Probing secondary exposure and health data as a tool to improve public health in South Africa

by

Janine Wichmann

Submitted in fulfilment of the requirements for the degree

Doctor of Philosophy

in the

School of Health Systems and Public Health
Faculty of Health Sciences
University of Pretoria

February 2006

The financial assistance of the National Research Foundation (NRF) towards this research during 2001-2003 is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.
ACKNOWLEDGEMENTS

Although I spent many hours alone - I never felt lonely - in preparing this thesis, I could not have accomplished it without the input from many parties.

I would like to acknowledge the following persons and institutions in particular:

My supervisor, Prof Kuku V.V. Voyi. Despite all the jokes I made about you driving me koekoes, your joie de vivre for high quality research was instilled in me even during our brief encounter as colleagues at the CSIR in 1999.

My parents (Willem and Judy Wichmann), brother (André Wichmann), other close family and numerous friends scattered all over the world.

Mr Hans Linde from the City of Cape Town for granting permission to use the air quality data for free and Mr Grant Ravenscroft from the City of Cape Town for supplying the air quality data in the correct electronic format. All those involved at any stage of the design, implementation and maintenance of the Cape Town air quality monitoring network are also acknowledged.

Gratitude is also expressed towards the National Department of Health for supplying the 1998 South African Demographic and Health Survey data in the correct electronic format for free. All those involved at any stage of the 1998 South African Demographic and Health Survey are also acknowledged.

Colleagues at the School of Health Systems and Public Health, University of Pretoria and at the Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.

This thesis was sponsored by contributions from a University of Pretoria Doctoral scholarship (2001), a South African National Research Foundation Doctoral scholarship (2001-2003), a High-level University Year to Gain Excellence in the Netherlands (Huygens) scholarship (2002-2003) and a Dutch Education: Learning at Top Level Abroad (DELTA) scholarship (2004).
DECLARATION

I, Janine Wichmann, declare that the dissertation/thesis, which I have submitted for the degree Doctor of Philosophy at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

_____________________ _____________________
Janine Wichmann Date

_____________________ _____________________
Commissioner of Oaths Date
Probing secondary exposure and health data as a tool to improve public health in South Africa

by

Janine Wichmann

Submitted in fulfilment of the requirements for the degree

Doctor of Philosophy

Supervisor: Prof Kuku VV Voyi
School of Health Systems and Public Health
Faculty of Health Sciences
University of Pretoria

February 2006

ABSTRACT

The usefulness of secondary exposure and health data to improve public health in South Africa will be assessed. Given the tremendous health impact of air pollution exposure the focus of this thesis is on primary prevention, that is the identification of outdoor air pollution and the use of dirty fuels (wood, animal dung, crop residues, coal, paraffin) for cooking and heating as risk factors, whilst controlling for confounding. Hourly averaged outdoor PM$_{10}$ mass, NO$_2$, NO, SO$_2$, O$_3$ data (1 August 1998 - 31 July 2003) from Cape Town were analysed in a nonparametric Spearman’s Rho correlation analysis to determine the seasonal spatial correlation between the monitoring sites. Trend and descriptive analyses were conducted on the outdoor hourly and daily PM$_{10}$ mass data to investigate the current and future health implications in the Khayelitsha sub-district, Cape Town. The 1998 South African Demographic and Health Survey (SADHS) data were analysed. The survey involved 13 826 individuals in 12 763 households. Univariate and multivariate logistic regression analyses generated crude and adjusted odds ratios and 95% confidence intervals in order to assess the influence of dirty fuel use for cooking and heating on adult (>15 years) respiratory health, childhood (<59 months) respiratory health and 1-59 month mortality. It was found that outdoor air pollution is not homogenously distributed in Cape Town during all seasons. Elevated PM$_{10}$ mass concentrations are frequently present in the Khayelitsha sub-district. There is a strong case for acknowledging the large public health risk arising from air pollution exposure in South Africa, despite the limitations of the 1998 SADHS data. Not much progress has been made in air pollution epidemiology in the country during this investigation due to the identified limitations. Secondary exposure and health data are thus only useful in improving public health in South Africa by supplying baseline data for trend analysis or hypotheses generation. It is recommended that the country must develop environmental public health tracking networks, which incorporates various data sources from multi-sectoral collaborative intervention projects with analytic study designs, in all major cities in the country.
SUMMARY

The hypothesis that air pollution (using secondary exposure and health data) poses a significant potential risk on human health (specifically respiratory health of people >15 years and <5 years as well as 1-59 month mortality) in South Africa will be tested. The focus of this thesis is on primary prevention, that is the identification of outdoor air pollution and the use of dirty fuels (wood, animal dung, crop residues, coal, paraffin) for cooking and space heating as risk factors, whilst controlling for confounding. Daily averaged (24-h) outdoor PM$_{10}$ mass, NO$_2$, NO, SO$_2$, O$_3$ data (1 August 1998 - 31 July 2003) from Cape Town were analysed in a nonparametric Spearman's Rho correlation analysis to determine the seasonal inter-site correlation between the monitoring sites. Trend and descriptive analyses were conducted on the outdoor hourly and daily PM$_{10}$ mass data to investigate the current and future health implications in the Khayelitsha sub-district, Cape Town. Limitations in the current air quality monitoring network of Cape Town were addressed. The 1998 South African Demographic and Health Survey (SADHS) data were analysed in more detail than reported in the SADHS report. The survey involved 13 826 individuals from 12 763 households. Univariate and multivariate logistic regression analyses were used to generate crude and adjusted odds ratios and 95% confidence intervals in order to assess the influence of dirty fuel use for cooking and heating on adult (> 15 years) respiratory health, childhood (< 59 months) respiratory health and 1-59 month mortality. Limitations, such as inadequate control of systematic and random errors, of the 1998 SADHS were compared to those from other local air pollution epidemiological studies. It was found that 24-h averaged outdoor air pollution is heterogenously distributed in Cape Town during all seasons. Elevated PM$_{10}$ mass concentrations are frequently present in the Khayelitsha sub-district. There is a strong case for acknowledging the large public health risk arising from air pollution exposure in South Africa, despite the limitations of the 1998 SADHS data. Not much progress has been made in air pollution epidemiology in the country during this investigation due to the identified limitations. Secondary exposure and health data are thus only useful in improving public health in South Africa by supplying baseline data for trend analysis or hypotheses generation. It is recommended that the country must develop environmental public health tracking networks, which incorporates various data sources from multi-sectoral collaborative intervention projects with analytic study designs, in all major cities in the country.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Summary</td>
<td>iv</td>
</tr>
<tr>
<td>Table of contents</td>
<td>v</td>
</tr>
<tr>
<td>List of figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of appendices</td>
<td>x</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Background 1

1.2 Impetus for this thesis 2

1.3 Research question 10

1.4 Aims 10

1.5 Study design and structure of thesis 11

1.6 References 12

Chapter 2 Air pollution epidemiological studies in South Africa: Need for freshening up

2.1 Background 21

2.2 Environmental Epidemiology 21

2.3 Air Pollutants 22

2.3.1 Chemical Properties, Transport, Environmental Fate 22

2.3.2 Exposure Assessment 23

2.3.3 Adverse Health Effects 27

2.4 Indoor Air Pollution And Health 29

2.4.1 The Evidence 29

2.4.2 Health Research Needs 34

2.5 Air Pollution Epidemiological Studies in South Africa 35

2.6 Literature Search: Methodology 37

2.7 South African Air Pollution Epidemiological Studies 38

2.8 Study Design 45

2.9 Discussion 50

2.10 Conclusion and Recommendations 57

2.11 References 58

Chapter 3 Seasonal inter-site correlation among air pollution monitoring sites in Cape Town, South Africa

3.1 Introduction 77

3.2 Meteorology and Topography 78

3.3 Air Pollution Monitoring Network 79

3.4 Air Pollution Sources 84

3.5 Statistical Analyses 85

3.6 Results 87

3.6.1 General Seasonal and Diurnal Trends of Pollutant Concentrations 87

3.6.2 Inter-site Correlations 88

3.7 Discussion 91

3.8 References 97
Chapter 4 Potential health implications of outdoor PM₁₀ mass exposure in the Khayelitsha sub-district, Cape Town, South Africa

4.1 Introduction
4.2 Meteorology and topography
4.3 Air pollution monitoring network
4.4. Air pollution sources
4.5 Methods
4.6 Results
4.7 Discussion
4.8 Conclusions and recommendations
4.9 References

Chapter 5 Potential risk factors of respiratory diseases and symptoms amongst adults in South Africa

5.1 Introduction
5.2 Methods
 5.2.1 Survey method
 5.2.2 Variable definitions
 5.2.3 Data analysis
5.3 Results
5.4 Discussion
5.5 References

Chapter 6 Potential impact of cooking and heating fuel use on acute respiratory health of preschool children in South Africa

6.1 Introduction
6.2 Materials and methods
 6.2.1 Survey method
 6.2.2 Health outcome, exposure and confounder variables
 6.2.3 Data analysis
6.3 Results
6.4 Discussion and conclusions
6.5 References

Chapter 7 Potential influence of cooking and heating fuel use on 1-59 month old mortality in South Africa

7.1 Introduction
7.2 Methods
 7.2.1 Survey method
 7.2.2 Definitions
 7.2.3 Data analysis
7.3 Results
7.4 Discussion and conclusions
7.5 References

Chapter 8 General discussion

8.1 Main Findings
8.2 Potential Bias and Limitations
8.3 Improving Secondary Health and Exposure Data Sources to enhance Public Health
8.4 Usefulness of Secondary Health and Exposure Data in enhancing Public Health
8.5 Other Sources of Data, Collaboration and Capacity Building
8.6 Main Conclusions and Recommendations
8.7 References
LIST OF FIGURES

Chapter 3 Seasonal inter-site correlation among air pollution monitoring sites in Cape Town, South Africa 75

Figure 1 Location of air pollution monitoring sites in Cape Town, South Africa 80
Figure 2 Location of air quality monitoring site in the City Centre and Molteno, City of Cape Town 81
Figure 3 Location of air quality monitoring site in Tableview and Bothasig, City of Cape Town 81
Figure 4 Location of air quality monitoring site in Goodwood, City of Cape Town 82
Figure 5 Location of air quality monitoring site in the Khayelitsha sub-district, City of Cape Town 82
Figure 6 Averaged 24-h O₃ and CO variations at City Centre (C), Goodwood (G) and Molteno (O) during a) winter and b) summer 88
Figure 7 Averaged 24-h a) NO, b) NO₂, c) SO₂ and d) PM₁₀ variations at Bothasig (), City Centre (), Goodwood (), Khayelitsha () and Tableview () during winter and during summer e), f), g), h) 89

Chapter 4 Potential health implications of outdoor PM₁₀ mass exposure in the Khayelitsha sub-district, Cape Town, South Africa 100

Figure 1 Air pollution health effects pyramid 101
Figure 2 Location of air pollution monitoring sites in Cape Town, South Africa 105
Figure 3 Location of air quality monitoring site in the Khayelitsha sub-district, City of Cape Town 106
Figure 4 Descriptive statistics of a) hourly and b) daily PM₁₀ concentrations (μg.m⁻³) 109
Figure 5 Seasonal diurnal trends of PM₁₀ for a) all, b) low and c) high concentrations (μg.m⁻³) 110
Figure 6 Daily minimum and maximum values (μg.m⁻³) for PM₁₀ during 1 March 1999 to 31 July 2003 111
Figure 7 Number of times the UK Daily Limit value are exceeded for PM₁₀ during 1 March 1999 to 31 July 2003 111
Figure 8 PM₁₀ concentrations (μg.m⁻³) during 1 March 1999 and 31 July 2003 for monthly (solid trend line) mean and maximum daily per month (broken trend line) 112
LIST OF TABLES

Chapter I Introduction
Table 1 Hill’s causation guidelines

Chapter 2 Air pollution epidemiological studies in South Africa: Need for freshening up
Table 1 Mechanisms by which some key pollutants may increase the risk of respiratory and other health problems
Table 2 Summary of South African air pollution epidemiological studies
Table 3 Indicators for air pollution exposure in South African air pollution epidemiological studies

Chapter 3 Seasonal inter-site correlation among air pollution monitoring sites in Cape Town, South Africa
Table 1 Percentage of air quality data availability during 1 August 1998 - 31 July 2003
Table 2 Descriptive statistics for PM$_{10}$, SO$_2$, NO, NO$_2$, NO$_x$, CO and O$_3$: 24-h average concentrations (in μg.m$^{-3}$) measured at Bothasig, City Centre, Goodwood, Khayelitsha and Tableview during 1 August 1998 – 31 July 2003
Table 3 Sample sizes and p-values for NO$_2$, NO, SO$_2$ and PM$_{10}$ inter-site correlation coefficients between Bothasig, City Centre, Goodwood and Tableview
Table 4 Sample sizes and p-values for PM$_{10}$ inter-site correlation coefficients between Khayelitsha and the other sites
Table 5 Sample sizes and p-values for O$_3$ and CO inter-site correlation coefficients between City Centre, Goodwood and Molteno

Chapter 5 Potential risk factors of respiratory diseases and symptoms amongst adults in South Africa
Table 1 Correlations among potential risk factors with Phi coefficients > 0.50 (averaged over strata)
Table 2 Characteristics of study population in terms of socio-demographic, active smoking, BMI, environmental and occupational exposure variables
Table 3 Crude prevalence (%) of respiratory symptoms and conditions in the survey population
Table 4 Potential risk factors for respiratory symptoms and conditions: Crude OR (95% CI)
Table 5 Potential risk factors for respiratory symptoms and conditions in adult population of South Africa: Adjusted OR (95% CI)

Chapter 6 Potential impact of cooking and heating fuel use on acute respiratory health of preschool children in South Africa

Table 1 Sample distribution of South African children (<5 years) by selected characteristics, reported prevalence of acute respiratory infections (ARI) during the 2 weeks preceding the survey and crude odds ratios

Table 2 Adjusted odds ratio estimates of cooking and heating fuel type and other risk factors on acute respiratory infection (ARI) among South African children (< 5 years)

Chapter 7 Potential influence of cooking and heating fuel use on 1-59 month old mortality in South Africa

Table 1 Number of observed person-months, incidence rates and deaths for risk factors under investigation

Table 2 Relative risk of mortality with 95% confidence intervals obtained from univariate Cox regression analyses, stratified by area of residence

Table 3 Relative risk of mortality with 95% confidence intervals obtained from multivariate Cox regression analyses, stratified by area of residence

Table 4 Ten leading underlying natural causes of death for each age group: 1997, 1999 and 2001

Chapter 8 General discussion

Table 1 Other direct and indirect health consequences related to use of dirty fuels

Table 2 Air pollution exposure indicators and confounders addressed in this thesis

Table 3 Confounders identified to be addressed in future SADHS

Table 4 Indoor air pollution exposure indicators to be addressed in future SADHS

Table 5 Advantages and disadvantages of using 1998 SADHS data in air pollution epidemiological analyses

Table 6 Number of cases attributable to indoor air pollution due to medium and high polluting fuels
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>1998 SADHS Household Questionnaire</td>
<td>237</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>1998 SADHS Adult Health Questionnaire</td>
<td>242</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>1998 SADHS Women's Health Questionnaire</td>
<td>257</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Letters of approval for thesis project</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>University of Pretoria Ethics Committee approval letter</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>Ethical approval of 1998 South African Demographic and Health Survey by Medical Research Council</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Data use agreement letter from National Department of Health</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Data use agreement letter from City of Cape Town</td>
<td>300</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Proof of article acceptance or submissions and/or acceptance</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Chapter 2</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Chapter 3</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Chapter 4</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Chapter 5</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Chapter 6</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Chapter 7</td>
<td>310</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Curriculum Vitae</td>
<td>312</td>
</tr>
</tbody>
</table>