A MIXED USE DEVELOPMENT FOR NEWTOWN

Submitted in fulfillment of part of the requirements for the degree of Magister in Architecture (Professional) in the Faculty of Engineering, Built Environment and Information Technology at the University of Pretoria, Pretoria, South Africa.

By:
Mr. Preshane Munthree
Student Number: 22355228
Department of Architecture
University of Pretoria
November 2003

Mentor:
Mr. Graham Young

Study leader:
Mrs Amira Osman
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHEDULES AND APPENDICES</td>
<td>1</td>
</tr>
<tr>
<td>1. ANALYSIS FROM THE CBD PERSPECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>1.1. BRIEF HISTORICAL BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>1.2. THE CURRENT STATUS OF THE CBD</td>
<td>3</td>
</tr>
<tr>
<td>1.3. THE RIGHT TIME TO REVITALISE THE CBD</td>
<td>3</td>
</tr>
<tr>
<td>1.4. THE EFFECT OF THE BRAAMFONTEIN CORRIDOR</td>
<td>4</td>
</tr>
<tr>
<td>2. ANALYSIS OF THE NEWTOWN PRECINCT</td>
<td>5</td>
</tr>
<tr>
<td>2.1. BRIEF HISTORICAL BACKGROUND</td>
<td>5</td>
</tr>
<tr>
<td>2.2. FEATURES OF NEWTOWN</td>
<td>6</td>
</tr>
<tr>
<td>3. SITE AND IMMEDIATE CONTEXT</td>
<td>9</td>
</tr>
<tr>
<td>3.1 BACKGROUND</td>
<td>9</td>
</tr>
<tr>
<td>3.2. SITE SPECIFICS AND CONSIDERATIONS</td>
<td>10</td>
</tr>
<tr>
<td>4. TECHNICAL</td>
<td>11</td>
</tr>
<tr>
<td>4.1. CLIMATE</td>
<td>11</td>
</tr>
<tr>
<td>4.2. GEOLOGY</td>
<td>11</td>
</tr>
<tr>
<td>4.3. CADASTRAL MAP</td>
<td>12</td>
</tr>
<tr>
<td>5. CLIENT</td>
<td>13</td>
</tr>
<tr>
<td>6. SITE DEVELOPMENT GUIDELINES</td>
<td>14</td>
</tr>
<tr>
<td>6.1. VISION</td>
<td>15</td>
</tr>
<tr>
<td>6.2. MOVEMENT</td>
<td>17</td>
</tr>
<tr>
<td>6.3. LAND USE ACTIVITY</td>
<td>18</td>
</tr>
<tr>
<td>6.4. URBAN SPACE AND LANDSCAPE</td>
<td>19</td>
</tr>
<tr>
<td>6.5. BUILT FORM DIRECTIVES</td>
<td>20</td>
</tr>
<tr>
<td>6.6. ARCHITECTURAL GUIDELINES AND PRECEDENT</td>
<td>21</td>
</tr>
<tr>
<td>7. DESIGN BRIEF</td>
<td>24</td>
</tr>
<tr>
<td>7.1. FUNCTION MOTIVATION</td>
<td>24</td>
</tr>
<tr>
<td>7.2. PROPOSED FACILITIES</td>
<td>26</td>
</tr>
<tr>
<td>8. TARGET SETTING CRITERIA</td>
<td>27</td>
</tr>
<tr>
<td>8.1. HOUSING TARGET SETTING</td>
<td>27</td>
</tr>
<tr>
<td>8.2. OFFICE TARGET SETTING</td>
<td>28</td>
</tr>
<tr>
<td>8.3. RETAIL AND RESTAURANT TARGET SETTING</td>
<td>28</td>
</tr>
<tr>
<td>8.4. COMMUNITY CENTRE TARGET SETTING</td>
<td>28</td>
</tr>
<tr>
<td>9. BUILDING SPACE REQUIREMENTS</td>
<td>29</td>
</tr>
<tr>
<td>10. THEORETICAL MOTIVATION FOR BUILDING TYPOLOGY</td>
<td>31</td>
</tr>
<tr>
<td>10.1. CATALYTIC ACTIONS</td>
<td>31</td>
</tr>
<tr>
<td>10.2. DEVELOPMENT STRATEGY: The Capital Web</td>
<td>33</td>
</tr>
<tr>
<td>10.3. BACKGROUND TO THE SOUTH AFRICAN CONTEXT</td>
<td>34</td>
</tr>
<tr>
<td>10.4. NEEDS OF URBAN DWELLERS IN SOUTH AFRICA</td>
<td>35</td>
</tr>
<tr>
<td>10.5. DESIRED QUALITIES OF A CITY IN SOUTH AFRICA</td>
<td>36</td>
</tr>
<tr>
<td>11. BASIC CONCEPT DEVELOPMENT</td>
<td>38</td>
</tr>
<tr>
<td>12. TESTING AND GUIDING SUSTAINABILITY</td>
<td>41</td>
</tr>
<tr>
<td>12.1. SOCIAL ISSUES</td>
<td>41</td>
</tr>
<tr>
<td>12.1.1. Lighting</td>
<td>41</td>
</tr>
<tr>
<td>12.1.2. Ventilation</td>
<td>44</td>
</tr>
<tr>
<td>12.1.3. Noise</td>
<td>45</td>
</tr>
<tr>
<td>12.1.4. Views</td>
<td>46</td>
</tr>
<tr>
<td>12.1.5. Access to green outside space</td>
<td>47</td>
</tr>
<tr>
<td>12.1.6. Circulation</td>
<td>47</td>
</tr>
<tr>
<td>12.1.7. Inclusive environments</td>
<td>48</td>
</tr>
<tr>
<td>12.1.8. Access to facilities</td>
<td>48</td>
</tr>
<tr>
<td>12.1.9. Participation and control</td>
<td>49</td>
</tr>
<tr>
<td>12.1.10. Education and safety</td>
<td>50</td>
</tr>
<tr>
<td>12.2. ECONOMIC ISSUES</td>
<td>51</td>
</tr>
<tr>
<td>12.2.1. Local economy</td>
<td>51</td>
</tr>
<tr>
<td>12.2.2. Efficiency of use</td>
<td>51</td>
</tr>
<tr>
<td>12.2.3. Adaptability and flexibility</td>
<td>51</td>
</tr>
<tr>
<td>12.2.4. Ongoing costs</td>
<td>51</td>
</tr>
<tr>
<td>12.2.5. Insurance water, energy and sewerage</td>
<td>52</td>
</tr>
<tr>
<td>12.2.6. Capital costs</td>
<td>52</td>
</tr>
<tr>
<td>12.3. ENVIRONMENTAL ISSUES</td>
<td>53</td>
</tr>
<tr>
<td>12.3.1. Water</td>
<td>53</td>
</tr>
<tr>
<td>12.3.2. Energy</td>
<td>53</td>
</tr>
<tr>
<td>12.3.3. Recycling and reuse</td>
<td>54</td>
</tr>
<tr>
<td>12.3.4. Site</td>
<td>54</td>
</tr>
<tr>
<td>12.3.5. Materials and components</td>
<td>54</td>
</tr>
<tr>
<td>13. DESIGN RESOLUTION</td>
<td>55</td>
</tr>
<tr>
<td>14. DESIGN DRAWINGS</td>
<td>58</td>
</tr>
<tr>
<td>15. SOURCES</td>
<td>76</td>
</tr>
<tr>
<td>16. APPENDIX</td>
<td>77</td>
</tr>
</tbody>
</table>
Figure 1. Decentralisation of Johannesburg
Figure 2. Inner City Initiatives
Figure 3. Newtown Precinct
Figure 4. Key Newtown Development Projects
Figure 5. M1 / Carr Street on ramp
Figure 6. Nelson Mandela Bridge
Figure 7. Sculptures in Metro Mall
Figure 8. Metro Mall
Figure 9. Metro Mall eateries
Figure 10. Mary Fitzgerald Square
Figure 11. Mary Fitzgerald Square ariel
Figure 12. MuseumAfrica
Figure 13. Market Theatre
Figure 14. Electric Workshop
Figure 15. Brickfields development
Figure 16. South view from site
Figure 17. West view from site
Figure 18. East view from site
Figure 19. North view from site
Figure 20. Derelict buildings in the vicinity
Figure 21. Old Parktown Station
Figure 22. Site plan
Figure 23. Cadastral map
Figure 24. JDA logo
Figure 25. Newtown Precincts
Figure 26. Newtown Vision
Figure 27. Newtown movement pattern
Figure 28. (A) Major pedestrian movement
Figure 29. (B) Major pedestrian movement
Figure 30. Proposed land uses
Figure 31. Urban space and landscape
Figure 32. Built form directives
Figure 33. (A) Built structure
Figure 34. (B) Built structure
Figure 35. Layering of facades
Figure 36. Ground level interaction
Figure 37. Character in Newtown
Figure 38. Relationship to street
Figure 39. Use of materials in Newtown
Figure 40. Interaction with street
Figure 41. Internal courtyard
Figure 42. Relationship to surrounding
Figure 43. Vertical mix use
Figure 44. Entrance to Metro Mall
Figure 45. Discreet signage
Figure 46. (A) Use of landscape in Newtown
Figure 47. (B) Use of landscape in Newtown
Figure 48. Goals and Objectives
Figure 49. Land use zoning
Figure 50. Proposed facilities
Figure 51. (A) Envisaged built form
Figure 52. (B) Envisaged built form
Figure 53. (C) Envisaged built form
Figure 54. (D) Envisaged built form
Figure 55. (E) Envisaged built form
Figure 56. Estimated residential floor area
Figure 57. European theory
Figure 58. Catalytic actions
Figure 59. Necklace actions
Figure 60. Appropriate design
Figure 61. Structuring elements
Figure 62. Downtown Milwaukee
Figure 63. Structuring elements in Newtown
Figure 64. South west ariel
Figure 65. North west ariel
Figure 66. North east ariel
Figure 67. South east ariel
Figure 68. West street ariel
Figure 69. South west corner
Figure 70. Landscape

SCHEDULES AND APPENDICES

Figure 1. Decentralisation of Johannesburg
Figure 2. Inner City Initiatives
Figure 3. Newtown Precinct
Figure 4. Key Newtown Development Projects
Figure 5. M1 / Carr Street on ramp
Figure 6. Nelson Mandela Bridge
Figure 7. Sculptures in Metro Mall
Figure 8. Metro Mall
Figure 9. Metro Mall eateries
Figure 10. Mary Fitzgerald Square
Figure 11. Mary Fitzgerald Square ariel
Figure 12. MuseumAfrica
Figure 13. Market Theatre
Figure 14. Electric Workshop
Figure 15. Brickfields development
Figure 16. South view from site
Figure 17. West view from site
Figure 18. East view from site
Figure 19. North view from site
Figure 20. Derelict buildings in the vicinity
Figure 21. Old Parktown Station
Figure 22. Site plan
Figure 23. Cadastral map
Figure 24. JDA logo
Figure 25. Newtown Precincts
Figure 26. Newtown Vision
Figure 27. Newtown movement pattern
Figure 28. (A) Major pedestrian movement
Figure 29. (B) Major pedestrian movement
Figure 30. Proposed land uses
Figure 31. Urban space and landscape
Figure 32. Built form directives
Figure 33. (A) Built structure
Figure 34. (B) Built structure
Figure 35. Layering of facades
Figure 36. Ground level interaction
Figure 37. Character in Newtown
Figure 38. Relationship to street
Figure 39. Use of materials in Newtown
Figure 40. Interaction with street
Figure 41. Internal courtyard
Figure 42. Relationship to surrounding
Figure 43. Vertical mix use
Figure 44. Entrance to Metro Mall
Figure 45. Discreet signage
Figure 46. (A) Use of landscape in Newtown
Figure 47. (B) Use of landscape in Newtown
Figure 48. Goals and Objectives
Figure 49. Land use zoning
Figure 50. Proposed facilities
Figure 51. (A) Envisaged built form
Figure 52. (B) Envisaged built form
Figure 53. (C) Envisaged built form
Figure 54. (D) Envisaged built form
Figure 55. (E) Envisaged built form
Figure 56. Estimated residential floor area
Figure 57. European theory
Figure 58. Catalytic actions
Figure 59. Necklace actions
Figure 60. Appropriate design
Figure 61. Structuring elements
Figure 62. Downtown Milwaukee
Figure 63. Structuring elements in Newtown
Figure 64. South west ariel
Figure 65. North west ariel
Figure 66. North east ariel
Figure 67. South east ariel
Figure 68. West street ariel
Figure 69. South west corner
Figure 70. Landscape

Figure 71. Plants
Figure 72. Solar movement pattern 21 June 2003
Figure 73. Solar movement pattern 21 December 2003
Figure 74. 8 am sun on 21 June 2003
Figure 75. 10 am sun on 21 June 2003
Figure 76. 12am sun on 21 June 2003
Figure 77. 2 pm sun on 21 June 2003
Figure 78. 4 pm sun on 21 June 2003
Figure 79. (A) Sections through west facade
Figure 80. (A) Section through courtyard
Figure 81. 8 am sun on 21 December 2003
Figure 82. 10am sun on 21 December 2003
Figure 83. 12 am sun on 21 December 2003
Figure 84. 2 pm sun on 21 December 2003
Figure 85. 4 pm sun on 21 December 2003
Figure 86. (B) Sections through west facade
Figure 87. (B) Section through courtyard
Figure 88. Cross ventilation through rooms
Figure 89. Minimum obstruction to ventilation.
Figure 90. Individual ventilation control
Figure 91. Cross ventilation
Figure 92. Cross ventilation through offices
Figure 93. Double glazing
Figure 94. Sound absorbing material
Figure 95. Plating used as sound barrier
Figure 96. Noise buffer
Figure 97. View of the proposed transport museum
Figure 98. South view from the proposed site
Figure 99. View of Nelson Mandela Bridge
Figure 100. Views from proposed site
Figure 101. Proposed landscaping
Figure 102. Views from circulation areas
Figure 103. Identifiable paths
Figure 104. Covered walkways
Figure 105. Various circulation modes
Figure 106. Circulation through spaces
Figure 107. Building circulation
Figure 108. Contrasting colour
Figure 109. Disabled transport facilities
Figure 110. Disabled modes of transport
Figure 111. Ramps
Figures 112 to 119
Figure 120. Information
Figure 121. Passive surveillance
Figure 122. Lighting on corners
Figure 123. Lighting of nooks and corners
Figure 124. Proposed water reticulation
Figure 125. Energy
Figure 126. Refuse
Figures 127 to 141.

Design drawings in section 14.

Microsoft clipart (date unknown)
Author (2003)
Duerk, DP (1993)
Author (2003)
Duerk, DP (1993)
Source unknown
Source unknown
Duerk, DP (1993)
Sources unknown
Duerk, DP (1993)
Duerk, DP (1993)
Duerk, DP (1993)
Author (2003)
Microsoft clipart (date unknown)
Microsoft clipart (date unknown)
Author (2003)
1. ANALYSIS FROM THE CBD PERSPECTIVE

1.1. BRIEF HISTORICAL BACKGROUND

The last three decades saw the desertification of the Johannesburg central business district (CBD) as many businesses moved to the northern suburbs. Multiple, decentralised nodes (indicated in red), offering employment, recreation and retail opportunities, often in the form of shopping centres, sprang up in the northern suburbs. Johannesburg followed the growth pattern of American cities by the decentralisation of its CBD. The nodes serve residents in the suburbs to the extent that they rarely need to go into the CBD itself. The CBD character and function of Johannesburg has subsequently changed.

Johannesburg was founded essentially as a mining town and this, together with the apartheid political structure, were the two most significant factors to shape the structure of the city. The mining belt separated the north and the south of the city. In addition, the city was divided along both racial and economic lines. The present challenge is to overcome this inherited imbalance and get the city functioning efficiently. (Thorn and Gibson, 1994)

The inner city has lost its status, linked to accessibility, as well as safety and security issues, resulting in decline in investment. To resolve this, the City Council, together with the Johannesburg Development agency (JDA), is implementing a plan for the gentrification of the Inner City. This programme is has been incorporated into the Local Integrated Development Plans. (GJMC, date unknown)

Some of the major tasks to be tackled include:
- Perceptions of safety and security
- Poor public transportation within the Inner City
- The cost of converting buildings from industrial/commercial uses to residential
- The lack of open spaces

1.2. THE CURRENT STATUS OF THE CBD

Despite the migration trend to the North and the risks associated with the CBD, it still remains the heart of the metro region. The opportunity costs of CBD abandonment is too high when taking the following economic and social characteristics into consideration:

- There is seven million square metres of floor space in the CBD
- 800 000 people come into the CBD every day
- 160 000 people are employed in the CBD
- It is the most accessible part of the metro area (road, rail, taxi, bus)
- Rents are relatively low
- There is little congestion and parking is easy
- Properties are to be re-evaluated for reduced rates
- Business improvement districts are successful in conquering crime and grime
- The CBD has become multinational and cosmopolitan

1.3. THE RIGHT TIME TO REVITALISE THE CITY CENTRE

All aspects that started decentralisation in the 1970’s are being reversed. Given the economic status of our country it is an unignorable fact that suburban type culture will not be able to sustain our increasing population. Numerous positive factors are evident to stimulate inner city revitalisation, the main factors being:
- Political will
- Economic stability and projected growth
Various inner city initiatives are currently being implemented guided by the abovementioned factors. Some of the precinct initiatives each with its own characteristics are indicated below.

1.4. THE EFFECT OF THE BRAAMFONTEIN CORRIDOR

The development of Braamfontein will dramatically influence the traffic to and revival of the Newtown Precinct which is the focus of this project. Within the CBD, Braamfontein is the economic node of the Johannesburg city centre. Key landmarks like the University of Witwatersrand, four of South Africa’s major corporates, the Civic Theatre (home of the Nelson Mandela Theatre) and Johannesburg’s local government are found in Braamfontein. It is the fourth largest node for office space in Johannesburg, offering 428 000 sq metres of A and B grade commercial space. Braamfontein forms the major corridor link (known as the Cultural Arc) between the Newtown and Constitution Hill developments. Braamfontein is planned to be established as an area that is relatively safe and secure, vibrant, and physically attractive with a growing evening economy. (JDA, 2003)
2. ANALYSIS OF THE NEWTOWN PRECINCT

At the turn of the 20th century, the area now called Newtown Precinct was known as the Brickfields. It was naturally rich in clay and brick-making became a popular form of generating income for Johannesburgers at the time. Some individuals even had their own clay mixers for making bricks. By 1896, about 7000 people of all races lived in the Brickfields area. The land was later named Burghersdorp.

As this land was close to the centre of Johannesburg and the railway line, many businesses and overseas immigrants bought stands in Burghersdorp. Alongside brick companies, the area saw the sprouting of trading companies, banks, a brewery, and fisheries. Many Indians set up shops and eateries along Locatie (now known as Carr Street), which led to the station.

In April 1904, as a measure to combat the bubonic plague that had broken out, the fire brigade set the area alight destroying everything in the inferno. The area was surveyed and re-planned in unbecoming haste and renamed Newtown six months later. A commercial area where vast fortunes in milling, production of sugar and food merchandising would come to existence. Newtown has now become the cornerstone of South African heritage and culture, particularly Johannesburg. Hence it is widely accepted as the city’s cultural centre. (JDA, 2003).
2.2. FEATURES OF NEWTOWN

Capitalising on Newtown’ history as the hub of exchange and the original cultural centre of Johannesburg, the redevelopment of Newtown is a key focus area with the potential to attract major investment, particularly in creative industries, culture and tourism. Newtown is being developed into a vibrant, mixed use area with a unique character based on existing cultural facilities.

This destination will be made easier to reach with the construction of the Nelson Mandela Bridge and associated N1 / Carr Street interchange. The Nelson Mandela Bridge opened in July 2003 and is the new gateway from the north capable of carrying up to 3000 cars per hour. The project was co-funded by Blue IQ, the City of Johannesburg, National Roads Agency and the National Department of Transport. This pedestrian and vehicle link improves access for local national and international tourists. The new bridge forges a link between Newtown and Braamfontein. The redevelopment of the area is planned under the concept of the Cultural Arc that links Newtown and Constitution Hill to the north west of the site. (JDA, 2003).

1. New Carr Street Interchange
2. Mandela Bridge
3. Old Railway Station
4. Metro Market
5. New Residential Development
6. Africa Cultural Centre & Children’s Museum
7. Market Theatre Precinct
8. Museum Africa
9. Mary Fitzgerald Square
10. Dance Centre
11. Worker’s Library & Museum
12. Multimedia Centre
13. Turbine Hall & Boiler House
14. Mega Music
15. Dance Factory
16. Electric Workshop
17. SAB Museum
18. Reserve Bank

M1 / CARR STREET INTERCHANGE

The M1/Carr Street on/off ramps greatly improve access to Newtown from the south, east and west of Johannesburg. Previously, one would have had to off-ramp at Smit Street to gain access to Newtown. With the new interchange, northbound traffic can gain easier access and exit into Newtown. This improves the link to other important tourist destinations in Soweto, Gold Reef City and the west of the city.

NELSON MANDELA BRIDGE

The 295 metre long Nelson Mandela Bridge is a landmark gateway into Newtown and the city centre. The cable stayed bridge can accommodate over 3000 vehicles per hour. (JDA, 2003). The bridge also features pedestrian walkways and once lit, provides a spectacular new element to the Johannesburg skyline.

The Nelson Mandela bridge forms a major part of the new link joining Braamfontein in the north and Newtown in the south. Both the M1/Carr Street interchange and the Nelson Mandela bridge have been new developments that vastly improves accessibility to the Newtown Precinct over and above existing access routes.
METRO MALL
The multimillion rand Metro Mall opened at the beginning of this year. This shopping complex and transport hub features some of Johannesburg's top public art displays. The artwork is a tribute to the numerous artists working in the Newtown Precinct and throughout the city. Designed to enhance the shopping experience, the art includes life-size sculptures, murals, mosaic and installations.

The mall includes a wholesaler on site to cater for the growing demands of the commuters as well as the growing number of residents in Newtown. On its second level, the mall has a food hall that offers traditional local cuisine prepared under the watchful eye of the environmental health ministry, not that it is necessary, but provides a piece of mind for the numerous visitors to Newtown. Metro Mall is situated between Simmonds, Sauer, West and Pimm Streets and incorporates the Bree Street taxi rank.

MARY FITZGERALD SQUARE
Launched three years ago by the State President, Mr Thabo Mbeki, this square has become a popular venue for public performances and gatherings. Originally known as Aaron's Ground and later renamed Mary Fitzgerald Square, this former wagon site was used for the many strikers' meetings at the turn of the 20th century. This square lies at the heart of Newtown. It was renamed Mary Fitzgerald Square in 1939, in honour of the first woman trade unionist who played a key role in the miners strikes of 1910. (JDA, 2003)

With a capacity for over 50 000 people, the square provides an outdoor space for a wide array of activities, including outdoor film festivals, concerts, markets, carnivals and exhibitions. A key feature of the square is also the biggest outdoor LED screen on the continent, measuring 55 square metres. In addition, two sky disks are major elements on the square. The first depicts the stellar constellation as at the birth of Mary Fitzgerald, the second depicts the constellation as at the first democratic election of 27th April 1994. There is a third, which can be found at the entrance to the MuseuMAfricA depicting the constellation as at the official launch of the square on 16th December 2001- Reconciliation Day. The disks use unique optic fibre lights that glow in the dark.

The lighting for the square was designed by renowned French lighting engineer, Patrick Rimoux who was also commissioned to design the lighting for the surrounding public open spaces. The unique lighting provides essential street lighting whilst giving the area an appropriate festive ambience. (JDA, 2003)

BLUE IQ
The headquarters are next to the Electric workshop and incorporate a media centre, which showcases the major projects they fund. Some of the ground breaking work funded through this multi billion rand initiative include: Newtown Development, Kliptown, Constitution Hill Innovation Hub, Johannesburg International Airport IDZ, Gautrain Rapid Rail Link, City Deep Container Depot, Gauteng Automotive Cluster and Wadville Alrode Industrial Corridor.
MUSEUMAFRICA
MuseuMAfricA is Johannesburg's premier history museum and is appropriately located in the centre of the Newtown Precinct. It is housed in what was once Johannesburg's first fruit and vegetable market. As such its construction was designed for this purpose in 1913. (JDA, 2003). For its time it is a good example of the advances made in industrial building techniques. In the early 1990's, the market building was renovated for MuseuMAfricA. The new museum was launched in 1994, the year of South Africa's first non-racial democratic elections. The museum is home to permanent displays on the history of the city in the 20th century.

AFRICAN BANK MARKET THEATRE
This is an internationally acclaimed theatre that became known as the first integrated theatre. It was a centre point of debate and challenging ideas in the new South Africa. It houses three theatres, a bar, an art gallery and the second of the famous Moyo's restaurants.

The Market Theatre complex is also home to the popular Kippies International Jazz Club, which is modeled in an old Victorian toilet and named after the legendary saxophonist, Kippie Morolong Moeketsi. (JDA, 2003). Gramadoelas restaurant, that specialises in South African cuisine boasts patrons that vary from heads of state, including Queen Elizabeth II, and culture vultures who frequent this complex.

The Market Theatre complex has had a consistent ambience and spirit of a marketplace while bringing in nightlife into the CBD.

ELECTRIC WORKSHOP
The Electric Workshop is a large and spacious building that follows the city's industrial architecture. It was built in the 1920's as part of the electricity site in Newtown, which had been established in 1904. The electric workshop has been used as a venue for a myriad of uses, from jazz and kwaito concerts as well as a rave and corporate launch venue. This was the site for Johannesburg's Biennale in the mid 90's.

The Gauteng Department of Education Trust (including numerous philanthropic organisations) have earmarked this building for use as a science and technology centre, to teach learners about the value of science and mathematics in a fun manner. (JDA, 2003)
3. SITE AND IMMEDIATE CONTEXT

3.1. BACKGROUND

GAPP Architects and Urban Designers were appointed by the Johannesburg Housing Company (JHC) to prepare an Urban Design Plan for Brickfields residential neighbourhood which is south of the proposed site. An array of architects are to be commissioned to prepare detailed designs for different areas within the framework. The aim of the urban design plan is to achieve an architectural integrity over the whole site whilst at the same time developing specific areas with their own identity and character. The urban design framework for the Brickfields developments also forms a basis for the adjoining areas. The project is a key component of the Newtown Urban Design Framework and part of the Inner City Regeneration Plan for Johannesburg.

The site is located on the northern portion of Ptn 1 of Erf 557 Newtown on an undeveloped site between Carr, Pim, West and Bezuidenhout Streets, on the edge of the CBD in Newtown. The project is a key component of the Newtown Urban Design Framework and part of the Inner City Regeneration Plan for Johannesburg.
3.2. SITE SPECIFICS & CONSIDERATIONS

There is much development taking place in close proximity to the project site. This includes enhanced access to the areas through the erection of the new Nelson Mandela Bridge which links Braamfontein and the north to the eastern side of the CBD, as well as the new off ramps from the MI which lead onto Carr Street. Infrastructural developments also include the new Metro Mall development on the south-eastern boundary of the site, and the revamped Mary Fitzgerald Square which is in the general vicinity of the project. Brickfields residential development takes place within a context of R400 million investment in projects under current construction or recently completed in Newtown (indicated in previous section).

The proposed site is located along a planned activity street to the south. The local integrated development plan defines an activity street as a local street where access to the activity along the street is of paramount importance. (GAPP Architects, 2003). Mobility is compromised in favour of activity. The preferred land use should encompass residential, business and retail. All uses should be of a local and fine grain nature. Accommodation of pedestrian intensive uses is of utmost importance. A high level of access is desirable. Speed calming is essential on activity streets. Public transport facilities should be provided and activity should be preferably one block/ erf deep. The site is surrounded by proposed and existing high density housing of which there is a large and proven market demand. The Carr Gardens project of 140 units, the Tribunal Gardens project of 174 units and the Newtown Urban Village of 356 units have all been constructed within the general vicinity of the site. There has been an enormous demand for accommodation in this west side of the inner city with all these projects fully let before completion. All these projects run at 100 percent occupancy. The Johannesburg Housing Company is confident that the demand for accommodation at the proposed site will be similarly overwhelming. (GAPP Architects, 2003).

The area is characterised by numerous derelict buildings that are in need of upgrading. With the planned residential development, this should be addressed while also achieving improved overall confidence in the CBD.

This project will later propose a transport museum at the unused Parktown Station to the north of the site. This will significantly induce pedestrian and tourist activity towards the site from the core cultural area as well as other areas. This will form a strong pedestrian link with the core cultural centre. The historical significance of the Parktown station facade will be retained and design considerations with regard to this building will have to be taken into consideration.

The Nelson Mandela Bridge also creates a strong visual impact to the north east of the site. This is also expected to stimulate vehicular movement as well as pedestrian movement.
4. TECHNICAL

4.1. CLIMATE

Average climate statistics for Johannesburg are:
Position: 28 08' South, 28 14' East
Height: 1694m
Period: 1961 to 1990

TEMPERATURE
As indicated in the appendix A the average daily maximum temperature for each month varies from 16 degree's Celsius to 26 degrees Celsius while the average daily minimum ranges from 4 degrees Celsius to 15 degrees Celsius. Buildings should be designed to accommodate this large temperature variation. This should be used as a general design guideline for the building however consideration must be given to temperatures as high as 35 degrees Celsius and as low as -8 degrees Celsius as these temperatures are on the rare occasion reachable.

PRECIPITATION
As indicated in the appendix the average monthly rain varies from 125mm to 4mm. The average annual rainfall is 713mm.

4.2. GEOLOGY

Subsurface conditions consist of a complex system of igneous and metamorphic rocks (diabase, dolerite, quartzite, and shale) weathered to depths up to about 30,5m and overlain by a thin vaneer of transported soil. The boundary between transported and residual soils can be distinguished by a "pebble layer" that is an unvarying indicator in that vicinity.

FOUNDATION PROBLEMS RELATED TO MINING

Johannesburg owes its existence to extensive gold mining. Environment disturbance on such a scale is bound to cause many problems. Fairly large areas are undermined, some at very shallow depth. Appreciable surface movements occur in these areas. Earth tremors related to rock falls cause minor disturbances such as plaster cracking. Ground water is present in the weathered rock and pumping is essential for foundations.

4.3. SITE PLAN

The site forms a portion of the proposed subdivision of portion 1 Erf 557 Newtown in accordance with GAPP Architects site development proposal. The subdivision as of this date is not yet approved and the land is currently zoned for industrial use. Development guidelines are therefore used as a formal guiding procedure as it is envisaged that these would be implemented in the rezoning.

Figure 22. Site Plan
4.4. CADASTRAL MAP

Figure 23. Cadastral map
5. CLIENT

The client, the Johannesburg Development Agency (JDA), was established by the City of Johannesburg in April 2001. It is an economic development agency that plays a pivotal role in the City's developmental strategy, Joburg 2030. (Thorn and Gibson, 1994). As a management body it is tasked to facilitate development within the CBD. Part of its mandate is to be the implementing agent for three Blue IQ projects. Blue IQ is the Gauteng Provincial Government's economic development initiative to create a "smart" province.

As its vision the JDA will "drive developments that contribute towards achieving Johannesburg's potential as the African World Class City – a city of prosperity, excellent quality of life and a wealth of cultural and economic opportunity". (JDA, 2003). Its mission is “to initiate, promote and implement activities that lead to increased economic development for the City of Johannesburg”. (JDA, 2003).

The objectives of the JDA are:

- To create jobs, development and housing opportunities
- To increase the rates base by stabilising decline, attracting investment into new developments, facilitating and securing improvements to infrastructure and promoting mechanisms to improve management of the public environment
- To boost Johannesburg’s image as a place for living, investment, and visiting. To respond to and realise the aspirations of the whole population of Johannesburg by improving quality of life and economic opportunities for all

(JDA, 2003)

Within the scope of this project the client's key objective is the revitalisation of the inner city and achieving economic stability. The client views inner city regeneration possible only by means of public and private sector partnership. Its key objective therefore is to facilitate this partnership. The Newtown Cultural Precinct Plan has enabled City Council, and the JDA, to undertake the "capital web" approach, which realises publicly primed actions. Two principles underlie the approach:

- Public investment is to stimulate private development responses, guided by the precinct plan.
- Those public investments that do not generate direct returns must be understood in terms of their on-going indirect returns and the strategic objective that is being achieved, i.e. The establishment of a primary cultural node within the Johannesburg City Centre.

(JDA, 2003)
6. SITE DEVELOPMENT GUIDELINES

This section follows the GAPP Architects compiled site development guidelines for the Newtown Precinct. While it explains the interpretation and analysis of it, it also quotes verbatim in certain sections.

INTRODUCTION

The Newtown Urban Design Framework provided a general overview of the Greater Johannesburg Metropolitan Council's intentions regarding the development and regeneration of the Western Sector of the Inner City. A substantial portion of this framework is the Council’s intentions for the Newtown Cultural Precinct. The Newtown Urban Design Framework outlines the overall physical development of the area and splits it threefold as follows: Northern precinct, Central precinct (including the Newtown Cultural Precinct) and Southern precinct.

Its spatial structure concept is founded on an interlinked public environmental system. It begins with the integration of existing key activities but goes onto creating further linkages to adjoining areas being concurrently developed as well as activity clusters. There are predominantly three public places; Mary Fitzgerald Square, Newtown Piazza and Turbine Square, that are connected by a series of pedestrian-dominant routes and lanes. These routes are further developed out of this central activity hub into neighbouring areas like the Johannesburg CBD and Church Street (east), to the Oriental Plaza (west), to the proposed Craft Centre and the West City initiative (south), to the Transnet Railway Land and Braamfontein (north), and north-east to the Metro Mall development.

This public environment structure forms the physical network with Newtown’s cultural core at its nexus. The planned connections in the form of pedestrian (and other) routes into neighbouring precincts also include plans through the proposed Brickfields residential development site, in the northern precinct.

An overall series of goals have been established through the Newtown Urban Design Framework. The goals include:
- Creating a safe and secure environment.
- Improving accessibility.
- Creating a critical mass and a 24 hour city.
- Establishing a coherent development framework for the area.
- Establishing a focussed special purpose vehicle to drive the development and land release process.
The development vision focuses on creating a human-scaled, active, vibrant and amiable public environment, within a milieu of art and cultural activities (in the broadest sense of the definition), with supporting retail, commercial, business, office and residential uses.

The principles underpinning the vision include:

- The fundamental principle is to “accommodate pedestrians first” and emphasising a human scale of development, in order to establish the public environment as the core structure of the Newtown Cultural Precinct.
- The establishment of a continuous public environment network, which forms the guiding spatial structure to which development responds.
- An easy, safe, convenient and pleasant pedestrian environment and movement, co-ordinated with ease of vehicular movement and access to well located and safe parking areas.
- The utilisation of extensive tree-scaping and landscaping in ameliorating climatic conditions and promoting a comfortable public environment.
- Focussing on the need of pedestrians first, and ensuring that vehicular movement supports the diverse human activities that are envisaged.
- Building on the distinct hierarchical road structure.
- The promotion of a mix of land use activities to promote a complex range of opportunities and activities.
DEVELOPMENT OBJECTIVES

The development objectives are guided by the outlined goal to turn the Newtown Precinct into a special cultural place for the City of Johannesburg. The objectives include:

- Creating pedestrian orientated environments where people can walk, sit, relax and shop.
- Designing a series of quality public spaces, both soft and hard, of different character to accommodate a variety of uses.
- Revitalising the existing urban fabric and historic buildings.
- Extending the city road grid and creating streets for people for good local access.
- Developing a strong residential component of urban housing for a variety of income groups.
- Planning improved access by car and public transport.
- Designing a mixed-use environment driven by Art and Cultural activities utilising both old and new Buildings.

DEVELOPMENT GUIDELINES AND OBJECTIVES

The Newtown Cultural Precinct Plan sets out a series of development proposals, which establish detailed urban design principles and development controls. The potential SDP's should be directed by these principles. They comprise the following components:

- **Movement**: The proposed road networks, the development of new road infrastructure, public transportation routes and stops, the pedestrian dominant routes and the public environment.
- **Land Use Activities**: The envisaged land uses and activities for the area, as well as the mandatory and desirable location for specific users, such as activity edges (active ground floor uses, e.g. retail and other), public plazas and piazzas.
- **Urban Space and Landscape**: Design Principles outlining the spatial structure of the public environment and pedestrian routes, urban soft and hard spaces (piazzas, squares and parks), the location of trees and development of boulevards, and colonnades and covered walkways.
- **Built Form Directives**: Outlining physical development parameters regarding mandatory and desirable build-to lines, mandatory and desirable colonnades / covered walkways, desirable and expanded building development zones, buildings and / or building facades of historic value, landmark sites, points of architectural accentuation, building heights and extent of the public environment and pedestrian routes.
- **Architectural Guidelines**: Outlining a design ethic that achieves an architectural precinct of distinction. The guidelines are parameters, which allow for a range of design opportunities that integrate individual buildings into an overall environment of architectural pedigree.
6.2. MOVEMENT

Two activity Streets, or “High Streets”, have been proposed namely Carr and Bezuidenhout Streets. These are envisaged to have more intensive retail and other activities fronting on to them, with significant on-street parking, wider pedestrian pavements, catering for entertainment, restaurants, daily needs and convenience shopping.

The remainder of the road network forms vehicular and local secondary access roads, which provide circulation throughout the Cultural Precinct, with on-street parking.

Figure 27. Newtown Movement Pattern

Figure 28. (A) Major pedestrian movement towards site (Movement indicated in red from core area)

Figure 29. (B) Major pedestrian movement towards site (Movement indicated in red from core area)
6.3. LAND USE ACTIVITY

According to the Council’s development strategy as well as the guidelines in the Newtown Cultural Precinct Plan, emphasis is placed on mixed-use developments within a cultural and art theme. Developers are encouraged to integrate a complexity of cultural, art, entertainment, retail, commercial, office and residential activities.

The activities and uses within buildings at ground floor level are also critical to maintaining this sense of continuity and a vibrant, urban life. Developers are therefore encouraged to use the ground floor, as far as possible, for retailing, entertainment, restaurants and uses that can flow out onto the sidewalk space adjacent to the building.

Above ground floor, the design of the building and the uses on the upper floors are to encourage view vantage points onto the key public spaces. In this regard the facing out of office and residential uses from upper floors, together with balconies, is encouraged.
6.4. URBAN SPACE AND LANDSCAPE

The urban space environment of the Newtown Cultural Precinct is characterised by a public environment network comprising pedestrian walkways and routes, piazzas and public squares. More semi-public courtyard lanes have also been identified, for the use by adjoining businesses for courtyard parking, landscaping and places of relaxation.

The proposed landscaping is structured such that it adds to the aesthetics, legibility, sense of place, linkage and physical comfort of the environment. Elements used are:

- Formal planting of street trees along the primary routes to form boulevards.
- A second order of street tree planting used to define important areas of the public environment, pedestrian routes and secondary streets.
- The extensive utilisation of formal planters and landscaping features throughout the public environment.
- The inclusion of soft green spaces such as local parks.

In addition colonnades and / or covered walkways have been proposed to enhance overall physical comfort and protection from the elements.

More private courtyards have been considered throughout the design, which should include significant landscaping and green space, contributing to the overall landscaping of the precinct.
6.5. BUILT FORM DIRECTIVES

The built form directives envisaged are:

- Individual developers are required to use their buildings to define space: buildings are to be used in grouped form to define the edges of the public environment.
- Consequently the buildings are encouraged to be designed to stand on their boundary lines and collectively form a human scale to achieve a feeling of containment and natural surveillance, giving the public environment a sense of (and promoting) human scale, safety and security. This is underpinned by active ground floor uses facing on to the public environment.
- The mechanisms used to promote the built form include mandatory and desirable build to lines, building zones, and the definition of either colonnaded or covered walkways.
- Buildings and building facades of historical value have been identified and set aside for conservation. Historic buildings are to be retained and recycled and historic building facades retained and integrated with the redevelopment of the site, should this occur.
- Height of buildings is a critical ingredient of the spatial qualities being sought. The development of buildings is thus encouraged to be two to four storeys, in keeping with the existing scale of the urban environment, and achieving a human scale of enclosure.
- The development of landmark buildings of distinct character is also promoted, as well as the architectural accentuation of buildings at important locations along the public environment. This is to promote legibility.
6.6. ARCHITECTURAL GUIDELINES AND PRECEDENT

A number of images have been selected to depict the type of environment that is being sought, both from an architectural point of view, as well as the nature of the public environment.

There is an emphasis on the quality of the public environment and the importance of high quality streetscapes, piazzas, pedestrian lanes and public squares. A well maintained, clean, attractive and, above all, secure public environment is a critical component to the successful development of the Newtown Cultural Precinct. A car-dominated environment is de-emphasised, including the visual intrusion of unattractive parking areas, particularly on surface parking.

Excellence in the quality of private developments is encouraged, specifically in terms of their appeal to the market, their architectural expression, the use of high quality materials, attention to design detail and, above all, the creation of a vibrant, people-friendly public environment. The architectural approach that is sought is that of an urban character displaying “good public manners” meaning that, as important as the building may be, it recognises its context, is respectful of its neighbours, responds to and enriches the public, semi-public and private environments it defines, and contributes to an overall group form. Consequently buildings are used to define space rather than for buildings to simply appear as objects in space having little or no relationship to another. The slavish copying of historical style (that is, creating a *pastiche*) is strongly discouraged.

Where historical reference is to be made in the design, particularly important in the context of the developmental history of Newtown, the building should display a clear analysis of that style, the principles on which it was based and demonstrates how these are re-interpreted into a contemporary idiom.

The following design codes are derived from the objectives and goals set out in the Newtown development framework.

ARCHITECTURAL CHARACTER
- The architecture must have contextual and historical significance to the Johannesburg CBD in general, and Newtown in particular.
- The urban design controls will, to an extent, control the form and size of buildings and their relationship to one another and to the hierarchy of open spaces proposed. This will ensure a consistent integrity of urban form.
- The design code proposed for Newtown is required to prevent design deviations in the wrong direction, but this also permits the occasional flight of fancy that does enrich towns. The juxtaposition of more formal spaces, places, routes, landmarks, vistas, topography and interesting buildings conceived that makes memorable precincts, such as Newtown.
DESIGN ETHIC
Buildings must define space, rather than be objects within it. The built fabric should be defined by:
- High Floor Area Ratios
- Minimum heights that achieve an acceptable degree of enclosure of the public environment
- Definition of build-to-lines ensuring strong edges
- Minimum design criteria that accentuate the building's relationship to the public environment, its point of entry, parking, vehicular circulation, security, massing of built form, elevational and roof treatment, facade modulation, vertical composition and relationship to adjacent developments, in particular active ground floor activities.

MATERIALS AND QUALITY
- High quality materials should be used, which can also be cost effectively maintained.
- The area is characterised by red brick and earthy colours. Materials of this colouring are encouraged.
- Materials and elevations should reflect a consciousness in respect of energy and water conservation.
- Roofs must be dealt with as a conscious element of facade treatment. Roofs should not dominate their buildings.

RELATIONSHIP TO SURROUNDING
- The overriding group form sought is that of a street-related wall architecture, as is characteristic of the Johannesburg CBD. In other words, urban spaces must be lined by a continuous facade of buildings. While heights, build-to lines, and architectural styles may vary slightly, the net result should be a complex facade facing onto the public environment.
- Continuity of building is encouraged, with gaps between them being discouraged.
- Buildings must relate to each other, to the interior and exterior.
- The interior of each block should be considered with importance, as a place within its own right. It should form an important ingredient of the semi-private domain of the Newtown Precinct. The development of each site / erf should recognise it as an equally important frontage and respond to it accordingly.

MIXED USE DEVELOPMENT
- Quality of life, ambience and activity in the area is dependent on the extent to which mixed-use developments are achieved. There is therefore a high priority on encouraging developers to respond in this regard.
- Continuity of a vibrant ground level is encouraged, for example, retail, restaurant and entertainment activities. Cultural activities are equally important here, such as theatres, galleries, and workshops.
- Sidewalk space becomes an important element in the architecture of a building. Colonnaded, canopied or protected sidewalk space becomes an important determinant of the adopted architectural approach. Enclosure of the sidewalk should be of a human scale.
- Ground level facades must interact with street if they are not to be used for active spaces. This will allow for surveillance and thus security.
- The ideal mixed-use configuration is that of retail-related active uses at ground floor; with offices and studios two or three storeys above this, and one or two more levels of residential apartment above this. Densities must be maximised where possible.

CELEBRATE ENTRANCES

- Pedestrian entrances and circulation should be clear and emphasised, both from the street and the inner core of the block. Thus the building becomes a double frontage development.
- A hierarchy of spaces ranging from public to private must be encouraged.
- The area must be as user-friendly and as accessible as possible to all people, regardless of disabilities. Thus ramped access to buildings should be an integral part of the building’s sense of arrival. Specialised facilities for mothers and their children, the elderly and the disabled would be welcomed.
- Vehicular access across sidewalks must be limited if possible.
- Corner buildings must be given particular attention, in terms of stature, by way of accentuating height and details.

SIGNAGE

- Designated zones are needed for signage that is visible to public, semi-public or neighbouring property.
- Discreet and restrained signs are encouraged, in other words, no flashing or moving signage should be allowed.
- Approval must be obtained for the display of external signs.
- No signage may appear on the facade above ground, other than the name of the building.
- Signs should be manufactured of high quality, durable and colourfast materials. Fixed elements of the sign should be concealed.
- Signs and support structures are to be ground related and integral to the building.

LANDSCAPING

- Landscaping is used to enhance the architecture of the building and to create a greening of the city fabric and to emphasise the relationship between built and natural elements.
- Landscaping must complement that of adjoining sites to create a unified landscape running across boundaries rather than defining them.
- The utilisation of indigenous planting is encouraged and is to be designed with a conscious attention to routine maintenance.
- 20% of the site's area (hard and soft landscaping) must be professionally planned and detailed.
- Planting must be properly maintained and irrigated. All hard surfaces must be designed to accommodate proper storm water drainage.
7. DESIGN BRIEF

The design brief was drafted in collaboration with the client. This was developed from the strategic imperatives outlined by the client as well as a pre-analysis of the site.

The Brickfields Residential Development project forms a basis for an urban design structure for the development area. The proposed project is primarily guided by the client's mandate to develop sites to assist in Newtown's revitalisation. The client's intentions to create jobs, development and housing opportunities which are underpinned by the Newtown Urban Design Framework, are therefore critical considerations in the design development. As such it moves beyond a limiting design by building function to include the strategic developmental objectives for the precinct itself. In line with the City's development strategy, these are intended to stimulate a positive urban environment and to elicit private development responses. This is key to the sustained urban regeneration within the Johannesburg CBD from which the Newtown Urban Design Framework takes its cue.

An overall set of project goals and their aligned design objectives have been derived from the theory base as well as the Newtown Urban Design Framework. These are outlined below.

<table>
<thead>
<tr>
<th>PROJECT GOALS</th>
<th>ALIGNED DESIGN OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote a critical mass and a 24 hour city</td>
<td>Encourage mixed use activity</td>
</tr>
<tr>
<td>Reduce crime levels</td>
<td>Effective security enhancing design</td>
</tr>
<tr>
<td>Market the identified character of the site</td>
<td>Maximise the utilisation of opportunities set out in the framework</td>
</tr>
<tr>
<td>Help meet inner city housing demand</td>
<td>Create affordable cost effective housing</td>
</tr>
<tr>
<td>Create and maintain public open spaces</td>
<td>Interface with public spaces to enhance/complement space</td>
</tr>
<tr>
<td>Provide effective service delivery</td>
<td>Provide facilities to accommodate functions</td>
</tr>
<tr>
<td>Develop financial mechanisms to attract and retain investment</td>
<td>Provide opportunity for a range of economic activity</td>
</tr>
</tbody>
</table>

![Figure 48. Goals and Objectives](image)

7.1. FUNCTION MOTIVATION

Function is determined by meeting the above-mentioned goals and objectives and at the same time utilising the development framework of the site's context. This ensures that appropriate land uses are assigned to the context.

The overriding group form sought is that of a street-related wall architecture, as is characteristic of the Johannesburg CBD. It also reinforces the street pattern and brings life and security back to the city. This in turn would provide a secure internal courtyard for tenant usage. The four facades created should capitalise on opportunities set out by the Brickfields framework and simultaneously meet the objectives set out above.

The magnitude of the functions is to be determined by target setting criteria. The height limit suggested by the urban design framework of four or five floors is used as a guideline in conjunction with estimated solar movement at this stage for concept development.
Guided by the structure of the Newtown Urban Development Framework it is anticipated that the south wing would experience the highest levels of pedestrian activity as it is situated in the planned “High Street”, Carr Street. Pedestrian traffic will also be increased with the proposed transport museum at Parktown Station. It is therefore suggested that tourist orientated stalls be located here due to the high dependency on pedestrian movement, allowing tenants to capitalise on this. These stalls should form a permeable edge to the Brickfield Square. A mixture of small-scale home based retail and formalised retail is also proposed on the south wing of the development at ground floor as to maximise utilisation of this pedestrian movement. This is in line with the Framework’s call for ground floor public engagement. Added residential density on the floors above will reinforce safety on the street.

Due to its position, the west wing should provide an appropriate interface with the Brickfield Square. This interface should serve to enhance this public open space and should integrate pedestrian friendly covered walkways into the design. Due to the nature of pedestrian activity associated with the public open space and proposed transport museum it is suggested that restaurants and eating facilities be located here at ground level. This would enhance safety and security as well as stimulate late night activity. These facilities should be allowed to spill out onto the square. This design consideration further supports the Framework’s call for ground floor public engagement. The ground floor should also provide an identifiable entrance to the upper floors. This with the proposed transport museum would serve as an anchor for the Brickfield Square. The building is surrounded by high density residential buildings and should accommodate services for the community engagement. Due to the public nature of the square it is appropriate that these functions be accommodated on the first floor of this wing. The upper floors here should incorporate office activity so as to provide opportunity for much needed small business development as well as enhanced activity for the square adding to the desired critical mass. These upper floors must be designed to meet the Framework’s guidelines to create viewpoints onto public spaces like Brickfield Square in this instance.

This wing is characterised with minimum pedestrian activity. This interface should have a minimal negative impact on the proposed transport museum. This facade should provide residential accommodation helping to meet the high demand for housing and reinforcing security on the street. Design of the residential section will factor in the Framework’s call for viewpoints - in this instance overlooking the Nelson Mandela Bridge.

Careful consideration should taken as this facade forms an interface with the proposed adjoining building. A cohesive integrated design approach is sought for the interface between the two buildings. The possibility of housing should be considered here or an integrated residential courtyard with the neighbouring building.
PROPOSED FACILITIES

<table>
<thead>
<tr>
<th>Proposed land use</th>
<th>Small scale retail</th>
<th>Work/live units</th>
<th>Formalised retail</th>
<th>Restaurant/fasting</th>
<th>Office space</th>
<th>Community space</th>
<th>Residential units</th>
<th>Basement parking</th>
<th>Street parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Wing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50m frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Ground floor</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Wing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55m frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ground floor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Wing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65m frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ground floor</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Wing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50m frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ground floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design dependent

Figure 50. Proposed facilities

Figure 51. (A) Envisaged built form

Figure 52. (B) Envisaged built form

Figure 53. (C) Envisaged built form C

Figure 54. (D) Envisaged built form C

Figure 55. (E) Envisaged built form C
8. TARGET SETTING CRITERIA

8.1. HOUSING TARGET SETTING

Population densities in the west of Bertrams and virtually the whole of Soweto are estimated at fewer than 200 people per hectare. This density has proven insufficient to support commercial activity and the economic viability of service infrastructure. Consequently at Hillbrow the density is estimated above 450 per hectare. This over densification has placed excessive strain on the social and economic infrastructure resulting in various symptoms of social breakdown. In order to sustain the proposed infrastructure in Newtown and create a buzz of activity, Newtown should aim for a higher order density of between 300 and 400 people per hectare. A higher order residential land use activity of about 70% is proposed for Newtown. This will ensure effective utilisation of the proposed infrastructure.

It is essential that residential developments aim to achieve this density at the proposed land use to render the area feasible for inner city development and to ensure sustainable development. Although a variation in housing developments adds a interesting variation to city scapes, achieving the suggested density is desirable.

The approach adopted will use the recommended residential density of 300 to 400 people per hectare as a guideline to determine the magnitude of desirable residential density in the proposed facility. This estimation will help to maintain the overall precinct population density goals without placing additional stress on other sites.

A mix of residential typologies is desired for the project at 40% 3 bedroom units, 40% 2 bedroom units and 20% 1 bedroom units. This allows for the cross-section of family structures and elicits social interaction amongst a variation of residents.

Figure 55. illustrates that the estimated block area (including estimated centre to street dimensions) is 4761 square metres for the residential area. The estimated residential floor area is 3000 square metres. Residential densities for areas between 10 metres per person and 25 metres per person are calculated in appendix B for the project. It is assumed that 40% of the floor area would be allocated to other uses in the facility. Therefore 40% density is added to the projected residential density. This total figure assumes 100% residential use for the city block. The city block is then converted to one hectare at various floor areas per person. Various residential densities are then calculated for various land use percentages per hectare.

Appendix B illustrates that in targeting residential land use of 70%, and residential density of between 300 and 400, the optimum number of units would range between 30 and 36 units at 40% 3 Bedrooms, 40% 2 bedrooms and 20% 1 bedroom units for the proposed site. Although the projected space per person is relatively high this would be reduced by about 20% in an attempt to create cost effective housing.

Figure 56. Estimated residential floor area

PROPOSED SITE

Figure 56. Estimated residential floor area
8.2. OFFICE TARGET SETTING
The Department of Trade and Industry (DTI) maintains that, “The small business sector plays a crucial role in people's efforts to meet basic needs and help marginalised groups (like female heads of households, disabled and previously disadvantaged people) to survive during the current phases of structural changes where the formal economy is unable to absorb the increasing labour supply, and social support systems are grossly inadequate” (SARB, 2003).

The DTI also maintains that, “there is ample evidence that labour absorptive capacity of the small business sector is high, the average cost per job created is usually lower than in big business and its role in technical and other innovation is vital for many of the challenges facing South Africa’s economy.” (SARB, 2003).

Various skills and development programmes are being implemented by the DTI. It is envisaged that these programmes would lead to the establishment of various new small businesses. The proposed site is strategically located within the central CBD which is targeted for the establishment of small businesses. Furthermore the existing and proposed high density housing schemes within close proximity to the site warrant the establishment of business premises. The DTI recognises five forms of small business:

- Survivalist enterprise (income on poverty line)
- Micro enterprise (1 to 5 employees)
- Very small enterprise (less than 10 employees)
- Small enterprise (less than 50 employees)
- Medium enterprise (less than 100 employees) (SARB, 2003)

Medium enterprises account for only 1.4% of all small business recognised by the DTI and are usually more structured in terms of management principles and staff numbers are high. Furthermore these businesses are more established than emerging business and provision for these will therefore be excluded in this project. It will instead focus on emerging businesses.

Targeted emerging businesses will include micro to small enterprises which, according to the DTI, generate moderate income levels. Facilities for survivalist enterprises, which generate income just above the poverty line, will only be factored in the street activity section and not in the building per se. There is no paid staff and it’s asset value is minimal. Economic activity of survivalist enterprises is directed at providing a means to keep their families fed and has little opportunity for expansion. (SARB, 2003).

Each floor of the proposed facility should therefore be able to accommodate 50 people (small enterprise at maximum capacity according to the DTI). These floors should however be sub-divisible to accommodate offices of 5 people (micro enterprise) and 10 people (very small enterprise) to cater for the ever-changing needs of business.

8.3. RETAIL AND RESTAURANT TARGET SETTING
The retail and restaurant component of the facility should maximise utilisation of street frontage on the southern and western facade of the building. A supermarket should be utilised as an anchor retail store in support to smaller retail stores, provided for basic necessities to the immediate community and building users. Small scale retail stores should utilise the predominant pedestrian movement pattern. The sizes to a large degree would be governed by the sizes of facilities above. At least one formalised restaurant should be provided in conjunction with fast food outlets. These facilities should be orientated towards the transport museum.

8.4. COMMUNITY CENTRE TARGET SETTING
The decision to implement a HIV/AIDS centre is motivated in the theoretical motivation section that follows. It is evident in existing HIV/ AIDS training centres within an urban context that the most successful centres usually incorporate other community functions (appendix C). Although the existing facilities are characterised with relatively low use the projected use of these facilities can be assumed to drastically increase given the projected impact of the disease as discussed in the theory section. The function of the spaces within the existing facilities are utilised as a basis to derive functions of spaces within the new facility. As existing facilities are underutilised it is difficult to project the average number of future users. However given Johannesburg’s high projected residential density it is safe to assume that the maximum utilisation capacity of other similar urban HIV centres can be used as a guideline to derive sizes of spaces (appendix C).

Other community functions of the facility are not limited to specific uses as the desired utilisation of this space is better left to the social demands of the immediate community. The size of an average South African government school classroom of 50 students is used as a guideline to derive the size of this multi-functional space. In this way the effective transfer of knowledge can be assured.
BUILDING SPACE REQUIREMENTS

<table>
<thead>
<tr>
<th>Proposed land use</th>
<th>Number required</th>
<th>No. of persons per unit</th>
<th>Total no. of persons</th>
<th>Average space per person</th>
<th>Average space per unit</th>
<th>Total required space</th>
<th>Reference source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Bedroom units</td>
<td>12</td>
<td>5 or 6</td>
<td>66</td>
<td>16m</td>
<td>96m</td>
<td>1152m</td>
<td>As per criteria</td>
</tr>
<tr>
<td>2 Bedroom units</td>
<td>12</td>
<td>3 or 4</td>
<td>42</td>
<td>16m</td>
<td>64m</td>
<td>768m</td>
<td>As per criteria</td>
</tr>
<tr>
<td>1 Bedroom units</td>
<td>6</td>
<td>1 or 2</td>
<td>9</td>
<td>16m</td>
<td>32m</td>
<td>132m</td>
<td>As per criteria</td>
</tr>
<tr>
<td>OFFICES - estimated: 50 staff per floor x 3 floors in subdivisible space as per criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each floor office space</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td>7m</td>
<td>350m</td>
<td>1050m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Access to work places (10%)</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td>0.7m</td>
<td>35m</td>
<td>105m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Within office facility (meetings etc.)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Inter office circulation (10%)</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td>0.7m</td>
<td>35m</td>
<td>105m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Support facilities (filing etc.)</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td>2.75m</td>
<td>52.5m</td>
<td>157.5m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Areas for special facilities</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Projected toilet facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men: 2 toilets, 1 wash hand basin, 1 urinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women: 2 toilets 2 wash hand basins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV COMMUNITY CENTRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5.5m</td>
<td>11m</td>
<td>11m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Administration</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7.5m</td>
<td>15m</td>
<td>15m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Record storage</td>
<td>1</td>
<td>24</td>
<td>24</td>
<td>2m</td>
<td>48m</td>
<td>48m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Waiting: 6 pers. per consult room</td>
<td>1</td>
<td>24</td>
<td>24</td>
<td>2m</td>
<td>48m</td>
<td>48m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Consulting rooms</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3m</td>
<td>9m</td>
<td>36m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Treatment rooms</td>
<td>3</td>
<td>2 to 3</td>
<td>Average size used</td>
<td>17m</td>
<td>51m</td>
<td>New Metric Handbook</td>
<td></td>
</tr>
<tr>
<td>Multifunctional community space</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>1.5m</td>
<td>75m</td>
<td>75m</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Projected toilet facilities</td>
<td></td>
<td>Facility linked with public toilets on ground floor basic office module used here</td>
<td></td>
<td>25m (est.)</td>
<td>New Metric Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETAIL/RESTAURANT COMPONENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restaurant</td>
<td>1</td>
<td></td>
<td></td>
<td>Sizes dependant on upper floors. Maximum utilisation of street facade must be made</td>
<td>As per criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast food</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supermarket</td>
<td>1</td>
<td>Minimum size 200m maximum size 250m - dependant on upper floors</td>
<td></td>
<td>225m</td>
<td>New Metric Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td>Number and sizes dependant on upper floors. Maximum utilisation of street facade with minimum 6.5m frontage</td>
<td></td>
<td></td>
<td>New Metric Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projected toilet facilities</td>
<td></td>
<td>Men: 7 toilets, 5 wash hand basin, 5 urinal</td>
<td></td>
<td>75m (est.)</td>
<td>Based on existing models and ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women: 10 toilets 7 wash hand basins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARKING SPACE REQUIREMENTS

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>Total no. of spaces/parking</th>
<th>Reference source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Parking space per unit</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Visitor: 1 parking space for every 4 units</td>
<td>9</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>OFFICE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 parking space per manager and 1 parking for every 4 staff in SMME.</td>
<td>40</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Assumed 4 managers per 10 staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visitor: 10% of staff parking</td>
<td>4</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>RETAIL/ RESTAURANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One space per shop owner/manager and one space for every 200m floor space assumed (1000m)</td>
<td>13</td>
<td>New Metric Handbook</td>
</tr>
<tr>
<td>Maximise street parking opportunity Parking basement planned in vicinity for public use.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIV/ COMMUNITY CENTRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% of estimated 15 staff</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>One space per consulting room (predominant form of transport is public transport)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL PARKING SPACES REQUIRED</td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>
10. THEORETICAL MOTIVATION FOR BUILDING TOPOLOGY

10.1. CATALYTIC ACTIONS

In the twentieth century, there was a heavy emphasis on theory-based urban form. The existing theories ignore some factors that are relevant and appropriate in other theories. As a case in point, a humanist scheme neglects economic issues; functionalist schemes ignore the importance of cultural traditions; systemic schemes are overbearing and too optimistic about technology and formalist schemes assume that Europe had resolved urban design by the nineteenth century. (Attoe and Logan, 1989).

European urban design theory may be described as being narrow and argumentative as each new approach seems to have developed to oppose and replace others, instead of building upon each other. Because all approaches are divergent theories tend not to encompass other theories. European urban design theory may share some common concerns and values but continued to move in different directions in the accompanying diagram.

European theory is derived from social objectives whereas American practice often grows from assumed economic opportunities. South African design theory could be regarded as somewhere in-between as both dominant design approaches do not provide an easy fit for our context. Because of these differences, a unique South African approach to urban design theory is needed if we are to promote positive environments in our cities. We need an urban design theory that is appropriate to South African circumstances and allows architects, urban designers, and planners to develop a consensus about our values.

It is the values not the forms associated with theories, that are commended. The following values derived from European cities and urban design theories constitute the givens of good urbanism, not only in Europe but also in other cities:

- Mixed activities are basis to cities.
- Buildings (and the spaces they form) are the natural increments of urban growth.
- New urban growth must recognise the context provided by past construction.
- A major goal of urban design is the shaping of public open spaces, including meaningful street space.
- Streets must accommodate various forms of transit and enhance pedestrian activity and movement.
- Transportation systems should be rational.
- Urban places should be varied to enhance the activities associated with them: housing, neighbourhood shopping, major retail, civic, and so forth.
- Citizens should have a role in shaping urban setting.

(Attoe and Logan, 1989)
According to Attoe and Logan (1989), a sequence of limited, achievable visions is defined as urban catalysts. Visions for the new urban centre should be modest and incremental, but its impact should be substantial, in contrast to the large visions that have been in use, with their minimal or catastrophic impact.

An urban element that is shaped by the city and then, in turn, shapes its context could be defined as a catalyst. Its function could therefore be described as a continual “regeneration of urban fabric” (Attoe and Logan, 1989). An urban catalyst is not an end in itself, it instead stimulates further development. Urban catalysts are capable of moulding a city in many ways with a variation of possible visions. Urban catalysts are better thought of as smaller elements such a building. Although renewal and revitalisation schemes for cities are often referred to as catalysts, many of these schemes have little impact. Buildings themselves can be catalysts if designed thoughtfully, ensuring the high quality of urban redevelopment.

Catalysis involves the introduction of one ingredient to modify others. In the process, the catalyst sometimes remains intact and is sometimes itself modified. Adapted to describe the urban design process, catalysts may be characterised as follows:

- The introduction of a new element (the catalyst) causes a reaction that modifies existing elements in an area. Although most often thought of as economic investment catalysts can also be social, legal, political, or architectural. The potential of a building to influence other buildings, to lead urban design, is enormous.
- Existing urban elements of value are enhanced or transformed in positive ways. The new need not obliterate or devalue the old but can redeem it.
- The catalytic reaction is contained; it does not damage its context. To unleash a force is not enough. Its impact must be channelled.
- To ensure a positive, desired, predictable catalytic reaction, the ingredients must be considered, understood and accepted. Cities differ; urban design cannot assume uniformity.
- The chemistry of all catalytic reactions is not predetermined; no single formula can be specified for all circumstances.
- Catalytic design is strategic. Change occurs not from simple interventions but through careful calculation to influence future urban form step by step.
- A product better than the sum of the ingredients is the goal of each catalytic reaction. Instead of a city of isolated pieces, imagine a city of wholes.
- The catalyst need not be consumed in the process but can remain identifiable. Its identity need not be sacrificed when it becomes part of a larger whole. The persistence of individual identities many owners, occupants, and architects enriches the city.

(Aattoe and Logan, 1989)

A catalytic theory of urban design is based on existing theories, leveraging what they have to offer. However, unlike existing theories they describe how to get from project goals to aligned design objectives and implementation. The concepts of action-and-reaction or cause-and-effect are integral to catalytic theory. This theory provides various mechanisms of implementation, final form, or visual character for urban areas, instead of a single solution. It uniquely prescribes an essential feature which is the power to trigger other action in urban developments. The resultant designs therefore encourage the interaction of new and existing elements and their impact on future urban form, not the approximation of a single physical design option.
It is often the case that buildings collectively form the overall design aesthetic of a city. However, individually, few buildings in cities are architecturally exceptional. If due consideration is taken by developers, each new development improves and enhances the profitability and design of a city. This is because each is related to others in a meaningful way. Buildings do set precedence and these matter.

Urban catalysis is a collective result of all stakeholders in the development process working together towards common goals. When the architect, planner, developer banker and politician support a well-conceived and well-designed project it can cause positive subsequent enhancements. Today, further relationships include public/private sector developments where common understanding of project goals and implementation is sought.

South African cities are different from cities elsewhere in the world, and our theory of urban design must reflect the differences. They still wrestle with the design influences of the apartheid regime where economic divides impaired interlinked development.

10.2. DEVELOPMENT STRATEGY THE CAPITAL WEB

A development strategy based on the “capital web” approach utilises the physical establishment of the public service infrastructure (roads, public environment, public amenities and services) and its facilities as the structure to the development area.
The “capital web” of the Newtown Cultural precinct comprises the following components:

- The Public Environment, encompassing Mary Fitzgerald Square, Newtown Piazza and Turbine Hall square; and the connections between these.
- The proposed road infrastructure, including the “Mandela Bridge” (currently in construction stage) and the freeway on- and off-ramps.
- The strengthening of the Market Theatre Precinct node and its regeneration.
- The interlinking public environment.

It is anticipated that linkages between these key developments would influence and provide incentive for the upgrading of the derelict buildings between these linkages.

10.3. BACKGROUND TO THE SOUTH AFRICAN CONTEXT

South Africa is currently experiencing one of the most rapid population growths. The population increased from 37 737 200 in 1991 to 46 009 300 in 1991. In 1999 it was estimated by Statistics South Africa that about 60% of South Africa’s population lives in urban areas compared to 47% in 1980 which is a clear indication of the rate of urbanization.

According to Statistics South Africa over the last ten years the gross domestic product grew by an average of 2% annually however the population increase caused the real gross domestic product to fall by an average of 1% annually. Clearly South African cities are unable to sustain economic activity for it's growing population. It is estimated that over 30% of South Africa’s economically active population is currently unemployed. Plans by the department of trade and industry are currently being implemented for job creation however the impact is minimal. According to Statistics South Africa the unemployment rate has grown from 16% in 1995 to 30% in 2001. There is clearly need for intervention in this regard.
It is estimated that over seven million people in South Africa are currently living in informal housing. The Johannesburg housing company has been established by the Johannesburg Council for the delivery of housing stock. There is evidently a tremendous demand for housing within the inner city as all projects undertaken by the Johannesburg housing company within the inner city are fully let before completion. Given the estimated population in informal housing, the rate of urbanization and projected population increase there is a constant demand for cost effective housing within the inner city.

South Africa is currently faced with much publicized HIV/AIDS epidemic. It is estimated that 4,7 million people in South Africa are currently effected with HIV. The University of Cape Town actuarial science indicates that this figure could rise to as many as 6,5 to 7 million over the next ten years where the number of deaths by other means would on average equal that of HIV. According to the United Nations South Africa has an average of 1800 new HIV infections per day. It is estimated that 24,5% of South African citizens are HIV positive. The effect of HIV on South Africans is tremendous; in 1998 250 000 people died of aids, in 1998 there were 100 000 aids related orphans and it is currently estimated at 420 00, by 2015 Aids would have decimated 4,47 million South Africans. The projected impact of HIV/AIDS on the economic status of South Africa is also tremendous:

-HIV/AIDS related sickness would directly affect productivity in the workplace and the competitiveness of South Africa's economy. This will also have a great effect on South African families and communities.
-As the disease depletes the labour force, especially when the skilled labour force is affected, the potential for economic growth is reduced potentially by up to 2% annually.
-By 2005 4 million families with incomes between R2500 and R8000 will face a 20% reduction in discretionary spending as a result of higher taxation to the fund state medical spending and increasing medical costs.
-Individual poverty grows as government resources are increasingly re-directed to address the impact of HIV/AIDS with proportionally less finance available for other social expenditure including education.

10.4. NEEDS OF URBAN DWELLERS IN SOUTH AFRICA

ECONOMIC ACTIVITY
Of particular importance in South Africa, where rates of urban growth are extremely rapid and there are high levels of poverty and unemployment is the need to generate opportunities for small scale, self generated economic activity. The generation of small businesses and establishing places for the fulfilment of this economic activity is vital to the survival chances of these people.

ACCESS
It is essential that all citizens be given access to opportunities created. The full potential cannot be released if access to opportunities is isolated to a select few. The most feasible option in monetary and sustainability terms exists where people can gain access to daily activities on foot. Movement on foot should therefore form the primary form of transportation and urban design should be orientated around this. Urban design does however set some preconditions for higher orders of opportunities, activities and facilities. If the urban poor are to gain access to this the an efficient viable and co-ordinated public transport system is a prerequisite.

PROMOTION OF COLLECTIVE ACTIVITIES AND CONTACT
Within urban environments innovation and diversification is essential for further development. These are dependant on exposure, social interaction and communication. The places offering the greatest opportunity within cities are generally the places with the most interaction. The underlying principal is that cities need to be intensive rather than extensive.

INDIVIDUAL NEEDS
Individual needs of city dwellers need to be met in order for citizens to engage fruitfully in urban dwelling. Some of the physical needs that need to be addressed are health, safety shelter, employment etc: One of the most recent need that has to be addressed is the need for HIV/AIDS counselling and treatment. The projected impact HIV/AIDS clearly indicates the catastrophic effect if HIV/AIDS is not addressed.

The conclusion that could be drawn from addressing problems in South Africa is that designers need to create qualities of the city rather than suburbia. Suburban type dwellings are heavily dependent on private means and the use of expensive, resource wasteful technology. South Africa cannot assume to address its problems with the creation of a suburban type society. Designers must seek solutions within our cities as this is outstandingly the most viable option.
10.5. DESIRED QUALITIES OF A CITY IN SOUTH AFRICA

In order for urban design to satisfy needs urban qualities that contribute to the satisfaction of those needs have to be established. It is important that these qualities be identified for application within the urban context.

The overarching guide to quality in urban design is BALANCE. Balance may be interpreted in various orders, as will be explained later. Cities are dynamic systems that are subjected to continual growth, expansion and change. This constant changing of our cities is inherently positive as it adds to their diversity and enriches form-molding processes of our cities. Through this process fundamentally important relationships are formed and if a balance is not achieved these relationships may be destroyed by the dynamics of growth.

Dewar and Uitenbogaard in the book “A Manifesto for Change” identified three orders that are centrally relevant to urban design. The first and highest order identified is a balance between “society and the cosmos”. More broadly, the phrase reflects a concern with holistic design approaches. All environments of quality are expressive of wholeness. Integral to this quality is a sense of place that recognises and celebrates the natural, cultural and historical uniqueness of different generations and times. It is this uniqueness that provides cognitive landmarks to users of the environment.

The second order identified is that between “society and nature”. Urban contexts are a continuum of rural and urban landscapes. Retaining contact with the natural context within which the urban development occurs is of vital importance. The importance of this concept allows people to be part of the totality of the place in which they live.

The third order is the balance in the relationship between people, as expressed through urban activities. This order relates directly to levels of urban performance that should be achieved. Urban performance refers to the way in which urban structure accommodates, promotes and enhances the activities and events that define urban life. The provision of equal opportunities of access to all city dwellers forms part of this concern. The main criteria that is central to positive urban environments are:

FREEDOM
Urban settlements are enriched when they promote the maximum positive freedom for people to engage in activity. The structure should be designed to release the energies and talents of many people so as to enrich the quality of urban environments. In this way truly stimulating, diverse and complex environments emerge. The complexity of the environment in turn reflects and contributes to the richness of human experience.

EQUITY
Positive urban environments provide equal opportunities for all it's inhabitants. Through their structure and form they enhance and promote urban activities and processes of urban life, and they allow all people easy access to the opportunities they generate.

INTENSITY, DIVERSITY and COMPLEXITY
Positive urban environments are characterized with intensity and diversity of activity. Intense interaction and high levels of population support create the most fruitful ground for the generation of urban opportunities. The need for access similarly demands the existence of diverse activities over relatively small distances. This is also dependant on the existence of high levels of support over relatively small areas. Therefore, successfully performing environments are necessarily complex and they contain a variety of overlapping conditions and activities. The preconditions set the stage for the positive spontaneous und unexpected to occur.

A variation of intensity and exposure, from very intense and exposed to quiet and private are possible and desirable. The positive quality of urban dwelling is offered to urban dwellers when they can choose to reside in high intensity environments without totally sacrificing access to privacy, quiet and nature.

INTEGRATION
Integration between different elements of the city is evident in positively performing urban environments. The essence of urbanity is that individuals, groups and communities can benefit from greater opportunities and facilities than can be generated by their operating in isolation. The more intensive activities and events must be accessible to as many local areas as possible. In positively performing urban areas it is therefore possible for poorer inhabitants to gain easy access to the opportunities and facilities created in more intensive areas.
COMMUNITY
The concept of community relates to creating a sense of absorption into urban life. The urban dweller in this way becomes part of many communities and many social alignments in the course of their lives. Social interaction is given as an essential for human development. The physical environment affects processes of urban socialization, sense of identity and richness of urban experience. When urban environments are positively made and celebrated they provide places and alternatives to the limitations of home life. They provide experiences and opportunities which cannot be obtained in isolation operate like release valves to the pressures and intimacies of the dwelling unit.

Human interaction cannot be forced therefore the intensity of communal interaction will vary with varying conditions. The creation of opportunities for such interaction to occur is of utmost importance. Cities represent a mixture of complex forms of social organizations and institutions. In this regard social order directs spatial order and complex social and cultural fabric of cities should find expression in the built environment.

“Only when a city achieves this celebration of life is it possible to talk of urban efficiency. The search for ways of celebrating life therefore must be the central issue informing thinking about urban structure and design. The capture of these qualities requires a creative act: it defies standardization and the predetermination of form. It is impossible to determine the future, but it is possible to recognise the lasting quality of what is done today.” (Dewar & Uitenbogaard, 1991)
11. BASIC CONCEPT DEVELOPMENT

Figure 64. South West Arial

Figure 65. North West Arial
Figure 68. West street Aerial

Figure 69. South West corner
12. TESTING AND GUIDING SUSTAINABILITY

This section follows class notes compiled from a lecture series presented by Mr Jeremy Gibbert of the CSIR. While it explains the interpretation and analysis of it, it also quotes verbatim in certain sections.

INTRODUCTION

As a result of increased environmental damage from human activities and the depletion of natural resources it is increasingly important that this matter be addressed. It becomes essential that sustainability becomes a key issue in our everyday activity.

It is possible for buildings to play an important role in supporting sustainability. This can be achieved through careful planning in which design decisions and specifications can be carefully evaluated for its impact on social, environmental and economic aspects of society and the natural environment. Individually and collectively the impact of these decisions in the design of buildings is significant.

12.1. SOCIAL ISSUES

12.1.1. Lighting

The building should maximise usage of the suns predominant movement pattern to minimise dependancy on daytime electrical lighting. All work and living environments should be well day lit. No spaces within the building should require constant electrical lighting. Day lighting control should be possible for users to suit individual demand; glare should be minimised. Day lighting control should be made especially possible on the west wing to cope with extreme winter and summer conditions. Accessibility of usable space to solar movement should be given preference over non usable space such as toilet facilities.

The average day lighting requirements for various spaces within the facility shown in appendix D falls well within the municipal bylaws. The SABS code of practice specifies that a minimum of 10% day lighting should be applied to all spaces. All living spaces within the building should therefore have a minimum of 10% day lighting. Careful analysis of the solar movement pattern is necessary for the facility to cope with Johannesburg’s extreme summer and winter conditions shown in appendix A. Analysis of the predominant solar movement is shown in the accompanying diagrams.
WINTER SOLAR ANALYSIS

The above diagram illustrates solar positions on the west wing at 1 pm and 4 pm respectively on the 21 June 2003. At 1 pm the retractable sun shading device in closed position cuts out solar penetration from the restaurants and shops however in open position the device allows solar penetration into the building from 1 pm. This creates a comfortable environment for pedestrians and outdoor eating. At 4 pm the building would receive deep solar penetration. This significantly warms interior environments and if desired, this solar penetration could be limited by use of the retractable shading device (shown in dotted). Day lighting control in the upper floors should be individualised by means of blinds in conjunction with the proposed shading device. Morning sun penetration from the east should be maximised where possible.

The above diagram illustrates solar positions through the proposed courtyard at 8 am and 12 am respectively on the 21 June 2003. Although the courtyard day lighting is low in winter, all living and working spaces are given access to morning sunlight. The north facing windows should allow adequate solar penetration and living/working spaces should be positioned here where possible. The parking facility below should utilise roof lighting to eliminate the need for electrical lighting. The possibility of light scoops should be considered for basement lighting between 7am and 8am.
SUMMER SOLAR ANALYSIS

The above diagram illustrates solar positions on the west wing at 1 pm and 4 pm respectively on the 21 December 2003. At 1 pm the sun shading device in closed position cuts out summer sun creating a comfortable outdoor eating and pedestrian environment. This could be adjusted as desired by means of the adjustable shading device. After 1 pm sunlight access into the restaurant/retail space is possible if desired by means of the adjustable device. Day lighting control on the upper floor western side of the building should be possible by means of adjustable blinds in conjunction with the proposed sun shading device for individual desired comfort levels. Although, not as critical as the west elevation, the eastern side of the building should incorporate some form of daylight control for individual users to control morning sun.

The diagram above illustrates solar positions through the courtyard at 8 am and 12 am respectively on the 21 December 2003. The courtyard receives good summer day lighting all day to support various forms of activity as shown in the accompanying diagrams. It is envisaged that the courtyard would be characterised with high usage in summer due to good sunlight access. North facing rooms should also incorporate some form of solar control for summer. The Use of landscaping in the courtyard would generated desired shade.
12.1.2. Ventilation

Required ventilation should be provided by natural means. No mechanical ventilation should be used in the facility other than in the toilets and kitchens if necessary.

The proposed passive ventilation system for the west wing of the building utilises the predominant wind pattern. It is envisaged from climatic responses that extensive usage of this system would proceed in summer. This system is simply implemented by adjustable window openings. The distance between window openings should be minimised with minimum obstruction.

Appendix E stipulates the SABS air requirements within the facility that should be achieved. Window opening sections should allow for the required ventilation to all components of the proposed facility, utilising the prevailing wind direction. Roof ventilation openings on the southern side of the parking facility are necessary to facilitate cross ventilation.

The proposed passive ventilation system for the west wing of the building utilises the predominant wind pattern. It is envisaged from climatic responses that extensive usage of this system would proceed in summer. This system is simply implemented by adjustable window openings. The distance between window openings should be minimised with minimum obstruction.

Preference on ventilation control should be given to individuals rather than group control allowing individuals to personalise living and working environments. This is implemented by the installation of individual window openings.
Noise levels should be limited in work and living environments to acceptable levels. The SABS desired noise levels for spaces are to be utilised in achieving optimum noise levels. The choice of appropriate building material as well as design layout should be utilised in order to achieve these levels.

Appropriate intermediate buffer zones should be allocated in order to help achieve the desired noise levels. Desired quieter zones should be separated from high noise zones. In areas where this is not possible, material with high sound adsorption levels should be used; as well as the provision of double glazing to window opening sections.

Where possible landscaping should be utilised to buffer noise from the outside public environment to the inside.
All living and work areas should be given access to outside views. A series of potentially aesthetically pleasing views have been identified in the site analysis phase. The building should maximise the use of these views by way of layout orientation. Care should be taken as views should take thermal comfort by solar movement pattern into design consideration. All users of the building should be situated six metres or less from a window and given access to outside views.

Privacy to living and working environments should not be compromised in favour of views.
12.1.5. Access to green outside spaces

Access to green outside spaces should be provided for all users. Controlled access to internal green areas should be provided for office and public users to allow for privacy within the residential component. The proposed extensive landscaping to Brickfield square should be utilised for public access.

12.1.6. Circulation

The circulation system should be self explanatory for first time visitors and should provide for its users a clear sense of orientation. The circulation paths should be as direct as possible to destinations. The facility should provide some form of shelter for the public environment circulation. Various appropriate circulation aids such ramps and stairs are to be utilised to aid for ease of circulation. Circulation paths should evoke a sense of excitement to the user, they should run directly through different spaces of the building.
12.1.7. Inclusive environments

The proposed facility should be designed to accommodate people with all forms of disability. The public environment, access to offices and the community centre should allow 100% access to disabled persons to ensure that the building is inclusive and supports sustainability.

Facilities should be provided for disabled persons drop off, parking and access to the main circulation spine. In accordance with the SABS standards at least two undercover parking bays should be reserved for the use of disabled persons. All routes between and within the buildings should be a smooth and of an even surface (ie easily navigable by wheelchair). Routes should accommodate all forms of disabled transport. All changes in level within the building should have appropriate ramps of 1:12 fall, or lifts to allow disabled access. Edges between walls, floors and stair nosings should be clearly distinguished through the use of contrasting colour for visually impaired persons.

At least two disabled toilets for male and female use must be provided to the public sector in accordance with SABS standards. Changes in texture should be provided with choice of building materials to appropriate areas for the blind. Clear signage should be used to identify facilities for disabled use.

12.1.8. Access to facilities

Conventional living and working patterns requires regular access to a range of services. Ensuring that these services can be accessed easily and in environmentally friendly ways supports sustainability by increasing efficiency and reducing environmental impact.

Temporary childcare should be provided within the community facility. This facility should cater for short term users of the building. It is envisaged that long term childcare would be catered for, within the immediate proposed residential community. There will be no provision for an ATM as the building is located close to public amenities.

Grocery items required on a day to day basis should be accommodated within the ground floor uses. This should be easily accessible to the immediate community as well as visitors. Provisions should be made on the western public facade of the building for the installation of public telephones. Computer and e-mail facilities should be made available for community use within the community centre.
12.1.9. Participation and control

Ensuring that users participate in decisions about their environment helps ensure that they care for, and manage this properly. Control over aspects of their local environment enables personal satisfaction and comfort. Both of these support sustainability by promoting proper management of the building and increasing productivity.

As mentioned earlier users of the building should have reasonable control over their environmental conditions, this should include opening windows and adjustable blinds. This allows for some degree of personalisation of space.

Furniture and fittings ie tables, chairs, internal partitions designed or specified should allow for arrangement and rearrangement by the users. Provision must be made for personalisation of spaces if desired. This includes choice of colours, places for plants and personal storage.

Design of spaces must accommodate informal and formal social interaction. This includes comfortable seating along regularly used routes. Spaces shared between occupants and users must be large enough to allow for comfortable social interaction.

Access to amenities including refreshments is to be made available on ground floor to all building users as well as the immediate community and visitors.

The community centre should be made available to the local community and should strive to evoke a sense of belonging. Apart from health care facilities the community centre should provide access to computers, teaching, learning, and leisure facilities stimulating community upliftment.
12.1.10. Education health and safety

The building must cater for the well being, development and safety of the people that use them. Awareness and environments that promote health must be promoted. Safe environments should be created limiting the incidence of accidents. Learning and access to information is a necessity in today's population and must be catered for.

Access to support for learning must be provided within the community centre. This can be in the form of Internet access, structured courses, or the provision of learning material such as books, journals and newspapers. Awareness on health issues, especially aids must be provided within the community centre. Information must be readily available on health, education, and career development issues. This could include a well serviced notice board located in a central position.

Measures should be taken to ensure that areas of the buildings and routes to and from the building create a safe environment. Measures taken could include well lit routes, routes and spaces overlooked by occupied areas and clear visual links to the public environment.

In the event of injury, appropriate signage should direct all injury casualties to the health care facility for treatment. A secondary first aid kit must be provided with security for after hour usage in the event of an emergency. Security personnel must be trained to use the first aid kit effectively. The building must comply with all health and safety regulation prescribed by the SABS code of practice.

In accordance with legislation no smoking should be allowed within the building. The office users should be provided with designated smoking areas on each floor to promote efficiency.

All of these factors contribute to sustainability by helping ensure that people remain healthy and economically active, thus reducing the 'costs' (to society, the environment and the economy) of unemployment and ill health.
12.2. ECONOMIC ISSUES

12.2.1. Local economy

The construction and management of the building will have a major impact on the economy of the area. The economy of an area can be stimulated and sustained by utilising local resources and developing local skills.

At least 80% of the construction must be carried out by contractors based within 40km of the building site. This adds a significant contribution to the local economy. Choice of at least 80% of construction materials and components used must be produced within 200km of site. This minimises environmental damage by transportation and furthermore stimulates market demand for products simulating the local economy.

Small emerging businesses should be given preference for utilisation of opportunities created within the facility. This includes outsourcing catering, cleaning services and security as well as making space and equipment available for businesses to use for retail, education and offices. Support facilities for small emerging businesses must be catered for within the facility. Repairs and maintenance required by the building including servicing of mechanical plants must be carried out by contractors within 200km of site. Preference should be given to emerging contractors where possible creating opportunities for developing businesses.

12.2.2. Efficiency of use

The investment in the facility must make effective use of resources. Effective and efficient use of the building supports, sustainability by reducing waste and the need for additional buildings.

Non useable space such as plant, toilets and circulation must be minimised. This should not exceed 20% of the entire facility. Maximum utilisation of spaces must be made. This includes the provision necessary for multipurpose usage. All spaces within the facility should be occupied for an average equivalent minimum of 30 hours per week. In order to ensure the effective management of space on an ongoing basis, utilisation of space should be reported to management for constant revision. Where possible the shared use of space must be allowed.

12.2.3. Adaptability and flexibility

It is likely that within the lifespan of the building the use of the building will change, or that the feasibility of this will be investigated. The buildings should accommodate change easily supporting sustainability by reducing the requirement for change (energy, costs etc) and the need for new buildings.

The structural dimension (Floor to underside of roof, or slab of the floor above) of the retail, community centre and office uses must be a minimum of 3m. This dimension supports change to a variation of uses. Ensuring that the internal partitions between these spaces are non-load bearing (ie non-load bearing brick / block or plasterboard partitions) supports the rearrangement of internal spaces. Given the projected population increase in the CBD it is foreseen that factoring in adaptability into the residential component is not necessary. Some allowance for rearrangement of space must however be made here.

Easy access must be provided to electrical, communication and (HVAC, where appropriate) services in each useable space. Provision must be made for enabling easy modification of the proposed system (ie addition and subtraction of outlets)

12.2.4. Ongoing costs

Preference should be given to specification and material with low maintenance and or low cost maintenance. All plant and fabric must have a maintenance cycle of at least 2 years. Low or no maintenance components (i.e. windows, doors, plant, ironmongery etc) should be selected. Maintenance must be carried out cost effectively. All light bulb positions should be easily reached.

Measures must be taken to limit the requirement for cleaning. Hard wearing solid flooring with limited or no carpeting should be specified. Windows must be easily accessible for cleaning.

Measures must be taken to limit the requirement and costs of security. This should include spaces overlooked by occupied neighbouring buildings. Two access control points are specified. The western access point should be manned by one personnel while the southern access point should utilise electronic access control with intercoms to residential units.
12.2.5. Insurance, water, energy and sewerage

Costs of insurance, water, energy and sewerage must be reported to management and monitored. Policies to reduce energy consumption should be formulated and implemented. This includes switching off lights on leaving building spaces and the awareness on water conservation. Services including electrical, communication, HVAC and plant must be located at the core where they can be easily accessed with minimum disruption to occupants of the building. Access to this should be from circulation areas rather than work areas. Easily accessible lift off panels at regular intervals to vertical and horizontal ducting should be used.

12.2.6. Capital costs

Buildings are generally one of the most valuable assets that people, and often organisations and governments own. Money spent on buildings is not available for other uses such as health and education. Often, the high cost of buildings results in the services (ie. health and education) and the accommodation (for work and living) being beyond the reach of people with the lowest incomes. The proposed building must be cost effective to support sustainability by helping provide access to accommodation and services for low income groups and enabling money to be spent on other areas that support sustainability.

Incentives should be provided to consultants to reduce capital cost and ongoing costs of the facility rather than fees based on total costs of the building. This encourages the design of a cost effective building. The facility should be designed to be easily and cheaply built. Building form should be simple and the replication of elements and components should be used. Arrangements should be made for the sharing of parking and residential space with the proposed neighbouring facility. Access control points of the neighbouring building must strategically positioned to work in conjunction with the proposed facility. Costs of maintenance of the square should be shared with neighbouring buildings.
12.3. ENVIRONMENTAL ISSUES

12.3.1. WATER

Water is required for many activities. However, the large-scale provision of conventional water supply has many environmental implications. Water needs to be stored taking up large areas of valuable land and disturbing natural drainage patterns with associated problems from erosion, it also needs to be pumped through a large network of pipes that need to be maintained and repaired. Having delivered the water, parallel efforts is then required to dispose of this after it is used, i.e. sewerage systems. Reducing water consumption supports sustainability by reducing the environmental impact required to deliver water, and dispose of this after use in a conventional system.

It is estimated that about 24 million litres of water annually would be consumed using conventional water systems for the proposed facility as shown in appendix F. This enormous consumption rate could be dropped to about 10 million litres annually by employing water efficient devices as shown in appendix F. Further reductions can be achieved by utilising rainwater harvesting. The proposed roof area projects a rainwater harvesting capability of 1128000 litres annually as shown in appendix G. The use of rainwater and recycling of water to appropriate uses further reduces water consumption from the municipality to about 7 million litres annually. This system significantly reduces an enormous demand from the municipality and supports sustainability. Furthermore excess irrigation water could be utilised for irrigation of landscaping on the square.

Run off must be reduced by using pervious or adsorbent surfaces. Hard landscaping should be minimised to reduce run off. Extensive use of indigenous planting should be applied due to a low water requirement.

12.3.2. Energy

Buildings consume about 50% of all energy produced. Conventional energy production is responsible for making a large contribution to environmental damage and non-renewable resource depletion. Using less energy or using renewable energy in buildings therefore can make a substantial contribution to sustainability.

The building is located along an activity street and public square. Provision should be made for public transport drop off and pick up. This reduces the necessity for private vehicle ownership supporting sustainability.

As mentioned earlier the building utilises a passive system for ventilation, cooling and heating. This significantly reduces resource consumption. Energy efficient fittings and devices must be specified. Light fittings with low energy consumption should be specified where possible. The use of electricity generated from renewable sources such as wind and sun should be maximised.
12.3.3. Recycling and reuse

Raw materials and new components used in buildings consume resources and energy in their manufacture and processes. Buildings accommodate activities that consume large amounts of resources and products and produce large amounts of waste. Reducing the use of new materials and components in buildings and reducing waste by recycling and reuse supports sustainability by reducing the energy consumption and resource consumption.

Arrangements must be made for the safe disposal of medical waste generated in the community centre. Separate waste bins are to be provided for paper, glass, steel and conventional waste. This eliminates the need for sorting at an added expense. Storage and pick up of recyclable waste should be provided according to municipal regulations. Contribution to the main sewerage should be minimised through reuse of grey water for irrigation purposes.

Construction waste must be minimised through design and careful management of construction practices. Designing to comply with modular dimensions of materials used in the construction process limits wastage.

12.3.4. Site

The building should not have harmful affect on neighbouring buildings ie. over shading; where access to sunlight is important.

Provision must be made on the northern side for residents to grow vegetation. Opportunities in car parking areas, and in and around buildings must be utilised for vegetation. Care should be taken that the landscape does not require heavy artificial input ie. fertilizer, insecticide and pesticide.

12.3.5. Materials and components

The construction of buildings usually requires large quantities of materials and components. These may require large amounts of energy to produce. Their development may also require processes that are harmful to the environment and consume non-renewable resources.

80% of the building materials and components must be made from materials and components with low embodied energy. Low embodied energy materials include: locally (within country) made and sourced timber, concrete, concrete block timber windows and doors. 90% of materials and resources should be from renewable resources.

Material choice preference should be given to materials with limited environmental damage during product component development ie: no green house gases released, no pollution caused. 10% of building materials and components should be specified from renewable sources. Building and construction process must be designed to minimally impact on the environment.
13. DESIGN RESOLUTION

As per the development objectives, street wall related architecture is the overall form sought in the design process. There is maximum use of the street boundaries to reinforce the street pattern of the development area while at the same time creating a private internal courtyard for resident usage. Within the urban context this internal courtyard establishes a sense of retreat for urban dwellers from the workings of an urban environment.

The projected vehicular accommodation for the proposed facility was relatively high at an estimated 114 cars. In accordance with the site development guidelines accommodating so many vehicles at a visible position is aesthetically obtrusive. Considering this and maximizing potential economic space, the most feasible solution is the creation of basement parking. However this has associated lighting and ventilation problems. The solution allows for these on the north and south wing by a level change of one metre from the finished natural ground level. This does not totally sacrifice interaction between the ground floor functions and the public environment.

On the west wing however it is essential to maintain immediate ground floor interaction with the public environment as it is linked to the public square and any change in level would distort that interaction. Some lighting through the public walkway on this wing is provided to compensate for no level change. The future proposal with regards to the parking basement is to link it with a basement proposal for the neighbouring site to the east. This 'super basement' will form the basis for a unification of the two sites with a future combined internal private courtyard above. The integration of the proposed site will require the establishment of combined access controlled policies.

The proposed development is based on the assumption that the neighbouring development would eventually be integrated into the urban design structure. A time frame for this integration cannot be stipulated and this poses an aesthetic issue with regard to the treatment of the eastern facade. Due to the positioning of this facade to the Nelson Mandela Bridge high levels of public exposure can be assumed. It is proposed that for the interim period this facade be used as one of the inner city mural projects. This option is the most cost effective as it eliminates the need for expensive facade treatment.

Stemming from the micro analysis of the site the facades of the building could be regarded as fronting a variation in contextual situations. It is essential that the design response is appropriate both in terms of functionality and targeted aesthetic appeal yet at the same time achieving a sense of a cohesive architecture that is characteristic of urban environments. The proposed structural system is based in a concrete beam and slab construction with brick in-fill panels. The decision was based on the notion of the modular building system being effective in terms of financial feasibility, construction technique and responses to sustainability. The general increments of 7200mm between centre to centre of columns depicted on the facades are based on the parking grid layout and seek to add a sense of a cohesive architecture projected in the facade treatment.

The choice of external finished material is predominantly red brick, plaster and paint and off shutter concrete, with minor sections utilizing steel and glass construction. This is characteristic of other new developments in the vicinity of the site. Red brick also has historical significance to the Newtown Cultural Precinct as
described in the historical background analysis. While the design has considered this rich heritage influences, it also introduces new contemporary aesthetics. These are consistent with the aesthetic approach adopted in the other new developments in the area such as the Metro Mall development. The proposed new facility remains true to its nature in that it reflects qualities evident in today’s construction techniques and typology. In addition the proposed design sits comfortably with the historically based facade of the adjacent Parktown Station (proposed here as a transport museum). This 'contrast' as described in the theory component projects qualities that enrich the experience of urban spaces.

SOUTH WING
This facade of the building fronts directly on Carr Street. It is positioned opposite the high density residential development of four stories and it is characterized with high levels of pedestrian and vehicular movement. It was therefore imperative that this facade not overpower these elements in terms of scale, which relates directly to solar movement pattern. In this regard the height of the proposed design was also restricted to four stories. The facade treatment sought was one of an urban nature which responds to the urban context and acts as a 'skin' to the residential component on the upper floors.

The association with the street and residential density above warranted the positioning of the main residential access point here. The residential unit's living spaces are orientated to maximize utilization of north lighting. In addition some form of interaction with the street is desirable. This is accommodated with the introduction of small resident balconies that remain consistent with the aesthetics of this urban façade. The small scale retail facility fronting the street is designed with built in adaptability in the form of dry wall partitioning. This allows for a variation in retail options and addresses the ever changing needs of the retail segment. Furthermore this façade is the only feasible vehicular access point to the facility and therefore encompasses vehicular access for all users to the facility. In this regard it is also proposed that the waste pick up point be discretely located here.

WEST WING
The proposed design accentuates this facade as it is fronts the public environment. It therefore incorporates the highest number of floor levels in the facility of five floors, distinguishing it from the rest of the building. The scale of this is however overpowering from a pedestrian point of view and in response is downplayed to a more human scale by the introduction of the wire meshing layering which is primarily utilized as a sun shading device for the west wing.

Because of the envisaged high levels of pedestrian activity it is proposed that the main entrance to the facility be located here. The entrance to the facility is easily recognizable and provides for easy orientation from the adjacent square. It is an appropriate access point for all functions of the facility due to its central location. Security personnel here will ensure that the hierarchy of access to spaces is not breached. Linking with the public environment, a public toilet facility is located here on ground level. Beyond this point access control as discussed would be enforced.

The HIV and community centre located here on the first floor is linked to the public environment of the square which in turn is linked to proposed public transportation modes. The public nature of this facility requires that this be isolated from access to other functions within the facility. The office function of this facade adds to the critical mass desired by the square and maintains visual
links with the square through the sun shading device. This strategic location maximizes the utilization of the public transport infrastructure linked to the square for businesses located within the office component. Staff for the community centre and the office component utilizing private vehicles would gain access directly from the basement. Visitors of these functions with private vehicles would gain access to the basement parking by electronic access control. Pedestrians would utilize the main entrance on the square. The restaurant and takeaway cluster are positioned on ground floor on the northern portion of this wing. This encourages interaction between users of the proposed museum and the eating facility although this function is not limited to them. The decision of not utilizing the extent of the site boundary for the eating facility was stimulated by predominant solar movement patterns. This layout allows desired sunlight access into the envisaged outdoor eating spaces at peak utilization times. It is envisaged that the restaurant function would further stimulate desired late night activity on Brickfield Square.

NORTH WING

The facade is characterized with minimum pedestrian activity and semi private spaces. The nature of the semi private domain on this facade warrants the semi personalization of space. The proposed facade responds in this manner, encouraging personalisation.

Limiting the height of the north wing to three floors (lowest floor level in facility) was stimulated by the predominant solar movement patterns. The design allows for maximum solar penetration into the internal courtyard and functions located on the south wing of the facility.

This decision further stimulates a sense of human scale to this semi private space. This wing encompasses the clustering of three bedroom family orientated units which are considered longer term residential users of the facility. Residents here are given controlled access to the street and this enhances a feeling of security to this semi private domain. Ground floor units are provided with private gardens on the northern side so as to encourage guided personalization of spaces and the units above are given private north facing balconies for the same reason. In terms of functionality of spaces the residents are given the option of converting bedrooms into street-orientated spaces for home based economic activity at ground floor level.

[Click here for chapter 14. Design Drawings]
15. SOURCES

GAPP ARCHITECTS & URBAN DESIGNERS. 2003. *Newtown Cultural Precinct Urban Design Plan*. (unpublished as of this date.)

Reference was made to *South African Bureau of Standards Code of Practice for The Application of the National Building Regulations on numerous occasions.*

NORTH ELEVATION
SECTION CC
APPENDIX A

Average Johannesburg Climatic Conditions

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest Recorded</td>
<td>Average Daily Maximum</td>
</tr>
<tr>
<td>January</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>February</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>March</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>April</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>May</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>June</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>July</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>August</td>
<td>326</td>
<td>19</td>
</tr>
<tr>
<td>September</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>October</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>November</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>December</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Year</td>
<td>35</td>
<td>22</td>
</tr>
</tbody>
</table>

Source: SOUTH AFRICAN WEATHER SERVICES
APPENDIX B

HOUSING TARGET SETTING

Analysis of population density per hectare by comparing housing space standards against household size demand and block floor area potential. The figures are based on the 69m x 69m city block (residential to assumed centre of street dims.) using typical housing typologies. The target net residential floor area is 3000m².

<table>
<thead>
<tr>
<th>Space per person (m²)</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nr. Of units</td>
<td>80</td>
<td>72</td>
<td>66</td>
<td>60</td>
<td>56</td>
<td>52</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>36</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>Household distribution:</td>
<td></td>
</tr>
<tr>
<td>3bed @ 6 pers.</td>
<td>20%</td>
<td>16</td>
<td>14.5</td>
<td>13.5</td>
<td>12</td>
<td>11.5</td>
<td>10.5</td>
<td>10</td>
<td>9.5</td>
<td>9</td>
<td>8.5</td>
<td>8</td>
<td>7.5</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>3bed @ 5 pers.</td>
<td>20%</td>
<td>16</td>
<td>14.5</td>
<td>13.5</td>
<td>12</td>
<td>11.5</td>
<td>10.5</td>
<td>10</td>
<td>9.5</td>
<td>9</td>
<td>8.5</td>
<td>8</td>
<td>7.5</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>2bed @ 4 pers.</td>
<td>20%</td>
<td>16</td>
<td>14.5</td>
<td>13.5</td>
<td>12</td>
<td>11.5</td>
<td>10.5</td>
<td>10</td>
<td>9.5</td>
<td>9</td>
<td>8.5</td>
<td>8</td>
<td>7.5</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>2bed @ 3 pers.</td>
<td>20%</td>
<td>16</td>
<td>14.5</td>
<td>13.5</td>
<td>12</td>
<td>11.5</td>
<td>10.5</td>
<td>10</td>
<td>9.5</td>
<td>9</td>
<td>8.5</td>
<td>8</td>
<td>7.5</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>1bed @ 2 pers.</td>
<td>10%</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1bed @ 1 pers.</td>
<td>10%</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total m²</td>
<td>3120</td>
<td>3102</td>
<td>3132</td>
<td>3042</td>
<td>3108</td>
<td>3060</td>
<td>3120</td>
<td>3111</td>
<td>3123</td>
<td>3125</td>
<td>3120</td>
<td>3024</td>
<td>2970</td>
<td>3105</td>
<td>3024</td>
<td>2925</td>
</tr>
</tbody>
</table>

Total Nr. Of units + 40% for other uses

| For other uses | 112 | 101 | 92 | 84 | 78 | 73 | 70 | 64 | 62 | 59 | 56 | 50 | 48 | 45 | 42 |

Figures per hectare

Calculated by converting figures per block (above) into per hectare

| Units per hectare | 301 | 272 | 247 | 226 | 210 | 196 | 188 | 172 | 167 | 159 | 151 | 135 | 129 | 129 | 121 | 113 |

At a residential (land use) density x% the following population densities would accrue (people per hectare)

<table>
<thead>
<tr>
<th>Density per hectare</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>251</td>
<td>265</td>
<td>285</td>
<td>307</td>
<td>331</td>
<td>351</td>
<td>370</td>
<td>391</td>
<td>413</td>
</tr>
<tr>
<td>213</td>
<td>222</td>
<td>245</td>
<td>267</td>
<td>294</td>
<td>316</td>
<td>336</td>
<td>356</td>
<td>376</td>
<td>396</td>
</tr>
<tr>
<td>196</td>
<td>207</td>
<td>230</td>
<td>253</td>
<td>281</td>
<td>305</td>
<td>326</td>
<td>347</td>
<td>367</td>
<td>387</td>
</tr>
<tr>
<td>176</td>
<td>197</td>
<td>220</td>
<td>245</td>
<td>275</td>
<td>299</td>
<td>319</td>
<td>338</td>
<td>357</td>
<td>375</td>
</tr>
<tr>
<td>167</td>
<td>187</td>
<td>210</td>
<td>235</td>
<td>265</td>
<td>288</td>
<td>307</td>
<td>328</td>
<td>347</td>
<td>364</td>
</tr>
<tr>
<td>153</td>
<td>173</td>
<td>197</td>
<td>221</td>
<td>245</td>
<td>265</td>
<td>281</td>
<td>300</td>
<td>319</td>
<td>336</td>
</tr>
<tr>
<td>147</td>
<td>167</td>
<td>191</td>
<td>215</td>
<td>238</td>
<td>258</td>
<td>276</td>
<td>293</td>
<td>310</td>
<td>325</td>
</tr>
<tr>
<td>138</td>
<td>158</td>
<td>181</td>
<td>204</td>
<td>225</td>
<td>244</td>
<td>262</td>
<td>277</td>
<td>292</td>
<td>303</td>
</tr>
<tr>
<td>131</td>
<td>150</td>
<td>172</td>
<td>195</td>
<td>214</td>
<td>233</td>
<td>250</td>
<td>264</td>
<td>276</td>
<td>283</td>
</tr>
<tr>
<td>124</td>
<td>143</td>
<td>164</td>
<td>184</td>
<td>202</td>
<td>218</td>
<td>232</td>
<td>243</td>
<td>252</td>
<td>259</td>
</tr>
<tr>
<td>118</td>
<td>132</td>
<td>150</td>
<td>167</td>
<td>182</td>
<td>196</td>
<td>208</td>
<td>217</td>
<td>223</td>
<td>225</td>
</tr>
<tr>
<td>108</td>
<td>121</td>
<td>135</td>
<td>148</td>
<td>160</td>
<td>170</td>
<td>177</td>
<td>180</td>
<td>182</td>
<td>182</td>
</tr>
<tr>
<td>102</td>
<td>113</td>
<td>124</td>
<td>135</td>
<td>143</td>
<td>149</td>
<td>153</td>
<td>153</td>
<td>150</td>
<td>149</td>
</tr>
<tr>
<td>95</td>
<td>106</td>
<td>117</td>
<td>126</td>
<td>132</td>
<td>136</td>
<td>138</td>
<td>137</td>
<td>137</td>
<td>136</td>
</tr>
<tr>
<td>88</td>
<td>98</td>
<td>107</td>
<td>114</td>
<td>118</td>
<td>121</td>
<td>121</td>
<td>120</td>
<td>119</td>
<td>117</td>
</tr>
</tbody>
</table>

KEY:
- **Density too low to support commercial activity**
- **Residential land use % too low for Newtown.**
- **Excessive strain on economic and social infrastructure**
- **Residential land use % too high for inner city**
- **Target residential density at land use**
APPENDIX C

1. Aids Training Information and Counseling centre

<table>
<thead>
<tr>
<th>City: Pietermaritzburg</th>
<th>Province: KwaZulu-Natal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users per week: 45</td>
<td></td>
</tr>
</tbody>
</table>

Uses:
- Information office
- Counseling referrals
- Resource centre
- Capacity building
- Training and education
- Policy making
- Advice office
- Health services
- Library
- HIV testing and counseling
- Meetings

2. Western Cape Aids Training and Counseling centre

<table>
<thead>
<tr>
<th>City: Capetown</th>
<th>Province: Western Cape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users per week: 100</td>
<td></td>
</tr>
</tbody>
</table>

Uses:
- Information office
- Counseling referrals
- Resource centre
- Capacity building
- Training and education
- Meetings
- Copying documents
- Library
- HIV testing

APPENDIX D

Building Lighting Requirements:

<table>
<thead>
<tr>
<th></th>
<th>Standard service illuminance</th>
<th>Position of measurement</th>
<th>Limiting glare index</th>
<th>Colour appearance of lamp</th>
<th>Average daylight factor</th>
<th>Minimum daylight factor</th>
<th>Position of Measurement</th>
<th>Limiting daylight glare index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing requirements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living/ Dinning rooms</td>
<td>50</td>
<td>Working plane</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kitchen</td>
<td>300</td>
<td>Working surface</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bedrooms</td>
<td>50</td>
<td>Floor</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bathroom</td>
<td>100</td>
<td>Floor</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Office requirements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offices</td>
<td>500</td>
<td>Desk</td>
<td>Intermediate or warm</td>
<td>5</td>
<td>2</td>
<td>Desks 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter office circulation- 15%</td>
<td>100</td>
<td>1,2 m above floor</td>
<td>Intermediate or warm</td>
<td>2</td>
<td>0,6</td>
<td>Floor 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipurpose centre:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reception</td>
<td>150</td>
<td>1,2m above floor</td>
<td>Intermediate or warm</td>
<td>2</td>
<td>0,6</td>
<td>Working plane 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>500</td>
<td>Desk</td>
<td>Intermediate or warm</td>
<td>5</td>
<td>2</td>
<td>Desks 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record storage</td>
<td>150</td>
<td>Vertical at floor</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Waiting area- 6 pers/consult</td>
<td>150</td>
<td>1,2m above floor</td>
<td>Intermediate or warm</td>
<td>2</td>
<td>0,6</td>
<td>Working plane 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulting rooms</td>
<td>500</td>
<td>Desk or bed</td>
<td>Intermediate or warm</td>
<td>5</td>
<td>2,5</td>
<td>Working plane 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment rooms</td>
<td>500</td>
<td>Desk or bed</td>
<td>Intermediate or warm</td>
<td>5</td>
<td>2,5</td>
<td>Working plane 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture rooms</td>
<td>300</td>
<td>Desk</td>
<td>Intermediate or warm</td>
<td>6 to 10</td>
<td>5</td>
<td>Desks 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library/ info. centre</td>
<td>300</td>
<td>Table</td>
<td>Intermediate or warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Circulation areas:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors and passageways</td>
<td>100</td>
<td>1,2 m above floor</td>
<td>Intermediate or warm</td>
<td>5</td>
<td>2</td>
<td>Floor 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairs</td>
<td>150</td>
<td>Treads</td>
<td>Intermediate or warm</td>
<td>2</td>
<td>0,6</td>
<td>Treads -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX E

Minimum Air Requirements Per Person

<table>
<thead>
<tr>
<th>Minimum Air Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Requirements:</td>
</tr>
<tr>
<td>Living/ Dinning rooms</td>
</tr>
<tr>
<td>Kitchen</td>
</tr>
<tr>
<td>Bedrooms</td>
</tr>
<tr>
<td>Bathroom</td>
</tr>
<tr>
<td>Office Requirements:</td>
</tr>
<tr>
<td>Offices</td>
</tr>
<tr>
<td>Inter office circulation- 15%</td>
</tr>
<tr>
<td>Multipurpose Centre:</td>
</tr>
<tr>
<td>Reception</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Record storage</td>
</tr>
<tr>
<td>Waiting area</td>
</tr>
<tr>
<td>Consulting rooms</td>
</tr>
<tr>
<td>Treatment rooms</td>
</tr>
<tr>
<td>Lecture rooms</td>
</tr>
<tr>
<td>Library/ info. centre</td>
</tr>
<tr>
<td>Circulation Areas:</td>
</tr>
<tr>
<td>Corridors and passageways</td>
</tr>
<tr>
<td>Stairs</td>
</tr>
</tbody>
</table>

APPENDIX F

Projected Water Consumption:

Residential component: 131 Persons 33 units

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush toilets</td>
<td>10 l</td>
<td>1310 l</td>
<td>478150 l</td>
<td>6 l</td>
<td>786 l</td>
<td>286890 l</td>
</tr>
<tr>
<td>Showers</td>
<td>0.4 l/s - 0.7 l/s</td>
<td>43230 l - 10 min</td>
<td>15778950 l</td>
<td>0.2 l/s</td>
<td>15720 l - 10 min</td>
<td>5737800 l</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>6484.5 l - 3 min</td>
<td>2366842 l</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>2358 l - 3 min</td>
<td>860670 l</td>
</tr>
<tr>
<td>Dishwashing</td>
<td>45 - 68 l/wash</td>
<td>1864.5 l</td>
<td>680543 l</td>
<td>12 l/wash</td>
<td>396 l</td>
<td>144540 l</td>
</tr>
<tr>
<td>Laundry</td>
<td>28 l pers./ week</td>
<td>524 l</td>
<td>191260 l</td>
<td>15 l pers./ week</td>
<td>28 l</td>
<td>102565 l</td>
</tr>
</tbody>
</table>

Visitors

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each unit 1 visitor per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush toilets</td>
<td>10 l</td>
<td>47,15 l</td>
<td>17209.5 l</td>
<td>6 l</td>
<td>28 l</td>
<td>10311 l</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>38,9 l - 30 sec</td>
<td>14198.5 l</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>14 l</td>
<td>5146.5 l</td>
</tr>
</tbody>
</table>

Office component: 120 Persons

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Staff</td>
<td>10 l</td>
<td>1200 l</td>
<td>294000 l - 245 day</td>
<td>6 l</td>
<td>720 l</td>
<td>176400 l - 245 day</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>990 l - 30 sec</td>
<td>242550 l - 245 day</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>360 l - 30 sec</td>
<td>88200 l - 245 day</td>
</tr>
</tbody>
</table>

Visitors

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% visitors per hour- 50% usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush toilets</td>
<td>10 l</td>
<td>240 l</td>
<td>58800 l</td>
<td>6 l</td>
<td>144 l</td>
<td>35280 l</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>198 l</td>
<td>48510 l</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>72 l</td>
<td>17640 l</td>
</tr>
</tbody>
</table>

Community centre component:

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Staff</td>
<td>10 l</td>
<td>150 l</td>
<td>45000 l - 300 day</td>
<td>6 l</td>
<td>60 l</td>
<td>18000 l - 300 day</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>1237.5 l - 5 min</td>
<td>371250 l - 300 day</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>450 l</td>
<td>135000 l - 300 day</td>
</tr>
</tbody>
</table>

Visitors

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 day (est) 50% usage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush toilets</td>
<td>10 l</td>
<td>500 l</td>
<td>150000 l</td>
<td>6 l</td>
<td>300 l</td>
<td>90000 l</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>412.5 l - 30 sec</td>
<td>123750 l</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>150 l</td>
<td>45000 l</td>
</tr>
</tbody>
</table>

Retail component:

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Staff (est.)</td>
<td>10 l</td>
<td>300 l</td>
<td>90000 l - 300 day</td>
<td>6 l</td>
<td>180 l</td>
<td>54000 l - 300 day</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>247.5 l - 30 sec</td>
<td>74250 l - 300 day</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>90 l</td>
<td>27000 l - 300 day</td>
</tr>
</tbody>
</table>

Visitors

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Day usage</th>
<th>Annual use</th>
<th>Efficient</th>
<th>Day usage</th>
<th>Annual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 users per day (estimated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush toilets</td>
<td>10 l</td>
<td>1500 l</td>
<td>450000 l - 300 day</td>
<td>6 l</td>
<td>900 l</td>
<td>270000 l - 300 day</td>
</tr>
<tr>
<td>Taps</td>
<td>0.25 l/s - 0.3 l/s</td>
<td>1237.5 l - 30 sec</td>
<td>371250 l - 300 day</td>
<td>0.03 l/s - 0.17 l/s</td>
<td>450 l</td>
<td>135000 l - 300 day</td>
</tr>
</tbody>
</table>

Irrigation

<table>
<thead>
<tr>
<th></th>
<th>Estimated</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated</td>
<td>2000000</td>
<td>2000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total consumption annually

- 23846513 litres
- 10225530 litres
APPENDIX G

PROJECTED RAINWATER HARVESTING POSSIBILITY

Estimated area under roof (excluding roof gardens):
Office block 585m + South wing 500m + West wing 497m = **1582m**
Average annual rainfall = **713mm**

1582 x 0.713 = 1128 cubic metres of rain falls onto roofed surface annually

1128 x 1000 = **1128000 litres** of water falls onto roofed surface annually