Chapter 4

A PSO-based Clustering Algorithm with Application to Unsupervised Image Classification

A clustering method that is based on PSO is developed in this chapter. The algorithm finds the centroids of a user specified number of clusters, where each cluster groups together similar patterns. The application of the proposed clustering algorithm to the problem of unsupervised classification and segmentation of images is investigated. To illustrate its wide applicability, the proposed algorithm is then applied to synthetic, MRI and satellite images. Experimental results show that the PSO clustering algorithm performs better than *state-of-the-art* clustering algorithms (namely, K-means, Fuzzy C-means, K-Harmonic means and Genetic Algorithms) in all measured criteria. The influence of different values of PSO control parameters on performance is illustrated. The performance of different versions of PSO is also investigated.

4.1 PSO-Based Clustering Algorithm

This section defines the terminology used throughout the rest of the chapter. A measure is given to quantify the quality of a clustering algorithm, after which the PSO-based clustering algorithm is introduced.

4.1.1 Measure of Quality

Different measures can be used to express the quality of a clustering algorithm. The most general measure of performance is the quantization error, defined as

$$J_{e} = \frac{\sum_{k=1}^{K} \left[\sum_{\forall z_{p} \in C_{k}} d(z_{p}, \boldsymbol{m}_{k}) \right] / n_{k}}{K}$$
(4.1)

where C_k is the k^{th} cluster, and n_k is the number of pixels in C_k

4.1.2 PSO-Based Clustering Algorithm

In the context of data clustering, a single particle represents the *K* cluster centroids. That is, each particle x_i is constructed as $x_i = (m_{i,1}, ..., m_{i,k}, ..., m_{i,K})$ where $m_{i,k}$ refers to the k^{th} cluster centroid vector of the i^{th} particle. Therefore, a swarm represents a number of candidate data clusterings. The quality of each particle is measured using

$$f(\boldsymbol{x}_i, \boldsymbol{Z}_i) = w_1 \overline{d}_{\max}(\boldsymbol{Z}_i, \boldsymbol{x}_i) + w_2(\boldsymbol{z}_{\max} - d_{\min}(\boldsymbol{x}_i))$$
(4.2)

where z_{max} is the maximum value in the data set (i.e. in the context of digital images, $z_{\text{max}} = 2^s - 1$ for an *s*-bit image); Z_i is a matrix representing the assignment of patterns to the clusters of particle *i*. Each element $z_{i,k,p}$ indicates if pattern z_p belongs to cluster C_k of particle *i*. The constants w_1 and w_2 are user-defined constants used to weigh the contribution of each of the sub-objectives. Also,

$$\overline{d}_{max}(\boldsymbol{Z}_{i},\boldsymbol{x}_{i}) = \max_{k=1,\dots,K} \left\{ \sum_{\forall \boldsymbol{z}_{p} \in \boldsymbol{C}_{i,k}} d(\boldsymbol{z}_{p},\boldsymbol{m}_{i,k}) / n_{i,k} \right\}$$
(4.3)

is the maximum average Euclidean distance of particles to their associated clusters, and

$$d_{\min}(\mathbf{x}_i) = \min_{\forall k, kk, k \neq kk} \left\{ d(\mathbf{m}_{i,k}, \mathbf{m}_{i,kk}) \right\}$$
(4.4)

is the minimum Euclidean distance between any pair of clusters. In the above, $n_{i,k}$ is the number of patterns that belong to cluster $C_{i,k}$ of particle *i*.

The fitness function in equation (4.2) has as objective to simultaneously minimize the intra-distance between patterns and their cluster centroids, as quantified by $\overline{d}_{\max}(\mathbf{Z}_i, \mathbf{x}_i)$, and to maximize the inter-distance between any pair of clusters, as quantified by, $d_{\min}(\mathbf{x}_i)$.

According to the definition of the fitness function, a small value of $f(x_i, Z_i)$ suggests compact and well-separated clusters (i.e. *good* clustering).

The fitness function is thus a multi-objective problem. Approaches to solve multi-objective problems have been developed mostly for evolutionary computation approaches [Coello Coello 1996]. Recently, approaches to multi-objective optimization using PSO have been developed by Hu and Eberhart [Multiobjective 2002], Fieldsend and Singh [2002] and Coello Coello and Lechuga [2002]. Since our scope is to illustrate the applicability of PSO to data clustering, and not on multi-objective optimization, a simple weighted approach is used to cope with multiple objectives. Different priorities are assigned to the subobjectives via appropriate initialization of the values of w_1 and w_2 .

The PSO clustering algorithm is summarized in Figure 4.1.

1. Initialize each particle to contain K randomly selected cluster centroids

2. For t = 1 to t_{max}

(a) For each particle *i*

i. For each pattern z_p

• calculate $d(\boldsymbol{z}_{p}, \boldsymbol{m}_{ik})$ for all clusters \boldsymbol{C}_{ik} using equation

(3.1)

• assign z_p to $C_{i,k}$ where

$$d(\boldsymbol{z}_{p}, \boldsymbol{m}_{i,k}) = \min_{\substack{\forall k=1,\ldots,K}} \{ d(\boldsymbol{z}_{p}, \boldsymbol{m}_{i,k}) \}$$

$$(4.5)$$

ii. Calculate the fitness, $f(x_i, Z_i)$

(b) Find the personal best position for each particle and the global best solution, $\hat{y}(t)$

(c) Update the cluster centroids using equations (2.8) and (2.10)

```
Figure 4.1: The PSO clustering algorithm
```

As previously mentioned, an advantage of using PSO is that a parallel search for an optimal clustering is performed. This population-based search approach reduces the effect of the initial conditions, compared to K-means (as shown in Figure 4.4), especially for relatively large swarm sizes.

4.1.3 A Fast Implementation

Since most of the images used in this thesis are single band, gray scale images and since most clustering algorithms do not use spatial information, a fast implementation

is used for this type of images in order to speedup the execution time of the algorithms used. The fast implementation works as follows:

- The histogram of a single band, gray scale image is created by calculating the frequency of each gray level.
- 2) A data structure is used where each gray level is associated with a frequency value and a cluster label.
- 3) Depending on the algorithm used, perform all the calculations (e.g. Euclidean distance, calculation of centroids, fitness function, etc.) using the above data structure by multiplying each gray level by its frequency and using the cluster labels for clustering.

Using the above implementation, the execution time will be independent on the size of the image. However, the execution time will depend on the number of gray levels which is usually very small (e.g. 256 for 8-bit images and 1024 for 10-bit images). Furthermore, the number of gray levels is generally much less than the number of pixels. Hence, the execution time will reduce significantly while the results are the same. Therefore, this implementation is used in this thesis for single band, gray scale images.

4.2 Experimental Results

The PSO-based clustering algorithm has been applied to three types of imagery data, namely synthetic, MRI and LANDSAT 5 MSS (79 m GSD) images. These data sets have been selected to test the algorithms, and to compare them with other algorithms, on a range of problem types, as listed below:

Synthetic Image: Figure 4.2(a) shows a 100×100 8-bit gray scale image created to specifically show that the PSO algorithm does not get trapped in the local minimum. The image was created using two types of brushes, one brighter than the other.

MRI Image: Figure 4.2(b) shows a 300×300 8-bit gray scale image of a human brain, intentionally chosen for its importance in medical image processing.

Remotely Sensed Imagery Data: Figure 4.2(c) shows band 4 of the four-channel multispectral test image set of the Lake Tahoe region in the US. Each channel is comprised of a 300×300 , 8-bit per pixel (remapped from the original 6 bit) image. The test data are one of the North American Landscape Characterization (NALC) Landsat multispectral scanner data sets obtained from the U.S. Geological Survey (USGS).

The rest of this section is organized as follows: Section 4.2.1 illustrates that the basic PSO can be used successfully as an unsupervised image classifier, using the original fitness function as defined in equation (4.2). Section 4.2.2 illustrates the performance under a new fitness function. Results of the *gbest* PSO are compared with that of GCPSO in section 4.2.3, using the new fitness function. Section 4.2.4 investigates the influence of the different PSO control parameters. The performance of PSO using the new fitness function is compared with *state-of-the-art* clustering approaches in Section 4.2.5. In section 4.2.6, the performance of different versions of PSO is investigated. A new non-parametric fitness function is presented in Section 4.2.7. In section 4.2.8, the PSO-based clustering algorithm is applied to multispectral

imagery data. Finally, section 4.2.9 provides a discussion of applying PSO to data clustering.

(a) Synthetic image

(b) MRI Image of Human brain

(c) Band 4 of the Landsat MSS test image of Lake Tahoe Figure 4.2: Data set consisting of synthetic, MRI and LANDSAT images

The results reported in this section are averages and standard deviations over 20 simulations. All comparisons are made with reference to J_e , \overline{d}_{max} and d_{min} .

Furthermore, a total number of clusters of 3, 8 and 4 were used respectively for the synthetic, MRI and Tahoe images.

4.2.1 gbest PSO versus K-Means

This section presents results to compare the performance of the *gbest* PSO algorithm with that of the K-means algorithm for each of the images.

Table 4.1 summarizes the results for the three images. In all cases, for PSO, 50 particles were trained for 100 iterations; for K-means, 5000 iterations were used (that is, both algorithms have performed 5000 function evaluations). $V_{max} = 5$, w = 0.72 and $c_1 = c_2 = 1.49$. The chosen values of w, c_1 , and c_2 are popular in the literature and ensure convergence [Van den Bergh 2002]. For the fitness function in equation (4.2), $w_1 = w_2 = 0.5$ to give each subobjective an equal contribution.

The results showed that, for the images used, K-means performed better than the PSO algorithm with reference to the quantization error J_e . However, J_e does not give an idea of the quality of the individual clusters. With respect to the minimization of intra-distances (\overline{d}_{max}) and the maximization of inter-distances (d_{min}), the PSO algorithm generally performed better than K-means clustering.

Figure 4.3 illustrates for the synthetic image how the fitness of PSO improves over time. For this figure, 10 particles have been used for a training phase of 100 iterations, $V_{max} = 5$, w = 0.72, $c_1 = c_2 = 1.49$, and $w_1 = w_2 = 0.5$. The fitness value, as measured using equation 4.2, improves from the initial 96.637 to 91.781.

Figure 4.3: PSO Performance on Synthetic Image

Figure 4.4(a) illustrates the segmented image of the synthetic image for the Kmeans algorithm, while Figure 4.4(b) illustrates the segmented image obtained from the PSO algorithm. These figures clearly illustrate that K-means was trapped in a local optimum. Three clusters were created using two brushers, the brighter brush were used to create the two spots in the upper right and lower left corner while the other brush were used to create the remaining shape. K-means could not classify the clusters correctly, since it failed to cluster the two spots as separate clusters. PSO, on the other hand, was not trapped in this local optimum and succeeded in showing the two spots as separate clusters. The segmented images for the MRI and the Tahoe images are given in Figures 4.5 and 4.6, respectively.

Image		J_{e}	\overline{d}_{\max}	d_{\min}	
Synthetic K-means		20.212 ± 0.938	28.040 ± 2.778	78.498 ± 7.0629	
	PSO	24.453 ± 0.209	27.157 ± 0.017	98.679 ± 0.023	
MRI	K-means	7.370 ± 0.0428	13.214 ± 0.762	9.934 ± 7.309	
	PSO	8.536 ± 0.584	10.129 ± 1.262	28.745 ± 2.949	
Tahoe K-means		1.664 ± 0.040	3.107 ± 0.168	4.527 ± 1.347	
	PSO	7.215 ± 2.393	9.036 ± 3.363	25.777 ± 9.602	

Table 4.1: Comparison between K-means and PSO

Figure 4.4: The Segmented Synthetic Images

(b) PSO

(a) K-means

(b) PSO

4.2.2 Improved Fitness Function

The above experimental results have shown that the PSO clustering algorithm improves on the performance of the K-means algorithm in terms of inter- and intracluster distances. An improved fitness function which simply adds to the previous fitness function an additional sub-objective to also minimize the quantization error is presented in the following equation:

$$f(\mathbf{x}_{i}, \mathbf{Z}_{i}) = w_{1}d_{\max}(\mathbf{Z}_{i}, \mathbf{x}_{i}) + w_{2}(z_{\max} - d_{\min}(\mathbf{x}_{i})) + w_{3}J_{e_{i}}$$
(4.6)

In this section, the results of the *gbest* PSO shown in the previous section are compared with results using the new fitness function as defined in equation (4.6). All parameters are set as in the previous section. The only difference is that for the extended fitness function, $w_1 = w_2 = 0.3$, $w_3 = 0.4$ were used for the synthetic image, $w_1 = 0.2$, $w_2 = 0.5$, $w_3 = 0.3$ were used for the MRI image and $w_1 = w_2 = w_3 =$ 0.333333 were used for the Tahoe image. These values were set empirically.

Table 4.2 compares the results for the two fitness functions. The new fitness function succeeded in significant improvements in the quantization error, J_e . The new fitness function also achieved significant improvements in minimizing the intracluster distances for the synthetic and Tahoe images, thus resulting in more compact clusters, and only marginally worse for the MRI image. These improvements were at the cost of loosing on maximization of the inter-cluster distances. However, this loss is acceptable because the *gbest* PSO using the new fitness function still performs

better than the K-means algorithm in terms of the inter-cluster distance (compare the results in Table 4.1 and Table 4.2).

Due to the improved performance on the quantization error and intra-cluster distances, the rest of this chapter uses the 3-component fitness function as defined in equation (4.6).

Table 4.2: 2-component versus 3-component fitness function						
	2-Comp	onent Fitness I	Function	3-Comp	onent Fitness I	Function
Problem	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}
Synthetic	24.453 ±	27.157 ±	98.679 ±	17.113 ±	24.781 ±	92.768 ±
	0.209	0.017	0.023	0.548	0.270	4.043
MRI	8.536 ±	10.129 ±	28.745 ±	7.225 ±	12.206 ±	22.936 ±
	0.584	1.262	2.949	0.552	2.507	8.311
Tahoe	$7.215 \pm$ $9.036 \pm$ $25.777 \pm$ $3.556 \pm$ $4.688 \pm$ 14.987					14.987 ±
	2.393	3.363	9.602	0.140	0.260	0.425

4.2.3 gbest PSO versus GCPSO

This section compares the performance of the *gbest* PSO with the GCPSO. This is done for a low $V_{max} = 5$ and a high $V_{max} = 255$. All other parameters are as for section 4.2.2. Table 4.3 shows no significant difference in the performance between PSO and GCPSO. It is, however, important to note that too much clamping of the velocity updates have generally a negative influence on performance. In general, better results were obtained, for both the PSO and GCPSO with a large value of V_{max} .

Table 4.3: PSO versus GCPSO							
Problem		PSO			GCPSO		
$V_{max}=5$	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}	
Synthetic	$17.112672 \pm$	24.781384 ±	92.767925 ±	17.116036 ±	$24.826868 \pm$	$92.845323 \pm$	
	0.548096	0.270409	4.043086	0.547317	0.237154	4.056681	
MRI	7.225384 ±	$12.205947 \pm$	22.935786 ±	7.239264 ±	12.438016 ±	$23.377287 \pm$	
	0.552381	2.506827	8.310654	0.475250	2.437064	6.722787	
Tahoe	3.556281 ±	$4.688270 \pm$	$14.986923 \pm$	3.542732 ±	$4.672483 \pm$	$15.007491 \pm$	
	0.139881	0.259919	0.425077	0.109415	0.129913	0.621020	
<i>V_{max}</i> =255							
Synthetic	$17.004993 \pm$	$24.615665 \pm$	93.478081±	$17.000393 \pm$	$24.672107 \pm$	$93.588530 \pm$	
	0.086698	0.143658	0.276109	0.022893	0.174457	0.400137	
MRI	$7.640622 \pm$	$10.621452 \pm$	$24.948486 \pm$	7.694498 ±	$10.543233 \pm$	$25.355967 \pm$	
	0.514184	1.284735	3.446673	0.591383	1.038114	3.945929	
Tahoe	3.523967 ±	4.681492 ±	$14.664859 \pm$	3.609807 ±	4.757948 ±	15.282949 ±	
	0.172424	0.110739	1.177861	0.188862	0.227090	1.018218	

4.2.4 Influence of PSO Parameters

The PSO have a number of parameters that have an influence on the performance of the algorithm. These parameters include V_{max} , the number of particles, the inertia weight and the acceleration constants. Additionally, the PSO-based clustering algorithm adds a weight to each sub-objective. This section investigates the influence of different values of these parameters.

Velocity Clamping

Table 4.3 shows that less clamping of velocity updates is more beneficial. This allows particles to make larger jumps in the search space.

Swarm Size

To investigate the effect of different swarm sizes on performance, both the PSO and GCPSO have been executed using 10 to 100 particles. All other parameters are as for section 4.2.2. Figure 4.7 shows the effect of the swarm size, *s*, on the synthetic image. It is clear from the figure that increasing the number of particles improves the performance of both algorithms. The same conclusion can be drawn for the MRI image as illustrated in Figure 4.8. However, it can be observed from Figure 4.7, that no significant improvement is achived for more than 60 particles. In general, an increase in the number of particles increases diversity, thereby limiting the effects of initial conditions and reducing the possibility of being trapped in local minima.

Inertia Weight

Given that all parameters are fixed at the values given in section 4.2.2, the inertia weight w was set to different values for both PSO and GCPSO. In addition, a dynamic inertia weight was used with an initial w = 1.4, which linearly decreased to 0.8. The initial large value of w favors exploration in the early stages, with more exploitation in the later stages with the smaller values. Tables 4.4 and 4.5 summarize the results for the synthetic and MRI images respectively. For the synthetic image, the results illustrate no significant difference in performance, meaning that for the synthetic image, the PSO-based clustering algorithms are generally insensitive to the value of the inertia weight (provided that c_1 and c_2 are selected such that equation (2.9) is not violated). However, in the MRI image, it can be observed that w = 0 yields the best results in terms of inter- and intra-cluster distances.

Synthetic Image tmax = 100 25.5 25.4 25.3 25.2 dmax - PSO 25.1 GCPSO 25 24.9 24.8 24.7 0 20 40 60 80 100 s

(a) Quantization error

(b) Intra-cluster Distances

Figure 4.7: Effect of swarm size on synthetic image

(a) Quantization error

(b) Intra-cluster Distances

(c) Inter-cluster Distances Figure 4.8: Effect of swarm size on MRI image

Table 4.4: Effect of inertia weight on the synthetic image							
	PSO			GCPSO			
w	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}	
0.0	$16.983429 \pm$	$24.581799 \pm$	93.435221 ±	$16.986386 \pm$	$24.649368 \pm$	$93.559275 \pm$	
	0.017011	0.165103	0.308601	0.016265	0.138223	0.254670	
0.1	$16.982362 \pm$	$24.645884 \pm$	93.543795 ±	$16.985079 \pm$	$24.637893 \pm$	$93.538635 \pm$	
	0.016074	0.137442	0.256700	0.016995	0.138894	0.257167	
0.5	$16.985826 \pm$	$24.664421 \pm$	$93.595394 \pm$	$16.987470 \pm$	$24.662973 \pm$	93.58124 ±	
	0.014711	0.144252	0.246110	0.028402	0.163768	0.281366	
0.72	$16.992102 \pm$	$24.670338 \pm$	$93.606400 \pm$	16.995967 ±	$24.722414 \pm$	$93.680765 \pm$	
	0.021756	0.150542	0.258548	0.039686	0.144572	0.253954	
0.9	$16.993759 \pm$	$24.650337 \pm$	$93.569595 \pm$	$17.040990 \pm$	$24.633802 \pm$	$93.495340 \pm$	
	0.014680	0.140005	0.252781	0.168017	0.352785	0.584424	
1.4 to 0.8	$17.824495 \pm$	$24.433770 \pm$	$92.625088 \pm$	17.481146 ±	$24.684407 \pm$	$93.223498 \pm$	
	0.594291	1.558219	2.031224	0.504740	1.010815	1.490217	

	Table 4.5: Effect of inertia weight on the MRI image							
		PSO		GCPSO				
w	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}		
0.0	7.538669 ±	9.824915 ±	$28.212823 \pm$	$7.497944 \pm$	9.731746±	$28.365827 \pm$		
	0.312044	0.696940	2.300930	0.262656	0.608752	1.882164		
0.1	7.511522 ±	10.307791 ±	27.150801 ±	$7.309289 \pm$	$10.228958 \pm$	$26.362349 \pm$		
	0.281967	1.624499	3.227550	0.452103	1.354945	3.238452		
0.5	7.612079 ±	$10.515242 \pm$	$26.996556 \pm$	7.466388 ±	$10.348044 \pm$	26.790056 ±		
	0.524669	1.103493	2.161969	0.492750	1.454050	2.830860		
0.72	7.57445 ±	$10.150214\pm$	$27.393498 \pm$	$7.467591 \pm$	$10.184191 \pm$	$26.596493 \pm$		
	0.382172	1.123441	3.260418	0.396310	0.955129	3.208689		
0.9	$7.847689 \pm$	$10.779765 \pm$	$26.268057\pm$	7.598518±	$10.916945 \pm$	25.417859 ±		
	0.529134	1.134843	3.595596	0.516938	1.534848	3.174232		
1.4 to 0.8	8.354957 ±	13.593536±	$21.625623 \pm$	8.168068 ±	12.722139 ±	21.169304 ±		
	0.686190	2.035889	4.507230	0.709875	1.850957	4.732452		

Acceleration Coefficients

Given that all parameters are fixed at the values given in section 4.2.2, the influence of different values for the acceleration coefficients, c_1 and c_2 , were evaluated for the synthetic and MRI images. Tables 4.6 and 4.7 summarize these results. For these choices of the acceleration coefficients, no single choice is superior to the others. While these tables indicate an independence to the value of the acceleration coefficients, it is important to note that convergence depends on the relationship between the inertia weight and the acceleration coefficients, as derived in Van den Bergh [2002] (also refer to equation (2.9)).

Table 4.6: Effect of acceleration coefficients on the synthetic image							
		PSO		GCPSO			
W	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}	
$c_1 = 0.7$	$16.989197 \pm$	$24.726716 \pm$	93.698591 ±	$16.989355 \pm$	$24.708151 \pm$	93.667144 ±	
$c_2 = 1.4$	0.011786	0.101239	0.184244	0.012473	0.120168	0.207355	
$c_1 = 1.4$	$16.991884 \pm$	$24.700627 \pm$	93.658673 ±	$16.993095 \pm$	$24.685461 \pm$	93.619162 ±	
$c_2 = 0.7$	0.016970	0.125603	0.208500	0.040042	0.165669	0.279258	
$c_1 = 1.49$	$16.987582 \pm$	$24.710933 \pm$	93.672792 ±	$16.995967 \pm$	$24.722414 \pm$	93.680765 ±	
$c_2 = 1.49$	0.009272	0.122622	0.206395	0.039686	0.144572	0.253954	

Table 4.7: Effect of acceleration coefficients on the MRI image							
		PSO		GCPSO			
W	J _e	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}	
$c_1 = 0.7$	7.599324 ±	10.14501 ±	26.977217 ±	7.530823 ±	10.201762 ±	26.425638±	
$c_2 = 1.4$	0.289702	1.353091	3.467738	0.477134	0.986726	3.248949	
$c_1 = 1.4$	7.528712 ±	10.23899 ±	27.747333 ±	7.476468 ±	10.159019 ±	27.001444 ±	
$c_2 = 0.7$	0.439470	1.484245	2.850575	0.459432	1.085977	3.360799	
$c_1 = 1.49$	7.499845 ±	10.20391 ±	26.629647 ±	7.467591 ±	10.184191 ±	26.596493 ±	
$c_2 = 1.49$	0.416682	0.951100	2.652593	0.396310	0.955129	3.208689	

Sub-objective Weight Values

Tables 4.8 and 4.9 summarize the effects of different values of the weights, w_1 , w_2 and w_3 , of the sub-objectives for the synthetic and MRI images respectively. The results show that increasing the value of a weight, improves the corresponding fitness term. However, it is not so clear which sub-objective weight value combination is best for the synthetic and MRI images. To eliminate tuning of these weight values, an alternative multi-objective approach can be followed [Coello Coello 1996; Hu and Eberhart, <u>Multiobjective</u> 2002; Fieldsend and Singh 2002; Coello Coello and Lechuga 2002], or a non-parametric fitness function can be used as proposed in section 4.2.7.

4.2.5 gbest PSO versus state-of-the-art clustering algorithms

This section compares the performance of the *gbest* PSO and GCPSO with K-means, FCM, KHM, H2 and a GA clustering algorithm. This is done for a high $V_{max} = 255$. All other parameters are as for section 4.2.2. In all cases, for PSO, GCPSO and GA, 50 particles were trained for 100 iterations; for the other algorithms 5000 iterations were used (i.e. all algorithms have performed 5000 function evaluations). For FCM, q was set to 2 since it is the commonly used value [Hoppner *et al.* 1999]. For KHM and H2, α was set to 2.5 and 4 respectively since these values produced the best results according to our preliminary tests. For the GA, a tournament size of 2 was used, a uniform crossover probability of 0.8 with mixing ratio of 0.5, and a mutation probability of 0.05. Only the best individual survived to the next generation. The results are summarized in Table 4.10. These results are also averages over 20 simulation runs. Table 4.10 shows that PSO and GCPSO generally outperformed K-means, FCM, KHM and H2 in d_{min} and \overline{d}_{max} , while performing comparably with

respect to J_e (for the synthetic image, PSO performs significantly better than Kmeans, FCM, KHM and H2 with respect to J_e). The PSO, GCPSO and GA showed similar performance, with no significant difference.

These results show that the PSO-based clustering algorithms are viable alternatives that merit further investigation.

	Table 4.8: Effect of sub-objective weight values on synthetic image							
PSO				GCPSO				
<i>w</i> ₁	<i>w</i> ₂	<i>W</i> ₃	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}
0.3	0.3	0.3	17.068816	24.67201	93.59498	17.01028	24.74227	93.711385
			±	±	±	±	±	±
			0.157375	0.572276	0.984724	0.059817	0.258118	0.437418
0.8	0.1	0.1	17.590421	21.76629	88.89228	17.51434	21.72462	88.879342
			±	±	±	±	±	±
			0.353375	0.127098	0.143159	0.025242	0.018983	0.062452
0.1	0.8	0.1	18.827495	27.62398	97.71945	18.82712	27.52239	97.768398
			±	±	±	±	±	±
			0.558357	0.427120	0.202744	0.688529	0.282601	0.266885
0.1	0.1	0.8	16.962755	24.49574	93.22883	16.98372	24.54688	92.576271
			±	±	±	±	±	±
			0.003149	0.089611	0.135893	0.122501	0.434417	4.357444
0.1	0.45	0.45	17.550448	26.70792	96.02056	17.55782	26.59844	95.888089
			±	±	±	±	±	±
			0.184982	0.692239	0.757185	0.226305	0.907974	1.152158
0.45	0.45	0.1	18.134349	26.48904	96.46178	18.29490	26.79529	96.922471
			±	±	±	±	±	±
			0.669151	0.982256	1.495491	0.525467	0.800436	1.225336
0.45	0.1	0.45	17.219807	22.63196	90.15281	17.20169	22.70116	90.289690
			±	±	±	±	±	±
			0.110357	0.522369	0.887423	0.093969	0.469470	0.828522

	Table 4.9: Effect of sub-objective weight values on MRI image								
	PSO						GCPSO		
<i>w</i> ₁	<i>w</i> ₂	<i>W</i> ₃	J_{e}	\overline{d}_{\max}	d_{\min}	J_{e}	\overline{d}_{\max}	d_{\min}	
0.3	0.3	0.3	7.239181	10.235431	24.705469	7.194243	10.403608	23.814072	
			±	±	±	±	±	±	
			0.576141	1.201349	3.364803	0.573013	1.290794	3.748753	
0.8	0.1	0.1	7.364818	9.683816	24.021787	7.248268	9.327774	23.103375	
			±	±	±	±	±	±	
			0.667141	0.865521	3.136552	0.474639	0.654454	4.970816	
0.1	0.8	0.1	8.336001	11.256763	31.106734	8.468620	11.430190	30.712733	
			±	±	±	±	±	±	
			0.599431	1.908606	1.009284	0.626883	1.901736	1.336578	
0.1	0.1	0.8	6.160486	15.282308	2.342706	6.088302	15.571290	1.659674	
			±	±	±	±	±	±	
			0.241060	2.300023	5.062570	0.328147	2.410393	4.381048	
0.1	0.45	0.45	7.359711	10.826327	24.536828	7.303304	11.602263	22.939088	
			±	±	±	±	±	±	
			0.423120	1.229358	3.934388	0.439635	1.975870	3.614108	
0.45	0.45	0.1	8.001817	9.885342	28.057459	7.901145	9.657340	29.236420	
			±	±	±	±	±	±	
			0.391616	0.803478	1.947362	0.420714	0.947210	1.741987	
0.45	0.1	0.45	6.498429	11.392347	12.119429	6.402205	10.939902	14.422413	
			±	±	±	±	±	±	
			0.277205	2.178743	8.274427	0.363938	2.301587	6.916785	

Table 4.10): Comparison b	etween K-means,	FCM, KHM, H2, G	A and PSO for fitness
		function defined i	n equation (4.6)	
Image		J_e	\overline{d}_{\max}	d_{\min}
	K-means	20.21225 ± 0.937836	28.04049 ± 2.7779388	78.4975 ± 7.0628718
	FCM	20.731920 ± 0.650023	28.559214 ± 2.221067	82.434116 ± 4 404686
	KHM(<i>p</i> =2.5)	$20.168574 \pm$	23.362418 ±	86.307593 ± 0.000008
Synthetic	H2 (p=4)	20.136423 ±	26.686939 ±	81.834143 ±
	GA	17.004002 ± 0.035146	24.603018 ± 0.11527	93.492196 ± 0.2567
	PSO	$ \begin{array}{r} 16.988910 \pm \\ 0.023937 \end{array} $	24.696055 ± 0 130334	$\begin{array}{r} 0.2307 \\ 93.632200 \pm \\ 0.248234 \end{array}$
	GCPSO	16.995967 ± 0.039686	24.722414 ± 0.144572	93.680765 ± 0.253954
	K-means	7.3703 ± 0.042809	13.214369 ± 0.761599	9.93435 ± 7.308529
	FCM	7.205987 ± 0.166418	$\frac{10.851742 \pm 0.960273}{10.851742 \pm 0.960273}$	$\frac{19.517755 \pm}{2.014138}$
	KHM(<i>p</i> =2.5)	7.53071± 0.129073	10.655988 ± 0.295526	24.270841 ± 2.04944
MRI	H2 (p=4)	7.264114 ± 0.149919	10.926594 ± 0.737545	20.543530 ± 1.871984
	GA	7.038909 ± 0.508953	9.811888 ± 0.419176	25.954191 ± 2.993480
	PSO	7.594520 ± 0.449454	10.186097 ± 1.237529	26.705917 ± 3.008073
	GCPSO	7.555421 ± 0.409742	9.983189 ± 0.915289	27.313118 ± 3.342264
	K-means	3.280730 ± 0.095188	5.234911 ± 0.312988	9.402616 ± 2.823284
	FCM	3.164670 ± 0.000004	4.999294 ± 0.000009	10.970607 ± 0.000015
	KHM(<i>p</i> =2.5)	3.830761 ± 0.000001	6.141770 ± 0.0	13.768387 ± 0.000002
Tahoe	H2 (p=4)	3.197610 ± 0.000003	5.058015 ± 0.000007	11.052893 ± 0.000012
	GA	3.472897 ± 0.151868	4.645980 ± 0.105467	$\frac{14.446860 \pm 0.857770}{14.446860 \pm 0.857770}$
	PSO	3.523967 ± 0.172424	4.681492 ± 0.110739	14.664859 ± 1.177861
	GCPSO	3.609807 ± 0.188862	4.757948 ± 0.227090	15.282949 ± 1.018218

4.2.6 Different Versions of PSO

This section investigates the use of different versions of PSO, namely:

- *lbest* PSO (with l = 2).
- *gbest-to-lbest* PSO, starting start with an *lbest* implementation of the PSO (with zero-radius neighborhood i.e. *l* = 0) and linearly increasing the neighborhood radius until a *gbest* implementation of the PSO is reached. This hybrid approach is used in order to initially explore more, thus, avoid being trapped in local optima, by using a *lbest* approach [Suganthan 1999]. The algorithm then attempts to converge onto the best solution found by the initial phase by using a *gbest* approach.
- *gbest-* and *lbest-* PSO with mutation proposed by Esquivel and Coello Coello [2003] (discussed in section 2.6.8). In this approach, the PSO parameters where set as specified by Esquivel and Coello Coello [2003] (i.e. w = 0.3, $c_1 = c_2 = 1.3$). In addition, p_m is initialized to 0.9, then linearly decreases with increase in the number of iterations [Coello Coello 2003].

Table 4.11 summarizes the results of *gbest* PSO, GCPSO, *lbest* PSO, *gbest-to-lbest* PSO, *gbest* PSO with mutation and *lbest* PSO with mutation. In all the experiments, 50 particles were trained for 100 iterations and $V_{max} = 255$. All the other parameters are as for section 4.2.2 for all the approaches except the approaches that use mutation. Although the results are generally comparable, it can be observed that the *gbest-to-lbest* PSO is slightly better than the others. An explanation for this observation is the fact that *gbest-to-lbest* PSO starts with high diversity (therefore more exploration),

then as the run progresses, the diversity is reduced (to focus more exploitation). This observation shows the importance of high diversity at the beginning of the run in order to avoid premature convergence and the importance of low diversity at the end of the run in order to fine tune the solution.

	Table 4.11: Comparison of different PSO versions					
Image		J_e	\overline{d}_{\max}	d_{\min}		
	gbest PSO	16.988910 ± 0.023937	24.696055 ± 0.130334	93.632200 ± 0.248234		
	GCPSO	16.995967 ± 0.039686	24.722414 ± 0.144572	93.680765 ± 0.253954		
	lbest PSO	16.991791 ± 0.003523	24.771597 ± 0.004171	93.775989 ±		
Synthetic	gbest-to-lbest PSO	16.988325 ± 0.000273	24.774668 ± 0.000371	93.775989 ±		
	gbest PSO with mutation	16.985563 ± 0.006350	24.728548 ± 0.110016	93.698591 ± 0.184244		
	<i>lbest</i> PSO with mutation	16.995550 ± 0.015914	24.684511 ± 0.135164	93.646993 ± 0.223429		
	PSO	7.594520 ± 0.449454	10.186097 ± 1 237529	26.705917 ± 3.008073		
	GCPSO	7.555421 ± 0.409742	9.983189 ± 0.915289	27.313118 ± 3.342264		
MDI	lbest PSO	7.676197 ± 0.138833	9.500085 ± 0.567423	$29.684682 \pm \\ 0.929038$		
MRI	gbest-to-lbest PSO	7.663361 ± 0.142196	9.211712 ± 0.502518	30.138389 ± 0.878266		
	gbest PSO with mutation	7.301802 ± 0.474767	9.573999 ± 0.581114	27.691924 ± 3.145707		
	<i>lbest</i> PSO with mutation	7.657294 ± 0.277544	9.890083 ± 0.696923	28.731981 ± 1.938404		
	PSO	3.523967 ± 0.172424	4.681492 ± 0.110739	14.664859 ± 1.177861		
	GCPSO	3.609807 ± 0.188862	4.757948 ± 0.227090	15.282949 ± 1.018218		
Tabaa	lbest PSO	3.527251 ± 0.212840	4.778272 ± 0.217206	15.619541 ± 1.179783		
lahoe	gbest-to-lbest PSO	3.460024 ± 0.289942	$\frac{4.826269 \pm 0.238982}{4.826269 \pm 0.238982}$	15.985762 ± 1.410871		
	gbest PSO with mutation	3.592122± 0.180782	4.750996 ± 0.213625	15.252226 ± 0.987399		
	<i>lbest</i> PSO with mutation	3.660723± 0.121711	4.793518 ± 0.144508	15.522304 ± 0.597297		

4.2.7 A Non-parametric Fitness Function

The fitness function defined in equation (4.6) provides the user with the flexibility of prioritizing the fitness term of interest by modifying the corresponding weight. However, it requires the user to find the best combination of w_1 , w_2 and w_3 for each image which is not an easy task. Therefore, a non-parametric fitness function without weights is defined as

$$f(\boldsymbol{x}_i, \boldsymbol{Z}_i) = \frac{\overline{d}_{\max}(\boldsymbol{Z}_i, \boldsymbol{x}_i) + J_{e,i}}{d_{\min}(\boldsymbol{Z}_i, \boldsymbol{x}_i)}$$
(4.7)

The advantage of equation (4.7) is that it works with any data set without any user intervention. Table 4.12 is a repeat of Table 4.10, but with the results of *gbest* PSO using the non-parametric fitness function (referred to as *PSO noweights*) added. In general, the PSO using the non-parametric fitness function performed better than K-Means, FCM, KHM and H2 in terms of d_{\min} and \overline{d}_{\max} , while performing comparably with respect to J_e . In addition, the PSO using the non-parametric fitness function performed comparably with GA, PSO and GCPSO using the parametric fitness function (equation (4.6)). Hence, the non-parametric fitness function (equation (4.7)) can be used instead of the parametric fitness function (equation (4.6)), thereby eliminating the need for tuning w_1 , w_2 and w_3 .

However, since the difference between J_e and \overline{d}_{max} on the one hand and d_{min} on the other hand is quite large (as can be observed from the results of this section), the value of the fitness function is usually less than one, and may incorrectly indicate

a good clustering for large values of J_e and \overline{d}_{max} . The proposed non-parametric fitness function therefore has the problem that the largest criterion tends to dominate the other criteria. To address this biased behavior, the values of J_e and \overline{d}_{max} are normalized to the range [0,0.5], while the value of d_{min} are normalized to the range [0,1]. Therefore, $J_e + \overline{d}_{max}$ and d_{min} contributes equally the fitness function. Table 4.13 compares the performance of the non-normalized, non-parametric fitness function (*PSO noweights*) with the normalized, non-parametric fitness function (*PSO noweights*). From Table 4.13, it can be observed that both non-parametric fitness functions performed comparably. Hence, it can be concluded that it is not necessary to normalize the non-parametric fitness function.

4.2.8 Multispectral Imagery Data

To illustrate the applicability of the proposed approach to multidimensional feature spaces, the PSO-based clustering algorithm was applied to the four-channel multispectral image set of the Lake Tahoe region in the US shown in Figure 4.9. Table 4.14 summarizes the results of applying K-means, *gbest* PSO and *lbest-to-gbest* PSO on the image set. In all the experiments, 50 particles were trained for 100 iterations and $V_{max} = 255$. All parameters are as for section 4.2.2. The results showed that both PSO approaches performed better than K-means in term of d_{min} . However, *gbest* PSO performed comparably to K-means in terms of \overline{d}_{max} , while *lbest-to-gbest* PSO performed comparably to K-means in terms of J_e . The segmented images (known as thematic maps) for the Tahoe image set are given in Figure 4.10.

Table 4.12: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness					
		function defined in	equation (4.7)		
Image		J_e	\overline{d}_{\max}	d_{\min}	
	K-means	20.21225 ±	28.04049 ±	78.4975 ±	
		0.937836	2.7779388	7.0628718	
	FCM	20.731920 ±	$28.559214 \pm$	82.434116 ±	
		0.650023	2.221067	4.404686	
	KHM(<i>p</i> =2.5)	$20.168574 \pm$	$23.362418 \pm$	$86.307593 \pm$	
		0.0	0.0	0.000008	
	H2 (p=4)	20.136423 ±	$26.686939 \pm$	$81.834143 \pm$	
Synthetic		0.793973	3.011022	6.022036	
Synthetic	GA	$17.004002 \pm$	$24.603018 \pm$	93.492196 ±	
		0.035146	0.11527	0.2567	
	PSO	$16.988910 \pm$	$24.696055 \pm$	$93.632200 \pm$	
		0.023937	0.130334	0.248234	
	GCPSO	16.995967 ±	$24.722414 \pm$	$93.680765 \pm$	
		0.039686	0.144572	0.253954	
	PSO	$17.284 \pm$	22.457 ±	90.06 ±	
	noweights	0.09	0.414	0.712	
	K-means	$7.3703 \pm$	$13.214369 \pm$	$9.93435 \pm$	
		0.042809	0.761599	7.308529	
	FCM	$7.205987 \pm$	$10.851742 \pm$	19.517755 ±	
		0.166418	0.960273	2.014138	
	KHM(<i>p</i> =2.5)	7.53071±	$10.655988 \pm$	$24.270841 \pm$	
		0.129073	0.295526	2.04944	
	H2 (p=4)	7.264114 ±	$10.926594 \pm$	$20.543530 \pm$	
MRI		0.149919	0.737545	1.871984	
WIN	GA	$7.038909 \pm$	9.811888 ±	25.954191 ±	
		0.508953	0.419176	2.993480	
	PSO	$7.594520 \pm$	$10.186097 \pm$	26.705917 ±	
		0.449454	1.237529	3.008073	
	GCPSO	7.555421 ±	9.983189 ±	27.313118 ±	
		0.409742	0.915289	3.342264	
	PSO	7.839 ±	9.197 ±	29.45 ±	
	noweights	0.238	0.56	1.481	
	K-means	3.280730 ±	5.234911 ±	9.402616 ±	
		0.095188	0.312988	2.823284	
	FCM	$3.164670 \pm$	4.999294 ±	$10.970607 \pm$	
		0.000004	0.000009	0.000015	
	KHM(<i>p</i> =2.5)	3.830761 ±	6.141770 ±	$13.768387 \pm$	
		0.000001	0.0	0.000002	
	H2 (p=4)	3.197610 ±	5.058015 ±	11.052893 ±	
Tahoe		0.000003	0.000007	0.000012	
1	GA	3.472897 ±	4.645980 ±	$14.446860 \pm$	
		0.151868	0.105467	0.857770	
	PSO	3.523967 ±	4.681492 ±	$14.664859 \pm$	
		0.172424	0.110739	1.177861	
	GCPSO	3.609807 ±	4.757948 ±	15.282949 ±	
		0.188862	0.227090	1.018218	
	PSO	3.882 ±	5.036 ±	$16.410 \pm$	
	noweights	0.274	0.368	1.231	

Table 4.13: Comparison between different non-parametric fitness function						
Image		J_e	\overline{d}_{\max}	d_{\min}		
Synthetic	PSO noweights	17.284 ± 0.09	22.457 ± 0.414	90.06 ± 0.712		
	PSO normalized noweights	17.298567 ± 0.065019	22.387227 ± 0.295405	89.969316± 0.482432		
MRI	PSO noweights	7.839 ± 0.238	9.197 ± 0.56	29.45 ± 1.481		
	PSO normalized noweights	7.851594 ± 0.293330	9.182184 ± 0.534796	29.393441 ± 1.240797		
Tahoe	PSO noweights	3.882 ± 0.274	$\begin{array}{c} 5.036 \pm \\ 0.368 \end{array}$	16.410 ± 1.231		
	PSO normalized noweights	3.970922 ± 0.218675	5.141907 ± 0.312130	16.746504 ± 1.119426		

Table 4.14: Comparison between K-means, gbest PSO and lbest-to-gbest PSO when							
applied to multispectral image set							
Image		J_e	\overline{d}_{\max}	d_{\min}			
	K-means	7.281864 ± 0.001512	11.876593 ± 0.001526	17.675578 ± 0.008525			
Four-bands Lake Tahoe	PSO	8.005989 ± 0.812936	11.935493 ± 0.732004	19.937182 ± 3.468417			
	gbest-to-lbest PSO	7.639596 ± 0.654930	12.173503 ± 0.740456	18.263982 ± 3.041869			

(a) K-means

(b) PSO

(c) *lbest-to-gbest* PSO Figure 4.10: The Thematic Maps for Lake Tahoe Image Set

4.2.9 PSO for Data Clustering

The same algorithm presented in section 4.1.1 was used by Van der Merwe and Engelbrecht [2003] to cluster general data sets. It was applied on a set of multidimensional data (e.g. the Iris plant data base) using a fitness function consisting of J_e only. In general, the results show that the PSO-based clustering algorithm performs better than the K-means algorithm, which verify the results presented in this chapter. These results are expected since, as previously mentioned, K-means is a greedy algorithm which depends on the initial conditions, which may cause the algorithm to converge to suboptimal solutions. On the other hand, PSO is less sensitive to the effect of the initial conditions due to its population-based nature. Thus, PSO is more likely to find near-optimal solutions.

4.3 Conclusions

This chapter presented a new clustering approach using PSO. The PSO clustering algorithm has as objective to simultaneously minimize the quantization error and intra-cluster distances, and to maximize the inter-cluster distances. Both a *gbest* PSO and GCPSO algorithms have been evaluated. The *gbest* PSO and GCPSO clustering algorithms were further compared against K-means, FCM, KHM, H2 and a GA. In general, the PSO algorithms produced better results with reference to inter- and intra-cluster distances, while having quantization errors comparable to the other algorithms. The performance of different versions of PSO was investigated and the results suggested that algorithms that start with high diversity and then gradually reduces diversity perform better than other algorithms. A non-parametric version of the

proposed fitness function was tested with encouraging results. Finally, the proposed approach was applied to multispectral imagery data.

In the next chapter, a new automatic image generation tool is proposed which is tailored specifically for verification and comparison of different unsupervised image classification algorithms. This tool is used to conduct a more elaborate comparison between the PSO and K-means clustering algorithms.