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Chapter 3 

Problem Definition 

 

This chapter reviews the problems addressed in this thesis in sufficient detail. First the 

clustering problem is defined and different clustering concepts and approaches are discussed. 

This is followed by defining image segmentation in addition to presenting various image 

segmentation methods. A survey of color image quantization and approaches to quantization 

are then presented. This is followed by a brief introduction to spectral unmixing.   

 

3.1 The Clustering Problem 

 

Data clustering is the process of identifying natural groupings or clusters within 

multidimensional data based on some similarity measure (e.g. Euclidean distance) 

[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and 

machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central 

process in Artificial Intelligence (AI) [Hamerly 2003]. Clustering algorithms are used 

in many applications, such as image segmentation [Coleman and Andrews 1979; Jain 

and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al. 

1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression 

[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A 

cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson 

2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the 

clusters in data may have different shapes and sizes [Jain et al. 2000]. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

48 
 

 

3.1.1 Definitions 
 

The following terms are used in this thesis: 

• A pattern (or feature vector), z, is a single object or data point used by the 

clustering algorithm [Jain et al. 1999]. 

• A feature (or attribute) is an individual component of a pattern [Jain et al. 

1999]. 

• A cluster is a set of similar patterns, and patterns from different clusters are 

not similar [Everitt 1974]. 

• Hard (or Crisp) clustering algorithms assign each pattern to one and only one 

cluster. 

• Fuzzy clustering algorithms assign each pattern to each cluster with some 

degree of membership. 

• A distance measure is a metric used to evaluate the similarity of patterns [Jain 

et al. 1999]. 

 

The clustering problem can be formally defined as follows (Veenman et al. 2003): 

Given a data set }{ 21 pNp ,,,,, zzzzZ KK=  where zp is a pattern in the Nd-dimensional 

feature space, and Np is the number of patterns in Z,  then the clustering of Z is the 

partitioning of Z into K clusters {C1, C2,…,CK} satisfying the following conditions: 

• Each pattern should be assigned to a cluster, i.e. 

ZC =∪ = k
K
k 1  

• Each cluster has at least one pattern assigned to it, i.e. 
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K,,kk K1   , =≠ φC  

• Each pattern is assigned to one and only one cluster (in case of hard clustering 

only), i.e. 

kkkkkk ≠=∩     whereφCC  

 

3.1.2 Similarity Measures 
 

As previously mentioned, clustering is the process of identifying natural groupings or 

clusters within multidimensional data based on some similarity measure. Hence, 

similarity measures are fundamental components in most clustering algorithms [Jain 

et al. 1999].  

The most popular way to evaluate a similarity measure is the use of distance 

measures. The most widely used distance measure is the Euclidean distance defined as 
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N

j
jw,ju,wu

d

zz,d zzzz −=−= ∑
=1

2)()(                           (3.1) 

 

Euclidean distance is a special case (when α = 2) of the Minkowski metric [Jain et al. 

1999] defined as 
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))(()(               (3.2) 

 

When α = 1, the measure is referred to as the Manhattan distance [Hamerly 2003]. 
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Clustering data of high dimensionality using the Minkowski metric is usually 

not efficient because the distance between the patterns increases with increase in 

dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003]. 

Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate 

the other features. This can be solved by normalizing the features to a common range 

[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot 

product) which is the sum of the product of each component from two vectors defined 

as 

 

wu

N

j
jw,ju,

wu

d

zz
,

zz
zz

 
  1
∑
==><                  (3.3) 

 

where >< wu ,zz  ∈ [-1,1].  

The cosine distance is actually not a distance but rather a similarity metric. In 

other words, the cosine distance measures the difference in the angle between two 

vectors not the difference in the magnitude between two vectors. The cosine distance 

is suitable for clustering data of high dimensionality [Hamerly 2003]. 

 

Another distance measure is the Mahalanobis distance defined as 

 

T1
M )()()( wuwuwu ,d zzzzzz −Σ−= −                 (3.4) 

 

where Σ is the covariance matrix of the patterns. The Mahalanobis distance gives 

different features different weights based on their variances and pairwise linear 
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correlations. Thus, this metric implicitly assumes that the densities of the classes are 

multivariate Gaussian [Jain et al. 1999]. 

 

3.1.3 Clustering Techniques 
 

Most clustering algorithms are based on two popular techniques known as 

hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al. 

2000]. In the following, an overview of both techniques is presented with an elaborate 

discussion of popular hierarchical and partitional clustering algorithms. 

 

3.1.3.1 Hierarchical Clustering Techniques 
 

Algorithms in this category generate a cluster tree (or dendrogram) by using heuristic 

splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as "a tree 

showing a sequence of clustering with each clustering being a partition of the data set" 

[Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree are called 

divisive. On the other hand, the more popular algorithms that use merging to generate 

the cluster tree are called agglomerative. Divisive hierarchical algorithms start with 

all the patterns assigned to a single cluster. Then, splitting is applied to a cluster in 

each stage until each cluster consists of one pattern. Contrary to divisive hierarchical 

algorithms, agglomerative hierarchical algorithms start with each pattern assigned to 

one cluster. Then, the two most similar clusters are merged together. This step is 

repeated until all the patterns are assigned to a single cluster [Turi 2001]. Several 

agglomerative hierarchical algorithms were proposed in the literature which differ in 

the way that the two most similar clusters are calculated. The two most popular 
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agglomerative hierarchical algorithms are the single link [Sneath and Sokal 1973] and 

complete link [Anderberg 1973] algorithms. Single link algorithms merge the clusters 

whose distance between their closest patterns is the smallest. Complete link 

algorithms, on the other hand, merge the clusters whose distance between their most 

distant patterns is the smallest [Turi 2001]. In general, complete link algorithms 

generate compact clusters while single link algorithms generate elongated clusters. 

Thus, complete link algorithms are generally more useful than single link algorithms 

[Jain et al. 1999]. Another less popular agglomerative hierarchical algorithm is the 

centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose 

distance between their centroids is the smallest. One disadvantage of the centroid 

algorithm is that the characteristic of a very small cluster is lost when merged with a 

very large cluster [Turi 2001]. More details about traditional hierarchical clustering 

techniques can be found in Everitt [1974]. 

 Recently, a hierarchical clustering approach to simulate the human visual 

system by modeling the blurring effect of lateral retinal interconnections based on 

scale space theory has been proposed by Leung et al. [2000]. The following paragraph 

provides the reader with a good idea about this approach as described by Leung et al. 

[2000]:  

"In this approach, a data set is considered as an image with each light 

point located at a datum position. As we blur this image, smaller light 

blobs merge into larger ones until the whole image becomes one light blob 

at a low level of resolution. By identifying each blob with a cluster, the 

blurring process generates a family of clustering along the hierarchy." 

 

According to Leung et al. [2000], this approach has several advantages, including: 
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• it is not sensitive to initialization, 

• it is robust in the presence of noise in the data set, and 

• it generates clustering that is similar to that perceived by human eyes. 

 

In general, hierarchical clustering techniques have the following advantages [Frigui 

and Krishnapuram 1999]: 

• the number of clusters need not to be specified a priori, and 

• they are independent of the initial conditions.  

 

However, hierarchical clustering techniques generally suffer from the following 

drawbacks:  

• They are computationally expensive (time complexity is )logO( 2
pp NN  and 

space complexity is )O( 2
pN [Turi 2001]). Hence, they are not suitable for very 

large data sets.  

• They are static, i.e. patterns assigned to a cluster cannot move to another 

cluster. 

• They may fail to separate overlapping clusters due to a lack of information 

about the global shape or size of the clusters.  

 

3.1.3.2 Partitional Clustering Techniques 
 

Partitional clustering algorithms divide the data set into a specified number of 

clusters. These algorithms try to minimize certain criteria (e.g. a square error function) 

and can therefore be treated as optimization problems. However, these optimization 
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problems are generally NP-hard and combinatorial [Leung et al. 2000]. The 

advantages of hierarchical algorithms are the disadvantages of the partitional 

algorithms and vice versa. Because of their advantages, partitional clustering 

techniques are more popular than hierarchical techniques in pattern recognition [Jain 

et al. 2000], hence, this thesis concentrates on partitional techniques. 

  Partitional clustering algorithms are generally iterative algorithms that 

converge to local optima [Hamerly and Elkan 2002]. Employing the general form of 

iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative 

clustering algorithm are:  

 

1. Randomly initialize the K cluster centroids 

2. Repeat 

   (a) For each pattern, zp, in the data set do 

       Compute its membership ) |( pku zm  to each centroid mk and its weight w(zp) 

       endloop 

 

   (b) Recalculate the K cluster centroids, using  

∑

∑

∀
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zzzm
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)() |(

)() |(
                (3.5) 

   until a stopping criterion is satisfied. 

 

In the above algorithm, ) |( pku zm  is the membership function which quantifies the 

membership of pattern zp to cluster k. The membership function, ) |( pku zm , must 

satisfy the following constraints: 
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1) ) |( pku zm  ≥ 0,  p = 1,…, Np and k = 1,…, K 

2) 1) |(
1

=∑
=

K

k
pku zm ,  p = 1,…, Np 

 

Crisp clustering algorithms use a hard membership function (i.e. ) |( pku zm ∈{0,1}), 

while fuzzy clustering algorithms use a soft member function (i.e. ) |( pku zm ∈[0,1]) 

[Hamerly and Elkan 2002]. 

The weight function, w(zp), in equation (3.5) defines how much influence 

pattern zp has in recomputing the centroids in the next iteration, where 0)( >pw z  

[Hamerly and Elkan 2002]. The weight function was proposed by Zhang [2000]. 

Different stopping criteria can be used in an iterative clustering algorithm, for 

example: 

• stop when the change in centroid values are smaller than a user-specified 

value, 

• stop when the quantization error is small enough, or 

• stop when a maximum number of iterations has been exceeded. 

 

In the following, popular iterative clustering algorithms are described by defining the 

membership and weight functions in equation (3.5). 

 

The K-means Algorithm 

The most widely used partitional algorithm is the iterative K-means approach [Forgy 

1965]. The objective function that the K-means optimizes is 
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∑ ∑
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m,z                  (3.6) 

 

Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and 

Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the 

centroids are randomly selected or derived from a priori information). Then, each 

pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally, 

the centroids are recalculated according to the associated patterns. This process is 

repeated until convergence is achieved.  

The membership and weight functions for K-means are defined as 
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1)( =pzw                    (3.8) 

 

Hence, K-means has a hard membership function. Furthermore, K-means has a 

constant weight function, thus, all patterns have equal importance [Hamerly and Elkan 

2002]. 

 

The K-means algorithm has the following main advantages [Turi 2001]: 

• it is very easy to implement, and 

• its time complexity is O(Np) making it suitable for very large data sets. 

 

However, the K-means algorithm has the following drawbacks [Davies 1997]: 

• the algorithm is data-dependent,  
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• it is a greedy algorithm that depends on the initial conditions, which may 

cause the algorithm to converge to suboptimal solutions, and 

• the user needs to specify the number of clusters in advance. 

 

The K-medoids algorithm is similar to K-means with one major difference, namely, 

the centroids are taken from the data itself [Hamerly 2003]. The objective of K-

medoids is to find the most centrally located patterns within the clusters [Halkidi et al. 

2001]. These patterns are called medoids. Finding a single medoid requires )O( 2
pN . 

Hence, K-medoids is not suitable for moderately large data sets.  

   

The Fuzzy C-means Algorithm 

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called fuzzy 

K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy extension 

of the least-square error criterion. The advantage of FCM over K-means is that FCM 

assigns each pattern to each cluster with some degree of membership (i.e. fuzzy 

clustering). This is more suitable for real applications where there are some overlaps 

between the clusters in the data set. The objective function that the FCM optimizes is  
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where q is the fuzziness exponent, with q ≥ 1. Increasing the value of q will make the 

algorithm more fuzzy; uk,p is the membership value for the pth pattern in the kth cluster 

satisfying the following constraints: 

1) 0≥pk,u ,  p = 1,…, Np and k = 1,…, K 
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2) 1
1

=∑
=

K

k
pk,u ,  p = 1,…, Np 

 

The membership and weight functions for FCM are defined as [Hamerly and Elkan 

2002] 
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Hence, FCM has a soft membership function and a constant weight function. In 

general, FCM performs better than K-means [Hamerly 2003] and it is less affected by 

the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it 

requires the user to specify the number of clusters in the data set. In addition, it may 

converge to local optima [Jain et al. 1999]. 

 Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering 

algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy 

clustering; the main difference is that in possibilistic clustering the membership values 

may not sum to one [Turi 2001]. Possibilistic C-means works well in the presence of 

noise in the data set. However, it has several drawbacks, namely [Turi 2001], 

• it is likely to generate coincident clusters, 

• it requires the user to specify the number of clusters in advance,  

• it converges to local optima, and  

• it depends on initial conditions.    
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The Gaussian Expectation-Maximization Algorithm 

Another popular clustering algorithm is the Expectation-Maximization (EM) 

algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995]. 

EM is used for parameter estimation in the presence of some unknown data [Hamerly 

2003]. EM partitions the data set into clusters by determining a mixture of Gaussians 

fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin et al. 

2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan 

[2002] is 
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where )( kp |p mz  is the probability of pz  given that it is generated by a Gaussian 

distribution with centroid km , and )( kp m is the prior probability of centroid km . 

The membership and weight functions for EM are defined as [Hamerly and 

Elkan 2002] 

 

)(
)()(

)(
p

kkp
pk p

p|p
|u

z
mmz

zm =                          (3.13) 

1)( =pzw                  (3.14) 

 

Hence, EM has a soft membership function and a constant weight function. The 

algorithm starts with an initial estimate of the parameters. Then, an expectation step is 

applied where the known data values are used to compute the expected values of the 

unknown data [Hamerly 2003]. This is followed by a maximization step where the 
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known and expected values of the data are used to generate a new estimate of the 

parameters. The expectation and maximization steps are repeated until convergence. 

 Results from Veenman et al. [2002] and Hamerly [2003] showed that K-

means performs comparably to EM. Furthermore, Aldrin et al. [2003] stated that EM 

fails on high-dimensional data sets due to numerical precision problems. They also 

observed that Gaussians often collapsed to delta functions [Alldrin et al. 2003]. In 

addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi 

2001] and it requires the user to specify the number of clusters in advance. Moreover, 

EM assumes that the density of each cluster is Gaussian which may not always be true 

[Ng et al. 2001]. 

 

The K-harmonic Means Algorithm 

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called K-

harmonic means (KHM), with promising results. In KHM, the harmonic mean of the 

distance of each cluster center to every pattern is computed. The cluster centroids are 

then updated accordingly. The objective function that the KHM optimizes is 
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where α is a user-specified parameter, typically α ≥ 2.   

The membership and weight functions for KHM are [Hamerly and Elkan 

2002] 
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Hence, KHM has a soft membership function and a varying weight function. KHM 

assigns higher weights for patterns that are far from all the centroids to help the 

centroids in covering the data [Hamerly and Elkan 2002]. 

Contrary to K-means, KHM is less sensitive to initial conditions and does not 

have the problem of collapsing Gaussians exhibited by EM [Alldrin et al. 2003]. 

Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan 

[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and 

Elkan [2002]) and EM.  

 

Hybrid 2 

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2), which 

uses the soft membership function of KHM (i.e. equation (3.16)) and the constant 

weight function of K-means (i.e. equation (3.8)). Hamerly and Elkan [2002] showed 

that H2 outperformed K-means, FCM and EM. However, KHM, in general, 

performed slightly better than H2.  

 

K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time 

complexity is O(Np)) making them suitable for very large data sets. According to 
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Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the 

best available clustering algorithms. 

 

Non-iterative Partitional Algorithms 

Another category of unsupervised partitional algorithms includes the non-iterative 

algorithms. The most widely used non-iterative algorithm is MacQueen's K-means 

algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase finds 

the centroids of the clusters, and the second clusters the patterns. Competitive 

Learning (CL) updates the centroids sequentially by moving the closest centroid 

toward the pattern being classified [Scheunders, A Comparison 1997]. These 

algorithms suffer the drawback of being dependent on the order in which the data 

points are presented. To overcome this problem, data points are presented in a random 

order [Davies 1997]. In general, iterative algorithms are more effective than non-

iterative algorithms, since they are less dependent on the order in which data points 

are presented. 

 

3.1.3.3 Other Clustering Techniques 
 

Another type of clustering algorithms includes the Nearest Neighbor clustering 

algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm 

finds the nearest classified pattern whose distance from the unclassified pattern is less 

than a pre-specified threshold. The unclassified pattern is then assigned to the cluster 

of the classified pattern. This process is repeated until all the patterns become 

classified or no further assignments can occur [Jain et al. 1999]. 
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Recently, a new type of clustering algorithms called spectral clustering algorithms 

[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision 

researchers and graph theorists. Spectral clustering is based on spectral graph theory 

[Chung 1997] where a graph representing the data (the graph is analogous to a matrix 

of the distance between the patterns in the data set) is searched by the spectral 

clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage 

of spectral clustering is that it can generate arbitrary-shaped clusters. However, 

spectral clustering suffers from two major drawbacks [Hamerly 2003]: 

• It is computationally expensive (its time complexity is )O( 23
pdp NNN + ). 

Hence, they are not suitable for moderately large data sets. 

• It requires the user to specify a kernel width parameter which has a profound 

effect on the result of the spectral clustering algorithm. Choosing a good value 

for this parameter is usually difficult.  

 

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the 

number of clusters in a data set and can work with arbitrary shaped clusters. The mean 

shift algorithm starts with a number of kernel estimators in the input space. These 

estimators are then repeatedly moved towards areas of higher density. When all the 

kernels reached stability, all the kernels that are near to each other are grouped 

together. The data is then segmented based on where each kernel started. 

 

The mean shift algorithm has the following problems, [Hamerly 2003]: 

• it has to find a way to group kernels and patterns, and 
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• as in spectral clustering, the mean shift algorithm requires the user to specify a 

kernel width parameter which has a profound effect on the result of the 

algorithm. 

 

3.1.4 Clustering Validation Techniques 
 
 

The main objective of cluster validation is to evaluate clustering results in order to 

find the best partitiong of a data set [Halkidi et al. 2001]. Hence, cluster validity 

approaches are used to quantitatively evaluate the result of a clustering algorithm 

[Halkidi et al. 2001].  These approaches have representative indices, called validity 

indices. The traditional approach to determine the "optimum" number of clusters is to 

run the algorithm repetitively using different input values and to select the partitioning 

of data resulting in the best validity measure [Halkidi and Vazirgiannis 2001]. 

 Two criteria that have been widely considered sufficient in measuring the 

quality of data partitioning, are [Halkidi et al. 2001] 

• Compactness: patterns in one cluster should be similar to each other and 

different from patterns in other clusters. The variance of patterns in a cluster 

gives an indication of compactness. 

• Separation: clusters should be well-separated from each other. The Euclidean 

distance between cluster centroids gives an indication of cluster separation. 

 

There are several validity indices; a thorough survey of validity indices can be found 

in Halkidi et al. [2001]. In the following, some representative indices are discussed. 

Dunn [1974] proposed a well known cluster validity index that identifies 

compact and well separated clusters. The main goal of Dunn's index is to maximize 
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inter-cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e. 

increase compactness). The Dunn index is defined as 
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where ),(dist kkk CC is the dissimilarity function between two clusters Ck and Ckk 

defined as 

),(dmin),(dist
kkk ,

kkk wuCC
CwCu ∈∈

= , 

where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a 

cluster, defined as 

),(d max)diam(
,

wuC
Cwu

 
∈

=  

An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's 

index suffers from the following problems [Halkidi et al. 2001]: 

• it is computationally expensive, and 

• it is sensitive to the presence of noise.  

 

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the 

sensitivity to the presence of noise. 

Another well known index, proposed by Davies and Bouldin [1979], 

minimizes the average similarity between each cluster and the one most similar to it. 

The Davies and Bouldin index is defined as 
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An "optimal" value of K is the one that minimizes the DB index. 

 Recently, Turi [2001] proposed an index incorporating a multiplier function 

(to penalize the selection of a small number of clusters) to the ratio between intra-

cluster and inter-cluster distances, with some promising results. The index is defined 

as 

 

inter
intra)1)1,2(N( ×+×= cV                (3.20) 

 

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean 

2 and standard deviation of 1. The "intra" term is the average of all the distances 

between each data point and its cluster centroid, defined as 

∑ ∑
= ∈∀
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p k
N 1
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This term is used to measure the compactness of the clusters. The "inter" term is the 

minimum distance between the cluster centroids, defined as 

.K,...,kkkK,...,kmin kkk 1  and  11  },{inter 2 +=−=∀−= mm  

This term is used to measure the separation of the clusters. An "optimal" value of K is 

the one that minimizes the V index. 

 According to Turi [2001], this index performed better than both Dunn's index 

and the index of Davies and Bouldin on the tested cases. 

Two recent validity indices are S_Dbw [Halkidi and Vazirgiannis 2001] and 

CDbw [Halkidi and Vazirgiannis 2002]. S_Dbw measures the compactness of a data 
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set by the cluster variance, whereas separation is measured by the density between 

clusters. The S_Dbw index is defined as 

 

)()( KDens_bwKscatS_Dbw +=                          (3.21) 

 

The first term is the average scattering of the clusters which is a measure of 

compactness of the clusters, defined as 

∑
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)()(1 ZC σσ  

where )( kCσ is the variance of cluster Ck and )(Zσ is the variance of data set  Z; ||z|| 

is defined as ||z|| = (zTz)1/2, where z is a vector. 

The second term in equation (3.21) evaluates the density of the area between 

the two clusters in relation to the density of the two clusters. Thus, the second term is 

a measure of the separation of the clusters, defined as 
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where bk,kk is the middle point of the line segment defined by mk and mkk. The term 

density(b) is defined as 
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where nk,kk is the total number of patterns in clusters Ck and Ckk (i.e. nk,kk= nk + nkk). 

The function f(z,b) is defined as 
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where 
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∑
=

=
K

k
kK 1
)(1 Cσσ  

An "optimal" value of K is the one that minimizes the S_Dbw index. Halkidi 

and Vazirgiannis [2001] showed that, in tested cases, S_Dbw successfully found the 

"optimal" number of clusters whereas other well-known indices often failed to do so. 

However, S_Dbw does not work properly for arbitrary shaped clusters.  

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-

representative validity index, CDbw, in which each cluster is represented by a user-

specified number of points, instead of one representative as is done in S_Dbw. 

Furthermore, CDbw uses intra-cluster density to measure the compactness of a data 

set, and uses the density between clusters to measure their separation. 

More recently, Veenman et al. [2002; 2003] proposed a validity index that 

minimizes the intra-cluster variability while constraining the intra-cluster variability 

of the union of the two clusters. The sum of squared error is used to minimize the 

intra-cluster variability while a minimum variance for the union of two clusters is 

used to implement the joint intra-cluster variability. The index is defined as 

∑
=

=
K

k
kkVarnminIV

1

)(C                (3.22) 

where nk is the number of patterns in cluster Ck and 

21)( ∑
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such that 

kkk,,Var kkkkkk ≠∀≥∪ CCCC    ,)( 2
maxσ  

where 2
maxσ  is a user-specified parameter. This parameter has a profound effect on the 

final result. 
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The above validity indices are suitable for hard clustering. Validity indices 

have been developed for fuzzy clustering. The interested reader is referred to Halkidi 

et al. [2001] for more information. 

 

3.1.5 Determining the Number of Clusters 
 

Most clustering algorithms require the number of clusters to be specified in advance 

[Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum" number 

of clusters in a data set is usually a challenge since it requires a priori knowledge, 

and/or ground truth about the data, which is not always available. The problem of 

finding the optimum number of clusters in a data set has been the subject of several 

research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999], however, 

despite the amount of research in this area, the outcome is still unsatisfactory 

[Rosenberger and Chehdi 2000]. In the literature, many approaches to dynamically 

find the number of clusters in a data set were proposed. In this section, several 

dynamic clustering approaches are presented and discussed. 

 ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by 

Ball and Hall [1967], is an enhancement of the K-means algorithm (K-means is 

sometimes referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative 

procedure that assigns each pattern to its closest centroids (as in K-means). However, 

ISODATA has the ability to merge two clusters if the distance between their centroids 

is below a user-specified threshold. Furthermore, ISODATA can split elongated 

clusters into two clusters based on another user-specified threshold. Hence, a major 

advantage of ISODATA compared to K-means is the ability to determine the number 

of clusters in a data set. However, ISODATA requires the user to specify the values of 
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several parameters (e.g. the merging and splitting thresholds). These parameters have 

a profound effect on the performance of ISODATA making the result subjective [Turi 

2001]. 

 Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering 

algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the 

minimum inter-cluster distance to the maximum intra-cluster distance. This is done by 

an iterative procedure with the added capability of splitting and merging. However, as 

in ISODATA, DYNOC requires the user to specify a value for a parameter that 

determines whether splitting is needed [Turi 2001]. 

 Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign 

objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a 

means of model selection called the Wallace Information Measure (also known as the 

Minimum Message Length) [Wallace and Boulton 1968; Oliver and Hand 1994] is 

calculated and based on this calculation the assignment is accepted or rejected. Snob 

can split/merge and move points between clusters, thereby allowing it to determine 

the number of clusters in a data set. 

 Bischof et al. [1999] proposed an algorithm based on K-means which uses a 

similar concept to the Wallace Information Measure called the Minimum Description 

Length [Rissanen 1978] framework. The algorithm starts with a large value for K and 

proceeds to remove centroids when this removal results in a reduction of the 

description length. K-means is used between the steps that reduce K. 

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi 

[2000], improves K-means by automatically finding the number of clusters in data set 

by using intermediate results. MLBG is an iterative procedure that starts with K 

clusters. In each iteration, a cluster, Ck, maximizing an intra-cluster distance measure 
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is chosen for splitting. Two centroids are generated from the splitting process. The 

first centroid, m1, is initialized to the centroid of the original cluster, Ck. The second 

cluster centroid, m2, is chosen to be the pattern in Ck which is the most distant from 

m1. K-means is then applied on the new K+1 centroids. The new set of centroids is 

accepted if it satisfies an evaluation criterion based on a dispersion measure. This 

process is repeated until no valid partition of the data can be obtained. One of the 

main problems with MLBG is that it requires the user to specify the values of four 

parameters, which have a profound effect on the resultant number of clusters. 

Pelleg and Moore [2000] proposed another K-means based algorithm, called 

X-means that uses model selection. X-means starts by setting the number of clusters, 

K, to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means 

is applied on the K clusters. This is followed by a splitting process based on the 

Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as 

 

p
d N

NK
|l̂|BIC log

2
)1(

)()(
+

−= CZZC                         (3.23)  

 

where )( CZ |l̂  is the log-likelihood of the data set Z according to model C. If the 

splitting process improves the BIC score the resulting split is accepted, otherwise it is 

rejected. Other scoring functions can also be used. 

These two steps are repeated until a user-specified upper bound of K is reached. 

X-means searches over the range of values of K and reports the value with the best 

BIC score. 

Recently, Huang [2002] proposed SYNERACT as an alternative approach to 

ISODATA. SYNERACT combines K-means with hierarchical descending approaches 
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to overcome the drawbacks of K-means mentioned previously. Three concepts used 

by SYNERACT are:  

• a hyperplane to split up a cluster into two smaller clusters and compute their 

centroids, 

• iterative clustering to assign pixels into available clusters, and  

• a binary tree to store clusters generated from the splitting process.  

 

According to Huang [2002], SYNERACT is faster than and almost as accurate as 

ISODATA. Furthermore, it does not require the number of clusters and initial location 

of centroids to be specified in advance. However, SYNERACT requires the user to 

specify the values of two parameters that affect the splitting process. 

 Veenman et al. [2002] proposed a partitional clustering algorithm that finds 

the number of clusters in a data set by minimizing the clustering validity index 

defined in equation (3.22). This algorithm starts by initializing the number of clusters 

equal to the number of patterns in the data set. Then, iteratively, the clusters are split 

or merged according to a series of tests based on the validity index. According to 

Veenman et al. [2002], the proposed approach performed better than both K-means 

and EM algorithms. However, the approach suffers from the following drawbacks, 

namely 

• it is computationally expensive, and 

• it requires the user to specify a parameter for the validity index (already 

discussed in Section 3.1.4) which has a significant effect on the final results 

(although the authors provide a method to help the user in finding a good 

value for this parameter).   
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More recently, Hamerly and Elkan [2003] proposed another approach based on K-

means, called G-means. G-means starts with a small value for K, and with each 

iteration splits up the clusters whose data do not fit a Gaussian distribution. Between 

each round of splitting, K-means is applied to the entire data set in order to refine the 

current solution. According to Hamerly and Elkan [2003], G-means works better than 

X-means, however, it works only for data having spherical and/or elliptical clusters. 

G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003]. 

 Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm 

based on a combination of FCM and fuzzy maximum likelihood estimation. The 

algorithm starts by initializing K to a user-specified lower bound of the number of 

clusters in the data set (e.g. K = 1). A modified FCM (that uses an unsupervised 

learning process to initialize the K centroids) is first applied to cluster the data.  Using 

the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then 

applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential" 

distance measure based on maximum likelihood estimation [Bezdek 1981] instead of 

the Euclidean distance measure, because the exponential distance measure is more 

suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then 

evaluated using a clustering validity index that is mainly based on a hyper-volume 

criterion which measures the compactness of a cluster. K is then incremented and the 

algorithm is repeated until a user-specified upper bound of K is reached. The value of 

K resulting in the best value of the validity index is considered to be the "optimal" 

number of clusters in the data set. Gath and Geva [1989] stated that their algorithm 

works well in cases of large variability of cluster shapes. However, the algorithm 

becomes more sensitive to local optima as the complexity increases. Furthermore, 

because of the exponential function, floating point overflows may occur [Su 2002]. 
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 Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to 

dynamically determine the number of clusters in a data set. In this thesis, the proposed 

algorithm is referred as the Unsupervised Fuzzy Clustering (UFC) algorithm. A new 

objective function was proposed for this purpose, defined as 
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where q is the fuzziness exponent, uk,p is the membership value for the pth pattern in 

the kth cluster, β is a parameter that decreases as the run progresses, and pk is the a 

priori probability of cluster Ck defined as 
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The first term of equation (3.24) is the objective function of FCM which is minimized 

when each cluster consists of one pattern. The second term is an entropy term that is 

minimized when all the patterns are assigned to one cluster. Lorette et al. [2000] use 

this objective function to derive new update equations for the membership and 

centroid parameters. 

 The algorithm starts with a large number of clusters. Then, the membership 

values and centroids are updated using the new update equations. This is followed by 

applying equation (3.25) to update the a priori probabilities. If ε<kp  then cluster k 

is discarded; ε is a user-specified parameter. This procedure is repeated until 
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convergence. The drawback of this approach is that it requires the parameter ε to be 

specified in advance. The performance of the algorithm is sensitive to the value of ε. 

 Similar to UFC, Boujemaa [2000] proposed an algorithm, based on a 

generalization of the competitive agglomeration clustering algorithm introduced by 

Frigui and Krishnapuram [1997]. 

 The fuzzy algorithms discussed above modify the objective function of FCM. 

In general, these approaches are sensitive to initialization and other parameters [Frigui 

and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust 

competitive clustering algorithm based on the process of competitive agglomeration. 

The algorithm starts with a large number of small clusters. Then, during the execution 

of the algorithm, adjacent clusters compete for patterns. Clusters losing the 

competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this 

algorithm also requires the user to specify a parameter that has a significant effect on 

the generated result. 

 

3.1.6 Clustering using Self-Organizing Maps 
 
Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to 

automatically find the number of clusters in a data set. The objective of SOM is to 

find regularities in a data set without any external supervision [Pandya and Macy 

1996]. SOM is a single-layered unsupervised artificial neural network where input 

patterns are associated with output nodes via weights that are iteratively modified 

until a stopping criterion is met [Jain et al. 1999]. SOM combines competitive 

learning (in which different nodes in the Kohonen network compete to be the winner 

when an input pattern is presented) with a topological structuring of nodes, such that 

adjacent nodes tend to have similar weight vectors (this is done via lateral feedback) 
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[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM 

[Pandya and Macy 1996] is shown in Figure 3.1. 

 

Let )(tη  be the learning rate parameter and )(tw∆ be the neighborhood function  

Randomly initialize the weight vectors, wk(0) 

Initialize the learning rate (0)η  and the neighborhood function (0)w∆  

Repeat 

   For each input pattern zp do 

      Select the node whose weight vector is closest (in terms of Euclidean distance) to   

      zp as the winning node 

 

      Use competitive learning to train the weight vectors such that all the nodes within  

      the neighborhood of the winning node are moved toward zp: 
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   Endloop 

   Linearly decrease )(tη and reduce )(tw∆  

Until some convergence criteria are satisfied 

Figure 3.1: General pseudo-code for SOM 

 

In Figure 3.1, )(tη  starts relatively large (e.g. close to 1) then linearly decreases until 

it reaches a small user-specified value. The neighborhood function )(tw∆  defines the 

neighborhood size surrounding the winning node. A large value of  )(tw∆  is used at 

the beginning of the training. This value is then reduced as the training progresses in 
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order to get sharper clusters [Pandya and Macy 1996]. A typical neighborhood 

arrangement is the rectangular lattice shown in Figure 3.2 [Pandya and Macy 1996]. 

 

 

Figure 3.2: Rectangular Lattice arrangement of neighborhoods 

 

  

SOM suffers from the following drawbacks [Jain et al. 1999]: 

• It depends on the initial conditions. 

• Its performance is affected by the learning rate parameter and the 

neighborhood function. 

• It works well with hyper-spherical clusters only. 

• It uses a fixed number of output nodes. 

• It depends on the order in which the data points are presented. To overcome 

this problem, the choice of data points can be randomized during each iteration 

[Pandya and Macy 1996]. 
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3.1.7 Clustering using Stochastic Algorithms 
 

Simulated annealing (discussed in Section 2.3) has been used for clustering [Klein and 

Dubes 1989]. In general, a simulated annealing based clustering algorithm works as 

shown in Figure 3.3 [Jain et al. 1999]. 

  

An initial partition P0 of the data set is randomly chosen  

Repeat 

   A neighbor of P0 is chosen  

   If the new partition is better than P0 then  

      move to the new partition  

   Else 

      move to the new partition with a probability that decreases as the algorithm  

      progresses. 

Until a stopping criterion is satisfied 

Figure 3.3: General simulated annealing based clustering algorithm 

 

One problem with simulated annealing is that it is very slow in finding an optimal 

solution [Jain et al. 1999].  

Tabu search (discussed in Section 2.3) has also been used for hard clustering 

[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results. 

A hybrid approach combining both K-means and tabu search that performs better than 

both K-means and tabu search was proposed by Frnti et al. [1998]. Recently, Chu and 

Roddick [2003] proposed a hybrid approach combining both tabu search and 

simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998]. 
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However, the performance of simulated annealing and tabu search depends on the 

selection of several control parameters [Jain et al. 1999]. 

Most clustering approaches discussed so far perform local search to find a 

solution to a clustering problem. Evolutionary algorithms (discussed in Section 2.4) 

which perform global search have also been used for clustering [Jain et al. 1999]. 

Raghavan and Birchand [1979] used GAs to minimize the squared error of a 

clustering solution. In this approach, each chromosome represents a partition of Np 

patterns into K clusters. Hence, the size of each chromosome is Np. This 

representation has a major drawback in that it increases the search space by a factor of 

K!. The crossover operator may also result in inferior offspring [Jain et al. 1999]. 

 Babu and Murty [1993] proposed a hybrid approach combining K-means and 

GAs that performed better than the GA. In this approach, a GA is only used to feed K-

means with good initial centroids [Jain et al. 1999]. 

 Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering 

where each chromosome represents K centroids. Hence, a floating point 

representation is used. The fitness function is defined as the inverse of the objective 

function of K-means (refer to equation (3.6)). The GA-based clustering algorithm is 

summarized in Figure 3.4. 

 According to Maulik and Bandyopadhyay [2000], this approach outperformed 

K-means on the tested cases. One drawback of this approach is that it requires the user 

to specify the number of clusters in advance.
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1. Initialize each chromosome to contain K randomly chosen centroids from the 

data set 

2. For t = 1 to tmax 

(a) For each chromosome i 

(i) Assign each pattern to the cluster with the closest centroid 

(ii)  Recalculate the K cluster centroids of chromosome i as the means of their 

patterns 

(iii) Calculate the fitness of chromosome i 

 

(b) Apply roulette wheel selection 

(c) Apply single point crossover with probability pc 

(d) Apply mutation with probability pm. The mutation operator is defined as 

xxx )( γ+±= r  

             where (0,1)~ Ur and γ  is a user-specified parameter such that γ ∈(0,1) 

Figure 3.4: General pseudo-code for GA-based clustering algorithm 

 

Lee and Antonsson [2000] used an evolution strategy (ES) to dynamically cluster a 

data set. The proposed ES implemented variable length individuals to search for both 

the centroids and the number of clusters. Each individual represents a set of centroids. 

The length of each individual is randomly chosen from a user-specified range of 

cluster numbers. The centroids of each individual are then randomly initialized. 

Mutation is applied to the individuals by adding/subtracting a Gaussian random 

variable with zero mean and unit standard deviation. Two point crossover is also used 

as a "length changing operator". A (10+60) ES selection is used where 10 is the 
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number of parents and 60 is the number of offspring generated in each generation. 

The best ten individuals from the set of parents and offspring are used for the next 

generation. A modification of the mean square error is used as the fitness function, 

defined as 
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The modification occurs by multiplying the mean square error by a constant 

corresponding to the square root of the number of clusters. This constant is used to 

penalize a large value of K. According to Lee and Antonsson [2000], the results are 

promising. However, the proposed algorithm needs to be compared with other 

dynamic clustering approaches and its performance needs to be investigated as the 

dimension increases. 

In general, evolutionary approaches have several advantages, namely [Jain et al. 

1999]: 

• they are global search approaches, 

• they are suitable for parallel processing, and 

• they can work with a discontinuous criterion function.  

 

However, evolutionary approaches generally suffer from the following drawbacks 

[Jain et al. 1999]: 

• they require the user to specify the values of a set of parameters (e.g. 

population size, pc, pm, etc.) for each specific problem, and  
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• the execution time of EAs is significantly higher than the execution time of 

other traditional clustering algorithms (e.g. K-means and FCM), especially 

when applied to large data sets. 

 

3.1.8 Unsupervised Image Classification 
 

Image classification is the process of identifying groups of similar image primitives 

[Puzicha et al. 2000]. These image primitives can be pixels, regions, line elements and 

so on, depending on the problem encountered.  

There are two main approaches to image classification: supervised and 

unsupervised. In the supervised approach, the number and the numerical 

characteristics (e.g. mean and variance) of the classes in the image are known in 

advance (by the analyst) and used in the training step, which is followed by the 

classification step. There are several popular supervised algorithms such as the 

minimum-distance-to-mean, parallelepiped and the Gaussian maximum likelihood 

classifiers [Lillesand and Kiefer 1994]. In the unsupervised approach the classes are 

unknown and the approach starts by partitioning the image data into groups (or 

clusters), according to a similarity measure, which can be compared with reference to 

data by an analyst and used to segment the image.  

Therefore, unsupervised classification is a special case of the general clustering 

problem where the data set is an image (or a set of images) and the patterns are the 

pixels of the image(s).  

In general, the unsupervised approach has several advantages over the supervised 

approach, namely [Davies 1997] 
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• For unsupervised approaches, there is no need for an analyst to specify in 

advance all the classes in the image data set. The clustering algorithm 

automatically finds distinct clusters, which dramatically reduces the work of 

the analyst. 

• The characteristics of the objects being classified can vary with time; the 

unsupervised approach is an excellent way to monitor these changes. 

• Some characteristics of objects may not be known in advance. The 

unsupervised approach automatically flags these characteristics. 

 

3.2 Image Segmentation using Clustering 

 

Image segmentation is a fundamental process in several image processing and 

computer vision applications. It can be considered as the first low-level processing 

step in image processing and pattern recognition [Cheng et al. 2001]. Image 

segmentation is defined as the process of dividing an image into disjoint homogenous 

regions. These homogenous regions should represent objects or parts of them 

[Lucchese and Mitra 2001]. The homogeneity of the regions is measured using some 

image property (e.g. pixel intensity) [Jain et al. 1999]. Image segmentation can be 

formally defined as follows: 

Given an image I and a homogeneity predicate P. The segmentation of image I is the 

partitioning of I into K regions, {R1, R2,…,RK}, satisfying the following conditions: 

• Each pixel in the image should be assigned to a region, i.e. 

IRk
K
k =∪ =1  

• Each pixel is assigned to one and only one region, i.e. 
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kkkRR kkk ≠=∩     whereφ  

• Each region satisfies homogeneity predicate P, i.e. 

K,,kRP k K1   True,)( =∀=  

• Two different regions can not satisfy P, i.e. 

kkkRRP kkk ≠=∪     whereFalse)(  

 
There are many techniques for image segmentation in the literature; details can be 

found in Fu and Mui [1981], Pal and Pal [1993], Cheng et al. [2001], Lucchese and 

Mitra [2001] and Turi [2001]. In general, these techniques can be categorized into 

thresholding, edge-based, region growing and clustering techniques [Turi 2001]. Each 

of these categories are discussed in the following sections. 

 

3.2.1 Thresholding Techniques 
 

Thresholding [Gonzalez and Woods 1992; Jain et al. 1995] is the simplest image 

segmentation technique. In its simplest version an image is divided into two segments: 

object and background by specifying a threshold. A pixel above the threshold is 

assigned to one segment and a pixel below the threshold is assigned to the other 

segment. For more sophisticated images multiple thresholds can be used. 

 

3.2.2 Edge-based Techniques 
 

In edge-based techniques [Gonzalez and Woods 1992; Jain et al. 1995; Kwok and 

Constantinides 1997], segmentation is achieved by finding the edges of the regions. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

85 
 

This is usually accomplished by moving a mask (e.g. a 3×3 window) over the image 

to detect local changes in the image intensity. 

 

3.2.3 Region growing Techniques 
 

In region growing [Gonzalez and Woods 1992; Jain et al. 1995; Fuh et al. 2000], a set 

of seed pixels are chosen. Neighboring pixels of a seed are agglomerated if they 

satisfy a homogeneity criterion. This is repeated until no more pixels can be added to 

the region. This approach has some problems [Turi 2001]:  

• The selection of the seed pixels which is not a straightforward task. 

• The selection of the homogeneity criterion. 

 

Region splitting and merging divide the image into regions. A region is then split if it 

does not satisfy a homogeneity condition. Regions can also be merged if their 

merging results in a region that satisfies some condition. This is repeated until no 

more splitting and merging can occur [Gonzalez and Woods 1992]. 

 

3.2.4 Clustering Techniques 
 

Image segmentation can be treated as a clustering problem where features describing 

each pixel correspond to a pattern and an image region (i.e. segment) corresponds to a 

cluster [Jain et al. 1999]. This similarity is obvious by comparing the clustering 

problem definition (refer to section 3.1.1) and the image segmentation problem 

definition (refer to section 3.2). Therefore, clustering algorithms have been widely 

used to solve the problem of image segmentation (e.g. K-means [Tou and Gonzalez 
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1974], FCM [Trivedi and Bezdek 1986], ISODATA [Tou and Gonzalez 1974] and 

snob [Wallace and Dowe 1994]). However, it should be noted that the number of 

clusters is usually not known a priori in image segmentation. Therefore, clustering 

algorithms that do not require the user to specify the number of clusters are usually 

preferred.  

In this thesis, the clustering problem and the image segmentation problem are 

considered to be similar. Thus, algorithms are proposed for both problems 

interchangeably. In the following, several representative clustering-based techniques 

are presented. 

 A hybrid approach combining agglomerative hierarchical clustering and 

region-based segmentation was proposed by Amadasun and King [1988]. The image 

is first divided into regions. Homogenous regions are specified and mean feature 

vectors are then determined for each homogenous region. The most similar mean 

feature vectors are merged. This process is repeated until the specified number of 

clusters is reached. One advantage of this approach is that it is computationally 

efficient, because hierarchical clustering is applied on the mean feature vectors 

instead of the image pixels. However, this approach has several drawbacks, namely 

[Turi 2001], 

• it requires the user to specify the number of clusters in advance, 

• it depends on the region size, and 

• it depends on the used homogeneity criterion. 

 

Clustering algorithms are usually applied to feature space, and as such they do not use 

any spatial information (e.g. the relative location of the patterns in the feature space). 

However, for image segmentation spatial information is important because pixels with 
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similar features are usually found near each other in the spatial domain [Liew et al. 

2000]. To address this issue, a generalization of K-means that is adaptive and includes 

spatial information was proposed by Pappas [1992]. In this approach, a posteriori 

probability function is defined which constrains the region intensity and imposes 

spatial continuity [Turi 2001]. The iterative algorithm alternates between maximizing 

the a posteriori probability function and calculating the cluster centroids. The cluster 

centroids are initially equal to the K-means cluster centroids. The centroids are 

updated by averaging them over a sliding window. The size of the sliding window is 

progressively decreases [Lucchese and Mitra 2001]. Chang et al. [1994] extends this 

algorithm to color image segmentation. Saber et al. [1996] extends the approach of 

Chang et al. by proposing a hybrid approach combining color image segmentation and 

edge linking. Chen et al. [1998] applied an approach similar to Pappas [1992] to 

biomedical images. A drawback of the generalization of K-means approaches is that 

they require the user to specify the number of clusters in advance [Turi 2001]. 

 A color map image segmentation algorithm combining FCM and a supervised 

neural network was proposed by Wu et al. [1994]. FCM is first applied giving a set of 

prototypes satisfying some validation criteria. A neural network with supervised 

learning is then used to optimize these prototypes. The optimized prototypes are used 

to segment the image using the nearest neighbor rule [Turi 2001]. 

 A fuzzy image clustering algorithm which incorporates spatial contextual 

information was proposed by Liew et al. [2000]. A dissimilarity measure which 

considers the eight neighboring pixels of each pixel was proposed. The dissimilarity 

measure is adaptive in the sense that the effect of the neighboring pixels is suppressed 

in nonhomogenous image regions. In addition, a merging process that merges clusters 

based on their closeness and their degree of overlap is also used to determine the 
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"optimal" number of clusters. According to Liew et al. [2000], due to the 

incorporation of spatial information, this approach is faster, less sensitive to noise and 

more suitable for arbitrary shaped clusters than FCM. 

 Lim and Lee [1990] proposed a two-stage process called thresholding and 

FCM. In the first stage, a coarse segmentation is obtained by smoothing the histogram 

of each color component by a Gaussian convolution. Thresholds are set as the valleys 

of the smoothed histograms (the valleys are obtained using the first and second 

derivative of the smoothed histograms). A safe area around each threshold is 

determined. Each pixel outside these safe areas is assigned to a cluster according to its 

red, green and blue values. Cluster centroids are then calculated. In the second stage, a 

fine segmentation is obtained by assigning pixels in safe areas to their closest clusters 

as determined from the fuzzy membership functions. One advantage of this approach 

is that it dynamically determines the number of clusters. However, the number of 

clusters obtained is significantly affected by the smoothing function parameter and the 

size of the safe area [Turi 2001]. 

 Color image segmentation using competitive learning based on the least-

squares criterion was proposed by Uchiyama and Arbib [1994]. An image 

segmentation approach based on the mean shift algorithm was proposed by 

Comaniciu and Meer [1997]. Shi and Malik [1997] addressed image segmentation 

using clustering as a graph partitioning problem. 

 Zhang et al. [2001] proposed a hybrid approach combining hidden Markov 

random field (HMRF) and the EM algorithm to segment brain magnetic resonance 

(MR) images. A HMRF model is a stochastic process generated by a MRF. The 

HMRF state sequence can be observed through a field of observations [Zhang et al. 

2001]. An advantage of HMRF is that it encodes spatial information, which is very 
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useful in image segmentation since it reduces the sensitivity to the presence of noise. 

A parameter estimation method is required to approximate the parameters of the 

HMRF model. In this approach, the EM algorithm is used to estimate the parameters. 

One drawback of this approach is that it depends on the initial estimations of the 

parameters. 

Recently, Veenman et al. [2003] proposed a cellular coevolutionary algorithm 

for image segmentation. The algorithm places agents in a two-dimensional grid 

representing an image. The agents move pixels between each other to improve the 

homogeneity of the regions. Neighboring agents form alliances if the union of their 

regions is homogenous. This approach does not require the user to specify the number 

of clusters in advance. However, it requires the user to specify a parameter (discussed 

in section 3.1.4, equation (3.22)) that has a profound effect on the performance of the 

algorithm. 

 

3.3 Color Image Quantization 

 

Color image quantization is the process of reducing the number of colors presented in 

a digital color image [Braquelaire and Brun 1997]. Color image quantization can be 

formally defined as follows [Velho et al. 1997]: 

Given a set of S ′N  colors dNℜ⊂′S . The color quantization is a map S  S ′′→′ :qf  

where S ′′  is a set of S ′′N  colors such that SS ′⊂′′  and SS ′′′ < NN . The objective is to 

minimize the quantization error resulting from replacing a color Sc ′∈  with its 

quantized value Sc ′′∈)(qf .  
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Color image quantization is an important problem in the fields of image 

processing and computer graphics [Velho et al. 1997]:  

• It can be used in lossy compression techniques [Velho et al. 1997];  

• It is suitable for mobile and hand-held devices where memory is usually small 

[Rui et al. 2002];  

• It is suitable for low-cost color display and printing devices where only small 

number of colors can be displayed or printed simultaneously [Scheunders, A 

Genetic 1997]. 

• Most graphics hardware use color lookup tables with a limited number of 

colors [Freisleben and Schrader 1997]. 

 

Color image quantization consists of two major steps:  

• Creating a colormap (or palette) where a small set of colors (typically 8-256 

[Scheunders, A Genetic 1997]) is chosen from the (224) possible combinations 

of red, green and blue (RGB). 

• Mapping each color pixel in the color image to one of the colors in the 

colormap. 

 

Therefore, the main objective of color image quantization is to map the set of colors 

in the original color image to a much smaller set of colors in the quantized image 

[Xiang and Joy 1994]. Furthermore, this mapping, as already mentioned, should 

minimize the difference between the original and the quantized images [Freisleben 

and Schrader 1997]. The color quantization problem is known to be NP-complete [Wu 

and Zhang 1991]. This means that it is not feasible to find the global optimal solution 

because this will require a prohibitive amount of time. To address this problem, 
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several approximation techniques have been used. One popular approximation method 

is the use of a standard local search strategy such as K-means. K-means has already 

been applied to the color image quantization problem [Shafer and Kanade 1987; 

Celenk 1990]. However, as previously mentioned, K-means is a greedy algorithm 

which depends on the initial conditions, which may cause the algorithm to converge 

to suboptimal solutions. This drawback is magnified by the fact that the distribution of 

local optima is expected to be broad in the color image quantization problem due to 

the three dimensional color space. In addition, this local optimality is expected to 

affect the visual image quality.  The local optimality issue can be addressed by using 

stochastic optimization schemes.  

Several heuristic techniques have been proposed in the literature. These 

techniques can be categorized into two main categories: pre-clustering and post-

clustering. The next subsections discuss each of these categories.  

 

3.3.1 Pre-clustering approaches 
 
Pre-clustering approaches divide the color into disjoint regions of similar colors. A 

representative color is then determined from each region. These representatives form 

the colormap. There are many fast algorithms in this category which are commonly 

used. 

The median cut algorithm (MCA) [Heckbert 1982] is often used in image 

applications because of its simplicity [Freisleben and Schrader 1997]. MCA divides 

the color space repeatedly along the median into rectangular boxes until the desired 

number of colors is obtained. 
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The variance-based algorithm (VBA) [Wan 1990] also divides the color space 

into rectangular boxes. However, in VBA the box with the largest mean squared error 

between the colors in the box and their mean is split. 

The octree quantization algorithm [Gervautz and Purgathofer 1990] repeatedly 

subdivides a cube into eight smaller cubes in a tree structure of degree eight. Then 

adjacent cubes with the least number of pixels are merged. This is repeated until the 

required number of colors is obtained [Dekker 1994]. Octree produces results similar 

to MCA, but with higher speed and smaller memory requirements [Freisleben and 

Schrader 1997]. 

Xiang and Joy [1994] proposed an agglomerative clustering method which 

starts with each image color as a separate cluster. Small clusters are then repeatedly 

clustered into larger clusters in a hierarchical way until the required number of colors 

is obtained. The abandoning of the fixed hierarchical division of the color space is a 

significant improvement over the octree approach [Xiang and Joy 1994].  

A similar approach called Color Image Quantization by Pairwise Clustering 

was proposed by Velho et al. [1997]. In this approach, a relatively large set of colors 

is chosen. An image histogram is then created. Two clusters that minimize the 

quantization error are then selected and merged together. This process is repeated 

until the required number of colors is obtained. According to Velho et al. [1997], this 

approach performed better than MCA, VBA, octree, K-means and other popular 

quantization algorithms when applied to the two colored images used in their 

experiments. 

Xiang [1997] proposed a color image quantization algorithm that minimizes 

the maximum distance between color pixels in each cluster (i.e. the intra-cluster 

distance). The algorithm starts by assigning all the pixels into one cluster. A pixel is 
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then randomly chosen as the head of the cluster. A pixel that is the most distant from 

its cluster head is chosen as the head of a new cluster. Then, pixels nearer to the head 

of the new cluster move towards the new head forming the new cluster. This 

procedure is repeated until the desired number of clusters is obtained. The set of 

cluster heads forms the colormap.  

A hybrid competitive learning (HCL) approach combining competitive 

learning and splitting of the color space was proposed by Scheunders [A Comparison 

1997]. HCL starts by randomly choosing a pixel as a cluster centroid. Competitive 

learning is then applied resulting in assigning all the image pixels to one cluster 

surrounding the centroid. A splitting process is then conducted by creating another 

copy of the centroid; competitive learning is then applied on both centroids. This 

process is repeated until the desired number of clusters is obtained. According to 

Scheunders [A Comparison 1997], HCL is fast, completely independent of initial 

conditions and can obtain near global optimal results. When applied to commonly 

used images, HCL outperformed MCA, VBA and K-means, and performed 

comparably with competitive learning [Scheunders, A Comparison 1997; Scheunders, 

A Genetic 1997].  

Braquelaire and Brun [1997] compared the various pre-clustering heuristics 

and suggested some optimizations of the algorithms and data structures used. 

Furthermore, they proposed a new color space called H1 H2 H3 and argued that it 

improves the quantization heuristics. Finally, they proposed a new method which 

divides each cluster along the axis H1, H2 or H3 of greatest variance. According to 

Braquelaire and Brun [1997], the proposed approach generates images with 

comparable quality to that obtained from better but slower methods in this category. 
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Recently, Cheng and Yang [2001] proposed a color image quantization 

algorithm based on color space dimensionality reduction. The algorithm repeatedly 

sub-divides the color histogram into smaller classes. The colors of each class are 

projected into a line. This line is defined by the mean color vector and the most distant 

color from the mean color. For each class, the vector generated from the projection of 

the colors into the line is then used to cluster the colors into two representative palette 

colors. This process is repeated until the desired number of representative colors is 

obtained. All color vectors in each class are then represented by their class mean. 

Finally, all these representative colors form the colormap. According to Cheng and 

Yang [2001], this algorithm performed better than MCA, and performed comparably 

to SOM when applied on commonly used images. 

  

3.3.2 Post-clustering approaches 
 
The main disadvantage of the pre-clustering approaches is that they only work with 

color spaces of simple geometric characteristics. On the other hand, post-clustering 

approaches can work with arbitrary shaped clusters. Post-clustering approaches 

perform clustering of the color space [Cheng and Yang 2001]. A post-clustering 

algorithm starts with an initial colormap. It then iteratively modifies the colormap to 

improve the approximation. The major disadvantage of post-clustering algorithms is 

the fact that it is time consuming [Freisleben and Schrader 1997]. 

The K-means algorithm is one of the most popular post-clustering algorithms. 

It starts with an initial set of colors (i.e. initial colormap). Then, each color pixel is 

assigned to the closest color in the colormap. The colors in the colormap are then 

recomputed as the centroids of the resulting clusters. This process is repeated until 

convergence. The K-means algorithm has been proven to converge to a local optimum 
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[Freisleben and Schrader 1997]. As previously mentioned, a major disadvantage of K-

means is its dependency on initial conditions.  

FCM [Balasubramanian and J. Allebach 1990] and Learning Vector 

Quantization [Kotropoulos et al. 1992] have also been used in the color image 

quantization. Scheunders and De Backer [1997] proposed a joint approach using both 

competitive learning and a dithering process to overcome the problem of contouring 

effects when using small colormaps. 

Fiume and Quellette [1989] proposed an approach which uses simulated 

annealing for color image segmentation. Pre-clustering approaches were used to 

initialize the colormap. 

SOMs (discussed in Section 3.1.6) were used by Dekker [1994] to quantize 

color images. The approach selects an initial colormap, and then modifies the colors 

in the colormap by moving them in the direction of the image color pixels. However, 

to reduce the execution time, only samples of the colors in the image are used. 

According to Dekker [1994], the algorithm performs better than MCA and octree.  

Rui et al. [2002] presented an initialization and training method for SOM that 

reduces the computational load of SOM and at the same time generates reasonably 

good results.  

A hybrid approach combining evolutionary algorithms with K-means has been 

proposed by Freisleben and Schrader [1997]. A population of individuals, each 

representing a colormap, are arbitrary initialized. Then, after each generation, the K-

means algorithm (using a few iterations) is applied on each individual in the 

population. The standard error function of the Euclidean distance is chosen to be the 

fitness function of each individual. Based on the experiments conducted by Freisleben 
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and Schrader [1997], this hybrid approach outperformed both MCA and octree 

algorithms.  

Genetic C-means algorithm (GCMA) uses a similar idea where a hybrid 

approach combining a genetic algorithm with K-means was proposed by Scheunders 

[A Genetic 1997]. The fitness function of each individual in the population is set to be 

the mean square error (MSE), defined as 
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                          (3.27) 

 

As in Freisleben and Schrader [1997], each chromosome represents a colormap. 

GCMA starts with a population of arbitrary initialized chromosomes. K-means is then 

applied to all the chromosomes to reduce the search space. A single-point crossover is 

then applied. This is followed by the application of mutation which randomly decides 

if a value of one is added to (or subtracted from) the gene's value (i.e. mutating the 

gene's value with ±1). All the chromosomes are then pairwise compared and the 

chromosome with the lowest MSE replaces the other chromosome. This process is 

repeated until a stopping criterion is satisfied. A faster version of this approach can be 

obtained by applying K-means to the best chromosome in each generation. For the 

remaining chromosomes, an approximation of K-means is used where a single 

iteration of K-means is applied on a randomly chosen subset of pixels. This process is 

repeated a user-specified number of times using different subsets. GCMA 

outperformed MCA, VBA, K-means, competitive learning and HCL when applied on 

commonly used images [Scheunders, A Comparison 1997; Scheunders, A Genetic 

1997]. However, GCMA is computationally expensive. 
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 Recently, a new approach using model based clustering trees was proposed by 

Murtagh et al. [2001]. The algorithm requires selecting a 3D color space (e.g. RGB) 

and specifying the order of color bands. For the first color band, the number of 

clusters is determined using BIC (discussed in section 3.1.5, equation (3.23)). The EM 

algorithm is used to estimate the model parameters and each pixel is then assigned to 

its most likely cluster. The second color band is then used to split each of the clusters 

generated from the previous step. The generated clusters are further subdivided using 

the third color band. 

 

3.4 Spectral Unmixing 

  

In remote sensing, classification is the main tool for extracting information about the 

surface cover type. Conventional classification methods assign each pixel to one class 

(or species). This class can represent water, vegetation, soil, etc. The classification 

methods generate a map showing the species with highest concentration. This map is 

known as the thematic map. A thematic map is useful when the pixels in the image 

represent pure species (i.e. each pixel represents the spectral signature of one species). 

Hence, thematic maps are suitable for imagery data with a small ground sampling 

distance (GSD) such as LANDSAT Thematic Mapper (GSD = 30 m). However, 

thematic maps are not as useful for large GSD imagery such as NOAA'a AVHRR 

(GSD = 1.1 km) because in this type of imagery pixels are usually not pure. 

Therefore, pixels need to be assigned to several classes along with their respective 

concentrations in that pixel's footprint. Spectral unmixing (or mixture modeling) is 

used to assign these classes and concentrations. Spectral unmixing generates a set of 
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maps showing the proportions of all species present in each pixel footprint. These 

maps are called the abundance images. Hence, each abundance image shows the 

concentration of one species in a scene. Therefore, spectral unmixing provides a more 

complete and accurate classification than a thematic map generated by conventional 

classification methods. 

 Spectral unmixing can be used for the compression of multispectral imagery. 

Using spectral unmixing, the user can prioritize the species of interest in the 

compression process. This is done by first applying the spectral unmixing on the 

original images to generate the abundance images. The abundance images 

representing the species of interest are then prioritized by coding them with a 

relatively high bit rate. Other abundance images are coded using a relatively low bit 

rate. At the decoder, the species-prioritized reconstructed multispectral imagery is 

generated via a re-mixing process on the decoded abundance images [Saghri et al. 

2002]. This approach is feasible if the spectral unmixing algorithm results in a small 

(negligible) residual error. 

 

3.4.1 Linear Pixel Unmixing (or Linear Mixture Modeling) 
 
Spectral unmixing is generally performed using a linear mixture modeling approach. 

In linear mixture modeling the spectral signature of each pixel vector is assumed to be 

a linear combination of a limited set of fundamental spectral components known as 

end-members. Hence, spectral unmixing can be formally defined as follows: 

 

eememememefEMz ++++++=+=
ee NNiip ffff. LL2211           (3.28) 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  OOmmrraann,,  MM  GG  HH    ((22000055))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

99 
 

where the symbols are defined as follows: 

 pz  a pixel signature of Nb components 

 EM Nb × Ne matrix of end-members 
eN,,L1em  

if   fractional component of end-member i (i.e. proportion of footprint 

covered by species i) 

 f  vector of fractional components T
21 )(

eNi f,,f,,f,f LL  

 iem   end-member i of Nb components 

 e  residual error vector of Nb components 

 Nb  number of spectral bands 

 eN   number of components, be NN ≤  

 

Provided that the number of end-members is less than or equal to the true spectral 

dimensionality of the scene, the solution via classical least-squares estimation is, 

 

pzEMEMEMf T1T )( −=                (3.29) 

 

Therefore, there are two requirements for linear spectral unmixing: 

• the spectral signature of the end-members needs to be known, and 

• the number of end-members has to be less than or equal to the true spectral 

dimensionality of the scene (i.e. the dimension of the feature space). This is 

known as the condition of identifiability. 

 

The condition of identifiability restricts the application of the linear spectral unmixing 

when applied to multispectral imagery, because 
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• the end-members may not correspond to physically identifiable species on the 

ground, and 

• the number of distinct species in the scene may be more than the true spectral 

dimensionality of the scene. For example, for Landsat TM with seven spectral 

bands (Nb =7), the true spectral dimension is at most five ( eN =5) based on 

principal component analysis. 

   

3.4.2 Selection of the End-Members 
 

There are many methods for end-member selection proposed in the literature 

[Settle and Drake 1993; Antoniades et al. 1995; Hlavka and Spanner 1995; Bateson 

and Curtiss 1996; Maselli 1998; Parra et al. 2000; Saghri et al. 2000]. In the 

following, several representative techniques are presented. 

Mathematical techniques such as Gram-Schmidt orthogonalization and 

principal component analysis can be used to obtain orthogonal end-members which 

can be used to linearly unmix each pixel vector of the scene. There are several 

advantages for the mathematical techniques, namely 

• they result in minimum residual error, and 

• there is no human interaction time. 

 

However, mathematical techniques suffer from the following drawbacks: 

• They may generate end-members with negative components. 

• They may not correspond to physical species in the scene. 
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Manual techniques can also be used to obtain end-members which can be used to 

linearly unmix each pixel vector of the scene. In manual techniques, the user will 

select the end-members directly from the scene, or from a library of end-members. 

The advantages of manual techniques are the disadvantages of mathematical 

techniques and vice versa. 

 Spectral screening is another way to obtain end-members. In this approach, a 

set of unique pixels are selected from the scene. The selection is based on a user-

specified spectral angle threshold. The approach works as follows: 

• The first pixel in the image is assumed to be unique and is added to the set of 

unique pixels. 

• The pixels in the image are then sequentially scanned and each pixel whose 

spectral angle with respect to all the unique pixels in the set exceeds the user-

specified spectral angle threshold, is added to the set of unique pixels. 

  

Clearly, this technique suffers from two major drawbacks: 

• the generated set of unique pixels depends on the order in which the pixels are 

scanned, and 

• the generated set also depends on the spectral angle threshold. 

 

To overcome the condition of identifiability, Maselli [1998] proposed a method of 

dynamic selection of an optimum end-member subset. In this technique, an optimum 

subset of all available end-members is selected for spectral unmixing of each pixel 

vector in the scene. Thus, although every pixel vector will not have a fractional 

component for each end-member, the ensemble of all pixel vectors in the scene will 

collectively have fractional contributions for each end-member. 
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For each pixel vector, a unique subset of the available end-members is selected 

which minimizes the residual error after decomposition of that pixel vector. To 

determine the eN  optimum end-members for pixel vector pz , the pixel vector is 

projected onto all available normalized end-members. The most efficient projection, 

which corresponds to the highest dot product value cmax, indicates the first selected 

end-member emmax. It can be shown that this procedure is equivalent to finding the 

end-member with the smallest spectral angle with respect to pz  [Saghri et al. 2000]. 

The residual pixel signature, 
pzr  = pz  - cmax.emmax is then used to identify the second 

end-member by repeating the projection onto all remaining end-members. The process 

continues up to the identification of a prefixed maximum eN  number of end-members 

from the total of mN  available end-members. 

More recently, Saghri et al. [2000] proposed a method to obtain end-members 

from the scene with relatively small residual errors. In this method, the set of end-

members are chosen from a thematic map resulting from a modified ISODATA. The 

modified ISODATA uses the spectral angle measure instead of the Euclidean distance 

measure to reduce the effect of shadows and sun angle effects. The end-members are 

then set as the centroids of the compact and well-populated clusters. Maselli's 

approach discussed above is then used to find the optimum end-member subset from 

the set of available end-members for each pixel in the scene. Linear spectral unmixing 

is then applied to generate the abundance images. 

 

According to Saghri et al. [2000], the proposed approach has several advantages: 

• the resulting end-members correspond to physically identifiable (and likely 

pure) species on the ground, 
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• the residual error is relatively small, and 

• minimal human interaction time is required. 

 

However, this approach has the drawback that it uses ISODATA which depends on 

initial conditions. 

 

3.5 Conclusions 
 

This chapter presented an overview of a set of problems from the field of pattern 

recognition and image processing. The clustering problem was defined and discussed, 

followed by image segmentation and color image quantization. Finally, spectral 

unmixing was overviewed. From the discussion presented in this chapter it can be 

observed that all these problems are difficult to solve and they need efficient 

optimization methods to solve them. In this thesis, the PSO is used to address these 

difficult problems. In the next chapter, a PSO-based clustering algorithm is proposed 

and compared with other state-of-the-art clustering algorithms.  
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