Chapter 4

PARAMETRIC REGRESSION
MODELS FOR SURVIVAL DATA
WITH COVARIATES

4.1 Notation

Suppose that the distribution of 7" depends on a vector of fixed-time explanatory variables
(covariates) Z = (Z1,Zs,...,Z,)". The right-censored survival data set then consists of

triples (7;,6;,Z;) j=1,2,..,n where

T; = lifetime for the j** policy
. i 1 if policy has lapsed
§; = lapse indicator for the j** policy = I ?O Kfy ?S 'apse
0 if lifetime is right-censored
Z; = (Zj,Zj,...,2Z5) is the vector of explanatory variables for the 4t policy at a fixed time

4.2 Three Approaches to Regression Modelling

The effect of covariates (risk factors on the lapse of policies) must be modelled in order to

predict lifetimes of policies.

Either the conditional survivor function or the conditional hazard function can be modelled

as a function of p fixed covariates or risk factors Z = (21, 2y, ..., Z,)'.
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Three general approaches to regression modelling of survival data will be discussed.

e Accelerated Failure Time Model (AFM)

This model states that the survivor function at time ¢ of a policy with covariate Z
is the same as the survivor function of a policy with a baseline survivor function at a
time t - exp(6'Z) where 8 = (64,63, ...,0,) is a vector of regression coefficients.

e Proportional Hazards Model (PHM)

This model states that the relative hazard rate or hazard rate of a lapse at time ¢
of a policy, with risk vector Z, compared to a policy with the baseline characteristics
(that means Z = 0), is a constant B2 \where B = (5,02, ... 3,) is a vector of
regression coefficients.

e Proportional Odds Model (POM)

This model states that the relative odds or odds ratio of a lapse at time ¢ of a
policy, with risk vector Z, compared to a policy with the baseline characteristics (that
means Z = 0), is a constant B2 yhere B = (51, B2, ..., Bp)’ is a vector of regression
coefficients.

The effect of the covariates in all three models is to alter the scale parameter, while the
shape parameter remains constant.

Parametric regression models are discussed by [9, 7, 13, 16, 24, 26, 35]. A comparison
between the AFM and the PHM is done by [21, 18], while [18] also compare the AFM and
POM. The Weibull AFM and Weibull PHM are compared by [5], and [5] also compares the
log-logistic AFM and the log-logistic POM.

The properties of the different models are compared in the following tables.
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PARAMETRIC REGRESSION MODELS

ACCELERATED FAILURE TIME MODEL

models the survivor function of a policy
with risk vector Z = (Z,Zs, ..., Zp)’
and regression coefficients 8 = (61,65, ...,6,)’

S(t1Z) = So(e? Z1)

S(t|Z) is survivor function at time ¢ for a policy with

risk vector Z

So(t) is baseline survivor function at time ¢ with a
specified parametric form

(' survivor function for a policy whose risk factors all
take the value zero)

= So(t) =S| Z =0)

e effect of covariates is multiplicative on survival

time
, P
o 97 _ exp ZGka is acceleration fac-
k=1
tor

o %2k indicates how risk factor Zj, " speeds up”

or "slows down” the lifetime of a policy

e median lifetime for a given Z is equal to base-

line median lifetime x acceleration factor

ht|Z) = 9 Z ho(e0 Z1)

S(t1Z) = So(e? 1)

PROPORTIONAL HAZARDS MODEL

models the hazard rate of a lapse for a policy
with risk vector Z = (Z1, Za, ..., Zp)'
and regression coefficients 8 = (81, B2, ..., Bp)’

h(t|Z) = ho(t)eB Z

h(t|Z) is hazard rate of a lapse at time ¢ for a policy
with risk vector Z

ho(t) is baseline hazard rate for a policy at time ¢
with a specified parametric form
( hazard rate for a policy whose risk factors all take

the value zero)
= ho(t) =h(t| Z =0)

o effect of covariates is multiplicative on hazard

rate

P
o« BZ _ exp {Zﬂka} is link function

k=1
e ePrZx s risk score for risk factor Zj
k=1,2,..,p

e If Sp(t) is unspecified, the PHM is the
famous semiparametric Cox’s PHM: [23]

h(t)2) = B Z ho(t)

'7Z
S12) = (S




I Parametric Regression Models for Survival Data with Covariatesl

90

Special case: lifetimes are assumed to have a Weibull(}\, o)

Weibull AFM
ho(t) = Aate™?

From AFM: The hazard function of the j** policy

with risk vector Z is
/ ’ a—1
hi(t) = % \a [ee Zt]

= [(¥Z)eNare!
= (@ Z)ho(t)

Also Sy(t) = exp {—At*}

From AFM: The survivor function of the 5** policy

with risk vector Z is

S5(t) = So(e? Z1)

= exp —)\[eglzt]a

= exp —[/\(60 Z)“] -t"‘}
= The lifetime of the j** policy has a
Weibull(A(e? Z), o) distribution

Say that Weibull possesses the
accelerated failure time property

Weibull PHM
ho(t) = dat®™?

From PHM: The hazard function of the 5" policy

with risk vector Z is
h;(t) B2 g1
= [eﬁlz)\]ata'l

= B Zhy(1)

Also Sp(t) = exp {—At}

From PHM: The survivor function of the j** policy

with risk vector Z is

Si(t) = exp{—)\t“}e'@
= exp eﬁlz-(—)\ta)}

= exp —[)\e'B Z] : t“}
= The lifetime of the 5 policy has a
?
Weibull(AeP Z | o) distribution

Say that Weibull possesses the
proportional hazards property
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PARAMETRIC REGRESSION MODELS (continued)

ACCELERATED FAILURE TIME MODEL

models the survivor function of a policy
with risk vector Z = (21,25, ..., Z,)
and regression coefficients 8 = (61,03, ..., 6,)’

S(t1Z) = So(e? Z1)

e effect of covariates is multiplicative on survival
time

e median time to a lapse (with given Z)

= |baseline median time to a lapse] 'z

PROPORTIONAL ODDS MODEL

models the odds of a lapse at time ¢
for a policy with risk vector Z = (21, Zs, ..., Z,,)
and regression coefficients 8 = (51, B2, ..., Bp)’

L s2) _ gz L-S0)
S(t|Z) So(t)

e effect of covariates is multiplicative on the odds
of a lapse at time ¢

e eP:Zx is index for covariate Z;
k=1,2,..,p

e If Sp(t) is unspecified, the POM is the
semiparametric Cox's regression model that
includes a time-dependent covariate to pro-
duce non-proportional hazards
Refer to [25, 3].
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Special case: lifetimes are assumed to have a log-logistic(}, a)

log-logistic AFM

1
From AFM: Sp(t) = FEY

From AFM: The survivor function of the j*" policy
with risk vector Z is
S;(t) = So(e?Z1)
1

1+ A(e‘9'lz £)e

1+ [A(e8 Z)e] - go

= The lifetime of the jt" policy has a
Iog—logistic()\(eglz )%, @) distribution

Say that log-logistic possesses the

accelerated failure time property

log-logistic POM

From Sp(t) = — follows that the baseline

Lt
1+ M
1 — Sp(t)

odds of a lapse at time ¢ is = \t¢
So(t)

From POM: The odds of a lapse of the j*" policy

at time ¢ with risk vector Z is
ﬂ@ — eﬁlz L\
5;(t) ,
= DeBL e

= The lifetime of the 5" policy has a
log-logistic(AcC Z | ) distribution

Say that log-logistic possesses the
proportional odds property
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4.3

Comparison between the AFM and the PHM

The Weibull is the only continuous distribution which has the property of being both
an AFM and a PHM.

The lifetimes under AFM ~ Weibull(A(e? ), o).

The lifetimes under PHM ~ Weibull()\eIB’Z,a).

There is a direct correspondence between the parameters of the Weibull under these
two models. It follows that when the (;'s in the linear component of the PHM are
divided by «, the corresponding 6y’'s of the AFM are determined

Br B

=0, =— or 6 =
(0] (8

The acceleration factor €? Z at the Weibull AFM indicates how a change in covariate
values changes the time scale from the baseline time scale.

The factor e'BIZ at the Weibull PHM indicates how much the baseline hazard rate of

a lapse at any time changes when a policy has covariate vector Z.

Note that eIBIZ is the relative hazard rate of a lapse for a policy with covariate
Z compared to a policy with the baseline characteristics. This relative hazard rate is
called the hazard ratio. This hazard ratio is constant over time (or the hazard rates

are proportional).

The PHM has the property of proportional hazard rates for fixed covariates. The
hazard ratio (relative risk) of a lapse at time ¢ for a policy with risk factor Z, as
compared to a policy with risk factor Z*, is

e (3 Bz )
:((ttllzz*)) e}:j} ZZ;* { = eXp{Z Be(Zy — ZZ}

which is a constant. So the hazard rates are proportional (or the hazard ratio is

k=1

constant).

Estimates of the 8;'s can be used to provide estimates of hazard ratios. For a constant
shape parameter in the Weibull distributions, the hazard ratios may be estimated from
the exponent of the B—values in the Weibull regression model. These estimated hazard

ratios are called risk scores.
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4.4

Comparison between the AFM and the POM

The log-logistic is the only continuous distribution which has the property of being
both an AFM and a POM.

The lifetimes under AFM ~ log-logistic(A\(e? Z )¢, o).

The lifetimes under POM ~ Iog—logistic()\eﬂlz,a).

There is a direct correspondence between the parameters of the log-logistic under these

two models. It follows that when the G;'s in the linear component of the POM are

divided by «, the corresponding 8;'s of the AFM are determined

!
:>9k:@ or GIZE
(8] (0]

The acceleration factor eG’Z at the log-logistic AFM indicates how a change in covari-
ate values changes the time scale from the baseline time scale.

The factor B Z at the log-logistic POM indicates how much the baseline odds of a
lapse at any time changes when a policy has covariate vector Z.

Note that eﬂlz is the relative odds of a lapse for a policy with covariate Z compared
to a policy with the baseline characteristics. This relative odds is called the odds ratio.

This odds ratio is constant over time (or the odds are proportional).

The POM has the property of convergent hazard rates or the property of propor-
tional odds for time-dependent covariates or non-proportional hazard rates for
time-dependent covariates.

: . : hi(t
The ratio of the hazard rate for the j** policy to the baseline hazard rate, namely h] Et;
0
P
converges from the value exp(— Z BrZr) at time t=0 to the value 1 at time ¢ = oo.
k=1

Estimates of the 8;'s can be used to provide estimates of odds ratios. For a constant
shape parameter in the log-logistic distributions, the odds ratios may be estimated
from the exponent of the F-values in the log-logistic regression model. These estimated
odds ratios are called indices.



I Parametric Regression Models for Survival Data with Covariates] 95

4.5 Log-linear Presentation of Models for Survival Data

4.5.1 A linear regression model for the log of the hazard ratio

In the AFM the hazard rate of a lapse for a policy with risk vector Z = (Z;, Zs, ..., Z,)’
and regression coefficients 8 = (01,6, ...,0,)" is modelled as h(t|Z) = ho(t)eolz while in
the PHM the hazard rate of a lapse for a policy with risk vector Z = (Zy, Zs, ..., Z,)" and
regression coefficients 3 = (1, B, ..., Bp)’ is modelled as h(t|Z) = ho(t)eB,Z

The relative hazard rate for a policy with covariate Z compared to a policy with the baseline
characteristics is termed the hazard ratio (relative risk or risk score)

h(tlZ) _ o'z

= eﬂ Z is constant over time
ho(t)

=> hazard ratio =

= log(hazard ratio) is modelled as

p
_0Z-FZ-% pZ
k=1

4.5.2 A linear regression model for the log of the odds ratio

In the AFM the odds of a lapse for a policy with risk vector Z = (Z1, Z,, ..., Z,) and
1-5(t12) _ 0z 1 — So(t)
S(t1Z) So(t)
while in the POM the odds of a lapse for a policy with risk vector Z = (Z,, Z, ..., Z,)' and

-5(12) _ g7 1-5(t)
S5(t1Z) So(t)

The relative odds of a lapse for a policy with covariate Z compared to a policy with the

regression coefficients @ = (61,02, ...,0,)" is modelled as

regression coefficients 3 = (01, B2, ..., Bp)’ is modelled as

baseline characteristics is termed the odds ratio (relative odds or index)

- 5(t2)

= odds ratio = 18 tSZ( = eelz = eIBIZ is constant over time
— 90

So(t)

= log(odds ratio) is modelled as
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- 5(12)
S(t1Z) iy~
In T-50 =,3Z—k2=:lﬁkzk
So(t)

4.5.3 A linear regression model for log-time

Consider the following linear log-time regression model that describes the linear relationship

between log-time and the covariate values.

Y=WT=pu+~2Z+cW

W is the error distribution, p is the intercept, o is the scale parameter and v = (y1, 72, .-, 1p)
is a vector of regression coefficients that are interpretated similar to those in standard normal

theory regression.

A variety of models is discussed by [4] that can be used for W, or equivalently for T" or Sp.
Note that Sy(t) denotes the survivor function of T' = e¥ when Z = 0, that is Sy(t) is the
survivor function of e T W Then the linear log-time regression model is equivalent to
the AFM with 8 = —~.

e If W has the standard extreme value distribution, that is W ~ EV(1,0), with density
f(w) =exp{(w —exp(w))} —oco<w<oo
then T has an underlying Weibull(\, «) distribution. This model leads to

1. an AFM for T with a Weibull baseline survivor function with parameters

/\=exp{“—'u},a:l and Oy =—-—v k=12 ..,p
o o

2. a PHM for T with a Weibull baseline hazard function with parameters

1 —
)\=exp{—'u},a=— and ﬁk=t9koz=ﬂ k=1,2,..,p
o o o

e If W has the standard logistic distribution with density

exp(w)

——_——_(1+exp(w))2 —oco<w <

fw) =

then T' has an underlying log-logistic(A, ) distribution. This model leads to
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1. an AFM for T with a log-logistic baseline survivor function with parameters

— 1
Azexp{—u},azg and O, =—y k=1,2,...,p
g

2. a POM for T with a log-logistic baseline survivor function with parameters

1 _
)\=exp{—ﬂ},a=— and 5k=9ka=ﬂ k=1,2,..,p
o o o

4.6 Maximum Likelihood Estimation

4.6.1 Introduction

The standard way of fitting parametric regression models to an observed set of survival
data with covariates is to use the method of maximum likelihood. Maximum likelihood
estimation for the Weibull and log-logistic regression models has been discussed in [18, 22].
The construction of the likelihood functions for continuous and grouped survival data with

covariates is now discussed.

4.6.2 Likelihood function for random right-censored continuous data

The right-censored survival data set consists of triplets (7;,6;,Z;) j=1,2,..,n where

T; = lifetime for the j* policy
1 if policy has lapsed
6; = lapse indicator for the jth policy = I [?O |.y ?S ) P
0 if lifetime is right-censored
Z;, = (Zj,Zj,...,Zjp) is the vector of explanatory variables for the 4 policy at a fixed time.

The likelihood function is constructed by considering the contribution to the likelihood of
the triplets (7},6; =1,Z;) and (1},6; = 0,Z;) separately j=1,2,...,n.

e For a specific triplet (¢,8; = 1, Z) the observed survival time is t. Thus the contribution
to the likelihood of this triplet is the probability that a policy with covariate vector Z
lapse at time t. This probability is given by the density function f(¢|Z).

e For a specific triplet (¢,6; = 0, Z) the survival time is at least ¢. Thus the contribution
to the likelihood of this triplet is the probability that a policy with covariate vector Z
survives at least time ¢t. This probability is given by the survivor function S(t|Z).
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The complete likelihood for the i** policy under random censoring is

[£(6512:01% x [S(t1Z5)% j=1,2,...m (4.6 1)

Under the assumption of n independent censored and observed survival times, the full
likelihood function is obtained by multiplying the respective contributions of the n triplets.
This gives the likelihood function

n

L(n) = [T F(t:1Z:))% - [S(t: Z)]0 (4.6 .2)

=1

where 7 is the vector of parameters of the survival model. The log-likelihood function
InL(n) = 3" {8 - n[f(:|Z:)] + (1 — 6,) - W[S(&I Z0)]} (46 .3)
i=1

is maximized to obtain the maximum likelihood estimators of the unknown parameters 7).
The procedure to obtain the values of the MLE involves taking derivatives of In L(n) with
respect to 7, setting these equations equal to zero, and solving for 7.

4.6.3 Likelihood function for right-censored grouped data

Consider the grouped data case, as in [24], where the n lifetimes of policies are grouped
into k adjacent, non-overlapping fixed intervals

Ij = [aj_l;aj) ] — 1,2, ,k
with ag = 0 and a; = oo.

For complete data, the n observed lifetimes are grouped into k intervals so that
n=d; + dy + ... + di with dj=number of lapses in I;.

The unconditional probability of a lapse in I; is

m;i(n) = S(aj-1,m) — S(a;,m) j=1,2,..,k.

Then (dy,dy, ..., dx) has a multinomial probability function

n!

mﬁ(ﬂ)dlﬁz(n)‘b---Wk(n)d’“-
The likelihood function can thus be taken as
k ) — . dj
L(n) =n!T] {[S (“3—17"7)(1 'S (aj,m)] } (4.6 .4)
=1 i
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For incomplete data, where the n censored and observed lifetimes are grouped into &
intervals, it is further assumed that the W) censored lifetimes in I; occur at the midpoint
of the interval a} = a;_1 + 3h; with h; = a; — a;_, the length of interval I;.

For interval I; = [a;_1; a;), conditional on surviving till a;_;,

e the probability of a lapse is

os(n) = s =S

e the probability of surviving until aj is

* _ S(aj—lﬂ’l) - S(a;an)
pj (77) - 5(%’-1, 77)

e the probability of surviving the full interval I; is

pi(n) = 1-g;(n)
_ 1 Sla-1,m) = S(a,m)
' S(aj-1,m)
S(CLj,T])
S(a;—1,m)

The conditional likelihood for interval I; is

Litm) o lgs(m]*® - [p5(m]™ - [ps (m)]5 57" (4.6 .5)

where Y; is the number of policies at risk of lapsing in I;, that is still alive at a;_;.

The overall likelihood function is

L(n) = [] L;(n) (4.6 .6)

If class intervals are narrow, another possibility is to treat the data as continuous and assume
that all lifetimes in interval I; occur at the interval midpoint.

4.6.4 Likelihood function for the linear model in log-time

A log-linear regression model (a linear regression model in log-time) is discussed by [22] and
could be fitted to a survival data set of the form

Y=InT=pu++Z+cW
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where W is the error distribution, p is the intercept, o is the scale parameter and ~' =
(71,725 ---,Yp) is @ vector of regression coefficients.

Consider the n triplets (y;,6;,Z;) j =1,2,...,n in the data set with y; = In(¢;).

The basic form of the likelihood function for random right-censored continuous data is,
from Equation 4.6 .2, equal to

n

Lwv,0) = [T @)% - Sy

=1

n

= H[fw(%——ﬂ)%ri'lsw(&———’%—lg)r& (4.6 .7)

=1

The log-likelihood function for random right-censored continuous data is

'Z, 1 i — =
InL(p,y,0) =3 6; - ln[ +7— ;] +3(1-6)-In [Sw(y—’%-l%)]
(4.6 .8)
with
the first sum over observed lifetimes (uncensored observations)

the second sum over right-censored observations.

The basic form of the likelihood function for interval-censored data is
i 51 —Uq 6,, —0;
L(p,v,0) = [[lfv(w) Sy ()] 6 1= Sy ()% - [Sy (B:) — Sy ()] 6
i=1

n

- I w2 )-l]& Jswi=t=E )}1_&-

g g g

i=1
0 1-6;
Yi— k=772 b — p—~'Z '
[1 Sw( > )} lSW( - ) SW(—G )
(4.6 .9)
with b; the lower end of a censoring interval.
The log-likelihood function for interval-censored data is
- ~'7Z 1 —~'Z
inLurio) = S8 hn [ 2500 s BT
i~ h—Z
+3°(6:) - In [1 - sw(y——“a—'y)]

+3(1-6)-In lsw(b —£) —Sw(w)}
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(4.6 .10)
with

the first sum over observed lifetimes (uncensored observations)
the second sum over right-censored observations

the third sum over left-censored observations

the fourth sum over interval-censored observations.

4.6.5 Maximum likelihood estimators

Maximum likelihood estimates for the Weibull and log-logistic regression models must be
found. Most computer software packages for survival analysis, including SAS, use the linear
log-time regression model version. Refer to [4]. Maximum likelihood estimators of the log-
linear parameters u, o and 4’ = (y1,72, ..., ¥p) are found numerically, and routines to do so
are available in the SAS statistical package. SAS allows for right-, left- and interval-censored
data. The SAS program appear in Appendix A.

The invariance property of the SAS maximum likelihood estimators of pu,0 and v, k =
1,2, ..., p in the log-linear model provides estimates of parameters of the three models (AFM,
PHM or POM). Then the parameters of the three models are functions of these estimates

and can be computed in the following way:

e If W has the standard extreme value distribution then T" has an underlying Weibull(}, «)
distribution. The linear model for log-time then leads to

1. an AFM for T' with a Weibull baseline survivor function with estimated parameters

izexp{;ﬂ},&z
o

2. a PHM for T with a Weibull baseline hazard function with parameters

and Oy =—9, k=1,2,...,p (4.6 .11)

SHE

) . S
)\=exp{—#},€y=7 and fi=6a=—2 k=1,2,...p (4.6.12)
g ag ag

e If W has the standard logistic distribution then T' has an underlying log-logistic(\, &)
distribution. The linear model for log-time then leads to

1. an AFM for T" with a log-logistic baseline survivor function with parameters

~ — 1 ~
)\:exp{#},&:g and Oy =—7 k=1,2,..,p (4.6 .13)
G
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2. a POM for T with a log-logistic baseline survivor function with parameters

. —i 1 . . _~
A=exp{#},a=T and Gp=6ia=—L k=1,2..,p (46.14)
ag ag ag

The variance-covariance matrix of the log-linear parameters pu, 7 and o, obtained from the
observed information matrix, are also available in this package.

Using the delta method, the approximate variance-covariance matrix for these estimates,
based on the estimates and their covariances in the log-linear model, is

cov(s ) _ o cov(05,0) _ 5 cov(ik6) | o o var(o)

co’u(ﬁjyék) = —2 VT3 53 + YiVk 4 (4.6 .15)
o -2 var(ft) — ,var(6) cov(f1, )
var(A) = exp( P ) : l s T 2 e (4.6 .16)
) var(d)
var(&) = = (4.6 .17)
5 3 —p\ feov(d, ) . cov(§;,6) . cov(@r,6) . . var(6)
cov(fB;,A) = exp <7) ’ l &2] i &3] THhT 3 +7j#T
(4.6 .18)
s cov(y;, 0 . var(o
cov(Bj,&) = (&; ) - &i ) (4.6 .19)
cov(j\,éz) = exp (l) . lcov(f;,U) - 'avat‘ia) (4.6 .20)
o o o

Once maximum likelihood estimates of the parameters A and a are computed, estimates
of the survivor function and the hazard function are available for the distribution of T (or
Y =In(T)), that is the Weibull (or extreme value) and log-logistic (or logistic).

In the above regression models, the effect of the covariates is to alter the scale parameter,
while the shape parameter remains constant. The article [28] discusses how to extend
the semi-parametric Cox’s PHM to alter both the scale and the shape parameters. The
standard parametric regression model fitting that is performed by PROC LIFEREG of SAS
can not alter both parameters, but the method of maximum likelihood estimation subject

to constraints in the next section can do it.

Graphical checks to determine whether or not a certain parametric model is reasonable, is
given by [4]. These tests are based on the linear relationship between some function of the

survivor function and some function of time.
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4.7 Maximum Likelihood Estimation subject to Constraints

4.7.1 Introduction

The parametric regression model must describe the basic underlying distribution of survival
time, but it must also characterize how that distribution changes as a function of the

covariates. The effect of the covariates is

e to alter the scale parameter, while the shape parameter remains constant.

e to alter both the scale and the shape parameters.

In the case of grouped survival data, a survival distribution is fitted for each level of a
risk factor or combination of levels of risk factors by using maximum likelihood estimation
subject to constraints for estimating the parameters of the regression model. A detailed
description of the development of this theory is given for one categorical risk factor on
three levels, where the effect of the risk factor is either to keep the shape parameter «
constant or to alter it. Then it is shown how to deal with a continuous risk factor when
fitting the regression model when the shape parameter remains constant. In the last part of
this chapter, the theory is extended to a regression model with two categorical risk factors.

The fitting of a log-logistic regression model and a Weibull regression model will be discussed
for staggered entry of policies. These two distributions are used, because the log-logistic
is the only continuous distribution which has the property of being both an AFM and a
POM and the Weibull is the only continuous distribution which has the property of being
both an AFM and a PHM.

4.7.2 Notation for a regression model with one risk factor at stag-
gered entry

Consider a categorical risk factor A on three levels A;, Ay and As.

The notation for staggered entry of policies with four different entry periods, as described
in chapter three, can be extended in the following way when fitting a regression model with
one risk factor. For simplicity, assume that k, the number of class intervals for the first

entry, is equal to seven,

The combined relative frequency vector p’ is defined as
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P = (P1.Po1 P51, P11, P2 Pho P Pao P3Pz Psz Plas )
p; is the relative frequency vector for the i** entry group and the I** level of risk factor A,
corresponding to n;p, being multinomial (n;; ;) distributed

1=1,2,3,4 and [=1,2,3.

, - )
Pu = (P11, P2, Pu3s Pua, Pis, Pus, puz) is a 7 X 1 relative frequency vector
;. )
Doy = (D2u1, P12, P23, Para, Pars, Pars) i a 6 x 1 relative frequency vector
;. .
Dy = (P31, Ps1,2, P33, Paias Pars)' is a b x 1 relative frequency vector

Py = (Par1, Par2, Pai s, Paa) is @ 4 X 1 relative frequency vector

and

). .
1 = (M1, 102, T1,3, T4, T10,5: T106, T11,7) 15 @ T X 1 probability vector

Il

31,1 731,25 31,3, 31,4, 7r3;,5)’ isabxl1 probability vector

- -
Ty = (7T2171,7T2l’2,71'2173, 7T2[14,7T2;’5,7T2176) sabx1 probablllty vector
T3 (
Ty = (71'4171,71’41’2,7'1'41’3,77'41,4), isadxl probability vector I = 1,2,3.

The vectors &; i=1,2,3,4 of upper class boundaries for the i** entry group are

z
T
Z9 T
T2 I
x3 ) L2 d _
rp = Lo = x3 Ir3 = . an Ty = )
Ty 3
Ty T3
M z Ty
5
Ze

The number of entries per cell in the cross tabulation of entry period and risk factor A can
be summarized in table 4.1.
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Table 4.1: Number of entries per cell in cross table of entry period and risk factor A

Entry Risk Factor A Total
Period | Level A; Level Ay Level A
1 7 7 7 21
2 6 6 6 18
3 5 5 5 15
4 4 4 4 12
Total 22 22 22 66
Define matrix S as
S 4,
S=1| Sy
S A,
where S 4, = block(S1,S2,S3,S4) 1=1,2,3 with
1 0 0 00 0O
1 1.0 0 00O
Sl _ 1 110000
1 111 000
1 1 11100
1111110
100 0 0O
1 1.0 0 0 O
S;=]1 11000
1 11100
1 11110
1 0 0 0 O
S, = 1 1 0 0 O
1 1100
1 1110
1 0 0O
S4 = 1 1 00 .
1 110
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S is a 54 x 66 matrix. S 4, is a 18 x 22 matrix  1=1,2,3 and has the following form.

1.0 0 0 0O O O 0 0 0 0 0 O 0 0 0 0 O 0O 0 0 O

1 1.0 0 0 0 O 0O 0 0 0 0 O 0 0 0 0 O 0 0 0 O

11 1 0 0 0 O 0O 0 0 0 0 O 0 0 0 0 O 0O 0 0 O

11 1 1 0 0 O 0O 0 0 0 0 O 0O 0 0 0 O 0 0 0 O

11 1 1 1 0 O 0O 0 0 0 0 O 0O 0 0 0 O 0 0 0 O

11 1 1 1 1 0 0O 0 0 0 0 O 0 0 0 0 O 0O 0 0 O

0O 0 0 0 0 o0 O 1 0 0 0 0 O 0 0 0 0 O 0O 0 0 O

0O 0 0 0 0 o0 O 11 0 0 O O 0 0 0 0 O 0O 0 0 O

S _ 0 0 0 0o 0O o0 O 11 1 0 0 O 0 0 0 0 O 0O 0 0 O
A — 0 0 0 0 0 0 O 111 1 0 O 0 0 0 0 O 0O 0 0 O
0O 0 0 0 0 0O O 11 1 1 1 0 0 0 0 0 O 0 0 0 O

0O 0 0 0o 0O O O 0O 0 0 0 0O O 1 0 0 0 O 0O 0 0 O

0O 0 0 0 0O O O 0O 0 0 0 O O 1 1 0 0 O 0O 0 0 O

0O 0 0 0o 0o o0 O 0O 0 0 0 0 O 11 1 0 0 0O 0 0 O

0O 0 0 0 0 o0 O 0o 0 0 0 O O 1 1 1 1 0 0O 0 0 O

0O 0 0 0 0 O O 0O 0 0 0 0 O 0 0 0 0 O 1 0 0 O

0o 0 0 0 O o0 O 0O 0 0 0 0 O 0O 0 0 0 O 11 0 O

0o 0 0 0 0 0 O 0 0 0 0 0 O 0 0 0 0 O 11 1 0

The variance-covariance matrix V to be used is the estimated variance-covariance matrix of
the multinomial distribution for each combination of entry period and risk factor level

EE /‘7 = b|OCk(/‘7A1, VAQ, /VA:;)
where
V4, = block( V1 4,, Voa,, V34, Vau,) 1=1,2,3

and
— 1
Vz',A,=n—[diag(pa)~pupéz] i=1,2,3,4 and 1=1,2,3
2l

Note that /‘71,,4, isa7x7, /‘727,41 isabxo6, /‘73,,4[ isabxband /‘74,,4[ is a 4 X 4 matrix
so that /‘7,41 isa22x22matrix [=1,2,3and Vis a 66 x 66 matrix.

4.7.3 The log-logistic regression model: staggered entry, shape pa-
rameter remains constant

In this model the effect of the risk factor is to alter the scale parameter A, while the shape

parameter o remains constant.

Equation 3.3 .23 can be extended to take covariates into account as follows:

ln(%:Q):lnA-l+ﬁ'Z+a-lnw (4.7 .1)

Consider a risk factor A on three levels A;, Ay and A;. Two dummy variables Z4, and Z,4,

are defined for levels A; and A, in such a way that the regression coefficient (54, of level
3

As is equal to —(84, + Ba,), that means {Z 5Ak} =0.

k=1



I Parametric Regression Models for Survival Data with Covariatesl 107

Then Equation 4.7 .1 becomes

In (1;(—1(;”)> =InA-1+ (84,24, +BayZa,) +a-Inz (4.7 .2)

or

S(x) 1- F(z) 1-—7mg
1 1 0 Inx;
1 1 0 lIl.’.l!z
1 1 0 In x5
1 1 0 11’11'84
1 0 1 Inz,
1 0 1 In x4
= InA-. + . & g +a
1 b 0 Baz 1 In 3
1 0 1 In x4
1 -1 -1 In
1 -1 -1 111332
1 -1 -1 In x5
1 -1 -1 Inzy
1 1 0 Inz
1 1 0 Inx
1 1 0 Inzs
1 1 0 1111134
1 0 1 Inxz In A\
B 1 0 1 Inx Ba,
- 1 0 1 11'1:123 IBA2
1 0 1 Inzy o
-1 -1 ln:cl
-1 -1 Inxz,
-1 -1 Inzs

1 -1 -1 Inzy
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In )\

=>1n( s ) = X, | P (4.7 .3)
1—775’ BAz
«

Equation 4.7 .3 is a linear model in the parameters In \, (4,, B4, and a. This model is

equivalent to

o xknrx ) n(f) — o

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
C.Xl = 0

The function g(7) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the \'s and a's of the log-logistic distributions for the three levels
of the risk factor A.

To summarize, the constraints imposed by the log-logistic distribution are specified by

™ S
g(m) = C'.ln{1 —5‘;1'5} =C.In [m] =C.[In(S-7)—In(1—-S-m)]=0
(4.7 4)
with
C=1I-X,(X/X)'X, . (4.7 .5)

The derivative of g(7r) with respect to 7 is

. -
= C- [diag (ﬂ'is) + diag (1 —171-5)} -S (4.7 .6)
= C-[Dy7'+ Dy 8 (4.7 .7)

where D3 and D, are diagonal matrices with the elements of g and 1 — g, respectively,

on the main diagonal.
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The estimated vector of probabilities in this case is

~ / O\ * Sp
#.=p— (G, V) (G,VG,) -C.ln{l_s.p} (47 8)

with S and /‘7 the estimated variance-covariance matrix, defined in section 4.7.2

Since Equation 4.7 .8 is still a function of the unknown parameter 7, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 4.7 .8 has
converged, the estimated parameters of the three log-logistic distributions can be solved

from -
In A
BA1 ! —1y 7 S.-7.
S =(X1X1)" X In{ ——— 4.7 .
N I e b Py 47.9)
a

and B4, = — (BAl +BA2>-

The estimated lambda parameters of the three log-logistic distributions for the three risk

factor levels then are L
Mg, = exp(ln+ Ba,)

i, = exp(Inh+ Ga,)
A, = exp(Inh+ fBa,).
Consider Equation 4.7 .2 where In(odds) is modelled in terms of dummy variables Z4, and
Za,
= In(odds) =In A -1+ (Ba,Za, + BayZa,) +a-Inx

Take the summation over the risk factor levels, that gives

> {In(odds)} = {InA-1} + > {(Ba, - Za, + Bay - Za)} + ) _{a-Inz},
but

S ABay - Zay, + Bay- Zay)} = (Bay-1+ Bay-0) + (Bay -0+ Bay.1) + (Ba,-(=1) + Ba,.(—1))
= Ba, + Ba, + Ba,
— 0,

therefore
> {In(odds)} =Y {lnx-1} +> {a-Inz}.

= average{ln(odds)} =InA-1+ o Inz.

The baseline log-logistic model in this context is defined as the log-logistic model at this

average value of In(odds).

The estimated lambda parameter of the baseline log-logistic distribution then is

Xo = exp(In \)
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so that R R
Aa, = Ao xexp(Ba,)
A, = Ao xexp(Ba,)

~ ~

/\A3 = )\0 X exp(ﬁA3).
These four log-logistic distributions all have the same estimated alpha parameter a.

The SAS/IML program to fit a log-logistic regression model (constant shape parameter) to
grouped survival data with staggered entry of policies appears in Appendix A.

4.7.4 The log-logistic regression model: staggered entry, shape pa-
rameter alters

In this model the effect of the risk factor is to alter both the scale parameter A and the
shape parameter c.

Then Equation 4.7 .1 becomes

In <1_—S(“’)) —Tn (M) —In (—35—) —In(mg) —In (1 — )

S(x) 1-— F(x) 1—mg
1 1 0 In x4 0 0
1 1 0] In x5 0 0
1 1 0 In x5 0 0
1 1 0 In x4 0 0
1 0 1 0 In =, 0
1 0 1 0 In 25 0
L[ TP o Paac| A 0 427 In g, . 0
1 0 1 0 Inzy 0
1 -1 -1 0 0 In zy
1 -1 -1 0 0 In a9
1 1 -1 0 0 In 25
1 -1 -1 0 0 In 24
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1 1 0 Inz; O 0

1 1 0 Inz, O 0

1 1 0O Inxs O 0

1 1 0 Inzy O 0
In A
1 0 1 0 Inz O B,
|10 1 0 mzm o Ba,
" ]/1 0 1 0 Inz O o,
1 0 1 0 Inzy O o4,
Qp,

1 -1 -1 0 0 Inz

1 -1 -1 0 0 Inz

1 -1 -1 0 0 Inzs

1 -1 -1 0 0 Inxzy
In A
Ba,
s ()= X | P
1—7mg p,
aa,
Qa,

This is a linear model in the parameters In A, B4,, Ba,, @4, @4, and ay,. This model is

equivalent to

(I—Xl(Xl'Xl)‘1X1’>-ln< s ) — 0

-— 1—71'3
C ln( s ) =0
N l_ﬂsl

g(m) =0

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX,=0.

The function g(7) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the \'s and a's of the log-logistic distributions for the three levels
of the risk factor A.

To summarize, the constraints imposed by the log-logistic distribution are specified by
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g(m) = C.ln{ s }:C.ln lﬂ—} =C.[In(S-7w)—In(1-S-m)]=0

1- Ts 1-S «
(4.7 .10)
with
C=I-X,(X/X) X, . (4.7 .11)
The derivative of g(7r) with respect to 7 is
_ Og(m)
Gr = or
. 1 _ 1
= C- [dwg <7T_s> + diag (1 — ﬂ's)] -8 (4.7 .12)
= C-[Dy7'+ D78 (4.7 13)

where

D3 and D, are diagonal matrices with the elements of g and 1 — 7g, respectively, on the
main diagonal. S is a matrix composed from three matrices associated with the three levels
of risk factor A.

The estimated vector of probabilities in this case is

with S and /‘7 the estimated variance-covariance matrix, defined in section 4.7.2

Since Equation 4.7 .14 is still a function of the unknown parameter 7, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 4.7 .14 has
converged, the estimated parameters of the three log-logistic distributions can be solved
from A
In A
i
gj‘: =(X/X)'X{ In {————-—1 f,.sﬂ.-cﬁ-c} (4.7 .15)

OéA2

OiAq
and fBa, = — (BAl + BAQ)-

The estimated lambda parameters of the three log-logistic distributions for the three risk
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factor levels then are L
A, = exp(InA+ Ba,)

A, = exp(lﬁ—i—ﬁAg)
A, = exp(ln\+ Ba,).

The estimated lambda parameter of the baseline log-logistic distribution then is
Xo = exp(In \)

so that

The estimated shape parameters of the baseline and the risk factor level log-logistic distri-
butions are

aa,

aa,

QAg.

The SAS/IML program to fit a log-logistic regression model (shape parameter alters) to
grouped survival data with staggered entry of policies appears in Appendix A.

4.7.5 Deriving of indices and risk scores from the log-logistic regres-
sion model

Once the parameters of the log-logistic baseline distribution and log-logistic risk factor level
distributions have been estimated, estimated hazard and survivor functions, odds of a lapse,

odds ratios and hazard ratios at time ¢ can be calculated.

The odds ratio for risk factor level A; is the relative odds of a lapse at time ¢ of a policy,
with level A; characteristics, compared to a policy with the baseline characteristics. The
odds ratios for the three risk factor levels result in a set of indices, showing the effect of
each risk factor level on the baseline odds of a lapse at time t.

The hazard ratio for risk factor level A; is the relative hazard rate of a lapse at time t of a
policy, with level A; characteristics, compared to a policy with the baseline characteristics.
The hazard ratios for the three risk factor levels result in a set of risk scores, showing the
effect of each risk factor level on the baseline hazard rate of a lapse at time t¢.

Percentiles of the four log-logistic survival distributions can also be estimated.
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Log-logistic regression model

Shape remains constant

Estimated hazard function

~ X\ .a.ta—l
ho(t):—gﬁ
1+ Ao -t9)
-~ X, @t
hAi(t) A TXr

(14 A4, 'ta)

Estimated survivor function

1
So(t) = —
0() 14+ Xp-t™
~ 1
Sa,(t) = —————=
1+/\Ai-t°‘

Estimated odds of a lapse

oddsg )= —1%:)@)

0

:XO'ta

oddsa, (t) = %“(‘;)@ =, 1o

Estimated odds ratio or index

oddaratioa, (t) = 22454:(8) _ A 17
OddSO(t) )\0 Lo

Estimated hazard ratio or risk score

— ha ) a1+ Aot®
hazardratioga, (t) = ,14;() = & . (—_'_A—O-T)
ho(t) Ao (14 Aate)

Estimated percentiles of lifetime distributions

1
L 1 P )E
baseline t, = [ — + ——
: ()\0 (100 — p)
1
—~ 1 P a
red. level t, = i
’ ’ (xA,., (100—p))
_1
— baseline f,- (index) @

Shape parameter alters

Estimated hazard function

Ao - Qg - t@o~1

ho(t) = D
ot (14 Ao - t)

Estimated survivor function

1

§0t =—=
© 14 Ao -t

~ 1
Sa,(t) = ——————
1+ Ay, - o4

Estimated odds of a lapse

1-5%®) _+ 3

OTiESO(t) =" =Xyt
So(t)
OTi\dSAi(t) = L?:M)- = XA,; . taAi
Sa; (t)

Estimated odds ratio or index

OEESAi(t) . B\\Ai . ta\Ai

oddsratio, (t) = — A
®) oddso(t) Ao - to°

Estimated hazard ratio or risk score

_ fa® 3 Aot
hazardratioy,(t) = 17:4_1@_ = -/;éi . -—(-}j-g)i;:—)-
ho(t) Ao (1+ A, to4)
Estimated percentiles of lifetime distributions

1

~ 1 o
baseline tp = (X_ D (loop;p)) a0
0 —

~ 1 P @a,
pred. level t, = | =— - ———
F ()‘Ai (100 - p) )

1=1,2,3
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The estimated odds ratios are called indices. The index of a risk factor level shows the effect
of this level on the baseline odds of a lapse. This effect is multiplicative on the baseline
odds of a lapse and increases the baseline odds of a lapse (if the index > 1) or decreases
the baseline odds of a lapse (if the index < 1).

The estimated hazard ratios are called risk scores. The risk score of a risk factor level shows
the effect of this level on the baseline hazard rate of a lapse. This effect is multiplicative on
the baseline hazard rate of a lapse and increases the baseline hazard rate of a lapse (if the
risk score > 1) or decreases the baseline hazard rate of a lapse (if the risk score < 1).

Consider the risk factor A on three levels A;, A, and Aj;. Recall that the proportional
odds model (POM) models the odds of a lapse at time ¢ for a policy with risk vector
Z = (21,2, ..., Zy)' and regression coefficients 3 = (61, B, ..., Bp)’

= lodds,(t|Z) = P Z - oddso(t) 1=1,2,3.

This property of constant odds ratios over time only holds when the shape parameter of the
log-logistic distributions of the baseline and risk factor levels remains constant.

Two dummy variables Z4, and Zy4, are defined for levels A; and Ay in such a way that the
regression coefficient 34, of level A3 is equal to — (84, + [4,). From the POM follows that

ddsa, (t|Za, = 1,24, =
OddSAl (tIZAl = 17ZA2 — 0) — e(ﬁA1.1+ﬁA2.O)_0ddso(t) N o SAl( l Az y LAy O) _ eﬁAl

OddSO(t)
= oddgr\atioA1 — P = )‘71—£= _ A4
Ao - t° Ao

This means that for a constant shape parameter in the log-logistic distributions, the
indices (estimated odds ratios) may be obtained also from the exponent of the estimated

(-values in the log-logistic regression model.

4.7.6  The Weibull regression model: staggered entry, the shape pa-
rameter remains constant

In this model the effect of the risk factor is to alter the scale parameter A, while the shape

parameter . remains constant.

Equation 3.3 .11 can be extended to take covariates into account as follows:

In(~InS(z))=InA-1+08Z+a-hnz (4.7 .16)
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Consider again a risk factor A on three levels Ay, A, and A3 for which two dummy variables
Za, and Z, are defined. The staggered entry of policies occurs during four entry periods

and k, the number of class intervals for the first entry group, equals seven.

Then Equation 4.7 .16 becomes

In(—InS(z)) =In\- 1+ (8a,Za, + Ba,Za,) +-Inx

or

In(~nS(z)) = In(—In(l— F(x)) =1

1
1
1
1
1
1
= ]_nA- +6A1.
1
1
1
1
1
1
1 1 0 Inxz,
1 1 0 hlil)g
1 1 0 Inzs
1 1 0 11’1:1!4
1 0 1 Inxz;
N 1 0 1 lna:2
|1 0 1 Inzs
1 0 1 Inzy
1 -1 -1 Inxz,
1 -1 -1 Inxz,
1 -1 -1 Inzs
1 -1 -1 111034

e

o © O O

+/8A2'

In X\

Ba
Ba,

(—In(1 — 7mg))

o O O O

e

(4.7 .17)

In T
In x5
In 23

In Ty

In T
In Ty
In 3
In Ty

In 2
In o
In 3
In 24
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In X

Ba,
Bay

(8}

= In(—In(1 —7wg)) = X, (4.7 .18)

Equation 4.7 .18 is a linear model in the parameters In A, S4,, B4, and . This model is

equivalent to

\(1 - Xl(Xl'Xl)_le’))-ln(—ln(l —mg)) = 0
EJ’ ‘In(-In(1l—=mg)) = 0

i s
'

g(m) =0

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX,=0.

The function g(#) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the A's and a's of the Weibull distributions for the three levels of
the risk factor A.

To summarize, the constraints imposed by the Weibull distribution are specified by

g(m)=C.In{-In(1 —7g)} =C.lIn{-In(1-8S-m)} =0 (4.7 .19)

with
C=TI-X,(X/X)'X, . (4.7 .20)

The derivative of g(7r) with respect to 7 is

_ Og(m)
Gr = on
— _Cdiag[———) .ai ( ! ) S (4.7 21)
N g In(1 — 7g) I\ "7 o
- -C-D,'-D,'. 8 (4.7 .22)

where

D; and D, are diagonal matrices with the elements of In(1—g) and (1 —7g), respectively,

on the main diagonal.
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The estimated vector of probabilities is in this case

Ro=p— (Gﬂv)'(GpVG;)*.c,ln{lf—&}. (4.7 .23)

with S and V the estimated variance-covariance matrix, defined in section 4.7.2

Since Equation 4.7 .23 is still a function of the unknown parameter 7r, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 4.7 .23 has
converged, the estimated parameters of the three Weibull distributions can be solved from

In A
gAl _ (X1/X1)—1X1/ . ln(—ln(l - S 7’-{-0)) (4.7 .24)
Az '

a
and B4, = — (BA1 + BAQ)-

The estimated lambda parameters of the three Weibull distributions for the three risk factor

levels then are L
A, = exp(InX+ Ba,)

A, = exp(InA+Fa,)
A, = exp(ln+ Ba,).
The estimated lambda parameter of the baseline Weibull distribution then is

Xo = exp(In))

so that R R R
Aa, = Mo X exp(fa,)
XAZ = Mo X exp(AA2)
Mg = Ao x exp(Ba,).

These four Weibull distributions all have the same estimated alpha parameter a.

The SAS/IML program to fit a Weibull regression model (constant shape parameter) to
grouped survival data with staggered entry of policies appears in Appendix A.

4.7.7 The Weibull regression model: staggered entry, the shape pa-
rameter alters

In this model the effect of the risk factor is to alter both the scale parameter A and the

shape parameter o.
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Then Equation 4.7 .16 becomes

=InA\-

- e e - e

e e

119

In(—InS(z)) =In(-In(1 - F(z))) =In(—In(1 — 7))

+ B4, -

1 0 In 2,
1 0 In x5
1 0 In x5
1 0 Inzy
0 1 0
0 + B4, - ! +og, - 0 +ay, -
0 Aa 1 Ay 0 Az
0 1 0
-1 -1 0
-1 -1 0
-1 -1 0
-1 -1 0
1 1 0 Inz;, O 0
1 1 0 Inzy, O 0
1 1 0 Inxs 0 0
1 1 0 Inzy, O 0
1 0 1 0 Inz O
1 O 1 0 Inzx 0
1 0 1 0 Inzs O
1 0 1 0 Inzsy O
1 -1 -1 0 0 Inxz,
1 -1 -1 0 0 Inz
1 -1 -1 0 0 Inzs
1 -1 -1 0 0 Inzy
=In(—In(l —mg)) = X,

0 0
0 0
0 0
0 0
In A 0
In o ta 0
Inzs As 0
In T4 0
0 In A
0 In zo
0 Inzj
0 Inxy
In A
Ba,
By
a A,
a4,
(01 As
In A\
Ba,
/BAQ
o Al
Q Ao
*Aq

This is a linear model in the parameters In A, B4,, B4,, @a,, @4, and a4,. This model is



I Parametric Regression Models for Survival Data with Covariates 120

equivalent to

(T - Xy(X1'X1) 7' Xy) - In(~In(1 —7g)) = 0

C ‘In(-In(l—-7mg)) = 0

J

v~

g(m) - =0

C is the projection matrix orthogonal to the columns of the design matrix X ;. Note that
CX] - O

The function g(7r) = 0 satisfies the conditions of Proposition 1 and the estimation algorithm
can be used to estimate the \'s and a's of the Weibull distributions for the three levels of
the risk factor A.

To summarize, the constraints imposed by the Weibull distribution are specified by

g(w)=C.In{-In(1 —7mg)} =C.In{—In(1-8-7m)} =0 (4.7 .25)

with
C=1I-X,(X/X)'X, . (4.7 .26)

The derivative of g(7) with respect to 7 is

_ Og(m)

Gr = “on 7
_ _C-diag [ ————) - dia ( ! ) S (4.7 27)
N 149 ln(].—ﬂ's) g 1—-mg o
= -C-D;/'-Dy,'-8S (4.7 .28)

where

D, and D, are diagonal matrices with the elements of In(1—7g) and (1—7g), respectively,

on the main diagonal.

The estimated vector of probabilities is in this case

* S:p
= _ / 4 .
7.=p—(G.V) (G, VG),) C'ln{—_l—S-p}' (4.7 .29)

with S and /‘7 the estimated variance-covariance matrix, defined in section 4.7.2

Since Equation 4.7 .29 is still a function of the unknown parameter 7, the double iterative
procedure must be implemented. Once the iterative procedure in Equation 4.7 .29 has
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converged, the estimated parameters of the three Weibull distributions can be solved from
In A
Ba,

5A2 ’ -1 ’ S -7,
=(X1X X In{—F— T
a, (X1'X4) S -y (4.7 .30)

aA2

OAs
and B4, = — (3,41 + BAQ)-

The estimated lambda parameters of the three Weibull distributions for the three risk factor

levels then are

~ —— ~

Ay, = exp(lnA+ fBa,)

~ —— ~

A, = exp(InX+ Ba,)

~ — ~

M; = exp(InA+ Ba,).

The estimated lambda parameter of the baseline Weibull distribution then is

Xo = exp(In \)

so that R R R
/\A1 = /\0 X exp( Al)
XA2 == XO X exp(BAz)
XAg = X0 X eXp( AAa)'

The estimated shape parameters of the baseline and the risk factor level Weibull distributions
are

aa,

Qg

Qpg.

The SAS/IML program to fit a Weibull regression model (shape parameter alters) to grouped
survival data with staggered entry of policies appears in Appendix A.

4.7.8 Deriving of indices and risk scores from the Weibull regression
model

Once the parameters of the Weibull baseline distribution and Weibull risk factor level dis-
tributions have been estimated, estimated hazard and survivor functions, odds of a lapse,

odds ratios and hazard ratios at time ¢ can be calculated.
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The odds ratio for risk factor level A; is the relative odds of a lapse at time ¢ of a policy,
with level A; characteristics, compared to a policy with the baseline characteristics. The
odds ratios for the three risk factor levels result in a set of indices, showing the effect of
each risk factor level on the baseline odds of a lapse at time t.

The hazard ratio for risk factor level A; is the relative hazard rate of a lapse at time ¢ of a
policy, with level A; characteristics, compared to a policy with the baseline characteristics.
The hazard ratios for the three risk factor levels result in a set of risk scores, showing the
effect of each risk factor level on the baseline hazard rate of a lapse at time ¢.

Percentiles of the four Weibull survival distributions can also be estimated.
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Weibull regression model

Shape remains constant
Estimated hazard function

Toa,(t) = 4, @11

Estimated survivor function

So(t) = exp(~Ro - £7)

Sa(t) = exp(~Aa, - 17)

Estimated odds of a lapse

1 — So(t)

o@\so(t) =——0"= exp(/):g . ta_l)
S()(t)
o?i?i\sAi( )= ! :SA""(t) = exp(Aa, -ta”l)
SAi(t)

Estimated odds ratio or index

msAi(t) _ exp(Aa, -ta_l)
oddsg(t) exp(No - t%71)

oddﬁtiom (t) =

Estimated hazard ratio or risk score

haza@atiom (t) = —

ha,(t) A, -@-t2
Xo LG tet

hg(t)

Estimated percentiles of lifetime distributions

1
.~ 1 100 a
baselinet, = [ — - In ———
i ()\0 (100 _p)>
1
. 1 100 a
red. levelt, = — - In———
P ’ (AAi (100 - p))

1
(risk score) &

= baseline ¢, -

Shape parameter alters
Estimated hazard function

ho(t) = Ao - @p - 1501

Toa,(t) = A, - @a, - to4]

Estimated survivor function

So(t) = exp(—Ao 'tg")

8a.(t) = exp(~Na, - 154)

Estimated odds of a lapse

dd: 1— So(t) S Eemt
OddSO(t) ==~/ = eXp(/\[) . 460 )
So(t)
D 1- §A.(t) o~ o
oo (t) = L2583, )
Sa.(t)

Estimated odds ratio or index

P E (T /): ) -1,“/;/41‘_1
oddsratioa,(t) = D,EA’( ) = e A )
oddso(t) exp(Ag - t"“”l)

Estimated hazard ratio or risk score

— ?L (t X & _.t;\Ai-l
hazardratioa, (t) = ,\Al( ) - 2 A
ho(t) No - g -t 1

Estimated percentiles of lifetime distributions

1
100 )a_o

baseline t;;, = <X_0 -In m

1

red. level £, = L-lnﬂ aa,
i y XAi (100 — p)

i=1,2,3

123
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The estimated hazard ratios are called risk scores. The risk score of a risk factor level shows
the effect of this level on the baseline hazard rate of a lapse. This effect is multiplicative on
the baseline hazard rate of a lapse and increases the baseline hazard rate of a lapse (if the
risk score > 1) or decreases the baseline hazard rate of a lapse (if the risk score < 1).

The estimated odds ratios are called indices. The index of a risk factor level shows the effect
of this level on the baseline odds of a lapse. This effect is multiplicative on the baseline
odds of a lapse and increases the baseline odds of a lapse (if the index > 1) or decreases
the baseline odds of a lapse (if the index < 1).

Consider the risk factor A on three levels A;, A, and As. Recall that the proportional
hazards model (PHM) models h(t|Z), the hazard rate of a lapse at time t for a policy
with risk vector Z = (Z1, Zs, ..., Z,,)' and regression coefficients 8 = (01, B2, ..., Bp)’

= |hat1Z2) = P Z hot) 1=1,2,3

This property of constant hazard ratios over time only holds when the shape parameter of
the Weibull distributions of the baseline and risk factor levels remains constant.

Two dummy variables Z4, and Z4, are defined for levels A; and A, in such a way that the
regression coefficient G4, of level A; is equal to — (84, + [4,). From the PHM follows that

hAl(tIZAl = 17 ZA2 = O) — eﬁAl

ha, (8| Za, =1, Z4, = 0) = ePar1tPa20) . (1) =

ho(t)

— = X -a-ttN
= | hazardratioy, = efa = AA’ ——— = A
)\O'Oé'ta~ )\0

This means that for a constant shape parameter in the Weibull distributions, the risk
scores (estimated hazard ratios) may be also obtained from the exponent of the estimated

(B-values in the Weibull regression model.

4.7.9 The fitting of a regression model with a continuous risk factor

Consider a continuous risk factor that can be categorized into three groups. Define the
ordinal covariate Z that takes on the values z=1 for the first group, z=2 for the second
group and z=3 for the third group. Denote a vector of two's by 2 and a vector of three's
by 3.
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The log-logistic regression model with a continuous risk factor

The log-logistic regression model that models In(odds) is then

1-5@)) _y.5. rto-lng
1n< ) )_1/\ 1+8-z+a-1 (4.7 .31)

or

In (1‘—5("”)) — In (—F@—> — I (1&) —In () — In (1 — )

S(x) 1- F(z) — T
1 In x, 1
1 Inx, 1
1 In x5 1
1 Inz, 1
1 In z, 2
1 Inz, 2
= A 1 e In 5 +h 2
1 Inxzy 2
1 In 2, 3
1 In zo 3
1 In x5 3
1 Inz, 3
1 Inz; 1
1 Inxzy 1
1 Inzz 1
1 Inzy 1
1 Inz; 2
In A
1 Inzy, 2
- 1 Inzs 2 “
1 Inzy, 2 b
1 Inz; 3
1 Inzy 3
1 Inzs 3
1 Inzy 3
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In A
:»m( s ) = X, | a (4.7 .32)
1-—71'5 IB

Equation 4.7 .32 is a linear model in the parameters In A, « and 3.

By proceeding in a similar way as in section 4.7.3, the estimated parameters of the log-logistic

distributions for the three risk factor groups can be solved from

e

In A

, _ , S 7.

with S and 7. defined in section 4.7.3

The estimated lambda parameters of these three log-logistic distributions then are

Age1 = exp(lﬁ + B 1)
Agey = exp(h/l\)\ + B % 2)
dgez = exp(l;l\)\ + B * 3).

The estimated lambda parameter of the baseline log-logistic distribution then is
do = exp(In))

so that R N R
Az=1 = Ao xexp(Bx*1)

Az=z = Ao xexp(Bx2)
XZ=3 = Xo X eXp(B* 3)

These four log-logistic distributions all have the same estimated alpha parameter a.

The above procedure can also be applied when other continuous values of z, instead of the
values 1,2,3, are used, for example the midpoints of the risk factor groupings. An application
will be discussed in chapter 5.

The SAS/IML program to fit a log-logistic regression model with one continuous risk factor
(constant shape parameter) to grouped survival data with staggered entry of policies appears
in Appendix A.
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The Weibull regression model with a continuous risk factor

The Weibull regression model is

In(—InS(z))=nA-1+F-z+a-Inz (4.7 .34)
or
In(—InS(z)) = In(—In(1 - F(z))) =In(—In(1l —mg))
1 ln:c1 1
1 Inz, 1
1 In x5 1
1 ln:z:4 1
1 lIl:Bl 2
1 11’1:122 2
= In\- +
. 1 ta 111:133 /8 2
1 lna:4 2
1 In x, 3
1 lnazg 3
1 In x5 3
1 In x4 3
1 lna:l 1
1 ln:z:2 1
1 Inzz 1
1 Inzy 1
1 Inz; 2
In A
1 Inxzy 2
= a
1 Inzz; 2 8
1 11’1:134 2
1 Inz; 3
1 Inzy, 3
1 Inzz 3
1 Inzy, 3
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In A
= In(-In(l —7wg)) = X o " (4.7 .35)
g

Equation 4.7 .35 is a linear model in the parameters In A, « and 3.

By proceeding in a similar way as in section 4.7.6, the estimated parameters of the Weibull
distributions for the three risk factor groups can be solved from

P

In A

, . , S -7,

oy @

with S and 7, defined in section 4.7.6.

The estimated lambda parameters of these three Weibull distributions then are

Az—1 = exp(]?lj\ +83%1)
;\Zzg = exp(lﬁ\)\ -+ 5 * 2)
XZ:B = eXp(II/l\)\ + B * 3)

The estimated lambda parameter of the baseline Weibull distribution then is
Xo = exp(In A)

so that R N
Az=1 = Mg Xxexp(fx1)
Az=2 = Ao xexp(G#2)
XZ=3 = )\0 X exp(B * 3)

These four Weibull distributions all have the same estimated alpha parameter a.

The above procedure can also be applied when other continuous values of z, instead of the
values 1,2,3, are used, for example the midpoints of the risk factor groupings. An application

will be discussed in chapter 5.

The SAS/IML program to fit a Weibull regression model with one continuous risk factor
(constant shape parameter) to grouped survival data with staggered entry of policies appears

in Appendix A.
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4.7.10 Notation for a regression model with two risk factors at stag-
gered entry

Consider two risk factors A and B, each on three levels A;, A; and A3 and By, B and Bs
respectively. Staggered entry of policies occur during four different entry periods and k, the
number of class intervals for the first entry group, is equal to seven.

. M H / / / / / ] / / !
The combined relative frequency vector is p’ = (P111v P211:P311» P11 P11z Po12y P312:Pa10
7 / / 7 / / 7 / / / 7 ! / ! / 7
P13y P213: P313+ Pa13r Pi21:Pa21: P3o1s Pa21r Pioar P22y P322.Pa22, Pi2sr D2szs P3ogs Pyoss

Pis1.Phs1r Pistr Pistr Plszs Pasar PhszPlgar Phas: Phss Phsss Plss) -
D, is the relative frequency vector for the i* entry group, the I*" risk factor A level and the

mt risk factor B level corresponding to niim Py, being multinomial (Nitm; Tim) distributed
1=1,2,3,4 and [=1,2,3 and m=1,23.

Piim = (Plm,1, Plim,2, Plim,3: Plim, 4, Plim,5, P1im,6> P1im,7)’ 15 @ 7 X 1 relative frequency vector
Dot = (D2im, 1, P2tm, 2, P2tm, 35 D2im 4, P2lm,5, P2im,6) 1S @ 6 X 1 relative frequency vector

Pt = (D3im,1, P3im,2, P3im,3, P3im,4, P3im,5)’ 1S @ 5 < 1 relative frequency vector

Daim = (Paim, 1, Paim,2, Paim,3, Paim,a)’ 15 @ 4 x 1 relative frequency vector

and

. .

Tum = (T1im 1, T1im, 25 Tiim, 35 Tiim,4; Tlim,5, Tlim.,6, T1mi,7) 1S @ 7 X 1 probability vector
, .

Totm = (T2tm, 1y W2Um, 25 T2Um, 3 T2im 4, T2im,5; T2im,6) is @ 6 X 1 probability vector

.. .

T3im = (T31m,1, T3im, 25 T3im,3; T3lm,4, T3im,5)" 1S @ 5 X 1 probability vector

Talm = \Talm,1) Tdlm. 2y Tdim,3, 7T4lm,4)l isadxl probability vector = 1,2,3.

The vectors &; 3 =1,2,3,4 of upper class boundaries for the ** entry group are

T
z1
To I
To T
T3 T2
r, = Ty = T3 Ir3 = . and Ty = To
Ty 3
T4 T3
Ty - Ty
5
T

The number of entries per cell in the cross tabulation of entry period and risk factors A and

B can be summarized in table 4.2.
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Table 4.2: Number of entries per cell in cross table of entry period and risk factors A
and B

Entry Risk Factor Level Total
Period A Ay As
B1 BQ Bg Bl B2 Bg Bl Bg Bg

1 T 7 T |7 717 T \|7 17 7 63
2 &6 6 66 6 6|6 6 6 54
3 5 5 5|5 5 5|5 5 5 45
4 4 4 414 4 4|4 4 4 12

Total |22 22 2222 22 22|22 22 22| 198

Matrix S is now a (54 x 3) x (66 x 3) = 162 x 198 matrix and is defined as

where S, = block(S1, S5, S3,S4) is a 18 x 22 matrix of the form

Slm:

O OO0 OO0 OO0 OO0 O K H H B M =
O OO O0OO0OO0O0O0O0OOO0OO KHKFHKKMKMHO
O O OO0 OO0 O0OO0O0OO0O0O HFHKKOO
©C OO0 00000000 OFEKHOOO
O OO0 00000000 O=KFHOOOO
C OO0 O0OO0OO0OO0ODO0OO0OO0OCO+HOOOOO
©C O 000000000000 OC O OoOOo
O OO O0O0OO0OKHKFMMMOOOOORO
OO0 00000 H+HKMKFEKOOOODOOO
O OO0 0000 HKKHKOOOOOOOO
OO 0000 OKHFHFOODOOOOO OO
OO OO0 O0OO0OO0OHHOOOOOOOoOOoOOoOOo
(=l =loloN ol ===l e o o oo NN
O OO+ KHHFHOOOODOOOOOoOOoOOoO
O OO HKF HOOOOOOOOOOoOOoOOo
O OO HOODOOOOOODOOOOoOOo
C OO H OOOOOOOOOOCOOOOo
OO 000000000000 OCOOO
HHMHOOOOOOOOOODOOOoOOoOoo
HHOOOOOODODOOOOOCOOOO
H O OOODOOCCOOOO0OOOoOOCOOOOOo
(==l ool NN ==l i o Moo}

The variance-covariance matrix V to be used is the estimated variance-covariance matrix
of the multinomial distribution for each combination of entry period and risk factor A
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level and risk factor B level.

— V= blOCk(/Vu, Vig, Vis, Va1, Vi, Vs, Vay, Vg, /‘733)

where
Vim = block(Viim, Vaim, Vaim, Vaim) 1=1,2,3 and m=1,2,3
and
/Vi,lm = 11 [diag(Diim) — PumPuml =1,2,3,4 and [=1,2,3 and m=1,23.

Note that Vl,lm is a 21 x 21, /Vng isa 18 x 18, /‘73’,,,1 isa 15 x 15 and /‘74,,,,1 isal2x12
matrix so that /Vlm is a 66 x 66 matrix and V is a 198 x 198 matrix.

4.7.11 The log-logistic regression model with two risk factors at stag-
gered entry

In this model the effect of the risk factors is to alter the scale parameter A, while the shape

parameter o remains constant.

Consider a risk factor A on three levels A, A> and A3z and another risk factor B on three

levels By, B; and Bs;. Two dummy variables Z,4, and Z,, are defined for levels A; and A,

in such a way that the regression coefficient 4, of level Aj is equal to —(84, + 54,), that
3

means {Z /BAk} = 0. Similarly two dummy variables Zp, and Zp, are defined for levels B;

k=1
and Bs in such a way that the regression coefficient 8p, of level Bs is equal to — (85, + 05, ).

3
that means {Z ,BBk} =0.

k=1

The log-logistic regression model that models In(odds) then is

In (1;(—‘?;()1:)) =InA-1++ (/BA1ZA1 +,3AQZA2) + (531231 + 632ZB2) +a-Inz

In (1;(—5:;()”’)> —In (1—2%5) —In (lf—f;s) —In(ms) —In(1 — )



Parametric Regression Models for Survival Data with Covariatesl

=InX-

= = T = T = S S G e = T = T S T S SO uy

e T g gy

+ Ba, -

e T T = T N o S S ey

©C ©O O 0 OO0 O O o o o o

+ B4, -

© O O 0 OO0 o0 oo oo oo o

T Y Sy Yt

+ 0s, -

©C O O O M = = =

+ﬁ32 :

= == OO O O

In x
Inxq
Inx3
Inxzy
In
In o
In 3
Inxzy
In x;
Inzo
Inx3
Inxzy

Inz,
In xo
In 3
Inxzy,
In x
Inxo
In I3
Inay
Inz,
Inz,
Inzg

In Ty

Inzy
In o
Inaxg
Inaxy
Inz,
In x5
Inxs
Inzy
In 1
Inxo
Inax3

Inaxy
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:>ln<ﬂ-—

e T T e T T e T o O S G S Sy
e e T e T e e S o Gy Gy i G Y

1 0
1 0
1 0
1 0
i 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 -1

I
p—

I T T S SO S Gy S G S Gy Gy S g
|
[y

0 1
0 1
0 1
0 1
0 o
0 O
0 O
0 O
0 -1
0o -1
0 -1
0o -1
1 1
1 1
1 1
1 1
1 0
1 0
1 0
1 0
1 -1
1 -1
1 -1
1 -1
-1 1
-1 1
-1 1
-1 1
-1 0
-1 0
-1 0
-1 0
-1 -1
-1 -1
-1 -1
-1 -1

= == O O O O

In
In 9
In 3
In T4
In x;
In g
In I3
Inxy
In T
In o
Inxzs
Inzy

In Ty
In o
In T3
Inxy
In 1
In x5
In I3
Inzy
In z,
In x5
Inz3

Inxy

In x4
In o
In x3
Inzy
In x;
In o
Inxzs
In Ty
In
In T
In 3
In Ty

In A
Ba
Ba,
BB,
BB,

In\
Ba,
Bas,
BB,
BB,
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This model is a linear model in the parameters In A, 54,, Ba,, Bg,. BB, and a.

By proceeding in a similar way as in section 4.7.3, the estimated parameters of the log-
logistic distributions for the nine combinations of risk factor A levels and risk factor B levels
can be solved from

P
Ba,
. S. 7
Fra | _ (XX )X, Ind —> e (4.7 .37)
ﬁBl 1 - S * ﬂ'c

BB,

«

. ~ ' !\ —-——S.p
with T =P — (G‘ITV) (GPVGW) - C. ]'n{l - S - p

section 4.7.10

} where S,V and p are defined in

Note that EAS = — (BAl + BAQ) and BBs == (BBl + EB2) .

The estimated lambda parameters of the nine log-logistic distributions for the nine combi-
nations of risk factor A levels and risk factor B levels then are

XAlBl = exl:)(f];l-\A + B\Al + B\Bl
A/3].1.82 — exp(ln A + ﬁ/—h + IBBQ
AaB; = exp(lnX+ 84, + Ba,

)
)
)
Mop, = exp(Inh+ Ba, + Bp,)
XAsz = exp(la + BAQ + BBQ)
dag, = exp(In\+ Ba, + Bp,)
XAaBl = exp(lﬁ\)\ + BAS + BBl)
Aazs, = exp(Inh+ B, + Op,)
Aazm, = exp(InA+ Ba, + Bs,)-

The estimated lambda parameter of the baseline log-logistic distribution then is

Xo = exp(In )
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so that - ~
A B, = Ao Xindexa, X indezp,)
AB, = Mo Xindexy, X indexp,
:\AlBg = o X index 4, X indexp,)
/A\AQB1 = Xo X index 4, X indexp,)
ApB, = Ao X indexa, X indexp,)
S\AQBE, = o X indezx 4, X indexp,)
:\A;;Bl = X X index, X indexp,)
XAa By = XO X index 4, X indexp,)
AasBs = Ao X index s, X indexp,).

These ten log-logistic distributions all have the same estimated alpha parameter @.

The SAS/IML program to fit a log-logistic regression model with two categorical risk factors
(constant shape parameter) to grouped survival data with staggered entry of policies appears

in Appendix A.

4.7.12 The Weibull regression model with two risk factors at stag-
gered entry

In this model the effect of the risk factors is to alter the scale parameter A, while the shape

parameter a: remains constant.

Consider again a risk factor A on three levels A;, A2 and A3 and another risk factor B on
three levels By, B and B3. Two dummy variables Z4, and Z4, are defined for levels A, and
Aj in such a way that the regression coefficient 34, of level A3 is equal to —(84, + Ba,),

3
that means {Z ﬂAk} = 0. Similarly two dummy variables Zg, and Zp, are defined for

k=1
levels By and Bs in such a way that the regression coefficient 8p, of level Bs is equal to

—(BB, + Bp,), that means {23: ﬁsk} = 0.

k=1
The Weibull regression model then is
In (—lnS(w» =InA-1+ (/6A1ZA1 + /8A2ZA2) + (/831231 + ﬁBzsz) +a-lnz

or

In (=10 S(z)) = In (T—%) —In (1—’_’3-3-) — In(mg) —In (1 — )
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+ B4, -
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[==J ==l == R e R e P = 2 — N = R = I e B e B e}

+ Ba, -

©O O ©O OO0 O o0 o0 oo oo

T S

+IBBl :

©C O O O k= = =t =

+ 08B, -

N - -]

In 2,
In o
Inxzs
In Ty
In 1
Inxzy
Inzs
Inxzy
In T
Inzy
In I3
In T4

In z,
In i)
In x3
Inxzy
Inz;
Inx,
In x3
In Ty
In I
Inx,
In x3

In Ty

Inz,;
Inzo
In I3
Inxy
Inz,
Inzy
In I3
Inxy
Inz,
Inzo
Inz3

Inzy
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1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0o -1
1 1 0o -1
1 1 0 -1
1 1 0o -1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 0
In(—1InS(z)) = 1 g i g
1 0 1 0
1 0 1 -1
1 0 1 -1
1 0 1 -1
1 0 1 -1
1 -1 -1 1
1 -1 -1 1
1 -1 -1 1
1 -1 -1 1
1 -1 -1 0
1 -1 -1 0
1 -1 -1 0
1 -1 -1 0
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1

=In(—InS(z)) =X, -

= - O OO

[ N
[

== O O OO

In z;
Inzo
Inx3
In T4
In x;
In zo
In 3
Inzy
In Iy
In o
Inz3
Inxzy

Inz,
In x5
In 3
In Ty
In x;
In o
In 3
In x4
Inz;
In z,
Inzs

Inxy

In x4
In o
In a3
In T4
In x4
Inxo
In z3
Inxzy
In x;
In o
In I3
Inxz,

In A
Ba,
Bas
BB,
BB,

In A
Ba,
Ba,
BB,
BB,
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This model is a linear model in the parameters In A, B4,, 84,. 85,, 85, and a.

By proceeding in a similar way as in section 4.7.6, the estimated parameters of the Weibull
distributions for the nine combinations of risk factor A levels and risk factor B levels can be

solved from .
{ In A
Ba,
ﬂAz ' -1 ' S - 7?6
2 = (X Xy In{—— 7.
IBBI ( 1X1) 1 n ]_—S-ﬁ'c (47 38)
BB,
a
with 7. = p — (G, V) (G,VG.)" - C.In _Sp where S,V and p are defined in
r ™ 1 _ S P

section 4.7.10
Note that BAs =— (BAI + BAz) and BBa = — ([/3\31 +§32) .

The estimated lambda parameters of the nine Weibull distributions for the nine combinations
of risk factor A levels and risk factor B levels then are

Am = exp(InX + Fa, + Bs,)
Mg, = exp(lnh+ Ba, + Bs,)
Mg, = exp(Inh+ Ba, + Bs,)
A, By exp(In A + Ba, + B5,)
XAQBZ = exp(l?;\ + BA; + 532)
XAQBB = exp(la + ,§A2 + 333

XA3BI = exp(lﬁ - BAS + BBI)
XA:;B2 = exp(la + BAa + B\Bz)
XAng = exp(lﬁ + BAa + 333).

The estimated lambda parameter of the baseline Weibull distribution then is

Xo = exp(In A)
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so that R
A B,

A4, B
A4, Bs
A, B,
A4yB,
Ad3Bs
AdsB,
AA3By
AA3Bs

These ten Weibull distributions all have the same estimated alpha parameter a.

Xo X index Ay
XO X index 4,
Xo X index Ay
Xo X index Ao
Xo X index As
XO X index 4,
Xo X index As
XO X indez 4,

Ao X tndex 4, X indexp,).

X indexp,)
X indezp,)
X indezp,)

X indexp,

X indexp,

X indexp,

X indexp,

)
)
)
X indezp,)
)
)
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The SAS/IML program to fit a Weibull regression model with two categorical risk factors

(constant shape parameter) to grouped survival data with staggered entry of policies appears

in Appendix A.

Generalization to a regression model with more than two risk factors is obvious.
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