Gautrans sub-URBAN
train station

Ermendo Bernard Roccon
2015122
Gautrans Rapid Rail System
Hatfield sub-station.

SUBMITTED IN FULFILLMENT OF PART OF THE REQUIREMENT FOR THE
DEGREE MAGISTER IN ARCHITECTURE (PROFESSIONAL) IN THE
FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION
TECHNOLOGY.
CHAPTER 1: BRIEF

1. Introduction
 1.1. The site
 1.2. Climate
 1.3. History of the Arcadia Primary School
 1.4. Precedents
 Johannesburg International Airport
 Metro Mall

2. Purpose and strategic objectives
 2.1. Concept

3. A Public transport project

4. How will Gauteng benefit?

5. Station development concepts
 5.1. Densification
 5.2. Passenger/ people needs
 5.3. Land uses

6. Development framework

7. Accommodation list
 7.1. Platform screens and doors
 7.2. Entrances and exits
 7.3. Passenger information
 7.4. Ablution facilities
 7.5. Concessions
 7.6. Side platform station
 7.7. Lifts and escalators
 7.8. Basic construction
 7.9. The sub structure

CHAPTER 2: BASELINE

1. Social issues
 1.1. Occupant comfort
 1.1.1. Lighting and ventilation
 1.1.2. Noise
 1.1.3. Views
 1.1.4. Access to green outside

 1.2. Inclusive environment
 1.2.1. Public transportation and routes
 1.2.2. Circulation zones
 1.2.3. Toilets

 1.3. Access to facilities
 1.3.1. Banking
 1.3.2. Retail
 1.3.3. Residential
 1.3.4. Commercial

 1.4. Participation and control
 1.4.1. Environmental control
 1.4.2. User adaptation

 1.5. Education, health and safety
 1.5.1. Education
 1.5.2. Security

2. Economic issues
 2.1. Local economy
 2.1.1. Local contractors
 2.1.2. Local building material supply
 2.1.3. Outsource opportunities

 2.2. Efficiency of use
 2.2.1. Usable space
 2.2.2. Occupancy
 2.2.3. Space use
 2.2.4. Use of technology

 2.3. Adaptability and flexibility
 2.3.1. Vertical dimensions
2.3.2. Running costs
2.3.3. Maintenance
2.3.4. Internal partitions
2.3.5. Services
2.3.6. Cleaning
2.3.7. Insurance, water, energy
2.3.8. Disruption and “downtime”

2.4. Capital costs
2.4.1. Build ability
2.4.2. Construction

3. Environmental issues
3.1. Water
3.1.1. Rainwater and water use
3.1.2. Run off
3.1.3. Planting
3.2. Energy
3.2.1. Location
3.2.2. Ventilation system
3.2.3. Heating and cooling system
3.2.4. Appliances and fittings
3.2.5. Renewable energy
3.3. Recycling and reuse
3.3.1. Toxic wastes
3.3.2. Inorganic waste
3.3.3. Construction waste
3.4. Site
3.4.1. Brownfield site
3.4.2. Neighboring buildings
3.4.3. Vegetation
3.4.4. Manufacturing process
3.4.5. Recycled/reused materials

1. Activity and axis lines
 Site plan layout
2. Theory for design
 2.1. Introduction
 2.2. System thinking
 2.3. Air
 2.3.1. Wind induced
 (a) Bernoulli-effect
 (b) Venturi-effect
 2.3.2. Stack induced
 2.4. Identity
3. Level thinking
 3.1. 2nd floor under ground.
 3.2. 1st floor under ground.
 3.3. Ground floor.
 3.4. Main entrance.
 3.5. Commercial component.
 3.6. Inter-active conference facility
4. Thermal performance
 4.1. North elevation
 4.2. West elevation
 South elevation
List of figures

BRIEF

- Figure 1.1. Proposed Gautrans rail line links. P1
- Figure 1.2. LG diagram of the site. P1
- Figure 1.3. Sun angle diagram and analysis. P2
- Figure 1.4. Photos of the old Arcadia school building. P3
- Figure 1.5. Densification diagram towards the station. P6
- Figure 1.6. Cross-section for a typical rail road. P8
- Figure 1.7. Diagram illustrating the principles for the platform layouts. P8

DESIGN

- Figure 3.1. Site perspective illustrating axis and lines. P22
- Figure 3.2. Perspective from south and west. P22
- Figure 3.3a. Figure section sketch for Pedestrian Street. P22
- Figure 3.3b. Perspective of Pedestrian Street. P22
- Figure 3.4. Section through Grosvenor Street. P25
- Figure 3.5. Diagram explaining shortest route. P25
- Figure 3.6. Figure explaining wind directions. P25
- Figure 3.7. Figure illustrating the Bernoulli effect. P26
- Figure 3.8. Figure explaining the Venturi effect. P26
- Figure 3.9. Perspective explaining internal air movement. P26
- Figure 3.10. Figures explaining the swivel panels & construction. P27
- Figure 3.11. Plan illustrating the interpolation of grids. P27
- Figures 3.12. Elevation design aspects. P28
- Figure 3.13. Section from north to south illustrating the 2nd floor under ground. P29
- Figure 3.14. Layout plan of 2nd floor under ground. P29
- Figure 3.15. Section from north to south illustrating the 1st floor under ground. P30
- Figure 3.16. Layout plan of 1st floor under ground. P30
- Figure 3.17. Section from north to south illustrating the ground floor. P30
- Figure 3.18. Ground floor spaces. P31
- Figure 3.19. Illustration of vertical ventilation and light penetration. P31
- Figure 3.20. Perspective view of main entrance. P31
- Figure 3.21. Section from east to west in perspective illustrating the commercial flank. P32
- Figure 3.22. Layout plan of commercial office space and perspective of structure. P32
- Figure 3.23. Section from east to west in perspective illustrating the inter-active flank. P32
- Figure 3.24. Layout plan of I-active flank. P32
- Figure 3.25. Perspective of modular panels and I-active structural components. P33

BASELINE

- Figure 2.1. Lighting and ventilation sections. P10
- Figure 2.2. Plan explaining views and vertical circulation. P11
- Figure 2.3. Plan illustrating the green areas. P11
- Figure 2.4. Plan illustrating the public transport on site. P11
- Figure 2.5. Toilet layout. P12
- Figure 2.6. Perspective indicating the 1st floor under ground. P12
- Figure 2.7. Perspective indicating the commercial level. P13
- Figure 2.8. Perspective illustrating minimum height levels. P15
- Figure 2.9. Section illustrating ventilation and cooling cycles. P16
- Figure 2.10. an illustration of a heat pump cycle. P17
List of ANNEXURE

1). Density proposal for 100ha around station.

2). Governmental legislation.

3). Acts and policies relevant to the station.

5). Economic feasibility.

6). Risk analysis.
List of References

http://www.trainconstructions.com

Environmentl Impact Assesment, Proposed Gautrans Rapid Rail Link.

