
 69 

CHAPTER 3 

 

3 VERIFICATION OF THE YIELD SIMULATIONS OVER SOUTH AFRICA 

 

3.1 INTRODUCTION 

 

This chapter describes the results of the yield simulations that are performed with the 

CERES-Maize model for each of the magisterial districts in the main maize producing area 

of South Africa (see Figure 2.1).  The aim of this Chapter is to quantify the skill of the 

CERES-Maize model, evaluate the accuracy of the simulated maize yields obtained from 

each of the different simulation systems, assess the ability of each of the different 

simulation systems in estimating maize yield and determine the operational potential of this 

maize yield forecast system.  Verification is done by comparing the simulated maize yields 

to actual maize yields.  Firstly, the simulated maize yields are verified spatially over the 

entire study area, secondly, the inter-seasonal variability in the simulated maize yields are 

verified for each of the three production regions in the study area and thirdly, the simulated 

maize yields for each of the three production regions are expressed probabilistically and 

then verified against actual maize yields. 

 

3.2 SPATIAL VERIFICATION RESULTS  

 

In Figures 3.1 to 3.9 the actual maize yield index and each of the simulated maize yield 

indices obtained from the different simulation systems are displayed spatially for each of the 

9 scenarios in Table 2.8.  These spatial maps represent the maize yield index values 

obtained from averaging over the 19 seasons from 1980/81 to 1998/99.  In each of these 

figures the actual maize yield index is displayed as map (a).  The actual maize yield index 

map provides a view of the distribution of maize yield across the study area and gives an 

indication of which magisterial districts normally produce higher and which districts normally 

produce lower maize yields with respect to the entire study area.  From the actual maize 

yield index map a decrease in maize yield can be observed from east to west across the 

study area.  Thus, the study area is characterised by high maize yields in the eastern parts 

and lower maize yields in the western parts.  This gradient in maize yield can most likely be 

attributed to the fact that the average annual rainfall of the eastern parts of South Africa is 

higher than that of the western parts of the country (Schulze and Lynch, 2007).  Apart from 

this gradient, a small region with higher maize yields than its surroundings is evident in the 

Free State, directly next to the border separating the Free State and North West Province 
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from each other (magisterial districts Wesselsbron (19), Bothaville (20) and Viljoenskroon 

(21)).  Furthermore it can be seen that magisterial districts Wesselsbron (19), Viljoenskroon 

(21), Harrismith (40) and Bethlehem (42) normally produce the highest maize yields and 

magisterial districts Vryburg (1) and Brandfort (28) the lowest maize yields.   

 

In Figures 3.1 to 3.9 map (b) represents the CERES-Observed weather yield index for each 

of the 9 scenarios.  By comparing the CERES-Observed weather yield index to the actual 

maize yield index, the ability of the CERES-Maize model can be quantified, as this gives an 

indication of how realistically the model can simulate maize yield when the weather 

conditions are perfectly known.  In operational maize yield forecasting, the weather 

conditions will be forecast.  Thus, if the CERES-Maize model is unable to produce realistic 

maize yields under known weather conditions, it will certainly not be able to produce skilful 

maize yield forecasts under predicted weather conditions.  Therefore, the quantification of 

the CERES-Maize model’s ability in simulating South African maize yields is of great 

importance.  The CERES-Observed weather yield index maps of all 9 scenarios show that 

the CERES-Maize model successfully simulates the east-west decrease in maize yield 

across the study area.  Although, for the long season maize scenarios (Figures 3.7 to 3.9) 

the CERES-Maize model extends the high maize yields in the east to a much larger and 

more prominent area than that observed in the actual maize yield index map and for the 

short season maize scenarios (Figures 3.1 to 3.3) the CERES-Maize model simulates the 

maize yield of magisterial district 37 (Heilbron) to be unusually low.  Furthermore, the 

CERES-Maize model is unable to capture the high yields of the small region in the Free 

State described above.  The many uncertainties in the soil, cultivar and management input 

data may have contributed to these misrepresentations.  The CERES-Observed weather 

yield index maps of the medium season maize scenarios (Figures 3.4 to 3.6) seem to show 

the best agreement with the actual maize yield index map, both in terms of the spatial 

distribution of the yields as well as the relative magnitude of the yields.  Very small 

differences are distinguishable in the CERES-Observed weather yield index maps for each 

of the three cultivars (short, medium and long season maize) from the one plant date to the 

next.   

 

The CERES-CCAM ensemble mean yield index for each of the 9 scenarios is displayed as 

map (c) in Figures 3.1 to 3.9.  All 9 scenarios show that the characteristic pattern of high 

maize yields in the eastern parts and lower maize yields in the western parts of the study 

area is captured when the CERES-Maize model is forced with CCAM-simulated fields.  The 

short season maize scenarios (Figures 3.1 to 3.3) show an increase in maize yield in the 

western parts of the Free State, from plant date 1 to plant date 3, the medium season maize 
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scenarios (Figures 3.4 to 3.6) show higher yields in the Free State than in the North-West 

Province and the long season maize scenarios (Figures 3.7 to 3.9) show a similar pattern to 

that evident in the CERES-Observed weather yield index maps, a much larger and more 

prominent high maize yield area in the east than that observed from the actual maize yield 

index map.   

 

Map (d) in Figures 3.1 to 3.9 shows the CERES-ECHAM4.5 ensemble mean yield index for 

each of the 9 scenarios.  Once again all 9 scenarios show higher maize yields in the east 

and lower maize yields in the west.  Thus, the CERES-Maize model forced with ECHAM4.5-

simulated fields is able to capture the gradient in maize yield across the study area.  

Although, for the short and medium season maize scenarios (Figures 3.1 to 3.6) the 

CERES-Maize model simulates the maize yield of the western parts of the North-West 

province to be slightly higher in comparison to the actual maize yield index map.  However, 

this simulation system performs exceptionally well in capturing the distribution in maize yield 

in the eastern part of the Free State (except for magisterial district 39 (Vrede)) in two of the 

short season maize scenarios (plant dates 2 and 3).  The CERES-ECHAM4.5 ensemble 

mean yield index maps of the long season maize scenarios (Figures 3.6 to 3.9) appear 

almost identical to the CERES-CCAM ensemble mean yield index maps and the CERES-

Observed weather yield index maps.         

 

The Multi-Model ensemble mean yield index for each of the 9 scenarios is shown in Figures 

3.1 to 3.9 as map (e).  From these figures it can be seen that the Multi-Model system also 

succeeds in capturing the maize yield gradient from east to west across the study area.  

Once again, two of the short season maize scenarios (Figures 3.2 and 3.3) represent the 

distribution of maize yield in the eastern parts of the Free State exceptionally well.  As this 

Multi-Model system is a combination between the CERES-CCAM integrations and the 

CERES-ECHAM4.5 integrations, the slightly higher maize yields evident in the western 

parts of the North-West Province in the CERES-ECHAM4.5 ensemble mean yield index 

maps for the short and medium season scenarios are somewhat balanced out by the 

CERES-CCAM integrations.  The long season maize scenarios (Figures 3.7 to 3.8) of the 

Multi-Model ensemble mean yield index maps are very similar to that of the CERES-CCAM 

ensemble mean yield index maps and the CERES-ECHAM4.5 ensemble mean yield index 

maps.  Thus, in terms of the spatial distribution of the simulated maize yields, the four 

different maize yield simulation systems successfully simulate the east-west gradient in 

maize yield across the study area.  
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Figure 3.1: Actual maize yield index and simulated maize yield indices for scenario 1 (short 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 1 
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Figure 3.2: Actual maize yield index and simulated maize yield indices for scenario 2 (short 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 2 
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Figure 3.3: Actual maize yield index and simulated maize yield indices for scenario 3 (short 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Short Season Maize Plant Date 3 
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Figure 3.4: Actual maize yield index and simulated maize yield indices for scenario 4 (medium 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 1 
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Figure 3.5: Actual maize yield index and simulated maize yield indices for scenario 5 (medium 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 2 
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Figure 3.6: Actual maize yield index and simulated maize yield indices for scenario 6 (medium 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Medium Season Maize Plant Date 3 
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Figure 3.7: Actual maize yield index and simulated maize yield indices for scenario 7 (long 

season maize planted on plant date 1) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 1 
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Figure 3.8: Actual maize yield index and simulated maize yield indices for scenario 8 (long 

season maize planted on plant date 2) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 2 

 
 
 



 80 

 
 
Figure 3.9: Actual maize yield index and simulated maize yield indices for scenario 9 (long 

season maize planted on plant date 3) averaged over the 19 seasons from 1980/81 

to 1998/99.  (a) Actual maize yield index, (b) CERES-Observed weather yield index, 

(c) CERES-CCAM ensemble mean yield index, (d) CERES-ECHAM4.5 ensemble 

mean yield index and (e) Multi-Model ensemble mean yield index.     

Long Season Maize Plant Date 3 
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3.3 INTER-SEASONAL VARIABILITY VERIFICATION RESULTS 

3.3.1 Subjective Validation 

3.3.1.1 Dry/Warm Western Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the dry/warm western 

production region in Figures 3.10 (scenario 1 to 4), 3.11 (scenario 5 to 8) and 3.12 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that over the 20 

year period investigated in this study the 1980’s (1981/82 – 1987/88) was characterised by 

much lower maize yields than the late 1990’s (1995/96 – 1998/99).  This phenomenon can 

possibly be explained by the advances that took place in technology over this 20 years with 

respect to improvements in the climatic tolerance of cultivars and improved crop 

management strategies (Du Toit et al., 2001).  Furthermore, it can also be seen that over 

this 20 year period, the 1995/96 season rendered the highest maize yield and the 1991/92 

season the lowest maize yield.  A La Niña event (cold ENSO phase) was present during the 

1995/96 season and an El Niño event (warm ENSO phase) during the 1991/92 season.  La 

Niña events often coincide with below-normal and El Niño events with above-normal 

summer rainfall totals over the central and western parts of South Africa (Ropelewski and 

Halpert, 1987, Rautenbach and Smith, 2001).  Even though the 1995/96 La Niña event was 

relatively weak, this event was associated with significantly wet anomalies over the south-

eastern parts of southern Africa (Reason and Jagadheesa, 2005).  This could possibly 

explain the high maize yield obtained for that season.  In comparison to the very strong El 

Niño that occurred during the 1997/98 season, the 1991/92 El Niño event was fairly weak 

but led to much more severe summer drought conditions over large parts of southern Africa 

(Reason and Jagadheesa, 2005).  These severe summer drought conditions likely led to the 

low maize yield obtained for the 1995/96 season.     

 

3.3.1.1.1 Short Season Maize  

 

In Figure 3.10, (a), (b) and (c) represent short season maize planted on plant date 1, 2 and 

3 respectively.  Table 2.4 shows the exact month and day plant date 1, 2 and 3 refers to.  

By examining the CERES-Observed weather yield index time series (COYI – green) and 

comparing it to the actual maize yield index time series (AYI – red), it is possible to get an 

idea of the ability of the CERES-Maize model in simulating the inter-seasonal variability in 

maize yield in the dry/warm western production region.  For all three short season maize 

scenarios the CERES-Maize model is able to successfully simulate the low maize yield of 
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the 1991/92 season, the season with the lowest maize yield out of the 19 seasons under 

investigation.  It can also be observed that the CERES-Maize model correctly indicates the 

sign of the anomaly of the yield (above or below normal) of many seasons, especially those 

seasons with an actual maize yield index value (AYI – red) less than -1 and more than 1.  

Another prominent feature in all three short season maize scenarios is that the CERES-

Maize model struggles to simulate the maize yield of the three seasons from 1984/85 to 

1986/87, a La Niña season followed by an ENSO-neutral season followed by an El Niño 

season.  The ability of the CERES-Maize model seems to decrease from plant date 1 to 

plant date 3, as the number of seasons for which the model successfully simulates the sign 

of the anomaly of the yield decreases from 15 to 11.   

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

short season maize scenarios show that when forced with CCAM-simulated fields the 

CERES-Maize model is unable to capture the low maize yield of the 1991/92 El Niño 

season, but instead makes the maize yields of the 1987/88 and 1994/95 El Niño seasons 

much lower.  This also appears for the 1994/95 La Niña season, the CERES-CCAM 

ensemble mean yield index shows much higher maize yields for the 1988/89 and 1998/99 

La Niña seasons than for the 1994/95 season which in reality produced the highest maize 

yield out of the 19 seasons considered in this study.  Furthermore, it also appear as if the 

CERES-CCAM ensemble mean yield index shows greater variability between seasons than 

that observed from the actual yield index.    

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three short season maize scenarios it can be seen that the CERES-Maize model fails to 

capture the sign of the anomaly of the yield of almost three quarters of the seasons when it 

is forced with ECHAM4.5-simulated fields.  Another interesting observation that can be 

made is the fact that the seasons for which the CERES-Maize model forced with 

ECHAM4.5-simulated fields  actually succeeds in capturing the sign of the anomaly of the 

yield, are primarily ENSO-neutral seasons (1980/81, 1981/82, 1990/91 and 1992/93).  The 

Multi-model system (MMYI – purple) on the other hand performs better in simulating the 

change in the sign of the anomaly of the yield from one season to another than that of the 

CERES-ECHAM4.5 maize yield simulation system, but does not perform better than the 

CERES-CCAM maize yield simulation system.      
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3.3.1.1.2 Medium Season Maize  

 

The time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.10 (d) and Figure 3.11 (e) and (f) 

respectively.  From the CERES-Observed weather yield index time series (COYI – green) it 

can be seen that the CERES-Maize model successfully simulates the low maize yield of the 

1991/92 El Niño season.  In all three scenarios the CERES-Maize model performs very well 

in simulating the relative magnitude of the yields of the 1980/81 and 1983/84 ENSO-neutral 

seasons.  Furthermore, the ability of the CERES-Maize model in simulating the yield 

appears to improve from plant date 1 to plant date 3, as the number of seasons for which 

the model correctly indicates the sign of the anomaly of the yield increases from 10 to 15.  

Similar to the short season maize scenarios, the CERES-Maize model once again struggles 

to simulate the maize yield of the 4 seasons from 1984/85 to 1987/88.      

 

From the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

medium season maize scenarios it can be observed that the medium season maize planted 

on plant date 2 scenario (Figure 3.11 (e)) shows the best agreement with the actual yield 

index time-series, both in terms of the sign of the anomaly of the yield and the relative 

magnitude of the yield.  For this scenario the CERES-Maize model is able to correctly 

simulate the sign of the anomaly of the yield for 15 out of the 19 seasons.  Also evident from 

these three time series graphs is that when forced with CCAM-simulated fields the CERES-

Maize model seems to perform the best for seasons with actual maize yield index values 

(AYI – red) less than -1 and more than 1.  This is particularly true for the seasons in the 

1980’s.  As with the short season maize scenarios, the maize yield results of the medium 

season maize scenarios also show that the CERES-Maize model forced with CCAM-

simulated fields fails to capture the low maize yield of the 1991/92 season and the high 

maize yield of the 1995/96 season, but instead simulates the impact of other El Niño and La 

Niña events on the maize yield in the dry/warm western production region to be much more 

severe.   

 

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show that the CERES-Maize model does not 

perform well in simulating the maize yield of the dry/warm western production region when it 

is forced with ECHAM4.5-simulated fields.  This simulation system can only indicate the 

sign of the anomaly of the yield for 5 out of the 19 seasons correctly.   
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The Multi-Model ensemble mean yield index time series (MMYI – purple) for the medium 

season maize scenarios show little variation from plant date 1 to plant date 3.  As this 

simulation system is a combination between the CERES-CCAM integrations and the 

CERES-ECHAM4.5 integrations, it performs better than the CERES-ECHAM4.5 simulation 

system, but does not perform as good as the CERES-CCAM simulation system.  Besides 

this, the Multi-Model ensemble mean yield index captures the relative magnitude of the 

1980/81 and 1982/83 yields exceptionally well.   

 

3.3.1.1.3 Long Season Maize  

 

Figure 3.11 (g) and (h) and Figure 3.12 shows the maize yield indices (actual and 

simulated) for each of the 19 seasons considered in this study for long season maize 

planted on plant date 1, 2 and 3 respectively.  When the CERES-Observed weather yield 

index time series (COYI – green) of each of the three long season maize scenarios are 

examined, it can be seen that the CERES-Maize model performs well in simulating both the 

sign of the anomaly and relative magnitude of the maize yields.  The feature that stands out 

from the CERES-Observed weather yield index time series is the fact that the CERES-

Maize model is able to capture both the high maize yield of the 1995/96 La Niña season as 

well as the low maize yield of the 1991/92 El Niño season.  In addition, the CERES-Maize 

model also represents the relative magnitude of the maize yields of the 1980/81, 1982/83, 

1983/84, 1986/87, 1988/89, 1996/97 and 1997/98 seasons exceptionally well.  In terms of 

getting the sign of the anomaly of the yield correct, the CERES-Maize model performs the 

best for the first plant date (Figure 3.11 (g)), in which the sign of the anomaly of the yield for 

15 out the 19 seasons are simulated successfully. 

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) shows that the 

CERES-Maize model forced with CCAM-simulated fields is once again, as in the short and 

medium season maize scenarios, unable to simulate the high maize yield of the 1995/96 La 

Niña season and the low maize yield of the 1991/92 El Niño season.  In these long season 

maize scenarios the CERES-Maize model makes the maize yield of the 1998/99 La Niña 

season the highest and the maize yield of the 1987/88 El Niño the lowest out of the 19 

seasons investigated in this study.  Those seasons for which the CERES-Maize model 

forced with CCAM-simulated fields produce realistic yields in comparison to both the actual 

yield index (AYI – red) and the CERES-Observed weather yield index (COYI – green) 

include the 1983/84 (see in particular Figure 3.12), 1986/87 (see in particular Figure 3.11 

(g)) and 1988/89 (see in particular Figure 3.11 (h)) seasons.  In all three scenarios the sign 
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of the anomaly of the yield for 13 out of the 19 seasons are indicated correctly by the 

CERES-Maize model.    

           

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) and Multi-

Model ensemble mean yield index time series (MMYI – purple) for the long season maize 

scenarios show similar results to that found for the short and medium season maize 

scenarios.  When forced with ECHAM4.5-simulated fields the CERES-Maize model does 

not perform well in simulating the maize yields.  This simulation system fails to capture the 

sign of the anomaly of the yield for 13 out of the 19 seasons.  The Multi-Model simulation 

system on the other hand shows somewhat better results than the CERES-ECHAM4.5 

simulation system, with the best results found for the long season maize planted on plant 

date 1 scenario (Figure 3.11 (g)).       

 

In general, the ability of the different simulation systems in simulating the season-to-season 

change in maize yield seems to be the lowest for the short season maize scenarios and the 

highest for the long season maize scenarios.  The CERES-Observed weather yield index 

performs the best in simulating the maize yields of the long season maize planted on plant 

date 1 scenario.  
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Figure 3.10: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.                    
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Figure 3.11: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.   
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Figure 3.12: Maize yield index time-series (1980/81 – 1998/99) for the Dry/Warm Western 

Region.  Actual maize yield index (AYI), CERES-Observed weather yield index 

(COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 

ensemble mean yield index (CEYI) and Multi-Model ensemble mean yield index 

(MMYI).  This graph represents scenario 9, as described in Table 2.8.   

 

3.3.1.2 Temperate Eastern Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the temperate eastern  

production region in Figures 3.13 (scenario 1 to 4), 3.14 (scenario 5 to 8) and 3.15 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that the maize 

yields of the 1980’s were generally much lower than the maize yields of the 1990’s, except 

for the 1991/92 and 1994/95 seasons.  Two interesting features evident from the actual 

yield index time series include the increasing trend in the maize yield from the 1982/83 

season to the 1988/89 season and the decreasing trend in the maize yield from the 1993/94 

season to the 1998/99 season.  The decrease in maize yield in the late 1990’s could have 

been due to climatic conditions, rising input costs and the unstable maize price which all 

added to the fact that maize production with the use of the production systems available at 

that stage were no longer economically viable (Du Toit et al., 2001).  Furthermore, it can 

also be seen that over this 20 year period, the 1993/94 ENSO-neutral season rendered the 

highest maize yield and the 1991/92 El Niño season, the same as for the dry/warm western 

production region, the lowest maize yield.  Reasonable variation has been found in the 
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rainfall impacts of ENSO over southern Africa (Reason and Jagadheesa, 2005).  Weak El 

Niño (La Niña) events can lead to more widespread and more severe rainfall impacts over 

southern Africa than strong El Niño (La Niña) events (Reason and Jagadheesa, 2005).  This 

may explain the fact that in the temperate eastern production region an ENSO-neutral 

season resulted in the highest maize yield over the 19 seasons, while in the dry/warm 

western production region a La Niña season produced the highest maize yield.    

 

3.3.1.2.1 Short Season Maize  

 

Figure 3.13, (a), (b) and (c) represent short season maize planted on plant date 1, 2 and 3 

respectively.  To quantify the ability of the CERES-Maize model in simulating the inter-

seasonal variability in maize yield of the temperate eastern production region it is necessary 

to investigate the CERES-Observed weather yield index time series (COYI – green) and 

compare it to the actual maize yield index time series (AYI – red).  For all three short 

season maize scenarios the CERES-Maize model is able to successfully simulate the low 

maize yield of the 1991/92 El Niño season, but unable to simulate the high maize yield of 

the 1993/94 ENSO-neutral season.  The CERES-Maize model performs well in capturing 

the increase in maize yield from the 1982/83 season to the 1988/89 season, but it is 

simulated in much more prominent steps than that observed in reality (AYI - red).  

Furthermore, the CERES-Maize model is able to correctly indicate the sign of the anomaly 

of the yield for 11 out of the 19 seasons and additionally simulates the relative magnitude of 

the yield of the 1981/82, 1983/84 and 1992/93 seasons remarkably well.        

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three 

short season maize scenarios show that when forced with CCAM-simulated fields the 

CERES-Maize model is unable to capture the extremely low maize yield of the 1991/92 

season and the high maize yield of the 1993/94 season.  It can also be observed that for 

short season maize this simulation system does not perform well in simulating the relative 

magnitude of the yields.  Furthermore, the ability of the CERES-CCAM simulation system in 

simulating the maize yield seems to decrease from plant date 1 to plant date 3, as the 

number of seasons for which the sign of the anomaly of the yield is successfully simulated 

decreases from 8 to 6.   

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three short season maize scenarios it can be seen that for approximately 80% of the 

seasons the inter-seasonal variability in terms of the sign of the anomaly of the yield follows 

the same pattern as the CERES-CCAM ensemble mean yield index (CCYI – blue), which 
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results in the Multi-Model ensemble mean yield index (MMYI – purple) also following the 

same pattern.  Similar to the results obtained for the CERES-CCAM simulation system, the 

CERES-ECHAM4.5 and Multi-Model simulation systems also do not perform well in 

simulating the relative magnitude of the yields.  The 1981/82 season stands out, as for this 

season the CERES-ECHAM4.5 and Multi-Model simulation systems perform much better in 

simulating the yield than the CERES-CCAM simulation system.        

 

3.3.1.2.2 Medium Season Maize  

 

The time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.13 (d) and Figure 3.14 (e) and (f) 

respectively.  The first observation that can be made from the CERES-Observed weather 

yield index time series (COYI – green) for the three medium season maize scenarios, is that 

both the sign of the anomaly and relative magnitude of the yields are best represented by 

the CERES-Maize model in the medium season maize planted on plant date 1 and 2 

scenarios.  The sign of the anomaly of the yield for 16 out of the 19 seasons are simulated 

successfully by the CERES-Maize model in the medium season maize planted on plant 

date 1 and 2 scenarios.  For the medium season maize planted on plant date 3 scenario, 

the CERES-Maize model struggles to simulate the relative magnitude of the maize yields of 

the 1995/1996, 1996/97 and 1997/98 seasons, while the CERES-Maize performs well in 

capturing the relative magnitude of the yields of these seasons in the other two medium 

season maize scenarios. In all three scenarios the CERES-Maize model produces the most 

realistic maize yields for the 1980/81, 1982/83, 1983/84, 1991/92 and 1992/93 seasons.   

 

When the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for each of 

the three medium season maize scenarios are examined, it can  be seen that the CERES-

Maize model forced with CCAM-simulated fields fails to simulate the high maize yield of the 

1993/94 ENSO-neutral season and the low maize yield of the 1991/92 El Niño season.  A 

prominent feature that can be observed from the CERES-CCAM ensemble mean yield 

index time series is the extremely high maize yield of the 1998/99 La Niña season.  The 

CERES-CCAM ensemble mean yield index appears to show greater variability between 

seasons than that observed from the actual yield index.  Similar to the CERES-Observed 

weather yield index, the CERES-CCAM simulation system also performs better in 

simulating the sign of the anomaly of the yields of the medium season maize planted on 

plant date 1 and 2 scenarios than the medium season maize planted on plant date 3 

scenario.      
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The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show a decrease in performance from plant date 1 

to plant date 3.  When forced with ECHAM4.5-simulated fields the CERES-Maize model 

does not capture the low maize yield of the 1991/92 season, but instead simulates the 

maize yield of the 1988/89 La Niña season to be unusually low.  From the Multi-Model 

ensemble mean yield index time series (MMYI – purple) for the three medium season maize 

scenarios it can be seen that for several seasons the Multi-Model simulation system 

provides better yield estimates than the CERES-CCAM or CERES-ECHAM4.5 simulation 

systems on their own.  These seasons include 1981/82 (see Figure 3.13 (d)), 1983/84 (see 

Figure 3.14 (f)), 1984/85 (see Figure 3.13 (d)) and 1996/97 (see Figure 3.13 (d)).       

 

3.3.1.2.3 Long Season Maize  

 

Figure 3.14 (g) and (h) and Figure 3.15 shows the maize yield indices (actual and 

simulated) for the 19 seasons considered in this study for long season maize planted on 

plant date 1, 2 and 3 respectively.  By examining the CERES-Observed weather yield index 

time series (COYI – green) it can be seen that the CERES-Maize model correctly indicates 

the sign of the anomaly of the yield of almost all the seasons.  The CERES-Observed 

weather yield index shows little variation between the three scenarios.  In all three scenarios 

the CERES-Maize model performs very well in simulating the relative magnitude of the 

yields of those seasons with actual yield index values less that -1, as can be seen for the 

1982/83, 1983/84 and 1991/92 seasons.             

 

The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the three long 

season maize scenarios show that for 12 out of the 19 seasons considered here the 

CERES-CCAM simulation system is able to correctly indicate the sign of the anomaly of the 

yield.  It can also be noted that the CERES-Maize model largely overestimates the maize 

yields of the 1988/89 and 1998/99 La Niña seasons.  In all three scenarios the CERES-

Maize model forced with CCAM-simulated fields performs exceptionally well in capturing the 

relative magnitude of the yield of the 1994/95 El Niño season.   

 

The time series of the CERES-ECHAM4.5 ensemble mean yield index (CEYI – orange) for 

long season maize planted on plant date 1, 2 and 3 show that even though the CERES-

Maize model forced with ECHAM4.5-simulated fields is unable to capture the sign of the 

anomaly of the yield of almost half of the seasons considered in this study, for several 

seasons the relative magnitude of the yield is estimated extremely well.  In all three 

 
 
 



 92 

scenarios this simulation system captures the relative magnitude of the yield of the 1985/86, 

1990/91 and 1997/98 seasons better than any of the other simulation systems.    

 

The combination between the CERES-CCAM and CERES-ECHAM4.5 integrations for the 

long season maize scenarios is expressed as the Multi-Model ensemble mean yield index 

(MMYI – purple) in Figure 3.14 (g) and (h) and Figure 3.15.  In all three scenarios the Multi-

Model simulation system succeeds in simulating the sign of the anomaly of the yield of 10 

seasons.  This system also performs relatively well in estimating the relative magnitude of 

the yields of the 1980/81, 1982/83 and 1996/97 seasons.  Even though the yield estimates 

for these seasons are not necessarily an improvement from the CERES-CCAM ensemble 

mean yield index (CCYI – blue) or CERES-ECHAM4.5 ensemble mean yield index (CEYI – 

orange), these estimates are still fairly good.              

 

In general, all four simulation systems show a decrease in performance from plant date 1 to 

plant date 3 in the short season maize scenarios, better performance for plant dates 1 and 2 

in the medium season maize scenarios than for plant date 3 and the best performance for 

the long season maize scenarios.  The best results are once again found for the long 

season maize planted on plant date 1 scenario.  For this scenario the CERES-Observed 

weather simulation system correctly indicates the sign of the anomaly of the yield of almost 

all 19 seasons.       
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Figure 3.13: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.                    
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Figure 3.14: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.       
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Figure 3.15: Maize yield index time-series (1980/81 – 1998/99) for the Temperate Eastern 

Region.  Actual maize yield index (AYI), CERES-Observed weather yield index 

(COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 

ensemble mean yield index (CEYI) and Multi-Model ensemble mean yield index 

(MMYI).  This graph represents scenario 9, as described in Table 2.8.                    

 

3.3.1.3 Wet/Cool Eastern Region  

 

The time series of the actual maize yield index and simulated maize yield indices, obtained 

from each of the different simulation systems, are shown for the wet/cool eastern  

production region in Figures 3.16 (scenario 1 to 4), 3.17 (scenario 5 to 8) and 3.18 (scenario 

9).  From the actual yield index time series (AYI - red) it can be observed that maize 

production in the 1980’s in the wet/cool eastern production region was characterised by 

relatively low maize yields from the 1981/82 season to the 1983/84 season, followed by a 

period of slightly higher (at least above normal) yields from the 1984/85 season to the 

1990/91 season, with the exception of the 1986/87 season.  The 1990’s on the other hand 

commenced with the lowest maize yield of the entire 20 year period (1991/92), followed 

shortly by the highest maize yield of the entire 20 year period (1993/94) where after a 

decrease in maize yield took place from the 1995/96 season to the 1997/98 season.  As 

mentioned for the dry/warm western and temperate eastern production regions, an El Niño 

event occurred during the 1991/92 season, while 1993/94 was an ENSO-neutral season.   
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3.3.1.3.1 Short Season Maize            

 

Figure 3.16 (a), (b) and (c) shows the yield indices (actual and simulated) for short season 

maize planted on plant date 1, 2 and 3 respectively.  It is essential to quantify the ability of 

the CERES-Maize model in simulating the yield of the wet/cool eastern production region.  

This is done by examining the CERES-Observed weather yield index time series (COYI – 

green).  From the three graphs it can be seen that the ability of the CERES-Maize model in 

simulating the sign of the anomaly of the yield decreases from plant date 1 to plant date 3.  

Even though the relative magnitude of the yields are not simulated that well, in the short 

season maize planted on plant date 1 scenario (Figure 3.16 (a)) the CERES-Maize model is 

able to capture the increase in maize yield from 1982/83 to 1985/86.  Furthermore it is also 

evident that when forced with observed weather data the CERES-Maize model fails to 

simulate the anomalously low maize yield of the 1991/92 El Niño season and the 

anomalously high maize yield of the 1993/94 ENSO-neutral season.  In all three short 

season maize scenarios the relative magnitude of the yields of the 1980/81, 1983/84 and 

1984/85 seasons are simulated very well.             

 

The time series of the CERES-CCAM ensemble mean yield index (CCYI – blue) for short 

season maize shows that this simulation system struggles to simulate the maize yields of 

the late 1980’s to early 1990’s (1985/86 – 1990/91), except for the 1988/89 season.  Thus, 

the CERES-Maize model forced with CCAM-simulated fields performs a great deal better in 

simulating the maize yields of the early 1980’s and late 1990’s than it performs for the 

period in between.  In all three short season maize scenarios this simulation system 

simulates the relative magnitude of the yields of the 1982/83, 1988/89, 1994/95 and 

1996/97 seasons extremely well.  Another interesting feature is the fact that the CERES-

CCAM ensemble mean yield index shows a large overestimation of the yield of the 1998/99 

La Niña season    

 

When the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) of 

each of the three short season maize scenarios are examined, it can be seen that this 

simulation system largely underestimates the yield of the 1988/89 La Niña season, but 

performs better than the CERES-CCAM simulation system in estimating the yield of the 

1987/88 El Niño season.  Furthermore, the CERES-ECHAM4.5 ensemble mean yield index 

reveals a realistic maize yield for the 1998/99 season (see in particular Figure 3.16 (b) and 

(c)).   
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From the Multi-Model ensemble mean yield index time series (MMYI – purple) it can be 

seen that this simulation system also severely overestimates the maize yield of the 1998/99 

La Niña season, as is the case with the CERES-CCAM simulation system.  Another 

observation that can be made is the fact that the Multi-Model simulation system does not 

perform well in capturing the sign of the anomaly of the yield of the five seasons from 

1989/90 to 1993/94.  Furthermore, over the three short season maize scenarios this 

simulation system is able to correctly indicate the sign of the anomaly of the yield of an 

average for 9 seasons out of the 19 under investigation.              

 

3.3.1.3.2 Medium Season Maize      

 

Time series of the maize yield indices (actual and simulated) for medium season maize 

planted on plant date 1, 2 and 3 are shown in Figure 3.16 (d) and Figure 3.17 (e) and (f) 

respectively.  From the CERES-Observed weather yield index times series (COYI – green) 

for these three scenarios it can be seen that the CERES-Maize model performs well in 

capturing the sign of the anomaly of the yield, but fails to simulate the relative magnitude of 

the yields.  Furthermore, it also appears as if the relative magnitude of the simulated yields 

vary considerably between the three scenarios, which makes it difficult to determine for 

which medium season maize scenario the CERES-Maize model performs the best.   

 

When the CERES-CCAM ensemble mean yield index time series (CCYI – blue) for each of 

the three medium season maize scenarios are examined, the first observation that can be 

made is the large overestimation of the yield of the 1998/99 La Niña season.  This 

simulation system performs relatively well in capturing the relative magnitude of the maize 

yields. 

 

The CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for the 

three medium season maize scenarios show that this simulation system succeeds in 

simulating the sign of the anomaly of the yield for 9 out of the 19 seasons considered in this 

study.  It can also be seen that the CERES-Maize model forced with ECHAM4.5-simulated 

fields  performs the best in simulating the relative magnitude of the maize yields of the 

medium season maize planted on plant date 2 scenario, as can be seen, for example, for 

the 1980/81, 1982,83, 1996/97 and 1997/98 seasons.    

 

From the Multi-Model ensemble mean yield index time series (MMYI – purple) for the three 

medium season maize scenarios it can be seen that even though this simulation system 

captures the sign of the anomaly of the yield of several seasons, it often fails to simulate the 
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relative magnitude of the maize yields.  Although, it can be seen that the relative magnitude 

of the yields of a number of seasons (1980/81, 1983/84 and 1996/97) are captured the best 

for the medium season maize planted on plant date 3 scenario.   

        

3.3.1.3.3 Long Season Maize             

 

In Figure 3.17 (g) and (h) and Figure 3.18 the maize yield indices (actual and simulated) for 

long season maize planted on plant date 1, 2 and 3 can be seen.  The CERES-Observed 

weather yield index time series (COYI – green) for these three long season maize scenarios 

show that the CERES-Maize model performs well in simulating the sign of the anomaly of 

the maize yields of the wet/cool eastern production region.  In the long season maize 

planted on plant date 1 scenario (Figure 3.17 (g)) the CERES-Maize model is able to 

correctly indicate the sign of the anomaly of the yield  for 17 out of the 19 season.  The high 

maize yield of the 1993/94 ENSO-neutral season is underestimated by the model and the 

low maize yield of the 1991/92 El Niño season is overestimated.       

 
The CERES-CCAM ensemble mean yield index time series (CCYI – blue) for the long 

season maize scenarios show that when forced with CCAM-simulated fields the CERES-

Maize model performs well in simulating the relative magnitude of the yields of many 

seasons.  This can primarily be seen for the seasons in the 80’s and include 1980/81, 

1982/83, 1985/86, 1986/87 and 1988/89.  An overestimation of the yield of the 1998/99 La 

Niña season can once again be seen.  This simulation system is able to capture the sign of 

the anomaly of the yield for 14 out of the 19 seasons under investigation in this study.  

 

From the CERES-ECHAM4.5 ensemble mean yield index time series (CEYI – orange) for 

the three long season maize scenarios it can be seen that when the CERES-Maize model is 

forced with ECHAM4.5-simulated fields, the ability to simulate the sign of the anomaly of the 

yield decreases from plant date 1 to plant date 3, as the number of season for which the 

model correctly indicates the sign of the anomaly of the yield decreases from 11 to 8.  In 

general, this simulation system struggles to simulate the maize yields of the four seasons 

from 1986/87 to 1989/90.  Furthermore it is also evident that for a number of seasons this 

simulation system produces more realistic maize yields than the CERES-CCAM simulation 

system, as can be seen for the 1991/92, 1996/97, and 1997/98 seasons.      

        

From the Multi-Model ensemble mean yield index time series (MMYI – purple) for the long 

season maize scenarios it can be seen that the Multi-model simulation system performs 

better in simulating the sign of the anomaly of the yield than the CERES-ECHAM4.5 maize 
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yield simulation system, but does not perform as good as the CERES-CCAM maize yield 

simulation system.  For some seasons the Multi-Model ensemble mean yield index time 

series show better results in terms of the relative magnitude of the yield than both the 

CERES-CCAM and CERES-ECHAM4.5 simulation systems, as can be seen, for example, 

for the 1998/99 season.                                      

 

In general, all four simulation systems show a decrease in performance from plant date 1 to 

plant date 3 in the short season maize scenarios, similar results for all three plant dates in 

the medium season maize scenarios and a decrease in performance from plant date 1 to 

plant date 3 in the long season maize scenarios.  Thus, out of the 9 scenarios investigated, 

the simulation systems show the best results for the long season maize planted on plant 

date 1 scenario.     
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Figure 3.16: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (a) to (d) represent scenarios 1 to 4, as described in Table 2.8.       
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Figure 3.17: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  Actual maize yield index (AYI), CERES-Observed 

weather yield index (COYI), CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble mean yield index (CEYI) and 

Multi-Model ensemble mean yield index (MMYI).  Graphs (e) to (h) represent scenarios 5 to 8, as described in Table 2.8.       
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Figure 3.18: Maize yield index time-series (1980/81 – 1998/99) for the Wet/Cool Eastern Region.  

Actual maize yield index (AYI), CERES-Observed weather yield index (COYI), 

CERES-CCAM ensemble mean yield index (CCYI), CERES-ECHAM4.5 ensemble 

mean yield index (CEYI) and Multi-Model ensemble mean yield index (MMYI).  This 

graph represents scenario 9, as described in Table 2.8.       

 

3.3.2 Objective Validation 

3.3.2.1 Actual Maize Yield vs. CERES-Observed Weather Maize Yield 

 

Figure 3.19 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and CERES-Observed weather maize yields for each of the 9 scenarios in Table 2.8.  The 

magisterial districts with statistically significant correlations are indicated in bold.  Strong 

correlations indicate areas where the association between the actual maize yield and 

CERES-Observed weather maize yield is greatest, and weak correlations indicate the areas 

where the association is poor.  The threshold correlation for local significance at the 95% 

level of confidence is approximately 0.46.   

 

The three short season maize scenarios (Figure 3.19 (a), (b) and (c)) show higher 

correlations for the North-West Province than for the Free State, and also reveal an 

increase in the correlations from east to west across the study area, with much lower 

correlations in the east than in the west.  In all three short season maize scenarios, the 

western part of the North-West Province shows the highest correlations.  It can also be 

seen that the skill of the CERES-Maize model decreases from plant date 1 to plant date 3, 
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as 25 magisterial districts (significant at the 95% level, see section 2.5.2.2.2) have 

statistically significant correlations for plant date 1 (Figure 3.19 (a)), but only 21 (significant 

at 95% level) for plant date 2 (Figure 3.19 (b)) and 14 (significant at 95% level) for plant 

date 3 (Figure 3.19 (c)).  The short season maize planted on plant date 3 scenario shows 

that most of the magisterial districts in the Free State do not have statistically significant 

correlations.   
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Figure 3.19: Spearman rank correlations calculated between the actual maize yields and CERES-

Observed weather maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.         

 

The three medium season maize scenarios (Figure 3.19 (d), (e) and (f)) also show higher 

correlations in the western parts of the study area than in the eastern parts of the study 

area, with the highest correlations (> 0.81) found for the western part of the North-West 

Province and central part of the Free State.  The medium season maize planted on plant 

date 2 scenario (Figure 3.19 (e)) shows 25 magisterial districts (significant at 95% level) 

with statistically significant correlations, with only 21 (significant at 95% level) for the 

medium season maize planted on plant date 1 scenario (Figure 3.19 (d)) and 22 (significant 
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at 95% level) for the medium season maize planted on plant date 3 scenario (Figure 3.19 

(f)).  All three scenarios reveal that the CERES-Maize model has poor skill in simulating the 

maize yield of magisterial district Ficksburg (43). 

 

In the three long season maize scenarios (Figure 3.19 (g), (h) and (i)) the highest 

correlations, greater than 0.81, are evident for the western and central parts of the North-

West Province.  Once again, as with the short season maize scenarios, the skill of the 

CERES-Maize model appears to decrease from plant date 1 to plant date 3.  Statistically 

significant correlations can be seen for 39 (significant at 95% level) out of the 44 magisterial 

districts in the long season maize planted on plant date 1 scenario (Figure 3.19 (g)).  The 

other two scenarios show slightly lower correlations in the east than in the west, with 37 

magisterial districts (significant at 95% level) with statistically significant correlations in the 

long season maize planted on plant date 2 scenario (Figure 3.19 (h)) and 32 (significant at 

95% level) in the long season maize planted on plant date 3 scenario (Figure 3.19 (i)).                       

 

Thus, in all 9 scenarios the strongest correlations are typically found for the western part of 

the North-West Province, with correlations frequently exceeding 0.81.  Furthermore, all 9 

scenarios reveal a stronger association between the CERES-Observed weather maize 

yields and actual maize yields in the western parts of the study area than in the eastern 

parts.  In general, the skill of the CERES-Maize model increases from the short season 

maize scenarios to the long season maize scenarios, with the overall highest correlations 

found for long season maize planted on plant date 1 (Figure 3.19 (g)).  This is in agreement 

with the results found in the subjective validation.     

 

3.3.2.2 Actual Maize Yield vs. CERES-CCAM Ensemble Mean Maize Yield  

 

Figure 3.20 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and CERES-CCAM ensemble mean maize yields for each of the 9 scenarios in Table 2.8.  

The skill of the CERES-CCAM simulation system is evaluated in terms of the association 

between the simulated and actual maize yields.  The magisterial districts with statistically 

significant correlations are indicated in bold.  The threshold correlation for local significance 

at the 95% level of confidence is approximately 0.46.   

 

The first feature that can be observed from the three short season maize scenarios (Figure 

3.20 (a), (b) and (c)) is that the highest correlations occur in the western part of the Free 

State.  The correlations of the magisterial districts in the North-West Province are primarily 
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not statistically significant and negative correlations are found for the temperate eastern 

production region.  Thus, the CERES-CCAM simulation system shows poor skill in 

simulating the maize yields of this production region.  It can also be seen that when forced 

with CCAM-simulated fields the skill of the CERES-Maize model decreases rather 

drastically from plant date 1 to plant date 3, as 21 magisterial districts (significant at 95% 

level) have statistically significant correlations for plant date 1 (Figure 3.20 (a)), but only 13 

(significant at 95% level) for plant date 2 (Figure 3.20 (b)) and 11 (significant at 95% level) 

for plant date 3 (Figure 3.20 (c)).   

            

In general, the three medium season maize scenarios (Figure 3.20 (d), (e) and (f)) show 

more magisterial districts with statistically significant correlations than the short season 

maize scenarios (Figure 3.20 (a), (b) and (c)).  The medium season maize planted on plant 

date 1 scenario (Figure 4.23 (d)) shows 22 magisterial districts (significant at 95% level) 

with statistically significant correlations, with 21 (significant at 95% level) for the medium 

season maize planted on plant date 2 scenario (Figure 3.20 (e)) and 20 (significant at 95% 

level) for the medium season maize planted on plant date 3 scenario (Figure 3.20 (f)).  

Thus, the skill of the CERES-CCAM simulation system decreases slightly from plant date 1 

to plant date 3.  The medium season maize planted on plant date 3 scenario also shows 

negative correlations for the temperate eastern production region as can be seen in the 

three short season maize scenarios.  The highest correlations occur adjacent to the border 

separating the Free State from the North-West Province, and in the western part of the Free 

State.   

 

In the three long season maize scenarios (Figure 3.20 (g), (h) and (i)) the highest 

correlations (0.61 – 0.8) occur once again in the western part of the Free State and to some 

extent also in the western part of the North-West Province (see Figure 3.20 (g) and (h)).  

Similar to the short and medium season maize scenarios, for the long season maize 

scenarios the skill of the CERES-CCAM simulation system also decreases from plant date 1 

to plant date 3.  Statistically significant correlations can be seen for 21 (significant at 95% 

level) out of the 44 magisterial districts in the long season maize planted on plant date 1 

scenario (Figure 3.20 (g)), 17 (significant at 95% level) out of the 44 magisterial districts in 

the long season maize planted on plant date 2 scenario (Figure 3.20 (h)) and 10 (significant 

at 95% level) out of the 44 magisterial districts for the long season maize planted on plant 

date 3 scenario (Figure 3.20 (i)).  It can also be seen that this simulation system does not 

perform well in simulating the maize yields of the magisterial districts in the eastern parts of 

both the Free State and North-West Province.       

 

 
 
 



 107 

Thus, in all 9 scenarios the strongest correlations are typically found for the western part of 

the Free State, with correlations ranging between 0.61 and 0.8.  Furthermore, it is evident in 

all 9 scenarios that the CERES-CCAM simulation system does not perform well in 

simulating the maize yields of a large part of the temperate eastern production region, with 

a 
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Figure 3.20: Spearman rank correlations calculated between the actual maize yields and CERES-

CCAM ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.         

 

correlations either being negative or not significant.  In general, the CERES-Maize model 

forced with CCAM-simulated fields reveals the highest skill in simulating the maize yields of 

the first plant dates, thus short season maize planted on plant date 1, medium season 

maize planted on plant date 1 and long season maize planted on plant date 1 (Figure 3.20 

(a), (d) and (g).  An increase in skill from the short season maize scenarios to the long 

season maize scenarios are also revealed, with the highest correlations found for long 

season maize planted on plant date 1 (figure 3.20 (g)).  This phenomenon can also be seen 
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in the CERES-CCAM simulated maize yields discussed in the subjective validation section 

(3.3.1).   

 

3.3.2.3 Actual Maize Yield vs. CERES-ECHAM4.5 Ensemble Mean Maize Yield  

 

The Spearman rank correlations between the actual maize yields and CERES-ECHAM4.5 

ensemble mean maize yields are not shown, since the skill of this simulation system is poor.  

A number of factors could have contributed to this result.  The ECHAM4.5-simulated fields 

are on a course grid of approximately 2.8° x 2.8°.  Raw output from ECHAM4.5 is used as 

input into the CERES-Maize model.  The same is done for the CERES-CCAM simulation 

system.  Raw output from CCAM is used as input into the CERES-Maize model, but the 

simulated fields produced by CCAM are written out on a 1° x 1° grid.  Due to the higher 

spatial resolution of the CCAM-simulated fields, the CERES-CCAM simulation system has 

an advantage over the CERES-ECHAM4.5 simulation system.  As a result of the low spatial 

resolution of the ECHAM4.5-simualted fields it is possible that the ECHAM4.5 GCM is not 

skilful in providing a good representation of sub-grid scale features like precipitation.  GCMs 

tend to overestimate rainfall over southern Africa, and often also distort the spatial pattern of 

the rainfall (Joubert and Hewitson, 1997).  It may be possible to improve on the spatial 

resolution of the ECHAM4.5-simulated fields by nesting a Regional Climate Model (RCM) 

within the ECHAM4.5 GCM.  In this study from the gridded GCM output a nearest neighbour 

approach is used to obtain representative GCM-simulated weather-type data for each 

magisterial district (see section 2.4.3.2).  Thus, the use of a different interpolation routine 

may also improve the reliability of the GCM-simulated fields.   

      

By investigating the seasonal long-term mean simulated fields of both ECHAM4.5 and 

CCAM, it is found that ECHAM4.5 has lower skill than CCAM in simulating mid-summer 

rainfall over the study area.  So, it is not too surprising that CCAM produced more reliable 

weather-type data than ECHAM4.5.  Mid-summer is a critical period in the development of 

the maize plant and therefore any misrepresentations in the rainfall in this season could 

have led to discrepancies in the maize yields simulated by the CERES-ECHAM4.5 

simulation system.            

 

3.3.2.4 Actual Maize Yield vs. Multi-Model Ensemble Mean Maize Yield  

 

Figure 3.21 (a) to (i) shows the Spearman rank correlations between the actual maize yields 

and Multi-Model ensemble mean maize yields for each of the 9 scenarios in Table 2.8.  The 
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magisterial districts with statistically significant correlations are indicated in bold.  Strong 

correlations indicate high skill and weak correlations indicate poor skill.  The threshold 

correlation for local significance at the 95% level of confidence is approximately 0.46.   

 

The three short season maize scenarios (Figure 3.21 (a), (b) and (c)) show higher 

correlations for the North-West Province than for the Free State.  It can also be seen that in 

all three scenarios only a few magisterial districts have statistically significant correlations.  

The highest correlations primarily occur in the western parts of the study area.   

 

From the three medium season maize scenarios (Figure 3.21 (d), (e) and (f)) it can be seen 

that the highest correlations are either found in the eastern part of the Free State or in the 

western part of the North-West Province or adjacent to the border separating the Free State 

from the North-West Province. It also appears as if the Multi-Model simulation system 

performs better in simulating the maize yields of the western parts of the study area than 

the eastern parts of the study area.  The medium season maize planted on plant date 1 and 

plant date 3 scenarios (Figure 3.21 (d) and (f)) both show 4 magisterial districts (not 

significant at 95% level) with statistically significant correlations, while only 3 (not significant 

at 95% level) is evident for the medium season maize planted on plant date 2 scenario 

(Figure 3.21 (d)).   

 

Similar to the medium season maize scenarios the long season maize scenarios (Figure 

3.21 (g), (h) and (i)) also show the highest correlations either in the eastern part of the Free 

State or adjacent to the border separating the Free State from the North-West Province.  In 

all three scenarios negative correlations are found for the eastern part of the North-West 

Province.  Statistically significant correlations can be seen for 6 (not significant at 95% level) 

out of the 44 magisterial districts in the long season maize planted on plant date 1 scenario 

(Figure 3.21 (g)), 4 (not significant at 95% level) out of the 44 magisterial districts in the long 

season maize planted on plant date 2 scenario (Figure 3.21 (h)) and 3 (not significant at 

95% level) out of the 44 magisterial districts for the long season maize planted in plant date 

3 scenario (Figure 3.21 (i)).  Thus, the skill of the Multi-Model simulation system in 

simulating the maize yields decreases from plant date 1 to plant date 3.   

 

Thus, all 9 scenarios illustrate relatively poor skill.  This can be explained by the fact that the 

Multi-Model simulation system is a combination between the CERES-CCAM simulation 

system and the CERES-ECHAM4.5 simulation system.  Therefore, even though good skill 

is obtained for the maize yields produced by the CERES-CCAM simulation system, the low 

skill of the CERES-ECHAM4.5 simulation system negatively affects the skill of the Multi-
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Model simulation system.  In the construction of the Multi-Model simulation system used in 

this study, equal weights are given to both the CERES-GCM based simulation systems 

regardless of the skill of each individual simulation system.  By giving the simulation 

systems weights proportional to their skill may perhaps improve the skill of the multi-model 

simulation system, but this should be investigated.    
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Figure 3.21: Spearman rank correlations calculated between the actual maize yields and Multi-

Model ensemble mean maize yields over the 20 year period from 1980 to 1999.  (a) 

Short season maize plant date 1, (b) Short season maize plant date 2, (c) Short 

season maize plant date 3, (d) Medium season maize plant date 1, (e) Medium 

season maize plant date 2, (f) Medium season maize plant date 3, (g) Long season 

maize plant date 1, (h) Long season maize plant date 2 and (i) Long season maize 

plant date 3.  Magisterial districts with statistically significant correlations at the 95% 

confidence level are indicated in bold.        

 

Once again the skill of the Multi-Model simulation system increases from the short season 

maize scenarios to the long season maize scenarios, with the highest correlations found for 

the long season maize planted on plant date 1 scenario.  This result can be confirmed by 

the results found in the subjective validation.     
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3.4 PROBABILITY DISTRIBUTION RESULTS 

3.4.1 Subjective Validation 

3.4.1.1 Dry/Warm Western Region 

3.4.1.1.1 Short Season Maize  

 

In Figure 3.22 the simulated short season maize yields are expressed probabilistically.  The 

actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph.  When the CERES-Observed weather maize yields 

are compared to the actual maize yields it can be seen that the CERES-Maize model is able 

to correctly indicate the category of the yield (above-normal, near-normal or below-normal) 

for 8 out of the 19 seasons considered in this study, of which 4 seasons are ENSO-neutral 

seasons, 3 are El Niño seasons and 1 is a La Niña season.  Another interesting feature that 

can be observed for the other 11 seasons is the fact that the CERES-Observed weather 

maize yields are always within one category of the actual maize yields and never two 

categories away from the actual maize yields, as can be seen, for example, for the 1981/82 

season in which the actual maize yield is near-normal and the CERES-Observed weather 

maize yield is below-normal. 
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Figure 3.22: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             
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When the probabilistic short season maize yields, obtained from the different simulation 

systems, are compared to the actual maize yields, the 1980/81 ENSO-neutral season 

stands out, as for this season the Multi-Model simulation system performs better than the 

single model simulation systems (CERES-CCAM and CERES-ECHAM4.5), although the 

level of confidence in the probability for above-normal maize yields is not very high (37%).  

The probability distributions for the 1982/83, 1983/84 and 1994/95 seasons show that one 

of the single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the 

Multi-Model simulation system correctly indicates the category of the yield (above-normal, 

near-normal or below-normal), while the probabilities of the other single model system are 

less reliable.  Another interesting season is the 1988/89 season for which the CERES-

CCAM simulation system correctly simulates the maize yield to be above-normal with a high 

level of confidence (80%).   

 

3.4.1.1.2 Medium Season Maize  
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Figure 3.23: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            

 

The probability distributions for medium season maize, as simulated by each of the different 

simulation systems, are shown in Figure 3.23.  In comparison to the actual maize yields the 
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CERES-Observed weather maize yields reveal that the CERES-Maize model is able to 

correctly simulate the category of the yield (above-normal, near-normal or below-normal) for 

10 out of the 19 seasons considered in this study.  From the actual maize yields it can be 

seen than 7 out of the 19 seasons are above-normal maize yield seasons.  The CERES-

Maize model correctly indicates the category for 5 out of the 7 above-normal maize yield 

seasons.  Thus, the CERES-Maize model appears to perform the best in simulating the 

maize yields of the above-normal maize yield seasons.  Furthermore, the CERES-Maize 

model performs exceptionally well in capturing the category of the maize yields of the early 

1980’s (1980/81 – 1984/85).  For one season, 1985/86, the CERES-Observed weather 

maize yield is two categories away from the category of the actual maize yield, which shows 

that the CERES-Maize model failed in this season.           

 

When the probabilities of the simulated medium season maize yields are assessed, the 

1982/83 El Niño season stands out, as for this season all three simulation systems 

(CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulates the category 

of the maize yield with relatively high probabilities of  60% and higher.  For the 1993/94 

season, the Multi-Model simulation system performs better than the single model simulation 

systems (CERES-CCAM and CERES-ECHAM4.5), but once again the level of confidence 

in the above-normal category is relatively low (37%).  The probability distributions for the 

1980/81 and 1983/84 seasons show that both the CERES-CCAM and Multi-Model 

simulation systems are reliable, while the CERES-ECHAM4.5 simulation system is unable 

to represent the correct outcome (above-normal, near-normal or below-normal maize 

yields).  The CERES-CCAM simulation system once again simulates the category of the 

maize yield of the 1988/89 season correctly, with a high probability of 80%.  The 1991/92 

season was one of the driest seasons on record.  The CERES-CCAM, CERES-ECHAM4.5 

and Multi-Model simulation systems simulates a 0% probability for below-normal maize 

yield for this season, while the CERES-Observed weather simulation system correctly 

indicated the below-normal category.  This is a result of the fact that GCMs did not 

anticipate the excessively dry conditions of the 1991/92 season.  From this it can be seen 

that the CERES-Maize model is highly dependant on the weather input data with which it is 

forced.     

 

3.4.1.1.3 Long Season Maize  

 

Figure 3.24 shows the simulated long season maize probabilities.  From the actual maize 

yields and CERES-Observed weather maize yields displayed deterministically at the top op 

the graph, it can be seen that the CERES-Maize model is able to correctly indicate the 
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category of the yield (above-normal, near-normal or below-normal) for 13 out of the 19 

seasons investigated in this study.  Here, the category of 6 out of the 7 above-normal maize 

yield season are simulated correctly by the CERES-Maize model which once again points to 

the fact that the CERES-Maize performs better in capturing above-normal maize yield 

seasons than near-normal and below-normal maize yields seasons.  Moreover, for the other 

seasons the CERES-Observed weather maize yields are always within one category of the 

actual maize yields and never two categories away from the actual maize yields.   
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Figure 3.24: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

When the long season maize yield probabilities, obtained from the different simulation 

systems, are examined, it can be seen that the maize yield of the 1982/83 El Niño season is 

once again successfully simulated by all three simulation systems (CERES-CCAM, CERES-

ECHAM4.5 and Multi-Model) with relatively high probabilities of 60% and higher.  For the 

1996/97 season, the Multi-Model simulation system performs better than the single model 

simulation systems (CERES-CCAM and CERES-ECHAM4.5), but the level of confidence in 

the above-normal category is relatively low (37%).  The probability distributions for the 

1980/81, 1983/84 and 1984/85 seasons show that one of the single model simulation 

systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model simulation system 

correctly indicates the category of the yield (above-normal, near-normal or below-normal), 
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while the probabilities of the other single model system is less reliable.  The 1992/93 and 

1996/97 seasons are very interesting as for these two seasons the CERES-ECHAM4.5 

simulation system is the only system able to correctly simulate the category of the maize 

yields.   

 

In general, it can be seen that the ability of the CERES-Observed weather simulation 

system in simulating the category of the maize yield increases from the short season maize 

scenario to the long season maize scenario, with the best performance in capturing above-

normal maize yield seasons.  The CERES-CCAM simulation system performs relatively well 

in all three scenarios, while the CERES-ECHAM4.5 simulation system does not perform 

well.  The Multi-Model simulation system performs the best in simulating below-normal 

maize yields.    

 

3.4.1.2 Temperate Eastern Region 

3.4.1.2.1 Short Season Maize  

 

The probability distributions of the simulated short season maize yields are shown in Figure 

3.25.  The actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph.  When the CERES-Observed weather maize yields 

are compared to the actual maize yields it can be seen that the CERES-Maize model is able 

to correctly indicate the category of the yield (above-normal, near-normal or below-normal) 

for 9 out of the 19 seasons investigated in this study, of which 4 seasons are ENSO-neutral 

seasons, 3 are El Niño seasons and 2 are La Niña seasons.  From the actual maize yields it 

can be seen that 6 out of the 19 seasons are below-normal maize yield seasons, and the 

CERES-Maize model is able to correctly simulate the category for 4 out of the 6 below-

normal seasons.  Thus, the CERES-Maize model performs better in simulating the maize 

yields of below-normal maize yield seasons than above-normal and near-normal maize 

yield seasons.  Another notable feature is the fact that for four seasons the CERES-

Observed weather maize yields are two categories away from the actual maize yields, as 

seen for example for the 1985/86 (1988/89) season in which the actual maize yield is 

below-normal (above-normal) and the CERES-Observed weather maize yield is above-

normal (below-normal).            

 
In comparison to the actual maize yields, the simulated short season maize yield 

probabilities show that for the 1985/86, 1987/88 and 1989/90 seasons all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulate the 
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maize yields with reasonably high probabilities ranging between 50% and 83%.  The 

probability distributions for the 1983/84 and 1991/92 seasons show that one of the single 

model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model 

simulation system correctly indicates the category of the yield (above-normal, near-normal 

or below-normal), while the probabilities of the other single model system is either over or 

under confident and consequently gives a different category the highest probability.  Other 

interesting seasons include the 1986/87, 1995/96 and 1998/99 seasons for which the 

CERES-CCAM simulation system correctly simulates the category of the maize yields with 

probabilities of 60% and higher, and the 1981/82 season for which the CERES-ECHAM4.5 

simulation system correctly indicates the category of the maize yield with a probability of 

67%.   
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Figure 3.25: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.       

 

3.4.1.2.2 Medium Season Maize  

 

The simulated medium season maize yield probabilities are shown in Figure 3.26.  In 

comparison to the actual maize yields the CERES-Observed weather maize yields reveal 

that the CERES-Maize model is able to correctly simulate the category of the yield (above-

normal, near-normal or below-normal) for 13 out of the 19 seasons considered in this study.  
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The CERES-Maize model once again appears to perform the best in capturing the maize 

yields of the below-normal maize yield seasons, with the category for 5 out of the 6 seasons 

indicated correctly.  Furthermore, it can also be seen that the maize yields of the 1980’s 

(1980/81 – 1983/84) and late 1990’s (1994/95 – 1998/99) are simulated exceptionally well 

by the CERES-Maize model.   

 

From the probability distributions of the simulated medium season maize yields it can be 

seen that for the 1981/82, 1985/86, 1989/90, 1990/91 and 1993/94 seasons one of the 

single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) and the Multi-

Model simulation system correctly indicates the category of the yield (above-normal, near-

normal or below-normal), while the other single model simulation system is unable to 

represent the correct category.  For the 1983/84 and 1995/96 seasons the CERES-CCAM 

simulation system successfully simulates the maize yields with probabilities of 60% and for 

the 1980/81 season the CERES-ECHAM4.5 simulation system correctly indicates the maize 

yield with a somewhat lower probability of 50%.   
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Figure 3.26: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.            
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3.4.1.2.3 Long Season Maize  

 

In Figure 3.27 the simulated long season maize yields are expressed probabilistically.  The 

actual maize yields and CERES-Observed weather maize yields are displayed 

deterministically at the top op the graph and shows that the CERES-Maize model is able to 

correctly indicate the category of the yield (above-normal, near-normal or below-normal) for 

11 out of the 19 seasons considered in this study.  Here the CERES-Maize model also 

appears to perform the best in simulating the maize yields of below-normal maize yield 

seasons, with the category of 5 out of the 6 below-normal seasons indicated correctly.  For 

the remainder of the seasons, it can be seen that the CERES-Observed weather maize 

yields are always within one category of the actual maize yields, as seen for the 1984/85 

season in which the actual maize yield is near-normal and the CERES-Observed weather 

maize yield is above-normal. 
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Figure 3.27: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.      

 

When the probabilities of the simulated long season maize yields are compared to the 

actual maize yields, the 1982/83 El Niño season stands out, as for this season all three 

simulation systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully 

simulate the maize yield to be below-normal with reasonably high probabilities ranging 
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between 67% and 80%.  The probability distributions of the 1988/89, 1990/91, 1992/93, 

1994/95 and 1996/97 seasons show that one of the single model simulation systems 

(CERES-CCAM or CERES-ECHAM4.5) and the Multi-Model simulation system are able to 

correctly indicate the category of the yield (above-normal, near-normal or below-normal).  

Furthermore, the 1980/81, 1985/86, 1986/87 and 1987/88 seasons are also interesting as 

for these seasons the CERES-ECHAM4.5 simulation system is the only system that 

successfully simulates the outcome of the maize yields.   

 

In general, it can be seen that the performance of the CERES-Observed weather simulation 

system in simulating the category of the maize yield is the best for the medium season 

maize scenario.  This simulation system performs very well in simulating below-normal 

maize yields.  The CERES-CCAM simulation system performs better in simulating above-

normal maize yields that below-normal and near-normal maize yields, while the CERES-

ECHAM4.5 simulation system shows the best performance for near-normal maize yield 

seasons.   

 

3.4.1.3 Wet/Cool Eastern Region 

3.4.1.3.1 Short Season Maize  

 

The probability distributions of the simulated short season maize yields are shown in Figure 

3.28.  The actual maize yields and CERES-Observed weather maize yields displayed at the 

top of the graph show that the CERES-Maize model correctly indicates the category of the 

yield (above-normal, near-normal or below-normal) for 8 out of the 19 seasons, of which 4 

seasons are ENSO-neutral seasons, 2 are El Niño seasons and 2 are La Niña seasons.  As 

for the remainder of the seasons, the CERES-Observed weather maize yields are mostly 

within one category of the actual maize yields, although for three seasons (1986/87, 

1988/89 and 1996/97) the CERES-Observed weather maize yields are two categories away 

from the actual maize yields, but this is in the minority of cases.  

 

When the probabilistic short season maize yields, obtained from the different simulation 

systems, are compared to the actual maize yields, it can be seen that all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) are able to successfully 

simulate the above-normal maize yield of the 1998/99 La Niña season, with probabilities 

ranging between 50% and 100%.  The 1993/94 season is also a prominent season, since 

the Multi-Model simulation system correctly indicates the above-normal maize yield of this 

season, while the single model systems (CERES-CCAM and CERES-ECHAM4.5) do not.  
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The probabilities of the CERES-CCAM and Multi-Model simulation systems both correctly 

indicates the category of the maize yields (above-normal, near-normal or below-normal) of 

the 1982/83, 1983/84, 1989/90, 1992/93, 1996/97 and 1997/98 seasons, while the 

probabilities of the CERES-ECHAM4.5 simulation system is less reliable.  Four of these 

seasons are ENSO-neutral seasons and the other two are El Niño seasons.  Moreover, the 

CERES-CCAM simulation system is the only system able to correctly simulate the below-

normal maize yield of 1981/82 season and the above-normal maize yield of the 1988/89 

season with probabilities of 50% and higher.               
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Figure 3.28: Simulated short season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM45 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.             

 

3.4.1.3.2 Medium Season Maize  

 

The simulated medium season maize yield probabilities are shown in Figure 3.29.  In 

comparison to the actual maize yields the CERES-Observed weather maize yields reveal 

that the CERES-Maize model is able to correctly simulate the category of the yield (above-

normal, near-normal or below-normal) for 9 out of the 19 seasons considered in this study.  

Furthermore it appears as if the CERES-Maize model performs the best in capturing the 

maize yields of the below-normal maize yield seasons, with the category of 5 out of the 6 
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seasons indicated correctly.  The 1986/87 and 1988/89 seasons are the only two seasons 

in which the CERES-Observed weather maize yields are two categories away from that of 

the actual maize yields.   

 

In comparison to the actual maize yields, the simulated medium season maize yield 

probabilities show that for the 1982/83 and 1996/97 seasons all three simulation systems 

(CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulates the maize 

yields with relatively high probabilities ranging between 50% and 80%.  The probability 

distributions of the 1986/87, 1988/89, 1990/91 and 1998/99 seasons show that one of the 

single model simulation systems (CERES-CCAM or CERES-ECHAM4.5) as well as the 

Multi-Model simulation system correctly indicates the category of the maize yields (above-

normal, near-normal or below-normal), while the other single model system is either over or 

under confident and therefore simulates a different category to have the highest probability.  

For the 1991/92 season the Multi-Model simulation system shows an improvement from the 

two single model systems (CERES-CCAM and CERES-ECHAM4.5), while for the 1994/95 

season the CERES-CCAM simulation system is the only system able to correctly indicate 

the below-normal maize yield. 
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Figure 3.29: Simulated medium season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.        
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3.4.1.3.3 Long Season Maize  

 

Figure 3.30 shows the simulated long season maize probabilities.  The actual maize yields 

and CERES-Observed weather maize yields are displayed deterministically at the top op 

the graph.  When the CERES-Observed weather maize yields are compared to the actual 

maize yields it can be seen that the CERES-Maize model is able to correctly indicate the 

category of the yield (above-normal, near-normal or below-normal) for 11 out of the 19 

seasons investigated in this study.  From the actual maize yields it can be seen that 6 out of 

the 19 seasons are below-normal maize yield seasons, and the CERES-Maize model is 

able to correctly indicate the category of 5 out of the 6 below-normal seasons.  Thus, the 

CERES-Maize model performs better in simulating the maize yields of below-normal maize 

yield seasons than above-normal and near-normal maize yield seasons.  Furthermore, the 

CERES-Maize model performs well in capturing the category of the maize yields of the early 

1980’s (1980/81 – 1984/85).   
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Figure 3.30: Simulated long season maize yield probabilities.  CERES-CCAM yield (CC), 

CERES-ECHAM4.5 yield (CE) and Multi-Model yield (MM).  The actual maize yield 

(red) and CERES-Observed weather yield (grey) are denoted as A (above-normal), 

N (near-normal) or B (below-normal) at the top of the graph.     

 

From the probability distributions of the simulated long season maize yields it can be seen 

that for the 1982/83 El Niño season and 1996/97 ENSO-neutral season all three simulation 

systems (CERES-CCAM, CERES-ECHAM4.5 and Multi-Model) successfully simulate the 
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below-normal (1982/83) and above-normal (1996/97) maize yields for these two seasons.  

The probability distributions for the 1980/81, 1988/89, 1990/91, 1994/95 and 1998/99 

seasons show that the CERES-CCAM simulation system and Multi-Model simulation 

system correctly indicates the category of the maize yields (above-normal, near-normal or 

below-normal), while the CERES-ECHAM4.5 simulation system fails to get the category 

correct.  The 1992/93 season is also interesting as for this season the CERES-CCAM 

simulation system is the only system able to correctly simulate the category of the maize 

yield with a high probability of 67%.  Furthermore, for many season all three simulation 

systems simulates the same incorrect category to have the highest probability, as can be 

seen, for example, for the 1984/85 season in which all three simulation systems gives the 

highest probability to the near-normal category.      

 

In general, it can be seen that the performance of the CERES-Observed weather simulation 

system in simulating the category of the maize yield increases from the short season maize 

scenario to the long season maize scenario, with the best performance evident for below-

normal maize yields.  The CERES-CCAM and Multi-Model simulation systems seem to 

perform the best for above-normal maize yield seasons, while the CERES-ECHAM4.5 

simulation system does not perform well.    

 

3.4.2 Objective Validation 

3.4.2.1 Dry/Warm Western Region 

3.4.2.1.1 Short Season Maize  

 

Figure 3.31 shows the short season maize ROC curves for each of the maize yield 

simulation systems.  The CERES-CCAM simulation system (a) shows the best skill in 

simulating below-normal maize yields for the dry/warm western production region.  The 

ROC curves of the CERES-ECHAM4.5 simulation system (b) falls beneath the no-skill 

diagonal, which indicates that this simulation system does not have skill in simulating any of 

the probability categories.  Similar to the CERES-CCAM simulation system the Multi-Model 

simulation system (c) also reveals the highest skill in simulating below-normal maize yields 

with considerably less skill for the other two categories (near-normal and above-normal).  

Table 3.1, which shows the ROC scores, confirms these results.  All the ROC scores are 

either equal to or less that 0.5 except for the below-normal category of the CERES-CCAM 

and Multi-Model simulation systems which are 0.65 and 0.62 respectively.    
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Figure 3.31: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.65 0.08 0.51 

CERES-ECHAM4.5 0.31 0.41 0.26 

Multi-Model 0.62 0.20 0.35 

 
Table 3.1: ROC scores for the simulated short season maize yield probabilities. 

 

3.4.2.1.2 Medium Season Maize  

 

The ROC curves for medium season maize can be seen in Figure 3.32.  The maize yield 

simulations performed by the CERES-CCAM simulation system (a) show somewhat higher 

skill for the above-normal category than for the below-normal category and substantially 

less skill for the near-normal category.  This is not a surprising result, as the skill of GCMs in 

capturing the main summer seasonal rainfall variability over southern Africa tends to be 

higher in ENSO years (Landman and Mason, 1999b).  Thus, GCMs are more skilful in El 

Niño and La Niña years than in ENSO-neutral years.  El Niño years greatly enhances the 
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probabilities for below-normal maize yields and La Niña years greatly enhances the 

probabilities for above-normal maize yields.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) are once again beneath the no-skill diagonal with ROC scores 

ranging between 0.17 and 0.43 (see Table 3.2).  The Multi-Model simulation system shows 

poor skill in simulating any of the probability categories.  

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.32: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.63 0.18 0.74 

CERES-ECHAM4.5 0.33 0.38 0.18 

Multi-Model 0.47 0.20 0.39 

 
Table 3.2: ROC scores for the simulated medium season maize yield probabilities. 

 

4.6.2.1.3 Long Season Maize  

 
In Figure 3.33 the long season maize ROC curves are shown for each of the maize yield 

simulation systems.  From the ROC curves for the CERES-CCAM simulation system (a) it 

can be observed that the highest skill occurs for above-normal maize yields, with slightly 
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lower skill for below-normal maize yields and much reduced skill for near-normal maize 

yields.  The CERES-ECHAM4.5 simulation system (b) shows relatively high skill for the 

near-normal category, but with the curves of the below-normal and above-normal categories 

falling beneath the no-skill diagonal.  The Multi-Model simulation system (c) on the other 

hand shows low skill for all three probability categories.  Table 3.3 shows the ROC scores 

for each of the simulation systems and for each of the equiprobable categories.  The 

highest ROC scores are evident for the above-normal category of the CERES-CCAM 

simulation system (0.62) and the near-normal category of the CERES-ECHAM4.5 

simulation system (0.62).   

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.33: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.      

 
Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.56 0.24 0.62 

CERES-ECHAM4.5 0.35 0.62 0.26 

Multi-Model 0.47 0.40 0.36 

 
Table 3.3: ROC scores for the simulated long season maize yield probabilities. 
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In general, the ROC scores seem to increase from the short season maize scenario to the 

long season maize scenario.  Although, the highest ROC score (0.74) is evident for the 

medium season maize scenario (Table 3.2).    

  

3.4.2.2 Temperate Eastern Region 

3.4.2.2.1 Short Season Maize  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.58 0.72 0.45 

CERES-ECHAM4.5 0.55 0.58 0.47 

Multi-Model 0.51 0.70 0.35 

 
Table 3.4: ROC scores for the simulated short season maize yield probabilities. 

 

The ROC curves for short season maize can be seen in Figure 3.34.  The CERES-CCAM 

simulation system (a) shows that for the near-normal category the hit rate largely outscores 
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the false alarm rate.  Thus, the below-normal and above-normal categories are somewhat 

less skilful than the near-normal category.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) shows that the near-normal curve deviates furthest away from the no-

skill diagonal, which implies that this simulation approach has highest skill in simulating 

near-normal maize yield seasons.  The Multi-Model simulation system (c) also indicates 

highest skill for the near-normal category; with a ROC score of 0.70 (see Table 3.4).     

 

3.4.2.2.2 Medium Season Maize  

 

Figure 3.35 shows the medium season maize ROC curves for each of the maize yield 

simulation systems.  The CERES-CCAM simulation system (a) shows the best skill in 

simulating above-normal maize yields for the temperate eastern production region.  The 

ROC curves of the CERES-ECHAM4.5 simulation system (b) shows best skill for the near-

normal category, with much lower skill for the above-normal and below-normal categories.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     
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The ROC curves of the Multi-Model simulation system (see Table 3.5) shows that this 

simulation system performs the best in simulating above-normal maize yields, with ROC 

scores of 0.65 for above-normal, 0.55 for near-normal and 0.5 for below-normal. 

 

 
Table 3.5: ROC scores for the simulated medium season maize yield probabilities. 

  

3.4.2.2.3 Long Season Maize  

 

  
  

 
 
  

  
 
  
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
Figure 3.36: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

In Figure 3.36 the long season maize ROC curves are shown for each of the maize yield 

simulation systems.  From the ROC curves for the CERES-CCAM simulation system (a) it 

can be observed that both the above-normal and below-normal categories show high skill, 

with ROC scores of 0.83 and 0.66 respectively (see Table 3.6).  The CERES-ECHAM4.5 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.50 0.41 0.79 

CERES-ECHAM4.5 0.53 0.70 0.49 

Multi-Model 0.50 0.55 0.65 
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simulation system (b) reveals once again best skill for the near-normal category.  The ROC 

curves of the Multi-Model simulation system show that the above-normal simulations 

produced by this simulation system are most reliable.    

 

 
Table 3.6: ROC scores for the simulated long season maize yield probabilities. 

 

In general, in the short season maize scenario the highest ROC scores occur for the near-

normal category, while in the medium season maize scenario and long season maize 

scenario the highest ROC scores occur for the above-normal category.  The highest ROC 

score of 0.85 is evident for the long season maize scenario (Table 3.6).     

 

3.4.2.3 Wet/Cool Eastern Region 

3.4.2.3.1 Short Season Maize  

 

Figure 3.37 shows the short season maize ROC curves for each of the different simulation 

systems.  From the ROC curves for the CERES-CCAM simulation system (a) it can be 

observed that all three curves are almost completely above the no-skill diagonal line with 

ROC scores of 0.83 for above-normal, 0.77 for below-normal and 0.57 for near-normal (see 

Table 3.7).  Thus, this simulation system performs best in simulating above-normal maize 

yields.  The CERES-ECHAM4.5 simulation system (b) shows that all three curves fall 

beneath the no-skill diagonal line, which means that this simulation system does not have 

skill in simulating any of the equiprobable categories.  The Multi-Model simulation system 

(c) on the other hand shows some skill for the below-normal and above-normal categories.   

 

  
Table 3.7: ROC scores for the simulated short season maize yield probabilities. 

 

 

 

 

 

 

 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.66 0.08 0.83 

CERES-ECHAM4.5 0.49 0.62 0.57 

Multi-Model 0.64 0.33 0.85 

Simulation system Below-normal Near-normal Above-normal 
CERES-CCAM 0.77 0.57 0.83 

CERES-ECHAM4.5 0.28 0.35 0.32 

Multi-Model 0.57 0.48 0.54 
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Figure 3.37: ROC curves for above-normal, near-normal and below-normal simulated short 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

3.4.2.3.2 Medium Season Maize  

 

Table 3.8: ROC scores for the simulated medium season maize yield probabilities. 

 

The ROC curves for medium season maize can be seen in Figure 3.38.  The maize yield 

simulations performed by the CERES-CCAM simulation system (a) show somewhat higher 

skill for the below-normal category than for the above-normal category and substantially 

less skill for the near-normal category.  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) are mainly beneath the no-skill diagonal with ROC scores ranging 

between 0.37 and 0.46 (see Table 3.8).  The Multi-Model simulation system shows some 

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.74 0.48 0.68 

CERES-ECHAM4.5 0.46 0.43 0.37 

Multi-Model 0.56 0.41 0.57 
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skill for the below-normal and above-normal categories, but no skill for the near-normal 

category.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: ROC curves for above-normal, near-normal and below-normal simulated medium 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

3.4.2.3.3 Long Season Maize  

 

Figure 3.39 shows the long season maize ROC curves for each of the maize yield 

simulation systems and Table 3.9 shows the ROC scores.  The CERES-CCAM simulation 

system (a) shows highest skill for above-normal maize yields (ROC score = 0.75), slightly 

lower skill for below-normal maize yields (ROC score = 0.74) and much reduced skill for 

near-normal maize yields (ROC score = 0.38).  The ROC curves of the CERES-ECHAM4.5 

simulation system (b) reveals highest skill for the below-normal category, with the above-

normal and near-normal curves falling beneath the no-skill diagonal.  It can be seen from 

the ROC curves of the Multi-Model simulation system that this simulation system is a 

combination between the CERES-CCAM and CERES-ECHAM4.5 simulation systems.  The 
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ROC scores of the Multi-Model simulation system are 0.70 for the above-normal category, 

0.63 for the below-normal category and 0.41 for the near-normal category.      

 

 
Table 3.9: ROC scores for the simulated long season maize yield probabilities. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 3.39: ROC curves for above-normal, near-normal and below-normal simulated long 

season maize yields.  (a) CERES-CCAM maize yield simulation system, (b) CERES-

ECHAM4.5 maize yield simulation system and (c) Multi-Model maize yield simulation 

system.     

 

In general, the ROC scores of the below-normal category remain similar in all three 

scenarios.  The above and below-normal categories of all three scenarios show relatively 

high ROC scores with the highest ROC score (0.83) evident for the short season maize 

scenario (Table 3.7).    

Simulation system Below-normal Near-normal Above-normal 

CERES-CCAM 0.74 0.38 0.75 

CERES-ECHAM4.5 0.59 0.48 0.40 

Multi-Model 0.63 0.41 0.70 
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3.5 SUMMARY 

 

The simulated maize yields obtained from the different simulation systems for the primary 

maize producing region of South Africa have been presented.  The simulation systems are 

tested over 19 seasons from 1980/81 to 1998/99.  The simulation systems are constructed 

by forcing the CERES-Maize model with observed weather data, CCAM-simulated fields 

and ECHAM4.5 simulated fields.  The combination between the CERES-CCAM simulated 

maize yields and CERES-ECHAM4.5 simulated maize yields forms the Multi-Model system.   

 

In terms of the spatial distribution of the simulated maize yields, the four different maize 

yield simulation systems capture the east-west gradient in maize yield across the study 

area.  The ability of the different simulation systems in simulating the season-to-season 

change in maize yield seems to be the lowest for the short season maize scenarios and the 

highest for the long season maize scenarios.  The long season maize planted on plant date 

1 scenario stands out as the scenario for which most of the simulation systems show the 

best results.                              

 

The CERES-Maize model shows high skill in simulating South African maize yields, with 

statistically significant correlations found for several magisterial districts across the study 

area.  The CERES-CCAM simulation system produces skill levels comparable to that of the 

CERES-Observed weather simulation system.  The CERES-ECHAM4.5 simulation system 

reveals overall poor skill.  Since the CERES-Maize model is highly dependant on the 

weather input data, improved ECHAM4.5-simulated fields will most probably improve the 

maize yield simulations from the CERES-ECHAM4.5 simulation system.  The CERES-

ECHAM4.5 simulated maize yields negatively affect the Multi-Model system, as a simple 

un-weighted averaging approach is used as the combination method to construct the Multi-

Model system.  The ECHAM4.5-simulated fields can possibly be improved through 

downscaling and the use of a different combination method which can lead to improved 

Multi-Model simulations.         
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CHAPTER 4 

 

4 SUMMARY AND CONCLUSIONS 

 

South Africa’s climate is highly variable and crop production in the country is predominantly 

rain-fed.  Since weather is the primary source of uncertainty in crop management, 

unexpected climatic extremes can have detrimental effects on South African crop yields.  

Therefore, weather and climate variations can be seen as the main factors responsible for 

year-to-year variations in the crop yields.  An investigation on ways to reduce the 

uncertainty in expected weather regime changes of a forthcoming season has therefore 

become essential.  However, farmers can benefit more from information when it is 

presented in terms of production outcomes rather than from a weather or seasonal forecast 

that only gives an indication of variations in rainfall and temperature.                

 

Since maize is the primary crop grown in South Africa, this dissertation has investigated the 

use of seasonal climate forecasts in the prediction of South African maize yields.  To do 

this, a crop model has been run with both observed weather data and GCM-simulated 

fields.  The ability of the crop model to simulate South African maize yields has been 

established by comparing the maize yield output obtained from forcing the crop model with 

observed weather data to actual maize yields.  The maize yields produced by the crop 

model-GCM based maize yield simulation systems have been investigated to establish 

whether these simulation systems can produce skill levels similar to the target skill level set 

by the crop model forced with observed weather data.  Finally, the two crop model-GCM 

based maize yield simulation systems have been combined through simple un-weighted 

averaging of the simulated maize yields to form a multi-model maize yield simulation system 

to establish whether the skill of this multi-model system outscores the skill of the best crop 

model-GCM based simulation system.  The simulation systems have been tested over 19 

seasons from 1980/81 to 1998/99.        

 

The findings of the research are summarised as follows: 

 

A. Quantifying the skill of the CERES-Maize model 

 

1. The east to west decrease in maize yield across the study area has been 

successfully simulated by the CERES-Maize model.  The spatial distribution of the 
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medium season maize (65 – 70 days to flowering) yields seem to show the best 

agreement with the spatial distribution of the actual maize yields.    

 

2. For all three of the production regions, the CERES-Maize model has performed the 

best in simulating the inter-seasonal variability of the long season maize (70 – 75 

days to flowering) yield scenarios (especially for the first plant date).  The CERES-

Maize model has performed well in simulating both the relative magnitude and the 

sign of the anomaly of the maize yields.       

 

3. All 9 scenarios have shown high skill for the western part of the North-West Province 

(correlations > 0.81).  The association between the CERES-Observed weather 

maize yields and actual maize yields has been found to be stronger for the western 

parts of the study area than for the eastern parts of the study area.  The highest 

correlations are evident for the long season maize planted on plant date 1 scenario, 

with the correlations of 39 out of the 44 magisterial districts being statistically 

significant at the 95% level of confidence and a high level of field significance.     

 

4. In simulating the category of the maize yields (above-normal, near-normal or below-

normal) of the dry/warm western production region, the skill of the CERES-Maize 

model seems to increase from the short season maize (60 – 65 days to flowering) 

scenario to the long season maize scenario.  Highest skill levels have been found for 

above-normal maize yields.  The categorical simulations for the temperate eastern 

production region have shown high skill levels for the medium season maize 

scenario and for simulating below-normal maize yields.  For the wet/cool eastern 

production region skill has decreased from the long season maize scenario to the 

short season maize scenario, and the CERES-Maize model has performed the best 

in simulating below-normal maize yields.     

 

B. Simulating maize yields with the CERES-CCAM simulation system 

 

1. The CERES-CCAM simulation system has captured the characteristic pattern of 

high maize yields in the eastern parts and lower maize yields in the western parts of 

the study area. 

 

2. Overall, the CERES-CCAM simulation system has performed better in simulating the 

sign of the anomaly of the maize yields than the relative magnitude of the maize 
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yields.  However, this simulation system has failed to correctly simulate the season 

with the lowest maize yield and the season with the highest maize yield.   

 

3. All 9 scenarios have shown high skill for the western part of the Free State 

(correlations between 0.61 and 0.8).  High skill levels have been found in simulating 

the maize yields of the first plant dates, thus short season maize planted on plant 

date 1, medium season maize planted on plant date 1 and long season maize 

planted on plant date 1.  The simulated maize yields for the medium season maize 

scenarios have shown the most magisterial districts with statistically significant 

correlations (22 out of the 44) and high levels of field significance.                  

 

4. The probabilistic simulations have shown that for the dry/warm western production 

region the CERES-CCAM simulation system has performed better in simulating the 

above-normal yield category of the medium season maize scenario than simulating 

near-normal and below-normal maize yields.  For the temperate eastern production 

region highest skill has been found for the above-normal category of the long 

season maize scenario and for the wet/cool eastern production region highest skill 

has been found for the above-normal category of the short season maize scenario.      

 

C. Simulating maize yields with the CERES-ECHAM4.5 simulation system 

 

1. The CERES-ECHAM4.5 simulation system has also captured the gradient in maize 

yield across the study area and in the short season maize scenarios this system has 

performed well in simulating the distribution in maize yield in the eastern part of the 

Free State. 

 

2. Possibly due to the low spatial resolution of the ECHAM4.5-simulated fields, the 

CERES-ECHAM4.5 simulation system has struggled to simulate the sign of the 

anomaly of the yields over the 19 seasons considered in this study.  However, in the 

long season maize scenarios for the temperate eastern production region this 

simulation system has produced more realistic maize yields (in terms of the relative 

magnitude of the yield) for the 1985/86, 1990/91 and 1997/98 seasons than that 

produced by the, CERES-CCAM and Multi-Model simulation systems.  In the long 

season maize scenarios for the wet/cool eastern production region the CERES-

ECHAM4.5 simulation system has performed better than the CERES-CCAM 

simulation system in simulating the relative magnitude of the maize yields of the 

1991/92, 1996/97, and 1997/98 seasons.   
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3. The probabilistic simulations have shown that for the dry/warm western and wet/cool 

eastern production regions the CERES-ECHAM4.5 simulation system has no skill in 

simulating any of the categories for the short and medium season maize scenarios, 

but show at least some skill in simulating near-normal maize yields and below-

normal maize yields for the long season maize scenario in the dry/warm western 

production region and wet/cool eastern production region respectively.  For the 

temperate eastern production region the CERES-ECHAM4.5 simulation system has 

shown to have some skill in simulating both below-normal and near-normal maize 

yields for the short season maize scenario, relatively high skill in simulating near-

normal maize yields for the medium season maize scenario and some skill in 

simulating the near-normal and above-normal categories for the long season maize 

scenario.         

 

4. Improved GCM-simulated fields should result in more skilful maize yield simulations.  

It may be possible to improve on the spatial resolution of the ECHAM4.5-simulated 

fields by nesting a Regional Climate Model (RCM) within the ECHAM4.5 GCM.  This 

process of downscaling will provide more detailed simulated fields, which will 

represents sub-grid scale features, like precipitation, much better.   

 

D. Simulating maize yields with the Multi-Model simulation system 

 

1. Similarly to the two single model simulation systems (CERES-CCAM and CERES-

ECHAM4.5) the Multi-Model simulation system has also captured the east to west 

decrease in the spatial distribution of the maize yield across the study area.    

 

2. Even though this Multi-Model simulation system has performed better than both the 

CERES-CCAM and CERES-ECHAM4.5 simulation systems in simulating the 

relative magnitude of the maize yields of 1981/82, 1983/84, 1984/85 and 1996/97 

seasons in the temperate eastern production region, overall the inter-seasonal 

variability in maize yields as simulated by the Multi-Model simulation system was 

only slightly better than that of the CERES-ECHAM4.5 simulation system and did 

not outscore the CERES-CCAM simulation system.     

 

3. The Multi-Model simulated maize yields expressed probabilistically have shown that 

for the dry/warm western production region this simulation system has no skill in 

simulating any of the categories for the medium and long season maize scenarios, 

but has some skill in simulating below-normal maize yields for the short season 
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maize scenario.  For the temperate eastern production region the Multi-Model 

simulation system has shown relatively high skill levels in simulating both above-

normal and near-normal maize yields, while for the wet/cool eastern region some 

skill has been seen for the above-normal and below-normal categories.   

 

4. The combination between the CERES-CCAM simulated maize yields and CERES-

ECHAM4.5 simulated maize yields did not improve on the CERES-CCAM simulation 

system’s skill in simulating South African maize yields.  Due to the fact that the 

CERES-ECHAM4.5 simulation system has not performed well, the potential 

advantage to use an equal-weights multi-model system has not been demonstrated 

in this study.           

  

The CERES-Maize model has been used to simulate maize yields for each of the 

magisterial districts in the main maize producing area of South Africa.  The crop model has 

been forced with observed weather data, CCAM-simulated fields and ECHAM4.5-simulated 

fields.  The simulated maize yields from the CERES-CCAM simulation system and CERES-

ECHAM4.5 simulation system have been combined, using simple un-weighted averaging, to 

form a multi-model maize yield system.  The simulated maize yields from the different 

simulation systems have been compared to actual maize yields.  From the CERES-

Observed weather simulated maize yields it has been found that the CERES-Maize model 

has significant skill in simulating South African maize yields.  This crop model can possibly 

be used in an operational environment, provided that the forcing fields (e.g. CCAM-

simulated fields and ECHAM4.5-simulated fields) are adequately skilful.  The CERES-

CCAM simulation system has shown comparable skill levels to that of the CERES-

Observed weather simulation system, but the CERES-ECHAM4.5 simulation system has 

shown poor skill.  Due to this, the Multi-Model simulation system did not outscore the skill of 

the best single-model simulation system (CERES-CCAM).  Provided that the GCM-

simulated fields can be improved, the multi-model simulation system has the potential to 

improve significantly.  This can possibly be achieved by downscaling the raw output from 

the GCMs.         

          

The most important conclusion of this dissertation is that the potential for seasonal maize 

yield forecasting in South Africa using a multi-model ensemble system is high.  However, 

before this goal can be realized, it will be necessary to improve the GCM fields that will be 

used to force the CERES-Maize model.   
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The maize yield forecast system proposed in this study can provide farmers with usable 

information on the possible successes of short, medium and long season maize.  This study 

has shown that it is possible to simulate maize yield for South Africa with raw output from 

high resolution GCMs, which are already being used operationally.  Thus, maize yield 

forecasts with a usable level of skill can be made with the use of an objective maize yield 

forecast system that incorporates GCMs.  Such a system does not currently exist in South 

Africa.          
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