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Chapter 6 

Dynamic Clustering using Particle Swarm 

Optimization with Application to Unsupervised Image 

Classification 

 

A new dynamic clustering approach (DCPSO), based on PSO, is proposed in this chapter. 

This approach is applied to unsupervised image classification. The proposed approach 

automatically determines the "optimum" number of clusters and simultaneously clusters the 

data set with minimal user interference. The algorithm starts by partitioning the data set into a 

relatively large number of clusters to reduce the effects of initial conditions. Using binary 

particle swarm optimization the "best" number of clusters is selected. The centroids of the 

chosen clusters are then refined via the K-means clustering algorithm. The proposed approach 

is then applied on synthetic, natural and multispectral images. The experiments conducted 

show that the proposed approach generally found the "optimum" number of clusters on the 

tested images. A genetic algorithm and a random search version of dynamic clustering are 

presented and compared to the particle swarm version. 

 

6.1 The Dynamic Clustering using PSO (DCPSO) Algorithm 
 

This section presents the DCPSO algorithm. For this purpose, define the following 

symbols: 

Nc is the maximum number of clusters. 

Nd is the dimension of the data set. 
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Np is the number of patterns to be clustered. 

Z = {zj,p ∈ ℜ  | j = 1,…, Nd and p = 1,…, Np } is the set of patterns. 

M = {mj,k ∈ ℜ  | j = 1,…, Nd and k = 1,…, Nc } is the set of Nc cluster centroids. 

S = {x1,…, xi,…, xs} is the swarm of s particles such that xi indicates particle i, with 

xi,k ∈ {0,1} for k = 1,…, Nc  such that if xi,k = 1 then the corresponding centroid mk in 

M has been chosen to be part of the solution proposed by particle xi. Otherwise, if xi,k 

= 0 then the corresponding mk in M is not part of the solution proposed by xi. 

ni is the number of clusters used by the clustering solution represented by particle xi 

such that 

∑
=

=
cN

k
ji,i xn

1
, with ni ≤ Nc. 

Mi is the clustering solution represented by particle xi such that Mi = (mk) ∀ k: xi,k = 1 

with Mi ⊆ M. 

τn  is the number of clusters used by the clustering solution represented by the global 

best particle ŷ (assuming that gbest PSO is used) such that 

∑
=

=
cN

k
kτ ŷn

1
, with τn  ≤ Nc. 

Mτ is the clustering solution represented by ŷ  such that Mτ = (mk) ∀ k: kŷ = 1 with 

Mτ ⊆ M. 

Mr is the set of centroids in M which have not been chosen by ŷ , i.e. Mr = (mk), ∀ k: 

kŷ = 0 with Mr ⊆ M (i.e. Mr ∩ Mτ = ∅ and Mr ∪ Mτ = M). 

pini is a user-specified probability defined in Kuncheva and Bezdek [1998], which is 

used to initialize a particle position, xi, as follows: 
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ki,                             (6.1) 

 

where (0,1))( U~trk . Obviously a large value for pini results in selecting most of the 

centroids in M. 

The algorithm which uses some of the ideas presented by Kuncheva and Bezdek 

[1998]: A pool of cluster centroids, M, is randomly chosen from Z. The swarm of 

particles, S, is then randomly initialized. Binary PSO is then applied to find the "best" 

set of cluster centroids, Mτ, from M. K-means is applied to Mτ in order to refine the 

chosen centroids. M is then set to Mτ plus Mr, which is a randomly chosen set of 

centroids from Z (this is done to add diversity to M and to reduce the effect of the 

initial conditions). The algorithm is then repeated using the new M. When the 

termination criteria are met, Mτ will be the resulting "optimum" set of cluster 

centroids and τn  will be the "optimum" number of clusters in Z. The DCPSO 

algorithm is summarized in Figure 6.1. 

The termination criterion can be a user-defined maximum number of iterations 

or a lack of progress in improving the best solution found so far for a user-specified 

consecutive number of iterations, TC. In this chapter, the latter approach is used with 

TC1 = 50 for Step 6 and TC2 = 2 for step 10. These values for TC were set empirically. 

Nc and s are user defined parameters. 
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1) Select mk ∈ M, ∀ k = 1,…, Nc where 1 < Nc < Np, randomly from Z 

2) Initialize the swarm S, with xi,k ~ U{0,1}, ∀ i = 1,…, s and k = 1,…, Nc using 

equation (6.1) 

3) Randomly initialize the velocity, vi, of each particle i in S such that 

5,5][−∈ki,v ,  ∀ i = 1,…, s and k = 1,…, Nc. The range of [-5,5] was set 

empirically 

4) For each particle xi in S 

a. Partition Z according to the centroids in Mi by assigning each data 

point zp to the closest (in terms of the Euclidean distance) cluster in Mi 

b. Calculate the clustering validity index, VI, using one of the clustering 

validity indices as defined in section 3.1.4 to measure the quality of the 

resulting partitioning of Z (i.e. VI = V, VI = S_Dbw or VI=1/D since D 

should be maximized) 

c. f(xi) = VI 

5) Apply the binary PSO velocity and position update equations (2.8) and (2.15) 

on all particles in S 

6) Repeat steps 4) and 5) until a termination criterion is met 

7) Adjust Mτ by applying the K-means clustering algorithm 

8) Randomly re-initialize Mr from Z 

9) Set M = Mr ∪ Mτ 

10) Repeat steps 2) through 9) until a termination criterion is met 

Figure 6.1: The DCPSO algorithm 
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A GA version of DCPSO can easily be implemented by replacing step 5 in the above 

algorithm with GA evolutionary operators for selection, crossover and mutation. On 

the other hand, a random search (RS) version of DCPSO, as described by Kunchevea 

and Bezdek [1998], can be implemented by removing step 5 and keeping only the best 

solution encountered so far. 

 

As an illustration of the DCPSO algorithm, consider the following example. 

Example 6.1  

Let Np = 100, Nd = 1, and Nc = 5. 

Let M be 

3 29 78 150 200 

 

An example of a particle position, xi, is 

0 1 1 0 1 

 

which means that cluster centers 29, 78 and 200 are chosen for this particle such that 

Mi is 

29 78 200 

 

In other words, all data in Z are grouped in only these three clusters. 

After step 6, assume the global best particle, ŷ , is 

0 1 0 1 1 

 

Then, Mτ is 
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29 150 200 

 

Assume that after K-means is applied on Z using the centroids given by Mτ, the new 

Mτ is given by 

  

30.5 129.9 201 

 

Then, randomly initialize the remaining Nc - nτ (i.e. 5 - 3 = 2) clusters, representing 

Mr, from Z (shown below in bold). The resultant M may look as follows: 

110 30.5 8 129.9 201 

 

The DCPSO algorithm is then repeated using the new M. 

 

6.1.1 Validity Index 
 
One of the advantages of DCPSO is that it can use any validity index. Therefore, the 

user can choose the validity index suitable for his/her data set. In addition, any new 

index can easily be integrated with DCPSO. The validity indices used in this chapter 

are D, V and S_Dbw (as defined in section 3.1.4). 

 

6.1.2 Time Complexity 
 

The time complexity of DCPSO is based on the complexity of four processes, namely, 

the partitioning of Z, calculating the quality of the partition, applying binary PSO and 

applying K-means. Assume that T1 is the number of iterations taken by the PSO to 
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converge (step 6 of the algorithm), and that T2 is the number of iterations taken by 

DCPSO to converge (step 10 of the algorithm). Then the complexity of partitioning Z 

is O(sT1T2NcNpNd), while the complexity of calculating the quality of a partition will 

depend on the time complexity of the validity index which is, in general, some 

constant, ξ, multiplied by Np for the indices used in this chapter. The complexity of 

this step is therefore O(ξT1T2Np). Finally, the complexity of K-means is O(Np). The 

parameters T1, T2, Nc, s and ξ can be fixed in advance. Typically, T1, T2, Nc, s, ξ, Nd << 

Np. Let ς  be the multiplication of s, T1, T2, Nc and Nd (i.e. ς  = sT1T2NcNd). If pN<<ς  

then the time complexity of DCPSO will be O(Np). However, if  pN≈ς  then the time 

complexity of DCPSO will be O( 2
pN ). 

 

6.2 Experimental results 
 

Experiments were conducted using both synthetic images and natural images. The 

synthetic images were generated by SIGT as given in Table 5.1. Furthermore, SIGT 

was used to generate another five different synthetic images for which the actual 

number of clusters was known in advance. These images have different numbers of 

clusters with varying complexities; they consist of well separated clusters, 

overlapping clusters or a combination of both. The new five synthetic images are 

given in Table 6.1 along with their histograms. 

The following well known natural images were used: Lenna, mandrill, jet and 

peppers. These images are shown in Figure 6.2. Furthermore, one MRI and one 

satellite image of Lake Tahoe (as given in Figure 4.2) have been used to show the 

wide applicability of the proposed approach. 
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 The remainder of this section is organized as follows: Section 6.2.1 applies 

DCPSO to the synthetic images using the three validity indices described in section 

6.1.1. These results are compared with the unsupervised fuzzy approach (UFA) 

proposed by Lorette et al. [2000] (discussed in section 3.1.5) and the SOM approach 

(refer to section 3.1.6). In section 6.2.2, the same experiments are conducted on the 

natural images. Section 6.2.3 compares DCPSO with GA and RS versions on the 

natural images. Sections 6.2.4, 6.2.5 and 6.2.6 investigate the influence of the 

different DCPSO control parameters. Different PSO models (namely, lbest, gbest and 

lbest-to-gbest) are investigated in section 6.2.7. Finally, section 6.2.8 applies DCPSO 

to multispectral imagery data. 

 

  

(a) Lenna (b) Mandrill 

  

(c) Jet (d) Peppers 

Figure 6.2: Natural Images 
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Table 6.1: Additional synthetic images used along with the corresponding histograms 

Synthetic image no. Image Histogram 

11 

 
 

12 

 
 

13 

  
14 

  
15 
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The results reported in this section are averages and standard deviations over 20 

simulations. Since lbest-to-gbest PSO was generally the best performer in chapter 4, 

lbest-to-gbest PSO is used in this section unless otherwise specified. Furthermore, if 

the best solution has not been improved after a user-specified number of iterations (50 

iterations was used for all the experiments conducted) then the algorithm was 

terminated (Step 6 of the algorithm, Section 6.1). For the index proposed by Turi 

[2001], parameter c was set to 25 in all experiments as recommended by by Turi 

[2001]. The DCPSO parameters were empirically set as follows: Nc = 20, pini = 0.75 

and s = 100 for all experiments conducted unless otherwise specified. In addition, the 

PSO parameters were set as follows: w =0.72, 1c = 2c = 1.49 and Vmax= 255. For UFA, 

the user-defined parameter, ε, was set equal to p/N1 as suggested by Lorette et al. 

[2000]. For the SOM, a Kohonen network of 5×4 nodes was used (to give a minimum 

of 20 codebook vectors). All implementation issues were set as in Pandya and Macy 

[1996]: the learning rate )(tη  was initially set to 0.9 then decreased by 0.005 until it 

reached 0.005; the neighborhood function )(tw∆  was initially set to (5+4)/4 then 

decreased by 1 until it reached zero. 

 

6.2.1 Synthetic images 
 

Table 6.2 summarizes the results of DCPSO using the three validity indices described 

in section 6.1.1, along with the UFA and SOM results. It appears that UFA tends to 

overfit the data since it selected the maximum number of clusters as the correct one 

for all experiments. The rationale behind this failure is the choice of ε which has a 

significant effect on the resulting number of clusters. DCPSO using S_Dbw also 

generally overfits the data. On the other hand, DCPSO using D, DCPSO using V and 
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SOM have generally performed very well (especially DCPSO using V). Hence, it can 

be concluded that DCPSO using V is efficient with respect to the synthetic images.   

 

Table 6.2: Experiments on synthetic images 

Image Actual no. 

of clusters 

DCPSO using 

D 

DCPSO using 

V 

DCPSO using 

S_Dbw 

SOM UFA 

1 2 2 ± 0 2 ± 0 5.55 ± 5.22 2 20 

2 3 3 ± 0 3 ± 0 3 ± 0 3 20 

3 3 2 ± 0 2 ± 0 4.4 ± 4.852 6 20 

4 3 2.7 ± 1.345 5.15 ± 0.357 10.9 ± 5.458 10 20 

5 4 10.85 ± 1.878 5 ± 0 15.5 ± 1.323 7 20 

6 10 9.55 ± 2.246 7.2 ± 0.872 9.3 ± 0.458 9 20 

7 6 3.35 ± 1.526 7.9 ± 0.995 10.8 ± 2.925 9 20 

8 4 8.8 ± 2.379075 5 ± 0 4 ± 0 4 20 

9 7 4.25 ± 0.433 5 ± 0 14.1 ± 3.52 13 20 

10 4 7.9 ± 1.729 7 ± 0 13.95 ± 1.77 9 20 

11 10 10.0 ± 0.950 10 ± 0 10 ± 0 10 20 

12 5 9.0 ± 2.168 7.2 ± 0.4 11.65 ± 1.06 6 20 

13 5 12.1 ± 2.119 5 ± 0 9.6 ± 2.107 5 20 

14 7 7.5 ± 1.204 5 ± 0 7.8 ± 2.088 7 20 

15 5 5 ± 0 5 ± 0 5 ± 0 5 20 

Avg. 5.2 6.53 5.43 9.04 7 20 

 

6.2.2 Natural images 
 

Table 6.3 shows the results of DCPSO using the three validity indices described in 

section 6.1.1. These results are compared with the results of UFA and SOM. In 

addition, the results of snob for the Lenna, mandrill, jet and peppers images are copied 

from Turi [2001]. The optimal range for the number of clusters for the images of 

Lenna, mandrill, jet and peppers are also taken from Turi [2001] which was based on 

a visual analysis survey conducted by a group of ten people. Similarly, the optimal 

range for the MRI and Lake Tahoe images were estimated using a group of three 
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people.  It appears from the table that results of DCPSO using S_Dbw, UFA, SOM 

and snob were poor. DCPSO using V always found a solution within the optimal 

range. Therefore, the remaining experiments will use V as the validity index. These 

results clearly show the efficiency of DCPSO. Table 6.4 provides samples of the 

resultant segmented images generated by DCPSO using V. 

 

Table 6.3: Experiments on natural images 
Image Optimal 

range 

DCPSO using 

D 

DCPSO using V DCPSO using 

S_Dbw 

SOM UFA Snob 

Lenna 5 to 10 10.35 ± 1.652 6.85 ± 0.477 19.3 ± 0.843 20 20 31 

Mandrill 5 to 10 6.05 ± 1.658  6.25 ± 0.433 19.25 ± 0.766 20 20 42 

Jet 5 to 7 3.35 ± 2.151 5.3 ± 0.459 18.05 ± 1.465 14 20 22 

peppers 6 to 10 10.55 ± 1.465 6 ± 0 18.8 ± 0.872 20 20 39 

MRI 4 to 8 3 ± 0 5 ± 0 17.2 ± 1.4 19 20 - 

Tahoe 3 to 7 3 ± 0 6.1 ± 0.539 14.3 ± 3.018 4 20 - 

Avg.  6.05 5.92 17.82 16.17 20 - 
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Table 6.4: Samples of segmented images resulting from DCPSO using V 
Image Segmented image No. of clusters 

Lenna 

 

7 

Mandrill 

 

6 

Jet 

 

5 
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Table 6.4: Samples of segmented images resulting from DCPSO using V (continued) 
Image Image Image 

peppers 

 

6 

MRI 

 

5 

Tahoe 

 

6 

 

6.2.3 Comparison with GA and RS 
 

The previous experiments were conducted using the dynamic cluster PSO. In this 

section, a GA and RS version of the algorithm in Figure 6.1 (called DCGA and 

DCRS, respectively) are examined and compared with DCPSO. Both DCGA and 

DCRS used 100 individuals. For DCGA, elitism was used, keeping the fittest 

chromosome for the next generation. In addition, random selection has been used 

along with uniform crossover. The crossover probability was set to 0.8 with a mixing 
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ratio of 0.5; a mutation probability of c/N1  was used. Table 6.5 presents the results of 

applying DCPSO, DCGA and DCRS on the natural images. As expected, DCRS 

performed poorly due to its pure random search. DCGA performed comparably to 

DCPSO. 

 

Table 6.5: Comparison of PSO-, GA- and RS- versions of the 

proposed approach 
Image Optimal 

range 

DCPSO using 

V 

DCGA using 

V 

DCRS using V 

Lenna 5 to 10 6.85 ± 0.477 6.45 ± 0.74 9.8 ± 1.661 

Mandrill 5 to 10 6.25 ± 0.433 6.05 ± 0.589 8.75 ± 2.095 

Jet 5 to 7 5.3 ± 0.459 5.3 ± 0.557 11.05 ± 1.627 

peppers 6 to 10 6 ± 0 6.05 ± 0.218 10.55 ± 1.532 

MRI 4 to 8 5 ± 0 5.5 ± 0.742 8.1 ± 1.179 

Tahoe 3 to 7 6.1 ± 0.539 6.1 ± 0.831 9.25 ± 1.479 

Avg.  5.92 5.91 9.58 

 

 

6.2.4 Swarm Size 
 

Reducing the swarm size (or population size in case of GA) from 100 to 20 particles 

(or GA chromosomes) did not generally affect the performance of either DCPSO or 

DCGA as illustrated in Table 6.6. However, comparing Table 6.5 and Table 6.6 it 

seems that on average less clusters are formed with less particles/chromosomes. In 

general, the computational requirements of DCPSO and DCGA can be reduced 

significantly without affecting the performance of DCPSO and DCGA.  
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Table 6.6: Comparison of PSO- and GA- 

versions of the proposed approach using a 

swarm size s = 20 
Image Optimal 

range 

DCPSO using 

V 

DCGA using 

V 

Lenna 5 to 10 6.5 ± 0.806 6.4 ± 0.8 

Mandrill 5 to 10 6.15 ± 0.357 5.85 ± 0.476 

Jet 5 to 7 5.3 ± 0.458 5.35 ± 0.477 

peppers 6 to 10 6.05 ± 0.218 6 ± 0 

MRI 4 to 8 5.2 ± 0.4 5.15 ± 0.357 

Tahoe 3 to 7 6.05 ± 0.384 6.2 ± 0.4 

Avg.  5.875 5.825 

 

6.2.5 The Termination Criteria 
 
Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of the termination criteria were evaluated for the natural images. The termination 

criterion for step 6 in the algorithm (section 6.1) is called TC1 and for step 10 is called 

TC2.  

 Table 6.7 and 6.8 summarize the effect of TC1 and TC2, respectively. In Table 

6.7, TC2 was fixed at 2. Table 6.7 shows that for the Lenna, Mandrill and MRI images 

all the tested values for TC1 produced comparable results within the optimal range. 

For the Jet image, all the tested values for TC1 performed comparably with TC1=5 and 

TC1=25 slightly worse than the other values. For the Peppers image, TC1=75 and 

TC1=100 performed better than other values and the results suggest that the "optimal" 

number of clusters in the Pepper image is 6 which seems to be a valid number. For the 

Tahoe image, all the test values for TC1 (except TC1=75) produced comparable results 

within the optimal range. From the results shown in Table 6.7, it can be concluded 

that the performance of DCPSO is generally insensitive to TC1's values. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

169 
 

 In Table 6.8, TC1 was fixed at 50. Table 6.8 shows that for the Lenna and 

Peppers images all the values of TC2 (except for TC2=2) produced the "optimal" 

number of clusters. For the Mandrill image, all the tested values for TC2 produced 

comparable results within the optimal range. For the Jet image, all the values of TC2 

(expect TC2=2) produced results within the optimal range. TC2=25 and TC2=50 

suggest that the "optimal" number of clusters in the MRI image is 5. This seems to be 

a valid number since the Brain MRI images consist mainly of three major tissue 

classes: gray matter, white matter and cerebrospinal fluid [Zhang et al. 2001]. 

Furthermore, the images contain the skull and the background. For the Tahoe image, 

TC2=25 and TC2=50 produced results outside the optimal range. From the results 

shown in Table 6.8, it can be concluded that the performance of DCPSO is relatively 

insensitive to TC2's values. 
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Table 6.7: Effect of  termination criterion TC1 on the 

DCPSO using a swarm size s = 20 and TC2= 2 
Image TC1 Optimal 

range 
DCPSO using V 

5 5 to 10 6.05 ± 0.921 
25 5 to 10 6.55 ± 0.740 
50 5 to 10 6.5 ± 0.806 
75 5 to 10 6.55 ± 0.740 

Lenna 

100 5 to 10 6.55 ± 0.805 
5 5 to 10 6.05 ± 1.023 
25 5 to 10 6.1 ± 0.539 
50 5 to 10 6.15 ± 0.357 
75 5 to 10 5.95 ± 0.384 

Mandrill 

100 5 to 10 6.05 ± 0.218 
5 5 to 7 5.35 ± 0.726 
25 5 to 7 5.2 ± 0.4 
50 5 to 7 5.3 ± 0.458 
75 5 to 7 5.35 ± 0.477 

Jet 

100 5 to 7 5.35 ± 0.477 
5 6 to 10 6.45 ± 1.023 
25 6 to 10 6.2 ± 0.678 
50 6 to 10 6.05 ± 0.218 
75 6 to 10 6.0 ± 0.0 

Peppers 

100 6 to 10 6.0 ± 0.0 
5 4 to 8 5.7 ± 0.843 
25 4 to 8 5.25 ± 0.698 
50 4 to 8 5.2 ± 0.4 
75 4 to 8 5.1 ± 0.3 

MRI 

100 4 to 8 5.15 ± 0.477 
5 3 to 7 5.85 ± 0.477 
25 3 to 7 6.15 ± 0.572 
50 3 to 7 6.05 ± 0.384 
75 3 to 7 6.45 ± 0.669 

Tahoe 

100 3 to 7 6.2 ± 0.4 
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Table 6.8: Effect of  termination criterion TC2 on the 

DCPSO using a swarm size s = 20 and TC1= 50 
Image TC2 Optimal 

range 
DCPSO using V 

2 5 to 10 6.55 ± 0.740 
10 5 to 10 7.0 ± 0.0 
25 5 to 10 7.0 ± 0.0 

Lenna 

50 5 to 10 7.0 ± 0.0 
2 5 to 10 6.1 ± 0.539 
10 5 to 10 6.25 ± 0.433 
25 5 to 10 6.15 ± 0.357 

Mandrill 

50 5 to 10 6.15 ± 0.357 
2 5 to 7 5.2 ± 0.4 
10 5 to 7 5.6 ± 0.49 
25 5 to 7 5.6 ± 0.49 

Jet 

50 5 to 7 5.8 ± 0.4 
2 6 to 10 6.2 ± 0.678 
10 6 to 10 6.0 ± 0.0 
25 6 to 10 6.0 ± 0.0 

Peppers 

50 6 to 10 6.0 ± 0.0 
2 4 to 8 5.25 ± 0.698 
10 4 to 8 5.05 ± 0.218 
25 4 to 8 5.0 ± 0.0 

MRI 

50 4 to 8 5.0 ± 0.0 
2 3 to 7 6.15 ± 0.572 
10 3 to 7 6.4 ± 0.49 
25 3 to 7 6.75 ± 0.829 

Tahoe 

50 3 to 7 6.85 ± 0.792 
 

6.2.6 pini and Nc 
 

Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of pini was evaluated for the natural images. The results are summarized in Table 6.9. 

Studying the results, it can be concluded that the performance of DCPSO is generally 

insensitive to the value of pini. 
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Table 6.9: Effect of  pini on the DCPSO using a 

swarm size s = 20 
Image pini Optimal 

range 
DCPSO using V 

0.25 5 to 10 6.7 ± 0.64 
0.5 5 to 10 6.5 ± 0.742 
0.75 5 to 10 6.5 ± 0.806 

Lenna 

0.9 5 to 10 6.65 ± 0.726 
0.25 5 to 10 6.05 ± 0.218 
0.5 5 to 10 6.05 ± 0.21 
0.75 5 to 10 6.15 ± 0.357 

Mandrill 

0.9 5 to 10 6.1 ± 0.539 
0.25 5 to 7 5.5 ± 0.592 
0.5 5 to 7 5.3 ± 0.458 
0.75 5 to 7 5.3 ± 0.458 

Jet 

0.9 5 to 7 5.3 ± 0.458 
0.25 6 to 10 6.0 ± 0.0 
0.5 6 to 10 6.0 ± 0.0 
0.75 6 to 10 6.05 ± 0.218 

Peppers 

0.9 6 to 10 6.0 ± 0.0 
0.25 4 to 8 5.3 ± 0.781 
0.5 4 to 8 5.35 ± 0.726 
0.75 4 to 8 5.2 ± 0.4 

MRI 

0.9 4 to 8 5.3 ± 0.9 
0.25 3 to 7 6.2 ± 0.51 
0.5 3 to 7 6.35 ± 0.477 
0.75 3 to 7 6.05 ± 0.384 

Tahoe 

0.9 3 to 7 6.05 ± 0.497 
 

Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of Nc was evaluated for the natural images. The results are summarized in Table 6.10. 

Studying the results, it appears that using Nc = 10 generally results in choosing the 

lower bound of the optimal range. However, using Nc = 50 tends to overfit the data by 

producing results outside the optimal range. Table 6.10 shows that, Nc = 20 generates 

the best results for the natural images. Hence, it can be concluded that the 

performance of DCPSO is sensitive to the value of Nc. 
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Table 6.10: Effect of  Nc on the DCPSO using a 

swarm size s = 20 
Image Nc Optimal 

range 
DCPSO using V 

10 5 to 10 5.4  ± 0.583 
20 5 to 10 6.5 ± 0.806 

Lenna 

50 5 to 10 16.8 ± 3.516 
10 5 to 10 5.55 ± 0.497 
20 5 to 10 6.15 ± 0.357 

Mandrill 

50 5 to 10 15.95 ± 3.57 
10 5 to 7 5.05 ± 0.218 
20 5 to 7 5.3 ± 0.458 

Jet 

50 5 to 7 15.35 ± 2.495 
10 6 to 10 5.9 ± 0.3 
20 6 to 10 6.05 ± 0.218 

Peppers 

50 6 to 10 16.7 ± 2.722 
10 4 to 8 5.25 ± 0.433 
20 4 to 8 5.2 ± 0.4 

MRI 

50 4 to 8 11.45 ± 3.892 
10 3 to 7 5.35 ± 0.572 
20 3 to 7 6.05 ± 0.384 

Tahoe 

50 3 to 7 12.9 ± 4.265 
 

6.2.7 Comparison of gbest-, lbest- and lbest-to-gbest-PSO 
 

In this section, the effect of different models of PSO is investigated. A comparison is 

made between gbest-, lbest- and lbest-to-gbest-PSO (which has been used in the 

above experiments) using a swarm size of 20 particles. For lbest-PSO, a neighborhood 

size of l = 2 was used. Table 6.11 summarizes the result of the comparison. The 

results show no significant difference in performance.    
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Table 6.11: Comparison of gbest-, lbest- and lbest-to-gbest- 

PSO versions of DCPSO using V (s = 20) 
Image Optimal 

range 

gbest- PSO lbest PSO 

(l=2) 

lbest-to-gbest- 

PSO 

Lenna 5 to 10 6.6 ± 0.735 6.55 ± 0.669 6.5 ± 0.806 

Mandrill 5 to 10 6.1 ± 0.3 6.1 ± 0.539 6.15 ± 0.357 

Jet 5 to 7 5.5 ± 0.5 5.25 ± 0.433 5.3 ± 0.458 

peppers 6 to 10 6.15 ± 0.726 6.15 ± 0.654 6.05 ± 0.218 

MRI 4 to 8 5.0 ± 0.0 5.3 ± 0.458 5.2 ± 0.4 

Tahoe 3 to 7 6.25 ± 0.829 6.1 ± 0.3 6.05 ± 0.384 

Avg.  5.933 5.908 5.875 

 

 

6.2.8 Multispectral Imagery Data 
 

To show the applicability of DCPSO to multidimensional feature spaces, DCPSO was 

applied to the four-channel multispectral image set of the Lake Tahoe region in the 

US. The four bands of the image set was already shown in Figure 4.9. Table 6.12 

gives the results of applying lbest-to-gbest DCPSO using V on the image set. The 

results reported in Table 6.12 are averages and standard deviations over 10 

simulations. All parameters are fixed at the values given in section 6.2.4. It appears 

from the table that DCPSO using V found a solution within the optimal range. The 

results show the efficiency of DCPSO when applied to multispectral imagery data. 

Figure 6.3 shows a sample of the resultant segmented image (or thematic map) 

generated by DCPSO using V.  
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Table 6.12: Applying lbest-to-gbest DCPSO using V 

(s = 20) on multispectral image set 
Image Optimal range DCPSO using V 

Four-bands Lake Tahoe 3 to 7 5.8 ± 0.6 

 

 

Figure 6.3: 6-Clusters thematic map obtained using DCPSO 

 

6.3 Conclusions 
 

This chapter presented DCPSO, a new dynamic clustering algorithm based on PSO 

with application to unsupervised image classification. DCPSO clusters a data set 

without requiring the user to specify the number of clusters in advance. This is an 

important feature since knowing the number of clusters in advance is often not easy. 

DCPSO uses a validity index to measure the quality of the resultant clustering. One of 

the advantages of this approach is that DCPSO can work with any validity index. In 

addition, the proposed approach can be used with a GA or RS. DCPSO was applied 

on synthetic (where the number of clusters was known in advance) as well as natural 
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images (including MRI and satellite images), and was compared with other 

unsupervised clustering techniques. From these experiments it can be concluded that 

DCPSO, using the validity index proposed by Turi [2001], has outperformed other 

approaches. In general, DCPSO successfully found the optimum number of clusters 

on the tested images. DCPSO was then compared to both DCGA and DCRS, with 

DCPSO and DCGA outperforming DCRS. The influence of the different DCPSO 

control parameters was then investigated. The use of different PSO models (namely, 

lbest, gbest and lbest-to-gbest) was also studied. Finally, DCPSO was successfully 

applied to multispectral imagery data. 

 The next chapter applies the PSO clustering approach to two difficult 

problems in the fields of pattern recognition and image processing, namely, color 

image quantization and spectral unmixing. 
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