Transforming Public Space
Re-generating Rissik Station

by Johannes Calven le Roux

Submitted in fulfilment of part of the requirements for the degree Master in Architecture (Professional),
in the Faculty of Engineering, Built Environment and Information Technology, University of Pretoria.

Mentor: Nico Botes
Study leader: Raymond König

November 2008

© University of Pretoria
Table of contents

1. Preface
2. List of figures
3. List of tables & abbreviations

Chapter 1: Introduction
1. Introduction
2. Background
3. Assumptions & Definitions
4. Concept & Study
5. Research design
6. Data analysis

Chapter 2: Micro scale
1. Introduction
2. Founding of Pretoria
3. Pretoria's Development
4. Demographics
5. Economic
6. Socio-Cultural
7. The case issue
8. Architectural context

Chapter 3: Macro scale
1. Historical context
2. Beginning of suburb
3. Road networks and transportation
4. Historical surveys
5. Spatial analyses
6. Extended map
7. Extended Masterplan Core Urban Development Framework Group framework (START)

Chapter 4: Micro scale
1. Site definition
2. Historical description
3. Heritage value
4. Current planning process
5. Current zoning
6. Alteration of site value
7. Conceptualization of site
8. Proposals
9. Legal requirements
10. Site analysis
11. Urban analysis and proposal
12. Stewardship
13. Land-use plan
14. Building assessment

Chapter 5: Railways
1. Development pattern development
2. South African railway industry
3. Railway station area development

Chapter 6: Design philosophy
1. Design philosophy: the city and space
2. Design approach: capita concept

Chapter 7: Project studies
1. Functional procedure
2. WOF structure
3. Theological procedures
4. Afrikaans Museum
5. 1897 City Museum
6. National Library
7. Constitution Court

Chapter 8: Design development
1. Design philosophy
2. Design intervention
3. General 3 time context
4. General 3 time & space
5. Conceptual model
6. Conceptual timeline

Chapter 9: Technical resolution
1. Conceptual study
2. Conceptualisation
3. Investigation
4. Existing & new structures
5. Public areas
6. Concept
7. Existing programme
8. Structural options
9. Stewardship activities
10. Drawings
List of figures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.01</td>
<td>Overview of historical area around Hatfield</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.02</td>
<td>Topography of Hatfield</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.03</td>
<td>Old Town Hall and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.04</td>
<td>New Town Hall and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.05</td>
<td>The Green and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.06</td>
<td>The Station and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.07</td>
<td>The Park and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.08</td>
<td>The Cemetery and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.09</td>
<td>The Hospital and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.10</td>
<td>The University and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.11</td>
<td>The Shopping Centre and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.12</td>
<td>The Residential Areas and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.13</td>
<td>The Industrial Areas and its surroundings</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>1.14</td>
<td>The Agricultural Areas and its surroundings</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 2: Macro scale

<table>
<thead>
<tr>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Map of Hatfield</td>
<td>21</td>
</tr>
<tr>
<td>2.01</td>
<td>Map showing Pedestrian path</td>
</tr>
</tbody>
</table>

Chapter 3: Micro scale

<table>
<thead>
<tr>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01 Pedestrian Map of Hatfield</td>
<td>22</td>
</tr>
<tr>
<td>3.02</td>
<td>Map showing Pedestrian path</td>
</tr>
<tr>
<td>3.03</td>
<td>Map showing Bus Stop locations</td>
</tr>
<tr>
<td>3.04</td>
<td>Map showing School and University locations</td>
</tr>
<tr>
<td>3.05</td>
<td>Map showing Hospital and Medical Centre locations</td>
</tr>
<tr>
<td>3.06</td>
<td>Map showing Shopping Centre locations</td>
</tr>
<tr>
<td>3.07</td>
<td>Map showing Park and Recreation locations</td>
</tr>
<tr>
<td>3.08</td>
<td>Map showing Wine and Drinking locations</td>
</tr>
<tr>
<td>3.09</td>
<td>Map showing Sporting facilities and Recreation locations</td>
</tr>
<tr>
<td>3.10</td>
<td>Map showing Public Transport locations</td>
</tr>
<tr>
<td>3.11</td>
<td>Map showing Historical areas and landmarks</td>
</tr>
<tr>
<td>3.12</td>
<td>Map showing Tourist attractions and landmarks</td>
</tr>
<tr>
<td>3.13</td>
<td>Map showing Land use and land use planning</td>
</tr>
<tr>
<td>3.14</td>
<td>Map showing Urban planning and development</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Adaptive reuse</td>
<td>Auditor (1933-41) defined adaptive reuse as the principles through which architectural schools have been designed. This principle means that buildings are designed to some degree in a way that is not contemporary, but rather in a way that is traditional or historical.</td>
</tr>
<tr>
<td>Anglo-Boer War</td>
<td>The war fought between the two rival Republics of ZAR (Orange Free State) and Transvaal, 1880-1881, and again 1899-1902. The war ended with the signing of the Treaty of Vereeniging in 1902 and the accession of the Transvaal to the Union of South Africa.</td>
</tr>
<tr>
<td>NHRA</td>
<td>National Heritage Resources Act (No. 25 of 1999).</td>
</tr>
<tr>
<td>NZASM</td>
<td>National Heritage Amendment (South Africa) for Preservation, conservation, and management of the built environment. The aim of the ZAR was to ensure that the interviewing process would be carried out by a representative body of local and national organizations.</td>
</tr>
<tr>
<td>Preserve / Preservation</td>
<td>The objective is to keep the object in its existing state, regardless of whether it is to be restored or preserved. The aim is to keep the object in its existing state, regardless of whether it is to be restored or preserved.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>According to Fellen (1894), the best way to preserve buildings is to improve them in use, and involve restoration work or the introduction of adaptive reuse. The original use is generally the best way to conserve historic buildings. Adaptive reuse is intended to improve the building's original use for current purposes.</td>
</tr>
<tr>
<td>SAHRA</td>
<td>South African Heritage Resources Agency.</td>
</tr>
<tr>
<td>ZAR</td>
<td>Zuid-Afrikaansche Republiek (South African Republic).</td>
</tr>
</tbody>
</table>

The adaptation of the Transvaal Province, including the districts of Tshabane and Tshabane is a notable example. The Province was divided into four smaller provinces after 1994, with the result that the Transvaal was a province ceased to exist.
Introduction

The proposed project aims to transform the selected site and buildings to new use, along with the restoration and reuse of historical buildings. In effect, this amounts to a recycling and improved use of existing resources. For this reason, the contextual precedent was given serious consideration in the design process. Together they are indicative of the extent to which the proposed project and its conceptualization of urban design, public space, and the built environment reflect the values put forward by the design philosophy.

The study was initiated by a matrix investigation of historical sites around Hatfield (Fig. 1.01), analyzing their constraints and opportunities.
Background

The phenomenon of urbanisation in South Africa is a fairly recent occurrence, and has mainly occurred over the past 50 years (Brewer 2000:209). Urbanisation among the black population is even more recent. It is estimated that around 54% of the country's population is urbanised (Republic of South Africa 1996). This number is quickly growing as more people relocate to the cities.

Brewer (2000:209) argues that the unsustainable nature of our cities is clearly demonstrated by the social and environmental consequences that stem from it. One way of bettering the condition lies through a process of urban densification. It should be said that densification in itself is not a sufficient condition for improving the urban context. It has to be used in combination with other positive structural changes.

A combination of forces has resulted in the three spatial characteristics of low density, fragmentation and separation which characterise South African cities. The result is an urban context where separation of land-use, urban elements, and racial and class groups leads to mono-functionality rather than a mix of uses. Traffic congestion is increasingly becoming a daily occurrence. Poverty and inequality are exaggerated even more since it is the poor who are most affected. Life is both inconvenient and expensive for the many who cannot afford to own a car. Public transport is inefficient and often non-existing, and many households are effectively trapped in remote and isolated settings.

Despite large numbers of people spending most of their time in public spaces, the quality of these spaces are almost collectively poor. Coates (1983:32) has described this well when he said that "the overwhelming impression is that when you get there, there's no there, there." Buildings structure in general fail to define, protect or give scale to the public spatial environment.

Research questions

The following research question is posed:

What can be done to improve the urban experience and historical reference at the selected site?

In addition, a number of sub-questions are posed:

a. How can Rissik Station, which is centrally located in terms of the Hatfield CBD, the Galavan station, University of Pretoria and office and diplomatic services in the area, be rehabilitated into a truly responsive public amenity?

b. In what ways can the negative image of the site, when measured against the character of the area, be overcome so it positively contributes to the Hatfield area as a whole?

c. How can the memory of Rissik Station be preserved?

Assumptions and delimitations

a. It is assumed that the area will in future serve a broader user group with multi-cultural properties.

b. It is not assumed that the proposals put forward by the Hatfield Development Framework are applicable.

c. This thesis does not attempt to address urban regeneration in its entirety.

d. Recognizing the nature and degree of the significance of intangible heritage at the Rissik station proved to be difficult.

e. Available information resources were limited to interviews and old photographs.

f. The existing plans of Rissik Station could not be located by many researchers.

Structure of the study

This thesis is structured around a number of chapters. Chapter Two investigates the Macro context of Pretoria.

Hatfield as study area was chosen for its potential and its inadequacies, its physical attributes, historical importance and its critical role in the urban context are discussed in Chapter Three. Chapter Four investigates the selected site on a micro context level. The functioning of the transport locally and internationally is investigated in Chapter Five.

Chapter Six deals with the design philosophy and approach to creating a successful public space, while precedents are critically analysed and alternatives are explored in Chapter Seven. This helps to set up requirements and guidelines for the design intervention. The conclusions drawn from these chapters serve as generators for the functional design process.

In Chapter Eight, design strategies are defined and consequently employed. The progression of the design from the general concept to specific-end product is visually illustrated. The study concludes with the technical intervention contained in Chapter Nine.

Data analysis

Within the scope of this thesis, quantitative data analysis relates to information such as statistics on rented, user numbers and the like. This helps inform the study in a number of ways when the building accommodation schedule and functions are determined. Qualitative data analysis in the thesis relates to the personal interviews that were conducted.
Chapter 2
Macro scale

Introduction

Pretoria is located in the Province of Gauteng. It is one of the three South African capital cities, along with Cape Town and Bloemfontein. Located around 50km north of Johannesburg, the city lies between natural ridges formed by the Magaliesberg range in the north and Sablekop in the south.

Originally, the city was laid out on an orthogonal grid imposed onto its natural surroundings (Fig 2.02). Any symbolic reference to its natural surroundings is suggestive of an interpretation of the genius loci (Hohn 1998:61). This grid form was the work of a Dutch engineer and architect named Sytze Wopke Wierda.

Founding of Pretoria

The city was founded in 1855 by Matthius Wessel Pretorius, who was a leader among the Voortrekkers (Andrews & Ploeger 1989:2). He gave the name Pretoria in honour of his father Andreas Pretorius, who became a hero after the victory at the Battle of Blood River against the Zulus. Pretoria became the capital city of the Zuid-Afrikaansche Republiek (ZAR) on 11 May 1863 (Andrews & Ploeger 1989:6). The ZAR ceased to exist following the Second Anglo-Boer War of 1899-1902, but Pretoria once more played a dominant role in South Africa when it became the country’s administrative capital following the formation of the Union of South Africa in 1910. It is an honour the city retained after the country became a republic in 1961, and which it continues to have to date. Today, the city forms part of the City of Tshwane Metropolitan Municipality that was formed in the year 2000 (Fig 2.01).
Pretoria's development

Since its founding in 1855, Pretoria grew steadily. This growth is illustrated by fig. 2.69.

Demographics

Over one million people live in the city and its surrounding areas. The languages most dominantly spoken include Afrikaans, English, Tswana, Ndebele and Sepedi.

Academic culture

Pretoria is home to a number of prominent academic and research institutions such as the Universities of Pretoria and South Africa (UNISA), the Tshwane University of Technology (TUT), as well as the Counsel for Scientific and Industrial Research (CSIR). This makes Pretoria one of South Africa's leading academic cities.

The name issue

After 1994, the issue of Pretoria's name has been a controversial subject with some voices calling for a change of name while others strongly resist it. The South African Geographical Names Council approved such a change of name proposal on 25 May 2005. However, the matter is still under investigation and awaiting approval from the Minister of Arts and Culture, Plato Jordan. The name Pretoria will be used for the purpose of this thesis.

Architectural context

Pretoria's early architectural character was largely the result of people imported from the Netherlands during the administration of President Paul Kruger. People such as Sytze Wierda, De Zwaan and Soth had a huge influence which can still be seen today around Church Square in Pretoria's CBD (Melling 1990:9).

The more recent architectural style that developed in Pretoria is referred to by Fisher (1996:123) as "The Third Vernacular". It is a style characterised by a regional adaptation of the International Style. The work of Le Corbusier had a major influence, with special reference to his climatic response in the form of the brie peber. Pretoria Regionalism, or the Third Vernacular, is a response to the local climate, materials, economy and cultural expression found in Pretoria. This has resulted in the buildings in Pretoria's inner city falling predominantly in the idiom of Modern Movement architecture. Architects such as Herbert Baker, Gerhard Morey, Gordon Lead, Norman Eaton and Gordon McLoughlin have had a strong influence on the city (Melling 1990:10).
Chapter 3
Meso scale

Hatfield in context

Hatfield is located approximately 3km east from Pretoria’s CBD. Church Street forms the most northern border, and acts as a natural boundary with the residential areas of Colbyn and Remondale. The western boundary is delineated from Athlone Street southwards along Roper Street, separating it from the high density residential areas of Sunnyoaks and Arcadia. Lynwood Road comprises the southern border, while End Street between the University Sports Grounds (LC de Villiers) and the residential area of Hatfield Village demarcates the eastern border.

The area is easily accessible from both the N1 and N4 Highways in the east and links up with Pretorius and Schoemaker Streets. Hatfield is separated into two districts due to a division caused by the railway line running through the area.
Beginnings of Hatfield

Hatfield is situated on a portion of the Farm Kooldooppot no. 299 (23SJR). Lourens Cornelius Breinheit obtained ownership of the farm in 1859. His descendants later in 1885 sold the farm to the Wesleyan Methodist Society, who constructed a hospital on the site during the Anglo-Boer War of 1900-1902 (Laubscher 1992:11). In 1903 the Wesleyan Church sold the grounds to Patrick Duncan who was the then Colonial Secretary of the Transvaal for the purpose of establishing the neighbouring town of Hatfield. As a result, W.R. Lehm was commissioned in 1905 to start measurements of the area and there was decided on a north-south orientation. Hatfield officially became a neighbourhood of Pretoria in 1915 (Andrews & Poeke 1989:94).

The name Hatfield was given in honour of the second Earl of Salisbury, William Wodehouse Palmer, who was appointed as the British Governor of the Transvaal in 1906, and became a High Commissioner in 1909. Hatfield was the name of his property in Hertfordshire, England (Laubscher 1992:3). The name Hatfield has its origins from an Old English heap field, meaning “heather covered field” (City of Tshwane 2008).

Following their occupation of Pretoria on 5 June 1900, the British built several blockhouses in and around Pretoria. Four blockhouses were constructed in Hatfield (Vos Vollenhoven 1995:77). Johnson Redoubt, located on the grounds of the Presidency, is the only remaining one of the four. Fig 3.02 shows three of these blockhouses.

The first church to be constructed was the Presbyterian Church St. Columba in Hills Street. The building dates back to 1903 with later additions to the structure undertaken in 1959 (Laubscher 1992:11). Pretoria East Bowling Club is the oldest sports club in the area and dates back to 1923.

Road linkages and transportation

Routes

A number of through-routes exist in Hatfield, mainly those to the North (Church Street, Pretorius Street and the East (Duncan)). The grounds covered by the University of Pretoria and the four major secondary schools to the west and south thereof form a natural border to the south-western parts.

Transportation

Transportation to and within Hatfield comprise largely of private vehicles and mini-bus taxis. Municipal bus services do serve the area with routes running along Church Street, Pretorius Street, Schoeman Street, parts of Duncan Road, Burnet Street and Lynnwood Road, but it is by no means a preferred mode of transport.

Metrorail also offers passenger railway services along the railway line to Rissik Station, Loftus Station and Hartbeespruit Station. Peak hours for this mode of transportation are mainly during the mornings and afternoons.

Due to the fact that neither trains nor bus services are fully utilised as primary modes of transport to Hatfield, the area currently experiences heavy traffic congestion caused by a dependency on private vehicles and taxis.

In addition, pedestrian and cycling movement is not actively catered for as a mode of movement in the area. The matter may need to be addressed, since many students do cycle between the University and the residence.
Significance of the railway line

The construction of a railway line between Pretoria and Lourenço Marques (today Maputo) in Mozambique was the invention of George P. Moody, a land surveyor, who submitted his idea to the government of the Zuid Afrikaansche Republiek (ZAR) in 1872 (De Jong, Van der Walt & Haydernrich 1898:33). Under Thomas Francois Burgzyn, who was then president and after whom Burgers Park is named, the ZAR granted Moody a concession in 1872 for building a railway line linking the Lebombo mountains on the eastern border with Portuguese East Africa (today Mozambique) with Klipstalpe on the Hlifields near the present town of Ezemvelo. Due to financial constraints coming from Moody’s plans, and the following year in 1874 the concession lapsed without any progress being made to materialise this line (Van Winter 1937:9).

The story of the realisation of the Eastern Line is one of determination and struggle. Financier this railway line proved more difficult what was originally anticipated (Engelbrecht 1867:15). If this wasn’t enough, the ZAR was finally forced into a war with the Pedi of Sekhukhune and finally with Britain during the First Anglo-Boer War (1877-1881) on 12 April 1877 when Sir Theophilus Shapstone annexed the ZAR for Britain (De Jong, Van der Walt & Haydernich 1898:37).

In 1881 the Transvaal Boers regained their independence from Britain. In May 1883 Stephanus Johannes Paulus (Paul) Kruger was elected as president, and became the personification of the ZAR’s drive to independence by establishing a railway link between Pretoria and Lourenço Marques (Engelbrecht 1867:18). The discovery of gold in the Witwatersrand in July 1886 positively enabled the construction of the Eastern Line and many other railway lines in the ZAR (De Jong, Van der Walt & Haydernich 1908:39). On 21 June 1887 the Nederlandse Zuid-Afrikaansche Spoorweg-Maatschappij (NZAAM) was founded in Amsterdam with the objective of developing the railway line to Lourenço Marques (Van Winter 1937:172).

Progress on the Eastern Line came to a halt in 1887 due to a crisis in the gold-mining industry, but by June 1890 things could continue (Van Winter 1937:206). Despite many crises a major achievement occurred on 14 May 1891 when the first locomotive steamed across the Komati Bridge (Engelbrecht 1867:35). On 2 November 1892 the last screw was ceremonially fastened by President Paul Kruger at Brugspout Station. The official opening of the Eastern Line took place on 8 to 10 July 1896 (De Jong, Van der Walt & Haydernich 1898:43).

The completed Eastern Line played a fundamental role in the economic development of the ZAR by providing fast and relatively affordable transportation (Greyling 2000:49). A total number of 5,516 white people were full-time employees of the NZAAM in 1897 with the number of full-time black employees at the same period reaching 7,171 (De Jong, Van der Walt & Haydernich 1898:59). The 1,050,598 passengers who made use of the line in 1896 more than doubled two years later in 1898 to reach 2,283,308.

It wasn’t just while people who made use of this passenger service on the NZAAM Eastern Line. During 1898 more than 64,379 block people made use of the line to leave the ZAR, while 87,799 used it to enter. This is mainly due to an influx of black people into the ZAR from Portuguese East Africa (De Jong, Van der Walt & Haydernich 1898:66). The railways had thus significantly increased the mobility of all people, white as well as black.

Finally, the ZAR’s gold deposits would result in conflict with Britain during the Second Anglo-Boer War (1899-1902). The Eastern Line provided an escape route for President Paul Kruger on 29 May 1900 as he fled to Lourenço Marques (Greyling 2000:14). Boer forces fought two battles along the Eastern Line, on 11-12 June 1900 at Diamond Hill, and on 27 April 1900 at Dalmanutha. Lord Roberts annexed the ZAR for Britain on 1 September 1900 (Greyling 2000:17).

The Eastern Line would also provide an escape route for Sir Winston Churchill. At the time he worked as a war correspondent for the London Morning Post. He was taken captive by Boer forces in May and taken to Pretoria. Churchill, along with three other prisoners, escaped during the night of 12 December 1899 and made their escape along the Eastern Line (Greyling 2000:65).
Hatfield today
Density & land use

Hatfield can be roughly divided into four very diverse areas, each with its own unique density character (Fig. 3.11).

The Hatfield CBD (between Festival and Duncan Streets south of the railway line) has the highest density, owing to the multitude of retail, business and residential functions. Burnet Street is the spine around which this area functions, and houses the Hatfield Square Centre, the Hatfield Plaza Centre, the newly completed City Property’s “The Fields” complex, and a large number of other retail amenities.

Hatfield East (or Hatfield Village) between Duncan Street and the University of Pretoria sports grounds (UC de Villiers). The area is characterised by single residential dwellings, though several medium rise flats have recently been constructed here. Many of the dwellings function as communal housing for university students. The sites along Duncan Street house a number of retail amenities.

The area west of Festival Street is home to a great number of house offices, guesthouses, dwelling houses and a sizeable amount of embassies. It is an area characterised by low densities. Along with Hatfield East, this part of Hatfield presents one of the best development opportunities.

The University of Pretoria dominates the area south of Burnet Street, along with student accommodation, hostels and flats.

Demographics
Students make up the majority of residents as this is the home of the University of Pretoria main campus. Females between the ages of 18 and 35 form the predominant group since central Hatfield is home to the ladies residences. Residence facilities for male students are mainly located along Lynwood Road and therefore outside the boundaries of Hatfield.

Over the last couple of years the number of black students has significantly increased.

Income
Statistically 46% of households in Hatfield are reported to have no annual income. This data is a direct result of the large number of full-time students residing in the area. Around 8.7% of households reported an annual income of up to R44,000 while only 0.3% reported an annual income of R2.6-million and more (City of Tshwane 2020).
Hatfield Metropolitan Core Urban Development Framework

The latest draft Urban Development Framework for Hatfield (August 2007) is a first attempt at creating a holistic and long-term strategic development framework for the area. Three previous frameworks ("Development Guidelines for Easbydye, Kilberry, Eastwood, Ledegan Park, Brynaston, Blackmoor, Collyns, Hatfield, Hillcrest and parts of Arcadia and Sunnyside: Call 26, 1992"; "Hatfield East Spatial Development Framework, 2000" and "Development Framework for the Hatfield Station Functional Area, November 2000") failed to address the contextual needs of the area and did not aspire to make a significant contribution to the development of the public domain or a desired urban character (City of Tshwane Metropolitan Municipality 2007).

The way in which Hatfield is developing demands a renewed interest in the area for two reasons: (a) Hatfield has been identified as one of six Metropolitan Cores in terms of the Tshwane Metropolitan Spatial Development Framework (MSDF). The MSDF contains specific guidelines as to how a Metropolitan Core should evolve; and (b) Hatfield is the location of one of the three Gautrain Stations that is to be constructed in Pretoria.

In addition, several other factors have an effect on the future development of Hatfield:

- The proposed Bus Rapid Transit (BRT) as part of Pretoria's preparations for the 2010 FIFA Soccer World Cup;
- The University of Pretoria which attracts around 30,000 students per year to its main campus in Hatfield;
- A National Sports Node due to the presence of Loftus Versfeld and the LC du Plessis Sports Ground; and
- An intricate network of highways, railways and arterial roads to and through Hatfield has made it one of the most accessible locations in Pretoria.

Hatfield is to be developed as a "Transit Oriented Development" (TOD). This implies the creation of compact, walkable communities centered around high-quality train systems (City of Tshwane Metropolitan Municipality 2007). The following component forms part of a TOD:

- Design with pedestrian as the highest priority;
- The train station as a prominent feature of the town center;
- A regional node containing a mixture of uses in close proximity including office, residential, retail and civic uses;
- High density, high-quality development within a 10-minute walking radius surrounding the train station;
- Collector support transit systems including trams, streetscapes, light rail and busway;
- Designed to include the easy use of bicycles, scooters and walking as daily support transport systems; and
- Reduced and managed parking inside a 10-minute walking radius around the town centre or train station.

According to the latest draft framework, the vision stated for Hatfield is "to become a vibrant, safe, mixed-use, high quality urban area that reassures investor confidence by promoting the development of an attractive, interesting flow of interlinking activities and public spaces that augment the pedestrian and public transport environment" (City of Tshwane Metropolitan Municipality 2007).

This framework thus envisages a more interconnected land-use that contributes to Hatfield's civic identity and sense of place. It therefore follows that the area is thought to evolve into an accessible destination for people to dwell, meet, work, visit, walk and be entertained in (City of Tshwane Metropolitan Municipality 2007).
Group Framework

Social Transition through Activation of Regenerative Techniques (START)

The vision for Hatfield is to see it grow into a bustling, vibrant, destination node in Pretoria. With the new Gautrain station at its heart, Hatfield becomes an area of high accessibility, making it a favourable place to live. The proposal therefore involves crafting strategies to enhance public transportation routes, densely residential backup and commercial activities, and provide high-quality public space as the canvas for social interactions and expression.

The group framework endorses the creation of a pedestrian link from the Gautrain Station to Risik Station, and again from the latter to the University of Pretoria. It envisages the creation of public space and mixed-use activities surrounding this spine that facilitates an urban living environment.

This spine starts at the corner of Hilda and Park Streets, south of the Gautrain site, with a proposed African Diplomatic Facilities. From here it crosses over Hilda Street to facilities aimed at promoting civil participation in the issues concerning the area. North of the railway line the spine is proposed to house the Arts Precinct with a fashion school, design school as well as a visual performance facilities. Finally the spine terminates at the Risik Station Precinct, which is proposed in this thesis (Fig. 3.22 & 3.23).
Chapter 4

Micro scale

Site selection

The selected site on Portions 1, 4 and 6 of ElATIC Hatfield is owned by the South African Rail Contractors’ Corporation (SARCC). The SARCC consists of Metrorail and Intersite; the latter being responsible for managing SARCC buildings and structures (Tauta 2008). Risik Station saw its existence to the NZASM railway line constructed in 1892 as well as the development of the Hatfield suburb in 1905. It carries the name of Johan Rissik who was the surveyor-general at the time and who became the first Administrator of the Transvaal in 1910 (Laubecker 1992:4).

The station is located next to the intersection of Festival and Station Place streets, and to the north of the railway line. It is situated among diplomatic and office parks, and a number of residential houses on the western edge of the bustling Hatfield CBD, and north from the University of Pretoria.

Festival Street bridge was constructed around 1996 to connect the areas on both sides of the railway line. The construction of this bridge has stimulated economic development of this area in Hatfield, albeit at a much slower tempo than the bustling Hatfield CBD just across Festival Street.

Currently, the area has a calm and secluded feel to it, which is broken during peak traffic hours.
Historical description

Rissik Station already existed by 1910. The present station complex replaced the original design during 1948-1950, when the railway line between Pretoria Main Station and Richard Street was lowered and raised to eliminate level crossings (Kiel & Miller 2007:5). The construction of the new station complex entailed massive earthworks. In contrast to the other halts along this section of the line, Rissik was a proper station with ticket office, saloons and other facilities. It is much larger than the other halts due to its unique design with a siding, two overhead footbridges, and two elevator shafts providing access to the two platforms. Rissik served a unique purpose, since it was the station from where government documents would annually be transported between Pretoria and Parliament (Cape Town) via the so-called "White Train" (Kiel & Miller 2007:5; Bakker 2006).

Heritage value

Following his investigation of heritage and cultural sites in Hatfield, Van der Waal (1990) identified Rissik Station as an "exceptional cultural-historical resource worth preserving". More recently, a Heritage Impact Assessment (HIA) undertaken by Bombea Civil Joint Venture - Gautrain Project, had heritage experts coming to the same conclusion (De Jong 2006; Kiel & Miller 2007). These experts found Rissik Station to be the only of its kind in the country and that it has intangible heritage value that is worth conserving. The effects that the Gautrain project has on the station building are discussed in the next section.

The station design reflects the "two stream effect" of social segregation during the apartheid era. After 1948 any such discriminatory signage was removed (Kiel & Miller 2007:9).

<table>
<thead>
<tr>
<th>No</th>
<th>Criteria</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Importance in the community or pattern of railway</td>
<td>Medium</td>
</tr>
<tr>
<td>2</td>
<td>Possession of uncommon, rare or endangered aspects of natural or cultural heritage</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Potential to yield information to understand the natural or cultural heritage</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Importance in demonstrating the principal characteristics of a particular race of South Africans natural or cultural places or objects</td>
<td>Medium</td>
</tr>
<tr>
<td>5</td>
<td>Importance in fulfilling particular aesthetic characteristics valued by a community or cultural group</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>Importance in demonstrating a high degree of innovation or technical achievement at a particular period</td>
<td>Medium</td>
</tr>
<tr>
<td>7</td>
<td>Strong special association with a particular community or cultural group for social, cultural or spiritual reasons</td>
<td>Medium</td>
</tr>
<tr>
<td>8</td>
<td>Strong special association with the life and work of a person or group of organisms in history</td>
<td>Medium</td>
</tr>
<tr>
<td>9</td>
<td>History of slavery/slavery</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>Economic importance</td>
<td>High</td>
</tr>
</tbody>
</table>

Impact of the Gaufrain project

The Gautrain will run past Rissik on the southern track. Currently, this is only a single track line and has to be upgraded to include a second line for the function of the Gautrain. Construction of this second line is currently under way. However, this second line presented challenges to Bombea Civil as it has to run between the Festival Street bridge footing and the footings of the parking garage in front of Damelin College. This translates into the demolition of the two overhead footbridges, the southern elevator shaft, and the siding at Rissik Station. The impact is thus high and negative as is illustrated by fig. 4.03 below.

Current conservation status

The station dates back to the late 1940s and is only now approaching the 60-year mark. As of date, strictly speaking, it does not enjoy general protection under the provision of the NHI Act (25 of 1999). However, since it is the only station of its kind in South Africa and its intangible heritage significance, it enjoys a high conservation status and importance (Kiel & Miller 2007:5).

Legal requirements

According to Section 38 of the NHI Act (25 of 1999) the following legal requirements affect the design proposal:

- Provide site interpretation at Rissik Station;
- Preserve the memory of any structural alterations through appropriate design;
- Preserve memory of the southern elevator shaft through appropriate design;
- Preserve memory of the two footbridges through appropriate design.
Site analysis

Accessibility

The starting point was an investigation of the existing routes, links and gateways into Hatfield. An analysis is made of the links between the selected site, Hatfield and the city of Pretoria as a whole. This gives a general indication of the accessibility of the selected site.

Primary uses

Primary uses are those use types which in themselves "bring people to a specific place because they are anchored" (Jacob 1972:173). Such use types include offices, factories, dwellings, places of entertainment, education and recreation.

Fig. 4.05 explores the relative importance and location of primary uses surrounding Risik Station. The distribution of these usage types have a direct influence on determining the relative importance of the station as point of access to and from these. It also give and idea of the type of users most likely to utilise the proposed building.

Use distribution

An analysis of the distribution of various use types in relation to Risik Station, gives an indication of diversity and development trends in the area. This analysis reveals what use types is most likely to succeed or enhance the use of the selected site, and which should therefore be provided within the scope of the proposed project.

Node-Place

Fig. 4.07 explores the concept (which will be discussed in the next chapter) of railway stations functioning as both a node and a place within their context. This analysis investigates Risik Station’s potential to function as node-place. From this it becomes clear that the station has a potentially strong node-place function as it is located in close proximity to commercial, entertainment, residential, office and educational facilities.

It therefore becomes clear that Risik Station offers development opportunities that could help to enhance the user’s experience of his/her environment.
Movement patterns

Vehicular and pedestrian movement patterns around Risik Station were analysed as is shown by Fig. 4.06, with the majority of movement intuitively along Festielt Street. Station Place Street shows more subdued patterns of movement, which mainly coincide with peak traffic hours.

The figure also shows the current bus and taxi stop next to Risik Station, as well as the parking area to the north. The existence of pedestrian movement and transport allows for informal trading to occur.

Potential intervention areas

Fig. 4.09 investigates the areas suitable for potential intervention on the selected site. The area marked A was found to have the best potential and most suited.

User distribution

In Fig. 4.10 the distribution of users from Risik Station to its immediate surrounding area is analysed. From this it becomes clear that the station plays an important role in commuting people to work in a great variety of settings.
Urban analysis and proposal

In an attempt to address the proposals put forward by the Group Framework and to improve the urban experience at Risik Station, the following urban development is proposed. The issues investigated to achieve this are discussed below.

Permeability

The key question here was where people can or cannot go. Bentley (1985:10) states that only accessible places can offer choice to people. Permeability, therefore, concerns the number of alternative ways through an environment.

In Fig. 4.11 the site’s existing connections from the city of Pretoria as a whole are analysed. These are the main streets that carry through traffic, linking the various parts of Pretoria.

Next, the routes connecting the selected site at Risik Station with the main routes are identified. From this, it is apparent that Festival Street plays an important role in connecting Risik Station with the rest of Pretoria (Fig. 4.12).

To achieve permeability at the local scale, it is proposed that a new street be made and that the ou de sac at Park Street be opened.

Variety

According to Bentley (1985:10) the second key quality to have in order to obtain a “responsive environment” is that of variety in uses. This is important in offering the user a choice of experiences.

To achieve this, the levels of demand for different types of uses on the site were analysed. This was done by an investigation of the concentration of pedestrian flows (Fig. 4.13), as this factor directly influences the economic and functional feasibility of the proposed project.

Magnets in the form of the Gaskrins Station, University of Pretoria, Hatfield CBD, and the schools, stimulate a flow of pedestrian to and from them. Risik Station’s central location between these magnets offers opportunities for commercial/office functions. In addition, Risik Station contributes to the pedestrian flow in the area by bringing people from all over Pretoria via the so-called Ring-rail system.

Legibility

This aspect relates to how easily users can understand the area layout. In Fig. 4.14 the selected site is analysed in terms of certain physical features that play a key role in how people make sense of their surroundings. Kevin Lynch (1960) suggests that these features can be grouped into five key elements namely: nodes, edges, paths, districts and landmarks.
Variety of uses

Some uses are incompatible because of functional factors like noise or traffic generation. These cannot be located close together. The first step, therefore, was to note the existing uses on and around the selected site (fig. 4.10), in order to decide on appropriate uses for the proposed building. These uses will have to function in conjunction with the station's existing use.

The second step was to locate new uses compatible with the existing (fig. 4.16). From this it becomes clear that the proposed buildings have the potential to house office and retail facilities.

It is proposed that the same process be followed in determining new uses for the entire proposed urban development scheme.
Streetscapes

Festival Street:

Festival Street is a busy two-way street and one of the ways Hatfield connects with Church, Pretorius and Schoeman Streets. The street is less active than Burnet Street.

The sidewalks are pedestrian unfriendly and uncomfortable. With the exception of the Mozambique Café, all other buildings lining the street have inactive street frontages as they are fenced off with palisades and other forms of fencing. There are little to no trees lining the street to provide shade for any pedestrian activity.

Currently, the street is dominated by office activities. Office blocks offer no street activity. Visitors to these offices habitually park their motor vehicles on the road side.

Station Plaza Street:

This street is a relatively quiet two-way street. It is the extension of Park Street running through Arcadia and past Pretoria Girls’ High School. But a cul-de-sac at the intersection with Hill Street cuts it off. Apart from busses transporting people to Rissik Station early on week day mornings, only sporadic vehicular traffic makes use of it. There are plans to re-open the cul-de-sac to the rest of Park Street.

The sidewalks are wide and offer a tranquil walk, but are unfriendly in the way building frontages are inactive and fenced off. House office and residential use dominate the street.

Jacaranda trees (Jacaranda mimosifolia) line the street. They provide an "avenue-like" quality to the street and help to extend a colonnade effect to the street.
Serial vision

The eight sequential images try to capture the sense of discovery and drama that is experienced in moving towards and through Risik Station. The two elevator shafts continually shift as one moves past, and create an interplay of new alignments and groupings.

There are lines of advantage which can be colonised, such as the parapet of the footbridges or staircases (fig 4.27). It allows for an immediacy of views and position.

Dramatic level changes allows for intimacy, enclosure, evaporation and exposure.

Assessment of existing structure

The fact that two elevator towers were constructed at Risik Station give the impression that the facilities were designed to handle large volumes of documents to and from the platforms. This serves to emphasise the importance Risik Station had in previous times.

An investigation by Kösel & Miller (2007:10) has found that many structural elements at the station show signs of stress. There is also noticeable problems with water penetration (fig 4.36).

Many alterations have presumably been made to the station building as is evident from the images.
SWOT analysis

Strengths:
• Tree-lined walkways;
• Presence of buildings with heritage and cultural value;
• Zones of tranquillity and energy;
• Few derelict areas;
• Existing infrastructure moderate to good;
• Roads, electricity, water, sewage, waste and waste disposal services;
• Formal and informal economic activity;
• Mixture of office, retail, residential, and institutional activities;
• Good volumes of pedestrian movement along Festival and Park Streets;
• Presence of taxi and bus interchanges;
• High volumes of taxi, bus and private vehicles along Festival Street.

Weaknesses:
• Presence of derelict spaces, especially along railway lines;
• Existing open green space is under-utilised and becomes unsafe at night;
• Irregular build-to-line along Festival and Park Streets;
• Restricted activities after 7pm due to closure of other activities in the area;
• Limited permeability as a direct result of the "gated building(s);"
• Weakly defined public space; and
• Risik Station doesn’t function as a place-node in its area, due to the fast moving traffic along Festival Street.

Opportunities:
• Convert the open and green space into well-defined public space;
• Integration of formal and informal economic activity;
• Diversity of spaces and activities;
• Increase pedestrian movement along walkways;
• Use of urban design principles to transform Risik Station into a place-node;
• Densification in land-use of the proposed site;
• Increased economic activity due to increase of taxi, bus and tram uses;
• Attractiveness and ease of public transportation; and
• Development of intermodal facilities at Risik Station.

Threats:
• Garbage piles-up on derelict site across Festival Street from station;
• Lock of public spaces;
• General security is low with little police presence;
• Specific market conditions due to low-income clientele;
• Low maintenance of infrastructure and services;
• Demolition of many significant features of the station building as a result of the Gautrain project; and
• Tension between formal and informal traders.

Client body and user group

According to Metrorail (2008) an estimated average 1.7 million paying customers make use of their services on a weekly basis. Around 70% of these commuters are black people with a monthly household income of up to R2499. The majority (83%) of commuters are between the ages of 24 and 40 years, with 84% being male. According to a 2006 estimate, Metrorail held a 14.7% share in the South African public transport industry.

Recently, the South African Government committed itself to upgrading the commuter railway infrastructure. Mr. Trevor Manuel (current Minister of Finance), announced a R1.6 billion capital investment in this transport service for the current 2008-2009 financial year. According to Prestly (2006) capital subsidies for rail transport increased from R665 million in 2004 to R2 billion in 2006-2009.

This proposed project envisions that railway transport will increase as the preferred form of public transport, given the recent sharp increase in petrol prices. It is envisioned that more age and race groups will make use of this form of public transportation. Due to the presence of the University of Pretoria, a large portion of the user group is envisioned to be consisting of students as well as young professionals.

The property is currently owned by the South African Rail Commuters Corporation (SARCC). Interests manage the facilities as the property development and investment wing of the SARCC.

Conclusion

Following the investigation in this chapter it becomes clear that the existing Risik Station building does not adequately address the future needs as is envisioned by the two presented frameworks. A balance has to be achieved between the station’s heritage and the demands and needs of the urban context. This requires a transformation of the existing station facilities to address the envisioned future demands and needs.
Chapter 5
Railways

International redeployment of railways

Internationally, there seems to be renewed interest in the redeployment of railway stations (Bertolini & Spilt 1998:5). There are a variety of factors driving this initiative, such as the promotion of sustainable transport and land use, the stimulation of local economies, technological and institutional change, the business cycle and the spatial impact of globalisation (Bertolini & Spilt 1998:3). A successful redeployment of such railway areas can prove vital for the attractiveness of the city and the region.

Of the many changes that are accompanying the roles of public and private parties involved in the transport industry, the most striking influence on railway companies is the idea captured by privatisation (Bertolini & Spilt 1998:3). This has serious implications for the industry as a whole. However, despite what may be said about privatisation, it is an open-ended rather than a fixed state. In addition, the term has different meanings in different countries.

Railway stations play an important part in a larger European approach to urban planning. Internal borders have virtually come to an end with the establishment of the European Union (EU), and capital flow is increasingly becoming footloose. Accordingly, metropolitan areas will do their utmost to promote themselves. The redeployment of prime inner-city areas is an important element in this campaign. Along with waterfronts, railway station areas can be considered one of the most important assets in this endeavour (Bertolini & Spilt 1998:6).

In Japan’s major metropolitan areas, interchange stations (where passengers can transfer between commuter trains and local transport) have been the focus of intense property development, mostly promoted by private railway companies (Bertolini & Spilt 1998:43). Three factors contribute to this phenomenon namely: (1) the much more central role of the train in mobility patterns in Japan; (2) the large share of railway travel in passenger transport in Japan is possible only because of the much higher net population density; and (3) institutional differences of the roles between more conventional national public railway companies and the private railway conglomerates (Bertolini & Spilt 1998: 44-45).
South African railway industry

Several characteristics of the railway industry in South Africa have previously been mentioned (p.27). In addition, it can be noticed that South Africa currently has around 2,250km of open railway track (Table 2009). Around 218 train sets and 3,290 coaches are in service, and operated 511 million passenger trips during the 2005/2006 period. There are 471 operating railway stations in the country.

Gautrain Rapid Rail Link

First announced in 2000, the Gautrain Rapid Rail Link is a proposed high-speed rail network for the Gauteng Province. The rail network is aimed at connecting Pretoria with Johannesburg and then with the OR Tambo International Airport. The three major stations will be located in Pretoria, Johannesburg, and the airport. The eventual network would link between these. Gautrain Head is one of six stations on the network. The station is a terminal station at this point in the Pretoria line terminates in Pretoria. The project has the objective of boosting economic growth in the province and is expected to generate around 148,000 jobs (ProjectPro 2006). In addition, the project is aimed at encouraging public transport use and to alleviate congestion experienced on the N1 highway between Pretoria and Johannesburg. An estimated 300,000 vehicles currently commute between these two cities (ProjectPro 2009).

Construction on the Gautrain line between Sandton and OR Tambo International Airport began in 2007, and is scheduled to be completed in time for the 2010 FIFA Soccer World Cup. The project was originally estimated to cost around R7 billion (ProjectPro 2008).

Access to the Gautrain station:

Potential Gautrain passengers are anticipated to walk, cycle, or to make use of public transport, rather than to private transport to arrive at, and depart from the station. In this sense, the existing Metrorail services will play an integral part as a form of public transport which links the Gautrain station with its immediate surroundings and areas as far as Soweto and Randburg (Groenewald 2008).

Construction on the Gautrain head is currently underway.

Vision for the Gautrain Station:

The Gautrain Gautrain station complex is situated within the Gautrain’s CBD between Hills and Durban Streets. The actual station building is located next to Groove Street and on top of the railway line. It thus sits between the Metrorail stations of Hill and Hartbeespoort. Facilities provided for at the Gautrain Gautrain Station include a multi-storey parking garage, drop-off stops, as well as facilities for cyclists. Public transport in the form of buses and taxis is also planned to stop at the station and provide users with access to various locations within easy reach of the Gautrain station.

The Gautrain station provides direct access to businesses and residential developments in the surrounding area. One major consideration with the project is considered to be “safe, efficient and pleasant pedestrian links” (ProjectPro 2006). This in effect helps to strengthen the already existing pedestrian flow along the railway line that runs between Rissik and Hartbeespoort Metro stations. Gautrain Gautrain station’s access to its immediate surroundings will be further enhanced with the extension of Groove Street across the railway line (ProjectPro 2006).

Railway station redevlopment

Railway stations have the unique characteristic that they function both as a point of access to trains and, increasingly, to other forms of transport. As such, they act as gateway points where people go to access travel and key activities. Facilitated by a reconfigured public transport system, such stations can be redeveloped to efficiently accommodate a variety of activities in a more sustainable way. In terms of urban and regional development, railway stations have been identified as key nodes around which to build new mixed-use developments.

The unique challenge of the development of node-places in the rail network is the need to deal with many of the factors that have created mixed-use developments in other contexts, simultaneously, with both transport and urban development issues (Bell & Spil 1998:17). This entails understanding how different modes of transport work together, as well as the need to develop public transport and urban development strategies that work together.

The statistics for railway infrastructure in Europe at the end of the twentieth century is particularly encouraging (Corbett 1993; Ball 1994). Market share have dropped in a number of sub-sectors, with the exception of high-speed and commuter services. Whereas in 1990 trains accounted for 10.4% of commuter market share, the figure was down to 4.9% by 1999 that figure was down to 6.0%.

Japan is the industrialised country where train has the largest market share by far. There, about 150 railways carry 19 billion passenger each year. In comparison, passenger transport by rail has virtually disappeared from the USA, with the partial exception of the North-East Corridor.

Capitlising on strengths

Frequently cited strengths of the rail are that it is an environment-friendly, it is safe, and reliable as a mode of transport. Its frequent cited weaknesses are its lack of flexibility, generally non-reactive and cumbersome response times to exceptions (e.g. poor performance and image).

From an environmental point of view, the advantages of train transport seem significant. While the visual and acoustic impacts of road and rail transport are roughly comparable, rail scores much better on land uplift, chemical pollution, energy consumption, and car parking. Congestion is another area of advantage where a shift towards the train would be welcome. The costs of road congestion are usually enormous and all too often under-estimated in transport planning, then traffic might be more pleasant and the street environs more pleasant, and at least hold to its share of the market.

The essential condition for growth of railway transport is integration with other forms of transport. From a qualitative point of view, a railway station’s essential feature thus appears to be its proximity to an urban area or network of urban areas, with seamless interchange, rather than as a “place where trains arrive and depart”. The railway station is not a endpoint, but a nodal point on an urban exchange network. The railway station has to offer full connectivity both to other transport modes and to the urban community. Integration involves many different actors in a unified terminal management.

Outside Europe, the integration of railway and other operations in Japan could provide useful for thought. In most cases the required institutional change to be a matter of (re)designing the existing elements, and of designing the new elements that will make a whole systems approach to designing something from scratch. In the process, one needs to shift one’s view of the place to be, not just a place to pass through.

Conclusion

An integrated framework of analysis would have to incorporate both node and place variables, but also process and context factors. In this regard, the urban context plays a dominant role.
Design philosophy: space and the city

Cities, on their own and in association to other cities, are spatial phenomena, but they are more than their mere spatial reality. Increasingly the spaces through which we live our lives, and through which the world (and cities) come to be organised are understood as being social products (Lefebvre 1991) formed out of the relations which exist between people, agencies, and institutions. One way of understanding cities, then, might be as particular patterns of such connections set within wider patterns of the relations with other cities and with the rest of the world (Massey 1995:15).

Three elements outline what can be meant by thinking the city spatially. These are discussed below.

The city as specifically spatial

Interspaces is one of the outstanding features that characterises cities. This characteristic can be witnessed in the way in which cities congregate and merge people and activities. Mumford (1937:185) coined the term “geographical pieces” to try to capture this.

For Mumford, one of the best definitions of the city had been given by John Stow. For both John Stow and Lewis Mumford:

“Men are congregated into cities and commonwealths for honesty and dignity’s sake, these being the commodities that do come by cities, communities and corporations. First, men by this nearness of conversation are withdrawn from barbarous folly and force, to certain mildness of manners, and to humanity and justice...Good behavoir is yet called urbanized because it is rather found in cities than elsewhere” (John Stow; cited by Mumford 1937:184).

Stow’s definition conveys images of privileged merchants and aristocratic Englishmen, but Mumford is especially interested in what Stow has to say about the character of social relations within the city. In particular, Mumford (following Stow) is suggesting that forms of social interaction occur in cities that are not found anywhere else.

The city can thus be likened to the human body that lives on its different functions such as manufacturing and assembling, warehousing and storage, sheltering and domestic bliss, and personly desires and political intrigue. These functions have both particular physical locations, and also sets of networks which sustain them.

However, what Mumford is suggesting is characteristic of urban life goes even further. A mere simplistic view of the city does not do justice to its vibrancy and creativity.
What both Pile (1999) and Mumford (1937) stresses is the sheer quantity of possible social interactions in the city, and that the city has the distinctive nature of bringing people together.

To capture even more of this notion of intimacy, one must consider the intensity of built spaces, and the city as capitol and transformer of nature. Massey (1999:159) argues that, what is most important is that this intimacy is something which "emerges as an effect of all those constellations and interfections".

Allen (1990:09) states that this intensity can be felt in what is termed "the expressive side to city life". Jane Jacobs (1972) in The Death and Life of Great American Cities describes this in observing street life in New York in the 1950s. She likes the movement and the people and the "puristic" that individual denizens with their own characters and their own communities and across one another to compose a daily dance of the street. City intimacy is therefore the result of the gathering of large numbers of people and from this emerges the social interactions within the city.

Therefore, the city can at first be conceptualised as a specific spatial phenomenon, as a region of particularly dense networks of interaction, from which emerge intense effects, set within areas where interactions are sparse and spaced out.

Henri Lefebvre (1991:530) draws attention to the fact that the experience of the city is more than our mere perception. It is also, as Jane Jacobs (1972) notes, about what distracts or assures us as through its familiar and not so familiar sounds and smells.

According to Allen (1990:09) the distinctive feel and presence of the city is the result of this close proximity of many others in as close and intimate and across one another to compose a daily dance of the street. City intimacy is therefore the result of the gathering of large numbers of people and from this emerges the social interactions within the city.

As one of the earliest modern thinkers George Simmel (1908) was one of the first to consider these effects. He argues that the effect of concentrated spatial closeness was a necessary social distancing. Others followed him in this. Louis Wirth (1908), for example, explores how people's behaviour might be affected by the intense spatial and social proximities of the city. He argues that the close physical contact of numerous individuals necessarily produces a shift. People tend to acquire and develop sensitivity to a world of artefacts and become progressively further removed from the world of nature. This kind of social detachment is also described by Sennett (1994:18) in his account of single, enclosed spaces and the breaking along the freeways of urban America.

From these accounts it becomes clear, neither explicitly nor explicitly, that spatial configurations produce affects. This way in which (and more specifically, the city is organized spatially) has an impact on how that society/city works. The city itself is not a flat space, and yet, cities in the specific form of city being can indeed have effects. It is in this sense that Simmel, Wirth and Sennett seek to capture it.

Massey argues that the impact of the city can be detected at levels beyond that of the social interaction of individuals. These are effects of spatial interconnections and flows. What Massey (1999:110) calls "geographical justifications". These new "geographical justifications" produced new relations, too, do interconnections over long distances. The networks of communication, power and influence which connect cities together have their effects on each of them. Interconnections of this sort somewhat contribute to that which make cities the cosmopolitan places they so often are. Detachment can have equally major repercussions. Castells (1996) writes of the inequalities which can be entailed in disconnection, and of the potential social consequences. Detached cities may struggle to find a new role. Mumford (1937: 184) laments on the potential outcomes of the urban space in question.

The openness of the outcome

It is a mistake to think that a particular spatial form necessarily gives rise to a particular social effect. It is not a simple cause-and-effect relation. In contrast to Simmel's (1908) statement on the impact of city life, Jane Jacobs (1972) describes a much more active mixing and interaction.

It could be, perhaps, that both these things do co-exist at the same time. Wirth (1908) looks to the sheer size of the urban space. The opportunity for people to form new kinds of connection with one another. There are also not only on kith and kin, neighbourhoods, communal sentiments, tradition, and "folk"

Richard Sennett (1994) account of the disconnected drivers of the motor-centred urban community was a lament, but also something he believed could be changed. Both Pile (1999) and Massey (1999) argue that spatial proximity is not enough to guarantee any particular outcome. For proximity to be turned into a city, something else needs to happen.

The article entitled A decaying life by Ismail Sagdeli (1997:25) presents a clear case of the openness of such outcomes. The spatial justifications which are Third World cities do not have inevitable outcomes. What can be made of them will depend on resources, on what happens to levels of inequality, and on political commitment.

Conclusion

The relation between space and the city is an open one. As it depends on human action. Cities can embody the forms particular spatial forms, but what is made of them, and what can be made of them, and indeed how they can be altered, is up to human actors, ingenuity, and human political will.
Design approach: adaptive reuse

According to Fielden (1994:4) an historic building is "one that gives us a sense of wonder and makes us want to know more about the people and culture that produced it". A historical building is a symbol of our cultural identity and continuity and as such it has an emotional impact on us. It is a document of our history and a source of information. According to Strike (1994b:18) historical buildings are "evidence which can be experienced by each generation". It provides answers to the "what, why and how" questions of those who come after us.

Causes of decay

Several sources are responsible for the decay of historic buildings and can be grouped in one of two overarching categories, namely natural disasters (earthquakes, volcanic eruptions, hurricanes, floods, landslides, fires caused by lightning) or human factors (generally the by-products of industrial productivity) (Fielden 1994:4).

According to Cumming (1986:115) one of the human factors causing historic buildings to become redundant is that the original use for which it was constructed has ceased to exist. A second reason is that it was superseded by new processes for which the old building is unsuitable. Furthermore, the use could have expanded to such an extent that the old building is no longer large enough to house it. Finally, decay could be the result of a general economic decline in the area, as is often the case with railroad services due to a decline in the transport system.

It is this decline in passenger railroad services on all but a few rail corridors that requires creative new uses for the stations. Adaptive reuse of railroad stations can be economically feasible and also assists in taking major action to preserve and rehabilitate historic or architecturally significant structures and cultural resources (Webber 1978c:11). Many railroad stations have in the past been converted in this way while still retaining their original function, although usually in a reduced manner. Other times adaptive reuse results in an introduction in the passenger service of railroad systems (Webber 1978c:22).

What is conservation?

Fielden (1994:3) defines conservation as "the action taken to prevent decay. It embraces all acts that prolong the life of our cultural and natural heritage, the object being to present to those who use and look at historic buildings with wonder the artistic and human messages that such buildings possess". When it comes to the conservation of historic buildings, the slogan of "less is more" rings true.

On the other hand, Austin (1984-9) prefers to speak of "preservation" rather than "conservation". According to Austin (1984-9) preservation is "the act of retaining all or any part of the structure, even if it is moved from its original location", restoration on the other hand is "any treatment given to a building after the decision has been made to preserve it". Such acts of restoration include rehabilitation, remodeling, repair, adaptive reuse and so forth.

Rehabilitation of historic buildings: adaptive reuse

Often it is necessary to find an appropriate use in order to prevent a building's decay or destruction (Cumming 1988:17). Problems time and again arise with the disappearance of a buildings original use. Providing a new use could ensure the survival of such a building.

Austin (1984:7) describes adaptive reuses as the principles through which "structurally sound older buildings are developed for economically viable new uses". This simply means that buildings are "modified to some degree to meet contemporary demand" (Reynolds 1982:45).

Adaptive reuse of historic buildings was a common pattern until the start of the Industrial Revolution by the mid-19th century, and spread all over the world during the 20th century. Only since then has it become more usual to demolish the old and build new buildings (Cattacuzio 1989).

There are social, cultural and economic advantages of adaptive reuse (Fielden 1994-26):

- Social: in that people and towns keep their identity
- Cultural: in that artistic, architectural, archaeological and documentary values can be preserved both for their intrinsic value and their contribution to the identity of the town; and
- Economic: in that existing capital is used, energy is saved, demolition costs are avoided and the existing infrastructure of roads and services is utilized.

In addition, it causes far less human upheaval, political friction and physical delay, so that the total budget is considered, in most cases, money is saved.

Conclusion

The need to transform and re-generate Railak Station has previously been identified in chapter 4. An approach of adaptive reuse provides some answers as to how the station can be re-generated while remaining sensitive to its history. From chapter 4 it is also clear that not all of the existing structures can be preserved as is advocated by proponents like Fielden and Austin. There has to be a balance between preserving the existing station and addressing future development needs. For this reason, selected structural elements will be retained, while others will be demolished in an attempt to address such needs. This will become clearer in chapters eight and nine.
Chapter 7

Precedent studies

FUNCTIONAL PRECEDE...
TGV station at Valence

Valence, France (1994)

Jean-Marie Chifflet & Etienne Ythier (ARIPEP Architects)

Gare de Valence TGV is located in eastern Valence, about ten kilometres from the town centre. The station opened its doors in 2001 and plays a key role in a regional road and rail transport hub. The regional TGV rail line intersects with the station at its north end, while slip roads to the south connect it with a motorway link to Valence. Immediate surroundings to the station are split between agriculture and industry. It is anticipated that the improved transport link created by this station will help boost the local economy (Stessor 2003:48).

The station building design draws on traditional railway precedents of metal and glass train sheds. Conceptualised as a long glazed volume, the new structure seems to float above the tracks and platforms which are dug 7m below natural ground level. Station facilities such as a ticket office, information outlets, shops and services are housed on the upper level, while the lower level is dominated by the platforms (Stessor 2003:46). A tubular steel structure, resting on concrete walls at the platform level, supports the glass box design. The station facilities offer views out over the surrounding landscape to the hills of Ventoux. As with the TGV at Avignon-Provence, a major design concept for Valence TGV is the connection with the landscape. This helps ensure that the new station building conveys some sense of place, rather than being a closed cut-off domain (Stessor 2003:48).

The platforms, dug 7m below natural ground level, required special attention to generate a sense of arrival and anticipation. A series of bridges link the station building with the car park that surrounds it. These bridges cut at various angles into the glass box of the building. On both sides, the bridges are protected by flat roofed canopies that extend the length of the station like side aisles. From the concourse, glass lifts and timber stairs wind down to the platform level. This lightness and clarity of the glass concourse is in contrast with the atmosphere of massive concrete walls and the muscular rhythm of the steel structure at the platform level. Much of the station's appeal is based on watching and being watched as passengers flow through the spaces (Stessor 2003:46).

Influence on design:

- Steel structure floating roof supported in a series of columns to cover the station concourse;
- Contrast in elements between the lightness of a glass structure and platform level with its massive concrete structure; and
- Celebration of movement and "being social" through the act of watching and being watched.
The Ara Pacis Museum, designed by Richard Meier, is located next to the Piazza del Popolo in Rome, Italy. The Piazza del Popolo is a national heritage site in Italy. It houses some important historical Roman artefacts such as the tomb of Augustus Caesar (Roman Emperor at the time of Christ’s birth) and the Altar of Peace built by Augustus Caesar between 13 and 9 BC to commemorate his military victories in Gaul (France) and Spain (Dawsey 2006:56). The altar stone on which sacrificial animals were slain is sheltered by a stone enclosure with two friezes decorating the exterior walls. Of the two friezes, the top one is perhaps most significant as it is a portrait of Augustus, his family and aristocratic friends. Meier’s design is the first major project to be undertaken inside the Ara Pacis walls for more than 60 years (Dawsey 2006:56). Two controversial issues have been associated with the project. The first relates to its scale, and the second is concerned with the fact that the city council decided to make use of Meier’s scheme rather than opening the space for a design competition. However controversial Meier’s museum might be, the fact remains that the site required immediate intervention as one of the best preserved site of Rome’s imperial era (Dawsey 2006:56). During the time of Mussolini (Italian Fascist leader at the time of the Second World War) in 1938, Vittorio Ballaa Marpugno was commissioned to build a structure aimed at keeping the elements away from the altar. By the 1960s Marpugno’s structure required serious maintenance, as the altar was increasingly exposed to the elements, pollution and vibrations caused by increasing vehicular traffic. A new shelter for the altar was thus needed (Dawsey 2006:56). Meier’s Ara Pacis Museum had to fit into a long thin site with the Tiber River to the one side and the Piazza Auguste Imperatori on the other. Adding to this the museum had to work around the altar which could not be moved, provide an appropriate setting for the altar, define the fourth side of the square, and expose the altar to external views (Dawsey 2006:56). The new museum is therefore designed to be transparent and permeable as is required by its context. In addition to the exhibition areas, there is a small auditorium, museum shop, offices and storage facilities (Richard Meier & Partners Architects 2008).

Influence on design:

- New structure envelopes the old structure;
- Use of reinforced concrete structure;
- Use of glazed facades to allow for views into the interior;
- Employ the use of natural light and;
- Use of glass solar shading system.
Mill City Museum
Minneapolis, USA (2002)
Maurer, Skinner & Fishman Architects

The original Mill City was designed by an Austrian engineer named William de la Bria and constructed in 1878. At its time, it was the world’s largest and most technologically advanced mill (Minneapolis Historical Society 2002). At peak production, it ground enough flour for 12 million loaves of bread per day. In 1928 the Mill was rebuilt after an explosion devastated the facility. Following the decline of the milling industry after World War I, the Mill finally closed in 1965 (LeFevre 2004:122). In 1971 the Mill was added to America’s National Register of Historic Places. Twenty years later, in 1991, a fire destroyed the whole of its interior after it fell into disuse (Minneapolis Historical Society 2006).

In 2002 the old mill was converted into a multipurpose building housing the Mill City Museum and office space (LeFevre 2004:120). The museum, an independent space of glass and steel, was carefully integrated into the remains of the complex. According to the Minneapolis Historical Society (2005) the project includes the conversion of the aisles and the transformation of the factory’s old offices into shops, small offices and lofts. Through their choice of building materials and by retaining most of the building’s historic fabric, the architects were able to create a building that, in itself, acts as a multi-layered exhibition about the city’s history (LeFevre 2004:126). The challenge of the design was to “drew out the meaning and purpose of the building and orchestrate that, not create it.” At some points, new elements were installed in positions where the original building elements once stood, so as to celebrate their historic memory.

The interior is designed to be a series of vignettes, and was derived from an initial survey of the abandoned building. Some historic building facilities changed in use, such as the old east engine room that once housed boilers, now houses classrooms. The design philosophy is therefore “to do everything the way the millers did – work with simple material that is readily available...” (LeFevre 2004:125).

Influence on the design:
• The use of a glass and steel structure that is independent from the original structure of the existing building;
• The creation of a multi-functional building that responds to the context and its systems;
• The use of a glass and steel structure inserted between the old and the new building creates a new awareness of the old structure’s historical value.
The Faculty of Law
University of Pretoria, Pretoria, South Africa (2006)
Klaproos Architects

The Faculty of Law on the University of Pretoria’s main campus was completed in 2006, and is the result of a design competition held in 2003. Facilities housed in the building complex include a library, offices and lecture rooms. The building has a strong north-south axis which forms the entrance to the facilities, while an east-west axis allows circulation inside the building. This axial organisation is a direct result from the building’s contextual response (Le Roux & Botes 2005:37).

The building is orientated north with the main internal circulation running east-west. Moving along this circulation routes, the visitor passes by and through both enclosed areas and open courtyards. This seems to create interplay between inside and outside spaces, and appears to merge these. Vertical circulation is located along this circulation route.

According to Le Roux & Botes (2005:39) an architectural language of oppositions seems to characterise the building: solid versus open; heavy versus light; protection versus freedom. The use of materials such as glass, steel and concrete convey an important part of this interplay.

Influence on design:

- Transparency and openness as design metaphors; and
- Material use of glass, steel and concrete.
Constitutional Court
Johannesburg, South Africa (1996)
CWB Designs Workshop & Urban Solutions

The Constitutional Court is the result of an international design competition issued in July 1997. Architects Andrew Makin, Paul Wyers and Janika Masejova were the design team of this winning project (Darril 2003:22). The site is located on the northern face of Braamfontein ridge in Johannesburg and covers an area of about 12.5ha (Peters 2004:2). Today the site is reverted to as "The Fort" or "The Old Fort" and has a rich history dating back to the time of the ZAR and president Paul Kruger. It was built in 1900 and originally served as a prison and police barracks. Shortly afterwards, it was remodelled as a fort with barracks and battlements, and was finished just in time before the start of the Second Anglo-Boer War between 1899-1902 (Darril 2003:19; Peters 2004:2). Following the British soldiers’ capture of Johannesburg, "The Fort" was reverted to its prison function and remained like this for the next 80 years.

In its heydays under the apartheid government, the facilities housed not only criminals but also people who opposed the apartheid government. Some of the people who were once detained here include anti-apartheid activist Robert Sobukwe, Albert Luthuli, Mahatma Gandhi and Nelson Mandela (Darril 2003:19; Peters 2004:2). Finally, in 1983, the facilities ceased to operate as a prison.

The design of the Constitutional Court was careful not to imply any particular resolution for the building. One of the objectives was to establish connections with the immediate surroundings so that the site itself becomes a connector (Darril 2003:20). This allows for an interconnected network of streets and squares that form open spaces and allow outdoor recreation. Within this design proposal the existing stair towers stand as beacons of light and liberty, and stand out as landmarks. In this way, the new Constitutional Court seeks to "transform this negative history into a positive force, not to deny it but to assert that what sometimes seems hopeless is achievable" (Darril 2003:25). In addition to the incorporation of former prison structures, the new Constitutional Court also retrieved and recycled materials such as bricks (Peters 2004:2).

This principle of reuse is consistent with the building’s approach to energy conservation. Green architecture principles employed in the design range from taking advantage of the high diurnal range in Johannesburg to maintain interior comfort, to maximising the use of artificial amplification (Peters 2004:3).

Influence of design:
- The use of concrete as construction material;
- Recycling of bricks and materials of the historic structure into the new structure;
- Employing energy conservation principles;
- Many existing structures are demolished with only a few selective structures being retained; and
- A consideration of the broader urban context from which design aspiration and direction is drawn.

7.22 The new Constitutional Court building as viewed from the remains of the Old Fort (Buddeland 2004)
7.23 The tower with its long colonnade main entrance to being under a new frill (Du Plessis 2004)
7.24 The entrance to the colonnade complex (Buddeland 2006)
7.25 The colonnade (Buddeland 2006)
7.26 The Wohnhaus gallery in the wall (Buddeland 2004)
Chapter 8
Design development

Introduction

The object of the design proposal is to allow city inhabitants and visitors to experience both the urban and historical value of the surrounding context. As such, the form of the proposed building is strongly determined by its surrounding urban context. In an attempt to create a greater appreciation for the local heritage resources of Hatfield, the proposed project aims to create the opportunity for a richer experience of the historic built environment.

This chapter explores the design process and the various design generators. Much of these design generators are adopted from Framas D.K., Ching's book entitled "Architecture: Form, Space, and Order."

Design generators

Generator 1: Urban context

Existing Risikl Station complex

The exiting Risikl Station complex served as a design generator through its inspiration of the existing two-elevator towers. These two towers function as landmark elements that give identity to the station, as these are the elements that make the station unique. The loss of the southern elevator shaft due to the Gastrans works has sparked the concept of working with the memory of the station building through the use of vertical elements.

The proposed new station concourse is similarly orientated as is suggested by the existing station building, and thus extends the memory of existing movement patterns. In addition, the proposed new station concourse partially encloses the public space, which forms the connection between old and new, and between the public space of the place and the railway platforms.
• Other exiting buildings

Two other exiting buildings in particular influenced the design, namely Mozambique Café and The Diplomat building west of Rossia Station. Inspiration was drawn from Mozambique Café in the way it strives to respond to the streetscape with its active building front and overhang.

The Diplomat office building influenced the design in the sense that it was an existing structure onto which the proposed building will attach itself. This allows for a new entrance that will serve both the proposed and the existing building. In addition to this, The Diplomat also determines the extent of development for the proposed building.

Along with the existing Rossia Station building, The Diplomat determines the position of the circulation spine, the point of vertical circulation, as well as the extent of the two internal courtyards.

It thus becomes clear that the initial shape of the proposed building was, therefore, determined by a process of subtractive form. This means that portions of volumes were removed from the initial mass without deteriorating the street edge, corners and overall profile thereof. With these spatial volumes subtracted, it allowed the creation of recessed entrances, positive courtyard spaces, and window openings shaded by the horizontal and vertical surfaces of the new.

Generator 2: Form & Space
• Linear form

The proposed building has a linear form that is derived from an arrangement of a series of forms along a path. While the series of forms are repetitive in most instances, others are dissimilar in nature and organised by a separate and distinct element which creates a point of focus. The proposed new ticket office is a point in case. At times the linear form front or define an edge of an exterior space (such as the main circulation bridge), while at other times it defines a plane of entry into the spaces behind it (as is the case with the proposed new station concourse).

Another use of the linear form is observable with the landmark element, where the linear form is oriented vertically as a tower element to establish a point in space, and thus acts as a landmark for Rossia Station.

• Grid form

The geometry of the square is used to create a 4 meter by 6 meter grid form on plan. This allows an equality of dimensions that is essentially non-hierarchical and non-directional. Vertically, the grid form is used to break the scale of the façade surface down to the human scale while at the same time giving the façade a skeletal and even texture. In so doing, it wraps the building surfaces and unifies them with its repetitive geometry. The result is a spatial network of reference points and lines. Any number of forms and spaces can be organised within this modular framework.

• Base plane

The surface articulation of the ground plane of the proposed plaza is used to define a zone of space within the larger context growing from Festival Street, to Hatfield, and even Pretoria as city. Texture is used to differentiate between a path of movement and spaces of rest, and establish a field from which the form of the building rises out of the ground.

An elevated portion of the base plane along the proposed new station concourse creates a specific domain within the larger spatial context of the plaza. This helps to define the boundaries of the station concourse and interrupts the flow of space across its surface. The fact that the surface characteristics of the plaza base plane continue up and across the elevated plane, helps to establish that the field of the elevated plane forms part of its surrounding spaces.

• Overhead plane

The boundaries of the proposed new station concourse is spatially defined both by and elevated base plane and the roof plane with its one edge turned downward. Not only does it shelter the interior spaces of the proposed new station concourse from the natural elements of rain and sun, but it is proportioned to its structural system and the manner in which it transfers its loads across the space to its support columns. The roof plane is the major space-defining element of the proposed new station concourse. It visually organises a series of forms and spaces beneath its sheltering canopy.
• Vertical elements defining space

Vertical elements were used in two distinctive ways, namely to serve as structural supports for floor and roof planes, and to provide shelter and protection from the climatic elements.

> Vertical linear elements
Vertical linear elements define the perpendicular edges of a volume of space.

> Single vertical plane
A single vertical plane articulates the space on which it fronts.

> Parallel planes
Two parallel vertical planes define a volume of space between them that is oriented axially toward both open ends of the configuration.

> U-shaped plan
A U-shaped configuration of vertical planes defines a volume of space that is oriented primarily toward the open end of the configuration.

• Circulation

This section deals with the proposed building's circulation system as elements that affect the perception of the forms and spaces of the building.

> Approach
The frontal approach to the proposed new station concourse results from a straight axial path that leads directly to the entrance of the building. The visual line that terminates the approach is clear as the entire front facade of the proposed building is marked with an entrance.

> Entrance
Entry into the building is defined by a passage through an implied plane established by an entrance colonnade which is scaled to the public nature of the proposed station building. In order to achieve greater visual and spatial continuity between the plaza and new station concourse, a change in level helps to establish a threshold and mark the passage from one place to another.

The recessed entrance of the retail and office complex provides shelter and receives a portion of exterior space into the realms of the building.

> Configuration of the path
All paths in the proposed building have a linear configuration. Not only does this aid in enhancing legibility, but it also serves as the primary organizing element for a series of spaces.
Path-space relationships

In the proposed project, the paths are related to the spaces they link in the following ways:

- Pass by spaces
 The integrity of each space is maintained.
 The configuration of the path is flexible, and linking spaces are used to link the path with the spaces.

- Pass through spaces
 The path passes through a space axially, or along its edge.

- Terminate in a space
 The location of the space establishes the path.

Form of the circulation space

The form of the circulation space differentiates between:

- Open on one side
 Forming a balcony or gallery that provides visual and spatial continuity with the spaces it links.

- Open on both sides
 Forming a colonnaded passageway that becomes a physical extension of the space it passes through.

Hierarchy

Hierarchy in the proposed building is achieved through size, shape, and placement.
Concept model one

The first model was built to a scale of 1:200. Its main objective was to explore an approach that responds to the surrounding buildings, where the scale matches that of the Diplomat office building, while raising that of the existing Rosebank Station complex. The approach also tested an approach that remains very sensitive to the historic Rosebank Station building complex, retaining most, if not all, of the existing structures. In addition, it responds to the proposed group framework that proposes a public plaza in front of the station building. The proposed building faces both Festival and Station Place Streets in an attempt to define the urban edge. Similarly, the building steps back from the Diplomat office building, not only to create an internal courtyard, but also to allow sunlight to enter this space as well as the existing structure.

The proposed building attempts to maximise northern light in order to benefit from seasonal changes.

Circulation through the station complex continues to function in its existing and historical two-tier approach. A new vertical circulation core is created between the station and the retail and office complex, with circulation in this latter complex being completely internal. This divided the building into north and south facing units. In keeping with the group framework, the objective was to accommodate pedestrian movement as freely as possible.

Criticism:

- The conceptual approach is vague;
- Response to the surrounding context is not strong enough;
- Circulation paths through the building is not celebrated;
- The approach of "maintaining all" to the existing Rosebank Station complex results in more problems than solutions;

- The issue of scale is not effectively addressed;
- The new and old structures are not integrated enough to form an architectural dialogue with one another; and
- On this positive side, the spatial intention is strong and clear.

S.16 - View from the south to the internal courtyard and Rosebank Station;
S.17 - View from the west;
S.18 - View from the south to the external courtyard and Rosebank Station;
Concept model two

As with the first concept model, this second model too was built to a scale of 1:200. The main objective of this model was to investigate an approach where the new and old structures are more integrated with each other. It also attempted to address many of the criticism laid against the first concept model.

Criticism:

- Circulation routes through the spaces and building is still not strong enough as this is a central design concept;
- The internal courtyards are shaded throughout the day in mid-winter;
- The new structure pulling over the old structure completely dominates it and causes it to lose its integrity;
- Despite the new structure pulling over the old, the existing structure continues to be viewed as too precious; and
- The attempt to create a new entrance to the station is not successful as it does not respond to the plaza in front of it.
Concept model three

In an attempt to strengthen the concept, the circulation path was pulled out and loose from the proposed building. This external circulation path form the basic spine of the building that link Rissik Station, the proposed retail and office complex, and the Diplomat office building with one another.

Vertical circulation is housed on either ends of the circulation path which allows for clear and unobstructed views of the internal courtyards. In so doing, the individual becomes part of these spaces. It also allows for an expression of the building’s structural grid.

The meeting of old and new at Rissik Station is now expressed in a new manner, where the new envelope the old. This approach helps to address the scale of the proposed group framework, as well as the definition of the public nature of the building.

Criticism:

- The circulation path looses its human scale to the internal courtyards;
- An open circulation path is exposed to natural elements;
- The internal courtyards continue to be shaded throughout the day in mid-winter;
- Extensive use of glass can cause problems on the eastern façade;
- Public use of the internal courtyards can prove problematic;
- The depressed base plate of the eastern courtyard can become isolated and unused; and
- Connection between the proposed station concourse and the platform level is still unresolved.
Chapter 9

Technical resolution

Introduction

The following section investigates the decisions and motives that drive the technical level of the proposed project. As such, this section should be read in conjunction with the accompanying set of drawings. The objective of the investigation is to establish an appropriate strategy to achieve effective technical resolution of the proposed building structure. With this in mind, aspects such as a historical study, in conjunction with a technical investigation, informed the design decisions.

With the growing environmental concerns, both locally and internationally, as well as the recent energy shortage in South Africa, the implementation of sustainable principles are elementary. It should however be kept in mind that sustainable design encompasses a myriad of aspects ranging from issues such as passive systems, material sourcing, and construction processes. For this reason, the proposed project selects to focus on solar shading and cooling. The object is to enable energy-independent occupant comfort as far as possible.

Historical study

This section of the technical investigation examines the materials used in South African railway architecture as can be found in the old Transvaal Province and as was constructed by the NZASM. According to De Jong, Van der Walt & Heydenrych (1988:65) these old NZASM station buildings are characterised by three distinctive features. Firstly, they draw inspiration from the railway architecture in Europe, and in particular that of the Netherlands. This influence is clearly observed in the use of red brick and white sandstone which reflects the ornamental language of the Dutch Renaissance. Attention is deliberately drawn to the central part of the portals. However, they lack the impression of height that their European counterparts achieve. Secondly, the station buildings reflect an adaptation to local circumstances. As such, many of the station buildings were constructed using locally available stone (sandstone, concrete, dolomite and granite). Brick was used where it is either more readily available or cheaper. Corrugated iron was used as roofing material as opposed to the tiled roofs of their European counterparts. A third distinctive feature is the use of verandahs, and particularly so on smaller station buildings. The local weather conditions play a large part as it allows for the free movement of passengers (De Jong, Van der Walt & Heydenrych 1988:65).
Considerations

Building mass
The investigation on the building mass was conducted on two levels. Firstly, a mass level, resulting from the identification of public open spaces located in front of the station building and the two internal courtyards on the southern side of the proposed building. The latter two spaces are identified as problem areas due to these spaces being shaded throughout the day in mid-winter. Secondly, an individual unit level was investigated in terms of its indoor light quality, both on the northern façade of the retail and office complex and the eastern façade of the station concourse.

On a mass level, the investigation informs bulk massing, the position of voids, and the height of roofs in order to improve the thermal and natural light quality, as well as to address the street façade in the broader urban scheme.

Orientation
The proposed building’s orientation is a direct result of its response to its urban context. As such, the building is aligned to the two streets in front of it, and is thus oriented 5 degrees west of True North. This configuration results in the retail and office complex’s main façade predominantly facing northwards, while the main façades of the station concourse primarily faces east. While the northern and eastern orientation is advantageous for natural light and dominant north-eastern summer wind for ventilation purposes, the southern side of the building, which opens onto internal courtyards, is exposed to the direction of prevailing wind and rain.

Form
The shallow depth of the proposed building, being informed by its urban context, allows for good natural cross ventilation and natural light penetration into the interior spaces. As such, it is suited for office and other uses. The south-facing courtyards are open and allows for ventilation of the building interior spaces. The primary circulation bridge to the south of the building is exposed to the direction of prevailing winds and rain, and will need to provide protection from these.

Scale
The 3-storey large structure of the proposed building requires that elements be introduced to have the building respond to the urban scale. This is achieved with the introduction of horizontal elements. On the northern façade, this translates into a large overhang that provides both shelter from natural elements, shading from the sun, and defines the circulation space.

Technical investigation

Natural ventilation
The proposed building is designed to make use of natural ventilation. This is achieved through windows and doors on the northern façade. The station concourse is an open structure and therefore allows for ample natural ventilation.

Storm water
Storm water is drained off the roofs and connects with the storm water drainage system that currently exists in the site. Currently, this system drains to the railway line.

Fire protection
Fire protection of the proposed building is achieved through the installation of two fire hoses on each of the floor levels, along with four fire extinguishers. This is done in compliance with Table 2 of Part 1 of the SABS 0405, which requires one fire hose per 500m² and one fire extinguisher per 200m². These are accommodated in a vertical shaft on the northern façade.

In addition, the Multiservice Chilled Beam System (MSCS) that is discussed later in this chapter, has to capacity to house sprinkler systems in their design.

Facilities for the disabled
Facilities for the disabled are provided by the provision of elevators that allow for easy access to both the platforms at the railway line. Elevators are also provided to gain access to the offices on the first and second floor levels. All ablution facilities also provide facilities for the disabled.

Artificial light
Artificial light is to be introduced to ensure consistent lighting levels with increasing room depth. It is suggested that an automatic lighting and sensor system be installed.
Existing & new structures
Public space
Structural system

The primary reinforced concrete structure of the proposed building is based on a 4m x 8m grid. It consists of columns and beams, with lateral stability provided for by the service shafts and concrete floor slabs. This skeletal structure is informed by Le Corbusier’s ‘Domino Structure’, and allows for flexibility within the building. As such, it accommodates future changes to the building programme.

Due to the adaptable nature of the proposed building and its variable functions, the building is designed to achieve flexibility. This is achieved by the bulk of interior walls consisting of dry-walling that can be easily moved to achieve any required spaces. This results in a reduction of the overall weight of the building and enables easy adaptation. In addition, dry-walling achieves the required acoustic levels and is reusable.

Similarly, services are provided for by means of vertical shafts. Floor to ceiling heights are 3.6m at ground floor level and 3.2m on the upper levels and allows for the accommodation of suspended ceilings should it be required for the effective distribution of services, or for reasons relating to acoustic.
Vertical service ducts

Various services are housed in separate vertical ducts located on the southern façade. These include wet services, fire protection services, and electrical services.
Sun study

A SketchUp massing model of the proposed building was composed to examine the daylighting scenario. Natural lighting scenarios were examined for both the winter and summer solstices at 09:00, 12:00 and 16:00.

From this investigation it became clear that the summer scenario differs greatly from the winter. In summer, the internal courtyards are exposed to sunlight for the bulk of the day, with minimal shade in the morning and afternoon. This is not the case during the winter solstice when the internal courtyards are primarily shaded for the entire day.

This sun study determines that large indigenous trees can be used to strategically provide shade during the summer months.
Solar control

Vertical solar shading on the eastern and western facades of the station concourse is achieved with the use of Colt Shadowglass Glass Solar Shading System. This system provides a solution to low energy building demands by maximizing natural daylight whilst controlling solar heat gain and glare. Shadowglass also affords a view outside, ensuring that occupants remain connected to the external environment (Colt International 2008:11). Solar control is achieved through the use of a THA-Thermo-Hydraulic control system, which is self-powered by the sun using the heat generated to expand or contract fluid within a tube. This system requires no external power, as absorber tubes that are encased by mirrors detect the position of the sun and force a hydraulic cylinder to open or close the louvres. "When absorber tube 1 gets hotter than tube 2, gasses in the centre tube expand which hydraulically control the cylinder rod, the louvres will rotate until both tubes are in equal alignment with the sun" (Colt International 2008:15).
Cooling system
Passive Chilled Beams

Chilled Beams are a cooling system that offers an alternative to conventional mechanical ventilation systems. It was first introduced in 1965 and has been extensively used in both the UK and Australia over the past 15 years (Ferguson Systems 2008).

Passive Chilled Beams use potable water as a heat transfer medium. The water is circulated through copper cooling pipes bonded in aluminium heat exchanger fins, which enable the cooling of a large area through both natural convection and radiation (Ferguson Systems 2008). As warm air rises, it is drawn to the chilled beam and cooled before returning downwards. This results in the system being quiet and draft free. The system can be fully integrated with a normal suspended ceiling, but will require perforated ceiling tiles immediately surrounding it to work effectively.

Multiservice Chilled Beam Systems (MSCB) offer the opportunity for even further incorporation of services such as cooling, up-lighting and down-lighting, condensation sensors and integrated control valves, fire alarms and sprinkler systems, as well as pipework, ducting and power or compartmental trunking. Passive Chilled Beams provide up to 400 W/m² (up to 159 W/m²) of cooling (Ferguson Systems 2008).

The system requires low maintenance as it has no moving parts. The use of copper and aluminium means that the system is both durable and recyclable. In addition, the system has a life cycle guarantee of up to 25 years (Ferguson Systems 2008).

Ferguson’s Chilled Beams (Ferguson Systems 2008)
Ferguson Cool with adjustable evaporative ratio (Ferguson Systems 2008)
Mechanical Chilled Beam Systems (MSCB) (Ferguson Systems 2008)
Chilled supply (Ferguson Systems 2008)
Chilled supply and heat control mechanisms (Ferguson Systems 2008)
Chilled beam coaction (Ferguson Systems 2008)
MSCB office setting (Ferguson Systems 2008)
Installation (Ferguson Systems 2008).
Demolishments

Structures that are demolished for the construction of the Gautrain project is illustrated by fig. 9.37.

The structures demolished within this proposed project is shown in fig. 9.38.
Platform level plan
The proposed building is the consequence of a process that, from the beginning, had no clear image of the outcome. It is a process that was driven by rational, cumulative decisions taken within the bigger picture of development frameworks and historical references. This process was concerned with creating a place rather than an object or a preconceived outcome. Its aim was to re-generate a culture of "publicness", of collective public ownership and responsibility for public space. Past and future is interwoven by retaining selective parts of the existing Rashia Station building, and incorporating these into the proposed complex.
References

TAUTE, J. 2008. Personal interview with the acting Metrorail area manager, Pretoria Station, Pretoria.

