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Chapter 4

A PSO-based Clustering Algorithm with Application

to Unsupervised Image Classification

A clustering method that is based on PSO is developed in this chapter. The algorithm finds
the centroids of a user specified number of clusters, where each cluster groups together
similar patterns. The application of the proposed clustering algorithm to the problem of
unsupervised classification and segmentation of images is investigated. To illustrate its wide
applicability, the proposed algorithm is then applied to synthetic, MRI and satellite images.
Experimental results show that the PSO clustering algorithm performs better than state-of-the-
art clustering algorithms (namely, K-means, Fuzzy C-means, K-Harmonic means and Genetic
Algorithms) in all measured criteria. The influence of different values of PSO control
parameters on performance is illustrated. The performance of different versions of PSO is also

investigated.

4.1 PSO-Based Clustering Algorithm

This section defines the terminology used throughout the rest of the chapter. A
measure is given to quantify the quality of a clustering algorithm, after which the

PSO-based clustering algorithm is introduced.

4.1.1 Measure of Quality

Different measures can be used to express the quality of a clustering algorithm. The

most general measure of performance is the quantization error, defined as
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4.1)

where C; is the K cluster, and n, is the number of pixels in C

4.1.2 PSO-Based Clustering Algorithm

In the context of data clustering, a single particle represents the K cluster centroids.
That is, each particle x; is constructed as x; = (m; ;,...,m;,...,m; x) where m; refers to
the &A™ cluster centroid vector of the i™ particle. Therefore, a swarm represents a

number of candidate data clusterings. The quality of each particle is measured using

f(xi’Zi) = Wldmax (Zi’xi) +w, (Zmax _dmin (xi)) (4.2)

where z__ is the maximum value in the data set (i.e. in the context of digital images,

max

z.. =2° —1 for an s-bit image); Z; is a matrix representing the assignment of patterns

to the clusters of particle i. Each element z,, , indicates if pattern z, belongs to cluster

C; of particle i. The constants w, and w, are user-defined constants used to weigh the

contribution of each of the sub-objectives. Also,

gmax(Zi’xi) = k’;’}ax { Zd(zp’mi,k)/ni,k} (4.3)

VzpeCi',{
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is the maximum average Euclidean distance of particles to their associated clusters,

and

d,..(X)=min . {dim,,,m,,)} (4.4)

Yk, kk, k # ki

is the minimum Euclidean distance between any pair of clusters. In the above, n,, is
the number of patterns that belong to cluster C,, of particle i.

The fitness function in equation (4.2) has as objective to simultaneously

minimize the intra-distance between patterns and their cluster centroids, as quantified

by d_(Z .,X;), and to maximize the inter-distance between any pair of clusters, as

quantified by, d_; (x;).
According to the definition of the fitness function, a small value of f(x;,Z,)

suggests compact and well-separated clusters (i.e. good clustering).

The fitness function is thus a multi-objective problem. Approaches to solve
multi-objective problems have been developed mostly for evolutionary computation
approaches [Coello Coello 1996]. Recently, approaches to multi-objective
optimization using PSO have been developed by Hu and Eberhart [Multiobjective
2002], Fieldsend and Singh [2002] and Coello Coello and Lechuga [2002]. Since our
scope is to illustrate the applicability of PSO to data clustering, and not on multi-
objective optimization, a simple weighted approach is used to cope with multiple
objectives. Different priorities are assigned to the subobjectives via appropriate

initialization of the values of w, and w,.

The PSO clustering algorithm is summarized in Figure 4.1.
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1. Initialize each particle to contain K randomly selected cluster centroids
2. Fort=1 t0 tmax
(a) For each particle i
1. For each pattern g,
o calculate d(z,,m,;) for all clusters C,, using equation

(3.1)

e assignz,to C,, where
d(zp’mi,k) = Vlf’:/llan {d(zp’mi,k)} (45)

ii. Calculate the fitness, f(x,,Z;)

(b) Find the personal best position for each particle and the global best
solution, y(?)

(c) Update the cluster centroids using equations (2.8) and (2.10)

Figure 4.1: The PSO clustering algorithm

As previously mentioned, an advantage of using PSO is that a parallel search for an
optimal clustering is performed. This population-based search approach reduces the
effect of the initial conditions, compared to K-means (as shown in Figure 4.4),

especially for relatively large swarm sizes.

4.1.3 A Fast Implementation

Since most of the images used in this thesis are single band, gray scale images and

since most clustering algorithms do not use spatial information, a fast implementation
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is used for this type of images in order to speedup the execution time of the
algorithms used. The fast implementation works as follows:
1) The histogram of a single band, gray scale image is created by calculating the
frequency of each gray level.
2) A data structure is used where each gray level is associated with a frequency
value and a cluster label.
3) Depending on the algorithm used, perform all the calculations (e.g. Euclidean
distance, calculation of centroids, fitness function, etc.) using the above data
structure by multiplying each gray level by its frequency and using the cluster

labels for clustering.

Using the above implementation, the execution time will be independent on the size
of the image. However, the execution time will depend on the number of gray levels
which is usually very small (e.g. 256 for 8-bit images and 1024 for 10-bit images).
Furthermore, the number of gray levels is generally much less than the number of
pixels. Hence, the execution time will reduce significantly while the results are the
same. Therefore, this implementation is used in this thesis for single band, gray scale

images.

4.2 Experimental Results

The PSO-based clustering algorithm has been applied to three types of imagery data,
namely synthetic, MRI and LANDSAT 5 MSS (79 m GSD) images. These data sets
have been selected to test the algorithms, and to compare them with other algorithms,

on a range of problem types, as listed below:
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Synthetic Image: Figure 4.2(a) shows a 100 x 100 8-bit gray scale image created to
specifically show that the PSO algorithm does not get trapped in the local minimum.

The image was created using two types of brushes, one brighter than the other.

MRI Image: Figure 4.2(b) shows a 300 x 300 8-bit gray scale image of a human

brain, intentionally chosen for its importance in medical image processing.

Remotely Sensed Imagery Data: Figure 4.2(c) shows band 4 of the four-channel
multispectral test image set of the Lake Tahoe region in the US. Each channel is
comprised of a 300 x 300, 8-bit per pixel (remapped from the original 6 bit) image.
The test data are one of the North American Landscape Characterization (NALC)
Landsat multispectral scanner data sets obtained from the U.S. Geological Survey
(USGS).

The rest of this section is organized as follows: Section 4.2.1 illustrates that
the basic PSO can be used successfully as an unsupervised image classifier, using the
original fitness function as defined in equation (4.2). Section 4.2.2 illustrates the
performance under a new fitness function. Results of the ghest PSO are compared
with that of GCPSO in section 4.2.3, using the new fitness function. Section 4.2.4
investigates the influence of the different PSO control parameters. The performance
of PSO using the new fitness function is compared with state-of-the-art clustering
approaches in Section 4.2.5. In section 4.2.6, the performance of different versions of
PSO is investigated. A new non-parametric fitness function is presented in Section

4.2.7. In section 4.2.8, the PSO-based clustering algorithm is applied to multispectral
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imagery data. Finally, section 4.2.9 provides a discussion of applying PSO to data

clustering.

(b) MRI Image of Human brain

(c) Band 4 of the Landsat MSS test image of Lake Tahoe

Figure 4.2: Data set consisting of synthetic, MRI and LANDSAT images

The results reported in this section are averages and standard deviations over 20

simulations. All comparisons are made with reference to J,, d_,and d_, .
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Furthermore, a total number of clusters of 3, 8 and 4 were used respectively for the

synthetic, MRI and Tahoe images.

4.2.1 gbest PSO versus K-Means

This section presents results to compare the performance of the gbest PSO algorithm
with that of the K-means algorithm for each of the images.

Table 4.1 summarizes the results for the three images. In all cases, for PSO, 50
particles were trained for 100 iterations; for K-means, 5000 iterations were used (that
is, both algorithms have performed 5000 function evaluations). V., =5, w =0.72 and
c1 = ¢ = 1.49. The chosen values of w, ¢, and ¢, are popular in the literature and
ensure convergence [Van den Bergh 2002]. For the fitness function in equation (4.2),
wi =w, = 0.5 to give each subobjective an equal contribution.

The results showed that, for the images used, K-means performed better than

the PSO algorithm with reference to the quantization errorJ,. However, J, does not

give an idea of the quality of the individual clusters. With respect to the minimization

of intra-distances (d.

max

) and the maximization of inter-distances (d_. ), the PSO

algorithm generally performed better than K-means clustering.
Figure 4.3 illustrates for the synthetic image how the fitness of PSO improves
over time. For this figure, 10 particles have been used for a training phase of 100

iterations, Vyu = 5, w=0.72, ¢ = ¢, = 1.49, and w; = w, = 0.5. The fitness value, as

measured using equation 4.2, improves from the initial 96.637 to 91.781.
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Figure 4.3: PSO Performance on Synthetic Image

Figure 4.4(a) illustrates the segmented image of the synthetic image for the K-
means algorithm, while Figure 4.4(b) illustrates the segmented image obtained from
the PSO algorithm. These figures clearly illustrate that K-means was trapped in a
local optimum. Three clusters were created using two brushers, the brighter brush
were used to create the two spots in the upper right and lower left corner while the
other brush were used to create the remaining shape. K-means could not classify the
clusters correctly, since it failed to cluster the two spots as separate clusters. PSO, on
the other hand, was not trapped in this local optimum and succeeded in showing the
two spots as separate clusters. The segmented images for the MRI and the Tahoe

images are given in Figures 4.5 and 4.6, respectively.

Table 4.1: Comparison between K-means and PSO

Image Je dmax dmin
Synthetic | K-means 20.212 £ 0.938 28.040 +2.778 78.498 £ 7.0629
PSO 24.453 +£0.209 27.157£0.017 98.679 £ 0.023
MRI K-means 7.370 £ 0.0428 13.214 = 0.762 9.934 +£7.309
PSO 8.536 £ 0.584 10.129 £ 1.262 28.745 +£2.949
Tahoe K-means 1.664 + 0.040 3.107+£0.168 4.527 £ 1.347
PSO 7.215+£2.393 9.036 +3.363 25.777 £9.602
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(a) K-means (b) PSO

Figure 4.4: The Segmented Synthetic Images

(2) K-means (b) PSO

Figure 4.5: The Segmented MRI Images

(a) K-means (b) PSO

Figure 4.6: The Segmented Lake Tahoe Images
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4.2.2 Improved Fitness Function

The above experimental results have shown that the PSO clustering algorithm
improves on the performance of the K-means algorithm in terms of inter- and intra-
cluster distances. An improved fitness function which simply adds to the previous
fitness function an additional sub-objective to also minimize the quantization error is
presented in the following equation:

f(xi’Zi):ngmax(zﬂxi)_'_WZ(Z —d i (X)) + W3 J (4.6)

max

In this section, the results of the gbest PSO shown in the previous section are
compared with results using the new fitness function as defined in equation (4.6). All
parameters are set as in the previous section. The only difference is that for the
extended fitness function, w; = w, = 0.3, w3 = 0.4 were used for the synthetic image,
wir = 0.2, w, = 0.5, w3 = 0.3 were used for the MRI image and w; = wy, = w3 =
0.333333 were used for the Tahoe image. These values were set empirically.

Table 4.2 compares the results for the two fitness functions. The new fitness

function succeeded in significant improvements in the quantization error, J,. The

new fitness function also achieved significant improvements in minimizing the intra-
cluster distances for the synthetic and Tahoe images, thus resulting in more compact
clusters, and only marginally worse for the MRI image. These improvements were at
the cost of loosing on maximization of the inter-cluster distances. However, this loss

is acceptable because the gbest PSO using the new fitness function still performs
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better than the K-means algorithm in terms of the inter-cluster distance (compare the
results in Table 4.1 and Table 4.2).

Due to the improved performance on the quantization error and intra-cluster
distances, the rest of this chapter uses the 3-component fitness function as defined in

equation (4.6).

Table 4.2: 2-component versus 3-component fitness function

2-Component Fitness Function 3-Component Fitness Function

Problem J, gmax d_. J, gmax d..
Synthetic | 24.453 + 27.157 98.679 17.113 £ 24.781 £ 92.768 £

0.209 0.017 0.023 0.548 0.270 4.043
MRI 8.536 + 10.129 = 28.745 £+ 7.225 £ 12.206 + 22.936 +

0.584 1.262 2.949 0.552 2.507 8.311
Tahoe 7215+ 9.036 £ 25.777 £ 3.556 = 4.688 + 14.987

2.393 3.363 9.602 0.140 0.260 0.425

4.2.3 gbest PSO versus GCPSO

This section compares the performance of the gbest PSO with the GCPSO. This is
done for a low V. =5 and a high V.. = 255. All other parameters are as for section
4.2.2. Table 4.3 shows no significant difference in the performance between PSO and
GCPSO. It is, however, important to note that too much clamping of the velocity
updates have generally a negative influence on performance. In general, better results

were obtained, for both the PSO and GCPSO with a large value of V.
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Table 4.3: PSO versus GCPSO

Problem PSO GCPSO

Vinar= J - d iy J. d d iy

Synthetic | 17.112672 = | 24.781384 + | 92.767925 + | 17.116036 + | 24.826868 £ | 92.845323 +
0.548096 0.270409 4.043086 0.547317 0.237154 4.056681

MRI 7.225384 + | 12.205947 + | 22.935786 + | 7.239264 + | 12.438016 + | 23.377287 +
0.552381 2.506827 8.310654 0.475250 2.437064 6.722787

Tahoe 3.556281 + | 4.688270+ | 14.986923 + | 3.542732+ | 4.672483 + | 15.007491 =
0.139881 0.259919 0.425077 0.109415 0.129913 0.621020

Vinax=255

Synthetic | 17.004993 = | 24.615665 = | 93.478081+ | 17.000393 + | 24.672107 £ | 93.588530 +
0.086698 0.143658 0.276109 0.022893 0.174457 0.400137

MRI 7.640622 + | 10.621452 + | 24.948486 + | 7.694498 + | 10.543233 £ | 25.355967 +
0.514184 1.284735 3.446673 0.591383 1.038114 3.945929

Tahoe 3.523967+ | 4.681492 £ | 14.664859 + | 3.609807 = | 4.757948 + | 15.282949 +
0.172424 0.110739 1.177861 0.188862 0.227090 1.018218

4.2.4 Influence of PSO Parameters

The PSO have a number of parameters that have an influence on the performance of

the algorithm. These parameters include V., the number of particles, the inertia

weight and the acceleration constants. Additionally, the PSO-based clustering

algorithm adds a weight to each sub-objective. This section investigates the influence

of different values of these parameters.

Velocity Clamping

Table 4.3 shows that less clamping of velocity updates is more beneficial. This allows

particles to make larger jumps in the search space.
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Swarm Size

To investigate the effect of different swarm sizes on performance, both the PSO and
GCPSO have been executed using 10 to 100 particles. All other parameters are as for
section 4.2.2. Figure 4.7 shows the effect of the swarm size, s, on the synthetic image.
It is clear from the figure that increasing the number of particles improves the
performance of both algorithms. The same conclusion can be drawn for the MRI
image as illustrated in Figure 4.8. However, it can be observed from Figure 4.7, that
no significant improvement is achived for more than 60 particles. In general, an
increase in the number of particles increases diversity, thereby limiting the effects of

initial conditions and reducing the possibility of being trapped in local minima.

Inertia Weight

Given that all parameters are fixed at the values given in section 4.2.2, the inertia
weight w was set to different values for both PSO and GCPSO. In addition, a dynamic
inertia weight was used with an initial w =1.4, which linearly decreased to 0.8. The
initial large value of w favors exploration in the early stages, with more exploitation in
the later stages with the smaller values. Tables 4.4 and 4.5 summarize the results for
the synthetic and MRI images respectively. For the synthetic image, the results
illustrate no significant difference in performance, meaning that for the synthetic
image, the PSO-based clustering algorithms are generally insensitive to the value of
the inertia weight (provided that ¢; and ¢, are selected such that equation (2.9) is not
violated). However, in the MRI image, it can be observed that w =0 yields the best

results in terms of inter- and intra-cluster distances.
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Figure 4.7: Effect of swarm size on synthetic image
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MRI Image tmax = 100
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Figure 4.8: Effect of swarm size on MRI image
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Table 4.4: Effect of inertia weight on the synthetic image

PSO GCPSO

w J, d,, d i, J, - d iy

0.0 16.983429 + | 24.581799 £ | 93.435221 £ | 16.986386 & | 24.649368 £ | 93.559275 +
0.017011 0.165103 0.308601 0.016265 0.138223 0.254670

0.1 16.982362 + | 24.645884 + | 93.543795+ | 16.985079 & | 24.637893 + | 93.538635 +
0.016074 0.137442 0.256700 0.016995 0.138894 0.257167

0.5 16.985826 + | 24.664421 £ | 93.595394 + | 16.987470 £ | 24.662973 + | 93.58124 +

0.014711 0.144252 0.246110 0.028402 0.163768 0.281366

0.72 16.992102 + | 24.670338 + | 93.606400 = | 16.995967 + | 24.722414 + | 93.680765 +
0.021756 0.150542 0.258548 0.039686 0.144572 0.253954

0.9 16.993759 + | 24.650337 £+ | 93.569595 + | 17.040990 + | 24.633802 + | 93.495340 +
0.014680 0.140005 0.252781 0.168017 0.352785 0.584424

1.4t0 0.8 | 17.824495 £ | 24.433770 £ | 92.625088 = | 17.481146 £ | 24.684407 + | 93.223498 +
0.594291 1.558219 2.031224 0.504740 1.010815 1.490217

Table 4.5: Effect of inertia weight on the MRI image
PSO GCPSO

w J B J max d min J e 67 max dmin

0.0 7.538669 £ | 9.824915 + 28.212823+ | 7.497944 + | 9.731746 28.365827 +
0.312044 0.696940 2.300930 0.262656 0.608752 1.882164

0.1 7.511522 £ | 10.307791 £ | 27.150801 &+ | 7.309289 + | 10.228958 + | 26.362349 +
0.281967 1.624499 3.227550 0.452103 1.354945 3.238452

0.5 7.612079 £ | 10.515242 £ | 26.996556 + | 7.466388 = | 10.348044 = | 26.790056 +
0.524669 1.103493 2.161969 0.492750 1.454050 2.830860

0.72 7.57445+ | 10.150214+ | 27.393498 + | 7.467591+ | 10.184191+ | 26.596493 +
0.382172 1.123441 3.260418 0.396310 0.955129 3.208689

0.9 7.847689 + | 10.779765 £ | 26.268057 + | 7.598518 + | 10.916945 + | 25.417859 +
0.529134 1.134843 3.595596 0.516938 1.534848 3.174232

1.41t0 0.8 | 8.354957+ | 13.593536+ | 21.625623 + | 8.168068 = | 12.722139+ | 21.169304 +
0.686190 2.035889 4.507230 0.709875 1.850957 4.732452
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Acceleration Coefficients

Given that all parameters are fixed at the values given in section 4.2.2, the influence

of different values for the acceleration coefficients, ¢; and c¢,, were evaluated for the

synthetic and MRI images. Tables 4.6 and 4.7 summarize these results. For these

choices of the acceleration coefficients, no single choice is superior to the others.

While these tables indicate an independence to the value of the acceleration

coefficients, it is important to note that convergence depends on the relationship

between the inertia weight and the acceleration coefficients, as derived in Van den

Bergh [2002] (also refer to equation (2.9)).

Table 4.6: Effect of acceleration coefficients on the synthetic image
PSO GCPSO
W Je gmax dmin Je Jmax dmin
c1=0.7 | 16989197+ | 24726716 + | 93.698591 + | 16.989355 + | 24.708151 + | 93.667144 +
;=14 |0.011786 0.101239 0.184244 0.012473 0.120168 0.207355
=14 16.991884 + | 24.700627 + | 93.658673 = | 16.993095 + | 24.685461 + | 93.619162 +
c,=0.7 0.016970 0.125603 0.208500 0.040042 0.165669 0.279258
c1=1.49 | 16987582 + | 24710933 + | 93.672792 + | 16.995967 + | 24.722414 + | 93.680765 +
;=149 | 0.009272 0.122622 0.206395 0.039686 0.144572 0.253954
Table 4.7: Effect of acceleration coefficients on the MRI image
PSO GCPSO
w Je dmax dmin Je dmax dmin
c1=0.7 7.599324 + | 10.14501 + 26977217 = | 7.530823 + 10.201762 = | 26.425638 +
=14 0.289702 1.353091 3.467738 0.477134 0.986726 3.248949
=14 7.528712+ | 10.23899+ | 27.747333 + | 7.476468 + 10.159019 = | 27.001444 +
c,=0.7 0.439470 1.484245 2.850575 0.459432 1.085977 3.360799
c;1=149 | 7.499845+ | 10.20391 + 26.629647 + | 7.467591 10.184191 = | 26.596493 +
;=149 | 0416682 0.951100 2.652593 0.396310 0.955129 3.208689
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Sub-objective Weight Values

Tables 4.8 and 4.9 summarize the effects of different values of the weights, w;, w, and
ws, of the sub-objectives for the synthetic and MRI images respectively. The results
show that increasing the value of a weight, improves the corresponding fitness term.
However, it is not so clear which sub-objective weight value combination is best for
the synthetic and MRI images. To eliminate tuning of these weight values, an
alternative multi-objective approach can be followed [Coello Coello 1996; Hu and
Eberhart, Multiobjective 2002; Fieldsend and Singh 2002; Coello Coello and Lechuga

2002], or a non-parametric fitness function can be used as proposed in section 4.2.7.

4.2.5 gbest PSO versus state-of-the-art clustering algorithms

This section compares the performance of the gbest PSO and GCPSO with K-means,
FCM, KHM, H2 and a GA clustering algorithm. This is done for a high V., = 255.
All other parameters are as for section 4.2.2. In all cases, for PSO, GCPSO and GA,
50 particles were trained for 100 iterations; for the other algorithms 5000 iterations
were used (i.e. all algorithms have performed 5000 function evaluations). For FCM, ¢
was set to 2 since it is the commonly used value [Hoppner ef al. 1999]. For KHM and
H2, o was set to 2.5 and 4 respectively since these values produced the best results
according to our preliminary tests. For the GA, a tournament size of 2 was used, a
uniform crossover probability of 0.8 with mixing ratio of 0.5, and a mutation
probability of 0.05. Only the best individual survived to the next generation. The
results are summarized in Table 4.10. These results are also averages over 20

simulation runs. Table 4.10 shows that PSO and GCPSO generally outperformed K-

means, FCM, KHM and H2 in d_, and d,

max 2

while performing comparably with
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respect to J, (for the synthetic image, PSO performs significantly better than K-
means, FCM, KHM and H2 with respect to J,). The PSO, GCPSO and GA showed

similar performance, with no significant difference.

These results show that the PSO-based clustering algorithms are viable

alternatives that merit further investigation.

Table 4.8: Effect of sub-objective weight values on synthetic image
PSO GCPSO
wr | w2 | W3 J, d i d in J, d, max i
0.3 0.3 0.3 17.068816 24.67201 93.59498 17.01028 24.74227 93.711385
+ + + + + +
0.157375 0.572276 0.984724 0.059817 0.258118 0.437418
0.8 | 0.1 0.1 17.590421 21.76629 88.89228 17.51434 21.72462 88.879342
+ + + + + +
0.353375 0.127098 | 0.143159 0.025242 0.018983 0.062452
0.1 |08 |0.1 18.827495 27.62398 97.71945 18.82712 27.52239 97.768398
+ + + + + +
0.558357 0.427120 0.202744 0.688529 0.282601 0.266885
0.1 0.1 0.8 16.962755 24.49574 93.22883 16.98372 24.54688 92.576271
+ + + + + +
0.003149 0.089611 0.135893 0.122501 0.434417 4.357444
0.1 0.45 | 0.45 | 17.550448 26.70792 96.02056 17.55782 26.59844 95.888089
+ + + + + +
0.184982 0.692239 0.757185 0.226305 0.907974 1.152158
0.45 1045 0.1 18.134349 26.48904 96.46178 18.29490 26.79529 96.922471
+ + + + + +
0.669151 0.982256 1.495491 0.525467 0.800436 1.225336
0.45 | 0.1 0.45 | 17.219807 22.63196 90.15281 17.20169 22.70116 90.289690
+ + + + + +
0.110357 0.522369 0.887423 0.093969 0.469470 0.828522
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Table 4.9: Effect of sub-objective weight values on MRI image

PSO GCPSO
wr | wa | W3 J, d max d in J, d, max i
0.3 0.3 0.3 7.239181 10.235431 24.705469 7.194243 10.403608 23.814072
+ + + + + +
0.576141 1.201349 3.364803 0.573013 1.290794 3.748753
0.8 | 0.1 0.1 7.364818 9.683816 24.021787 | 7.248268 9.327774 23.103375
+ + + + + +
0.667141 0.865521 3.136552 0.474639 0.654454 4.970816
0.1 108 |0.1 8.336001 11.256763 31.106734 | 8.468620 11.430190 | 30.712733
+ + + + + +
0.599431 1.908606 1.009284 0.626883 1.901736 1.336578
0.1 | 0.1 |0.8 | 6.160486 15.282308 | 2.342706 6.088302 15.571290 1.659674
+ + + + + +
0.241060 2.300023 5.062570 0.328147 2.410393 4.381048
0.1 0.45 | 0.45 | 7.359711 10.826327 | 24.536828 | 7.303304 11.602263 22.939088
+ + + + + +
0.423120 1.229358 3.934388 0.439635 1.975870 3.614108
0.45 10451 0.1 8.001817 9.885342 28.057459 | 7.901145 9.657340 29.236420
+ + + + + +
0.391616 0.803478 1.947362 0.420714 0.947210 1.741987
0.45 | 0.1 | 0.45 | 6.498429 11.392347 12.119429 | 6.402205 10.939902 14.422413
+ + + + + +
0.277205 2.178743 8.274427 0.363938 2.301587 6.916785
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Table 4.10: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness

function defined in equation (4.6)

Image J. d d .
max min
K-means 20.21225 + 28.04049 + 78.4975 £
0.937836 2.7779388 7.0628718
FCM 20.731920 + 28.559214 + 82.434116
0.650023 2.221067 4.404686
KHM(@(p=2.5) 20.168574 + 23.362418 + 86.307593 +
0.0 0.0 0.000008
Synthetic H2 (p=4) 20.136423 + 26.686939 + 81.834143 +
0.793973 3.011022 6.022036
GA 17.004002 + 24.603018 + 93.492196 +
0.035146 0.11527 0.2567
PSO 16.988910 * 24.696055 + 93.632200 +
0.023937 0.130334 0.248234
GCPSO 16.995967 + 24.722414 + 93.680765 +
0.039686 0.144572 0.253954
K-means 7.3703 = 13.214369 + 9.93435 +
0.042809 0.761599 7.308529
FCM 7.205987 + 10.851742 + 19.517755 £
0.166418 0.960273 2.014138
KHM((»=2.5) 7.53071+ 10.655988 + 24.270841 +
0.129073 0.295526 2.04944
MRI H2 (p=4) 7264114 + 10.926594 + 20.543530 +
0.149919 0.737545 1.871984
GA 7.038909 + 9.811888 + 25.954191 +
0.508953 0.419176 2.993480
PSO 7.594520 + 10.186097 + 26.705917 +
0.449454 1.237529 3.008073
GCPSO 7.555421 + 9.983189 + 27.313118 £
0.409742 0.915289 3.342264
K-means 3.280730 £ 5.234911 + 9.402616 £
0.095188 0.312988 2.823284
FCM 3.164670 £ 4.999294 + 10.970607 +
0.000004 0.000009 0.000015
KHM(p=2.5) 3.830761 £ 6.141770 £ 13.768387 +
0.000001 0.0 0.000002
Tahoe H2 (p=4) 3.197610 £ 5.058015 + 11.052893 +
0.000003 0.000007 0.000012
GA 3.472897 £ 4.645980 + 14.446860 +
0.151868 0.105467 0.857770
PSO 3.523967 £+ 4.681492 + 14.664859 +
0.172424 0.110739 1.177861
GCPSO 3.609807 £ 4.757948 + 15.282949 +
0.188862 0.227090 1.018218
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4.2.6 Different Versions of PSO

This section investigates the use of different versions of PSO, namely:

lbest PSO (with [ =2).

gbest-to-lbest PSO, starting start with an /best implementation of the PSO
(with zero-radius neighborhood i.e. / = 0) and linearly increasing the
neighborhood radius until a gbest implementation of the PSO is reached. This
hybrid approach is used in order to initially explore more, thus, avoid being
trapped in local optima, by using a /best approach [Suganthan 1999]. The
algorithm then attempts to converge onto the best solution found by the initial
phase by using a gbest approach.

gbest- and [best- PSO with mutation proposed by Esquivel and Coello Coello
[2003] (discussed in section 2.6.8). In this approach, the PSO parameters
where set as specified by Esquivel and Coello Coello [2003] (i.e. w= 0.3, ¢; =
¢, = 1.3). In addition, p,, is initialized to 0.9, then linearly decreases with

increase in the number of iterations [Coello Coello 2003].

Table 4.11 summarizes the results of gbest PSO, GCPSO, lbest PSO, gbest-to-lbest

PSO, gbest PSO with mutation and /best PSO with mutation. In all the experiments,

50 particles were trained for 100 iterations and V., = 255. All the other parameters

are as for section 4.2.2 for all the approaches except the approaches that use mutation.

Although the results are generally comparable, it can be observed that the gbest-to-

Ibest PSO is slightly better than the others. An explanation for this observation is the

fact that gbest-to-lbest PSO starts with high diversity (therefore more exploration),
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then as the run progresses, the diversity is reduced (to focus more exploitation). This
observation shows the importance of high diversity at the beginning of the run in
order to avoid premature convergence and the importance of low diversity at the end

of the run in order to fine tune the solution.

Table 4.11: Comparison of different PSO versions

Image J. d,. d ..

gbest PSO 16.988910 £ 24.696055 * 93.632200 £

0.023937 0.130334 0.248234
GCPSO 16.995967 £ 24.722414 93.680765 £

0.039686 0.144572 0.253954
lbest PSO 16.991791 £ 24.771597 = 93.775989 +

Synthetic 0.003523 0.004171 0.0
gbest-to-lbest | 16.988325 + 24.774668 £ 93.775989
PSO 0.000273 0.000371 0.0

gbest PSO 16.985563 £ 24.728548 93.698591 £

with mutation | 0.006350 0.110016 0.184244
lbest PSO 16.995550 £ 24.684511 * 93.646993

with mutation | 0.015914 0.135164 0.223429
PSO 7.594520 + 10.186097 26.705917 =

0.449454 1.237529 3.008073
GCPSO 7.555421 £ 9.983189 + 27313118

0.409742 0.915289 3.342264
lbest PSO 7.676197 £ 9.500085 + 29.684682 *

MRI 0.138833 0.567423 0.929038
gbest-to-lbest | 7.663361 + 9211712 30.138389 +

PSO 0.142196 0.502518 0.878266
gbest PSO 7.301802 + 9.573999 + 27.691924 +

with mutation | 0.474767 0.581114 3.145707
lbest PSO 7.657294 + 9.890083 + 28.731981 £

with mutation | 0.277544 0.696923 1.938404
PSO 3.523967 £ 4.681492 £ 14.664859 +

0.172424 0.110739 1.177861
GCPSO 3.609807 + 4.757948 £ 15.282949 +

0.188862 0.227090 1.018218
lbest PSO 3.527251 £ 4778272 £ 15.619541 £

Tahoe 0.212840 0.217206 1.179783
gbest-to-lbest | 3.460024 + 4.826269 £ 15.985762 £

PSO 0.289942 0.238982 1.410871
gbest PSO 3.592122+ 4.750996 £ 15.252226 £

with mutation | 0.180782 0.213625 0.987399
lbest PSO 3.660723% 4.793518 £ 15.522304 £

with mutation | 0.121711 0.144508 0.597297
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4.2.7 A Non-parametric Fitness Function

The fitness function defined in equation (4.6) provides the user with the flexibility of
prioritizing the fitness term of interest by modifying the corresponding weight.
However, it requires the user to find the best combination of w;, w, and ws for each
image which is not an easy task. Therefore, a non-parametric fitness function without

weights is defined as

67max(Zi’xi)—i_‘]ei
f(xi’Zi): '
d_(Z.x,)

1

(4.7)
The advantage of equation (4.7) is that it works with any data set without any user
intervention. Table 4.12 is a repeat of Table 4.10, but with the results of gbest PSO
using the non-parametric fitness function (referred to as PSO noweights) added. In

general, the PSO using the non-parametric fitness function performed better than K-

Means, FCM, KHM and H2 in terms of d_. and d,

n max

while performing comparably
with respect to J,. In addition, the PSO using the non-parametric fitness function

performed comparably with GA, PSO and GCPSO using the parametric fitness
function (equation (4.6)). Hence, the non-parametric fitness function (equation (4.7))
can be used instead of the parametric fitness function (equation (4.6)), thereby
eliminating the need for tuning w;, w, and ws.

However, since the difference between J, and d,__ on the one hand and d_.

on the other hand is quite large (as can be observed from the results of this section),

the value of the fitness function is usually less than one, and may incorrectly indicate
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a good clustering for large values of J, and d_,_ . The proposed non-parametric
fitness function therefore has the problem that the largest criterion tends to dominate

the other criteria. To address this biased behavior, the values of J, and d,, are

normalized to the range [0,0.5], while the value of d_. are normalized to the range

min

[0,1]. Therefore, J, + d,,. and d,, contributes equally the fitness function. Table

X n

4.13 compares the performance of the non-normalized, non-parametric fitness
function (PSO noweights) with the normalized, non-parametric fitness function (PSO
normalized noweights). From Table 4.13, it can be observed that both non-parametric
fitness functions performed comparably. Hence, it can be concluded that it is not

necessary to normalize the non-parametric fitness function.

4.2.8 Multispectral Imagery Data

To illustrate the applicability of the proposed approach to multidimensional feature
spaces, the PSO-based clustering algorithm was applied to the four-channel
multispectral image set of the Lake Tahoe region in the US shown in Figure 4.9.
Table 4.14 summarizes the results of applying K-means, gbest PSO and lbest-to-gbest
PSO on the image set. In all the experiments, 50 particles were trained for 100
iterations and V., = 255. All parameters are as for section 4.2.2. The results showed

that both PSO approaches performed better than K-means in term of d,, . However,

gbest PSO performed comparably to K-means in terms of d__ , while /best-to-gbest

PSO performed comparably to K-means in terms of J,. The segmented images

(known as thematic maps) for the Tahoe image set are given in Figure 4.10.
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Table 4.12: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness

function defined in equation (4.7)

Image J. d d .
max min
K-means 20.21225 £ 28.04049 + 78.4975 £
0.937836 2.7779388 7.0628718
FCM 20.731920 £ 28.559214 + 82.434116 £
0.650023 2.221067 4.404686
KHM(@p=2.5) | 20.168574 + 23.362418 = 86.307593 £
0.0 0.0 0.000008
H2 (p=4) 20.136423 £+ 26.686939 + 81.834143 £
Synthetic 0.793973 3.011022 6.022036
GA 17.004002 + 24.603018 93.492196 +
0.035146 0.11527 0.2567
PSO 16.988910 * 24.696055 + 93.632200 £
0.023937 0.130334 0.248234
GCPSO 16.995967 + 24.722414 + 93.680765 £
0.039686 0.144572 0.253954
PSO 17.284 22457 90.06 =
noweights 0.09 0.414 0.712
K-means 7.3703 + 13.214369 + 9.93435 +
0.042809 0.761599 7.308529
FCM 7.205987 £ 10.851742 + 19.517755 =
0.166418 0.960273 2.014138
KHM@=2.5) | 7.53071% 10.655988 + 24270841 +
0.129073 0.295526 2.04944
H2 (p=4) 7.264114 10.926594 + 20.543530 =
MRI 0.149919 0.737545 1.871984
GA 7.038909 + 9.811888 £ 25954191
0.508953 0.419176 2.993480
PSO 7.594520 + 10.186097 26.705917 =
0.449454 1.237529 3.008073
GCPSO 7.555421 £ 9.983189 + 27.313118
0.409742 0.915289 3.342264
PSO 7.839 £ 9.197 £ 29.45 +
noweights 0.238 0.56 1.481
K-means 3.280730 £ 5.234911 9.402616 £
0.095188 0.312988 2.823284
FCM 3.164670 £ 4.999294 + 10.970607 =
0.000004 0.000009 0.000015
KHM@@=2.5) | 3.830761 + 6.141770 £ 13.768387
0.000001 0.0 0.000002
H2 (p=4) 3.197610 £ 5.058015 11.052893 +
0.000003 0.000007 0.000012
Tahoe
GA 3.472897 £ 4.645980 £ 14.446860 *
0.151868 0.105467 0.857770
PSO 3.523967 £ 4.681492 £ 14.664859 +
0.172424 0.110739 1.177861
GCPSO 3.609807 £ 4.757948 £ 15.282949 +
0.188862 0.227090 1.018218
PSO 3.882 £ 5.036 = 16.410 £
noweights 0.274 0.368 1.231

130




University of Pretoria etd — Omran, M G H (2005)

Table 4.13: Comparison between different non-parametric fitness function

Image g, gmax d..
PSO 17.284 + 22.457 90.06 £
noweights 0.09 0.414 0.712
Synthetic 7550 17.298567 + 22387227+ 89.969316 +
normalized 0.065019 0.295405 0.482432
noweights
PSO 7.839 + 9.197 £ 2945 +
noweights 0.238 0.56 1.481
MRI PSO 7.851594 + 9.182184 + 29.393441 +
normalized 0.293330 0.534796 1.240797
noweights
PSO 3.882 £ 5.036 £ 16.410
noweights 0.274 0.368 1.231
Tahoe 550 3.970922 + 5.141907 + 16.746504 +
normalized 0.218675 0.312130 1.119426
noweights
Table 4.14: Comparison between K-means, gbest PSO and lbest-to-gbest PSO when
applied to multispectral image set
Image Je d, - din
K-means 7.281864 + 11.876593 + 17.675578 =
0.001512 0.001526 0.008525
Four-bands | PSO 8.005989 + 11.935493 + 19.937182 +
Lake Tahoe 0.812936 0.732004 3.468417
gbest-to-Ibest 7.639596 £ 12.173503 + 18.263982 +
PSO 0.654930 0.740456 3.041869
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(a) Band 1 (b) Band 2
¢) Band 3 d) Band 4

Figure 4.9: The Landsat MSS test images of Lake Tahoe
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(c) lbest-to-gbest PSO
Figure 4.10: The Thematic Maps for Lake Tahoe Image Set
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4.2.9 PSO for Data Clustering

The same algorithm presented in section 4.1.1 was used by Van der Merwe and
Engelbrecht [2003] to cluster general data sets. It was applied on a set of multi-
dimensional data (e.g. the Iris plant data base) using a fitness function consisting of

J, only. In general, the results show that the PSO-based clustering algorithm

performs better than the K-means algorithm, which verify the results presented in this
chapter. These results are expected since, as previously mentioned, K-means is a
greedy algorithm which depends on the initial conditions, which may cause the
algorithm to converge to suboptimal solutions. On the other hand, PSO is less
sensitive to the effect of the initial conditions due to its population-based nature. Thus,

PSO is more likely to find near-optimal solutions.

4.3 Conclusions

This chapter presented a new clustering approach using PSO. The PSO clustering
algorithm has as objective to simultaneously minimize the quantization error and
intra-cluster distances, and to maximize the inter-cluster distances. Both a gbhest PSO
and GCPSO algorithms have been evaluated. The gbest PSO and GCPSO clustering
algorithms were further compared against K-means, FCM, KHM, H2 and a GA. In
general, the PSO algorithms produced better results with reference to inter- and intra-
cluster distances, while having quantization errors comparable to the other algorithms.
The performance of different versions of PSO was investigated and the results
suggested that algorithms that start with high diversity and then gradually reduces

diversity perform better than other algorithms. A non-parametric version of the
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proposed fitness function was tested with encouraging results. Finally, the proposed
approach was applied to multispectral imagery data.

In the next chapter, a new automatic image generation tool is proposed which
is tailored specifically for verification and comparison of different unsupervised
image classification algorithms. This tool is used to conduct a more elaborate

comparison between the PSO and K-means clustering algorithms.
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