj ectile energies the importance of W n 
2 is negl igible compared to the electronic 

energy loss straggling D.~. 
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II. Electronic Energy Loss Straggling 

Bohr [29,30] used the same assumptions as in the Bethe - Bloch equation to derive the 

electronic energy loss straggling. For a point charge with a high velocity he got the relation: 

(31 ) 

~ is called Bohr straggling. It is the variance of the average energy loss of a projectile after 

passing through a layer of thickness .6.x. For the number of independent collisions of the 

projectile with the target electrons Bohr assumed a Poisson distribution. From this a Gaussian 

energy loss distribution is obtained with a half width of I~ (with r B
2 

= 8 1n 2 0 1). 

3.4. RANGE AND RANGE STRAGGLING 

The range straggling is the second moment of the range di stribution. The total range 

R =L Ii is the total distance that the particle travelled in the target as schematically seen in 

Fig.6. The projected range is defined as the mean depth from the target surface at which the 

ion comes to a halt. 

target surface 

incident ion 
low energy 

E~ M, 

x, 

target surface 

incident ion 
high energy 

E~ M, 

x, 
............ ~ 

Fig.6: Range concepts ror incident ions with low and high energies in a target material. 
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An ion incident onto a target changes its trajectory during collisions with target atoms until it 

comes to rest. Although the initial ion energy is fixed the number of coll isions in a certain 

depth varies for every ion. The total distance travelled into the target is determined by the 

stopping powers. 

The mean projected range Rp of the statistical distributed atoms after the implantation is 

calculated from : 

(32) 


Here Yi stands fo r the number ofpartic1es stopped in L\x = Xi - Xi-J. The second range moment 

I1Rpof the distribution is calculated from : 

I (Xi- Rp[ Yi 
(3 3)t"R = p LYi 

This is also the standard deviation from the mean range Rp. 
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CHAPTER 4 

NUCLEAR REACTION ANALYSIS (NRA) 

Nuclear Reaction techniques for analysing near surface regions of solid samples are a 

convenient tool and have several advantages over other methods like Rutherford 

Backscattering (RBS) [31] . Nuclear reactions are isotope specific with no direct relationship 

between the mass of the target nucleus and the energy of the detected particle. Therefore light 

isotope tracing is possible even in heavy targets. 

For NRA particles such as protons, alphas or deuterium are incident onto a target surface. 

When the particle penetrates the target with an energy that is high enough to overcome the 

Coulomb potential barrier Vc of the target nuclei it can induce a nuclear reaction. The 

113 113Coulomb barrier is proportional to ZIZ2 / R where R = ro (A 1 + A2 ) with ro ~ 1.25 1m. The 

nucleon numbers of the projectile and the target atoms are given by A j and A2, respectively. Zj 

and Z2 are the corresponding atomic numbers. 

The barrier height for incident protons onto 27AI calculates to Vc = 3.74 MeV [32]. Such high 

energies cannot be reached with our Van de Graaff accelerator. However, nuclear reactions 

can already be induced at lower energies due to tunneling effects of the projectile. 

The barrier height becomes lower for decreasing atomic numbers, which makes NRA a 

suitable method to analyse light isotopes that are usually difficult to be detected by other 

methods. 

SAMPLE 

~ PROTONS. 
_~ DEUTERONS. 

~ ALPHA PARTICLES, ETC 

INCIDENT BEAM L 

\ NEUTRONS 

GAMMA RAYS 

Fig.7 : Schematic drawing of an incident ion beam onto a target with the various nuclear reaction 

products. 
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4.1. NUCLEAR REACTIONS 

Fig.7 displays a schematic diagram of an incident beam onto a target and its resulting reaction 

products. When a particle a hits a target nucleus A different processes can take place: 

r A+a elastic scattering (sum of the kinetic energy stays constant) 

I *A +a inelastic scattering (A *excited) 

+ b1BJ actual nuclear reaction, b can be a particle or a y-ray. A+a-J }B2 +b2I 

l 
Usually a reaction is written in the form A(a, b )B. With the exception of the elastic scattering 

every resulting particle b shows an energy spectrum that contains information about the 

energy levels of the nucleus B. The angular distribution of the reaction particles holds 

information about the reaction mechanism. 

Of interest for depth profiling with NRA are prompt reactions where the resulting radiation 

occurs instantaneously during irradiation, in contrast to activation techniques where the 

radiation is detected after irradiation. The resulting radiation is usually a gamma ray, a 

charged nuclear particle, a neutron or an electron. 

4.2. ELECTROMAGNETIC TRANSITIONS 

When a nucleus is in its ground state all its nucleons are in their lowest possible energy state 

that is allowed according to Pauli's principle. Similar to the atomic shell the state of a nucleus 

can be excited through energy transfer. The excitation can be the result of a single nucleon or 

several nucleons that are lifted from their ground state to a higher level. This can be caused 

by a radioactive fission, a nuclear reaction or by electromagnetic excitation from outside. 

When the excited state is a bound state the nucleus can only decay to its ground state by 

electromagnetic transition, which usually happens through the emission of a y-ray. However, 

angular momentum and parity of the nucleus have to be conserved during this transition. 
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The eigenfunction of a nuclear state and its radiation fie ld can be described by its angular 

momentum and parity eigenfunctions. Multipole fields are obtained from calculating the 

transition between two angular momentum eigenstates due to the conservation. These 

multipole fi elds are classified by the order t, which is an integer. For example, the lowest 

order I = 1 is called dipole radiation. 

One can distinguish between electric and magnetic multipole radiation. It is therefo re 

customary to specify the kind of radiation field and the order t of the multipole. The 

terminology used is M l for a magnetic dipole transition and E2 for an electric quadrupole 

transition. 

The sum of the spins of the initial and final nuclear states J I , J 2 and I of the emitted y-ray 

stays constant due to conservation of the angular momentum. This leads to the following 

selection rules: 

(34) 

However, only transitions with low I are observed experimentally and in most cases the 

selection rules reduce to: 

(35) 

During the emission process the parity must also be conserved which leads to additional 

selection rules. From the transformation characteristics of multi pole fields one can deduce 

from the parity transformation r~ ( - r) that the electric multipole radiation has the parity 

(_1)1 and the magnetic multipole radiation has the parity (_1)1+1. Therefore a transition can 

only take place when the parity 7r of the nuclear states before and after emission obey the 

following selection rules: 

for El radiation (36) 

for Ml radiation (37) 
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The emission of a y-ray during an electric multi pole transition causes the same parity change 

as an emitted particle with the angular momentum I. 

42 3 50 1change of spin IMI 
no 0---+ 

change of yes E1 E1 M2 E3 M4 E5 

(M6)parity (M2) (M2) E3 M4 E5 

E2 M3 E4 M1 M1 M5no 

(M5)E2E2 (M3) E4 E6 

Table 1: Multipole order of y- transitions 

The lowest multipoie orders possible at a y-transition for a given spin and parity are listed in 

table 1. Because of pari ty conservation there can never be E and M radiation of the same 

multipole order be emitted together. The transition probability is usually much smaller for 

magnetic radiation than for electric radiation of the same multi pole order. With the selection 

rules it is possible that an E2 and M3 radiation can be emitted together. However, the M3 

radiation has a very small transition probability compared to the E2 radiation. During a 

transition with Ll 1 = 1 (no pari ty change) the transition probability of E2 radiation is of the 

same order of magnitude as the M1 radiation. 

The quantum mechanical calculation of the transition amplitude is quite involved and IS 

described in ref. [33]. 

In Fig.8 the calculated probabi lities for different multi pole transitions are sketched as a 

function of y-energies for A = 100, S = 1 and ro = 1.2 fm. At a y-energy of 0.5 Me V the half 

times for transitions varies between 10-14 s (E1) and 108 s (E5, M5). These calculations are 

only an approximation for the real interactions in a nucleus. The experimental values are 

usually slower by a factor 103 to 107 for the E1 transition and faster by a factor of 102 for the 

E2 transition. The values of the other transitions are in the right order of magnitude. 
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Fig.S: One particle transition probability calculated for different kinds of multipole radiation (34). 

4.3. 	 DEPTH PROFILING BY USING NARROW 
RESONANCES 

Most of the light nuclei (Z < 30) have strong, sharp resonances in the cross section aCE) of 

the nuclear reactions, induced mainly with protons at low bombarding energies « 3 MeV). 

Here the discussion is limited to resonances leading to prompt y-ray emission. 

When resonance reactions are used for deptl! profili ng, the resulting y-rays of the resonance 

reaction are counted versus the beam energy while the energy of the analysing beam is 

incremented, starting just below the resonance. The profiled depth is typically limited to a 

few microns. 

An example for this method can be given by assuming a flat , laterally uniform sample that 

contains a homogeneous distribution C(x) of an isotope of the element to be analysed. While 

bombardi ng the sample perpendicular to the surface with the analysing beam the induced y­

ray emission is d tected. For beam energies lower than the ones required for the reaction the 

measured yield corresponds to background readings. After incrementing the beam energy to 

the one required the nuclear reactions can be induced at the surface of the sample. For higher 

beam energies the particles cannot induce a reaction at the surface of the sample. They get 
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slowed down within the target until they reach a certain depth x in the sample with the 

necessary energy for the nuclear reaction. As already discussed (chapter 3) the depth can be 

correlated to the energy loss of the projectile through the stopping powers of the target 

material. If the investigated isotopes are located in this depth the nuclear reaction can be 

induced. The detected y-yield for this beam energy corresponds to the isotope concentration at 

this depth. The excitation curve of the resonance reaction Y(Eb), where Eb stands for beam 

energy, gives an estimate of the isotope concentration distribution as a function of depth. 

The depth x is correlated with the energy loss of the particles of the incident beam (dE / dx)in 

through the equation: 

E=E jdE ) _X (38) 
h /I '\ dx ill cosB 

J 

where BJ is the angle between the surface normal and the incident particle and ER is the 

projectile energy where the resonance occurs. The energy loss (dE / dx)in can be approximated 

as constant within the small energy interval Eo ::;; E ::;; ER (surface approximation). 

4.3.1. DEPTH RESOLUTION 

The experimental resonance width is broadened due to the natural width of the resonance, the 

energy resolution of the beam, and the energy straggling of the beam particles during the 

energy loss Eb - ER. In order to deduce the precise shape of the actual concentration profile 

N(x), the shape of the resonance cross section a(E), the energy distribution of the beam g(Eb' 

E) and the energy stragglingf(E, E', x) of particles at depths x have to be taken into account. 

The excitation curve of the resonance reaction Y(Eb) , i.e. the yield of the reaction vs. the 

bombarding energy gives an estimate of the concentration distribution [35] : 

(39) 

K is a constant for given detection conditions. If the resonance is narrow and the beam energy 

resolution good, the functions g,1, and 0- are sharp and therefore the yield curve corresponds 

well to the actual distribution. 
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The depth resolution depends on experimental parameters like the energy spread of the 

incident beam M b, the resonance width of the used reaction t:illR, the widening of the 

analysing beam energy Mewex) in the depth x and the Doppler broadening M D due to the 

thennal motion of the reactant target atoms. By using a Gaussian approximation the total 

depth reso! ution as a function of the depth is obtained: 

(40) 

where: 

(4 1) 

In the set-up used for the experiments the accelerator energy beam spread was about 1 ke V. In 

comparison to this the Doppler broadening and the resonance width of the 27 Al(p,y)28 Si of 

about 105 eV are negligible. 

The computer code PROFIL [36] corrects the obtained yield curves for straggling and 

instrumental resolution. In the first step this program calculates a depth profile from the 

experimental data, ignoring any energy resolution effects. It then computes from this 

concentration profile the expected shape of the spectrum, taking into account the determined 

resolution function. The difference between the calculated and experimental spectrum is then 

subtracted from the experimental spectrum and a new concentration profLle is computed. This 

algorithm is repeated until the calculated spectrum coincides with the original experimental 

data within a given accuracy. 
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