Vegetation on the ultramafic soils of the Sekhukhuneland Centre of Endemism

by

Stefan John Siebert

Submitted in partial fulfilment of the requirements of the degree

Philosophiae Doctor

in the Faculty of Natural and Agricultural Sciences

Department of Botany

University of Pretoria

Pretoria

promoters:

Prof. Dr A.E. van Wyk
Prof. Dr G.J. Bredenkamp

November 2001
"The primary tactic in conservation must be to locate the world's hot spots and to protect the entire environment they contain"

E.O. Wilson (1992)

"Ecology is the scientific study of the interactions that determine the distribution and abundance of organisms in nature"

C.J. Krebs (1978)

I live to honour God, and I present this thesis to Him, who thought it well to provide me with opportunities that I am certainly not worthy of.
ABSTRACT

Vegetation on the ultramafic soils of the Sekhukhuneland Centre of Endemism

by

Stefan John Siebert

Promoters:

Prof. Dr A.E. van Wyk
Prof. Dr G.J. Bredenkamp

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor

A floristic-ecological account of the vegetation of the Sekhukhuneland Centre of Plant Endemism (SCPE) is given. This is the first comprehensive botanical study undertaken in this floristically poorly known region. A brief review of the physical environment, namely topography, geology, soils and climate, as well as the vegetation and flora, is presented.

Data from 415 sample plots were subjected to phytosociological classification using TWINSPLAN and refined with table-sorting procedures based on the Braun-Blanquet approach. The analysis revealed six major vegetation types consisting of 82 syntaxa, interpreted as Fuirena pubescens–Schoenoplectus corymbosus Wetland Vegetation, Themeda triandra–Senecio microglossus Cool Moist Grasslands, Hippobromus pauciflorus–Rhoicissus tridentata Rock Outcrop Vegetation, Combretum hereroense–Grewia vernicosa Open Mountain Bushveld, Kirkia wilmsii–Terminalia prunioides Closed Mountain Bushveld and Acacia tortilis–Dichrostachys cinerea Arid Northern Bushveld. Plant communities of each major vegetation type are described and diagnostic and rare/threatened species highlighted.

Thirteen rock types of the SCPE were analysed to evaluate the chemical relationships with serpentinite. Maize seedlings were grown in ultramafic soils of the SCPE and showed
symptoms of nickel and chromium toxicity. Plant material of indigenous species and soil samples were sampled along 13 points of a catena in the SCPE and analysed with recognised analytical methods to determine the levels of 33 elements. Nine SCPE endemics, three SCPE near-endemics, and eight common species were analysed. None of the plant taxa were hyperaccumulators of chromium or nickel, but seven species accumulated more than 1000 mg/kg of iron and aluminium. The accumulators were mostly common species and included one SCPE endemic form and one SCPE near-endemic. Three of the hyperaccumulators belong to the Asteraceae.

The threat status of 80 plant species of the SCPE was assessed using IUCN categories and 26 met these criteria. A first division of the SCPE into subcentres is presented to aid future conservation strategies. The SCPE endemic, near-endemic and disjunct plant taxa are listed, as well as those species shared with other centres or floristic regions. Major threats to the plant diversity of Sekhukhuneland are considered and a probable conservation solution presented. A checklist is given of the approximately 2000 plant taxa of the 4000 km² of the SCPE and arranged according to family, with genera and species listed alphabetically within the families. This analysis supports the recognition of the region as an important Centre of Plant Endemism and Diversity requiring conservation attention.

Keywords: biodiversity, Centre of Plant Endemism, chromium, conservation, endemism, grassland, heavy metals, hyperaccumulation, Mpumalanga, Northern Province, phytosociology, platinum, Red Data List, Rustenburg Layered Suite, savanna, Sekhukhuneland, TWINSPAN, ultramafic rocks.
Contents

LIST OF TABLES, FIGURES AND APPENDICES ... ix

LIST OF ABBREVIATIONS ... xvi

CHAPTER 1. INTRODUCTION ... 1
1.1 Background ... 1
1.2 Sekhukhuneland Centre of Plant Endemism .. 3
1.3 Rationale and motivation .. 5
1.4 Principal aims .. 9
1.5 Layout of thesis .. 9

CHAPTER 2. STUDY AREA ... 11
2.1 History ... 11
2.2 Locality ... 13
2.3 Physical environment ...
 2.3.1 Topography .. 15
 2.3.2 Geology ... 16
 2.3.3 Soils ... 19
 2.3.4 Climate ... 21
2.4 Vegetation and flora ...
 2.4.1 Floristic history .. 23

CHAPTER 3. METHODS ... 34
3.1 Phytosociological assessment .. 34
 3.1.1 Analytical phase ... 35
 3.1.2 Synthetic phase ... 37
3.2 Plant and soil analyses ..
 3.2.1 Pot experiment ... 39
 3.2.2 Soil analyses ... 40
 3.2.3 Plant analyses .. 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4 Data interpretation</td>
<td>47</td>
</tr>
<tr>
<td>3.3 Floristic evaluation</td>
<td>48</td>
</tr>
<tr>
<td>CHAPTER 4. PHYTOSOCIOLOGICAL STUDY</td>
<td>50</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>50</td>
</tr>
<tr>
<td>4.2 Major vegetation types</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Hierarchical classification</td>
<td>61</td>
</tr>
<tr>
<td>CHAPTER 5. GRASSLAND AND WETLAND VEGETATION</td>
<td>77</td>
</tr>
<tr>
<td>5.1 Background</td>
<td>77</td>
</tr>
<tr>
<td>5.2 Classification</td>
<td>79</td>
</tr>
<tr>
<td>5.3 Description</td>
<td>81</td>
</tr>
<tr>
<td>5.4 Vegetation key</td>
<td>100</td>
</tr>
<tr>
<td>5.5 Ordination</td>
<td>100</td>
</tr>
<tr>
<td>CHAPTER 6. ROCK OUTCROP VEGETATION</td>
<td>117</td>
</tr>
<tr>
<td>6.1 Background</td>
<td>117</td>
</tr>
<tr>
<td>6.2 Classification</td>
<td>118</td>
</tr>
<tr>
<td>6.3 Description</td>
<td>120</td>
</tr>
<tr>
<td>6.4 Vegetation key</td>
<td>137</td>
</tr>
<tr>
<td>6.5 Ordination</td>
<td>137</td>
</tr>
<tr>
<td>CHAPTER 7. OPEN MOUNTAIN BUSHVELD</td>
<td>154</td>
</tr>
<tr>
<td>7.1 Background</td>
<td>154</td>
</tr>
<tr>
<td>7.2 Classification</td>
<td>156</td>
</tr>
<tr>
<td>7.3 Description</td>
<td>158</td>
</tr>
<tr>
<td>7.4 Vegetation key</td>
<td>184</td>
</tr>
<tr>
<td>7.5 Ordination</td>
<td>184</td>
</tr>
<tr>
<td>CHAPTER 8. CLOSED MOUNTAIN BUSHVELD</td>
<td>204</td>
</tr>
<tr>
<td>8.1 Background</td>
<td>204</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>8.2</td>
<td>Classification</td>
</tr>
<tr>
<td>8.3</td>
<td>Description</td>
</tr>
<tr>
<td>8.4</td>
<td>Vegetation key</td>
</tr>
<tr>
<td>8.5</td>
<td>Ordination</td>
</tr>
<tr>
<td>CHAPTER 9. ARID NORTHERN BUSHVELD</td>
<td>253</td>
</tr>
<tr>
<td>9.1</td>
<td>Background</td>
</tr>
<tr>
<td>9.2</td>
<td>Classification</td>
</tr>
<tr>
<td>9.3</td>
<td>Description</td>
</tr>
<tr>
<td>9.4</td>
<td>Vegetation key</td>
</tr>
<tr>
<td>9.5</td>
<td>Ordination</td>
</tr>
<tr>
<td>CHAPTER 10. PLANT-SOIL ASSOCIATIONS</td>
<td>277</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>Maize seedlings grown in ultramafic soils</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Background</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>10.3</td>
<td>Natural vegetation on ultramafic soils</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Background</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>CHAPTER 11. FLORISTIC ANALYSES</td>
<td>321</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Plant endemism, diversity, threatened taxa and conservation</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Flora</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Subcentres of endemism</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Red Data List</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Major threats</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Threatened status</td>
</tr>
<tr>
<td>CHAPTER 12. GENERAL DISCUSSION</td>
<td>359</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>
12.2 Plant communities ... 360
 12.2.1 Syntaxonomy of major vegetation types 360
 12.2.2 Ordinations ... 364
 12.2.3 Vegetation processes ... 368
 12.2.4 Disturbance ... 370
12.3 Plant-soil associations ... 374
 12.3.1 Maize experiment ... 374
 12.3.2 Catena soils ... 375
 12.3.3 Metal accumulation .. 377
12.4 Phytogeography ... 381
 12.4.1 Local speciation .. 381
 12.4.2 Local floristic classification ... 384
12.5 Conservation essay .. 388
12.6 Future research ... 392

CONCLUSION .. 404

SUMMARY ... 408

OPSOMMING .. 410

ACKNOWLEDGEMENTS ... 412

CURRICULUM VITAE .. 414

REFERENCES ... 415

APPENDICES ... 439
LIST OF TABLES, FIGURES AND APPENDICES

Figures

Figure 1: Location of the Sekhukhuneland Centre of Plant Endemism in the Northern Province and Mpumalanga, South Africa .. 2–29
Figure 2: Topography of the Sekhukhuneland Centre of Plant Endemism .. 2–30
Figure 3: Major geological substrates of the Sekhukhuneland Centre of Plant Endemism 2–31
Figure 4: Major soil patterns of the Sekhukhuneland Centre of Plant Endemism 2–32
Figure 5: Major climatic patterns of the Sekhukhuneland Centre of Plant Endemism 2–33
Figure 6: Major vegetation types identified for the Sekhukhuneland Centre of Plant Endemism 4–66
Figure 7: Location of the Grassland and Wetland Vegetation of the Sekhukhuneland Centre of Plant Endemism in the Northern Province and Mpumalanga, South Africa .. 5–102
Figure 8a: Relative positions of all the relevés along the second and third axis of the ordination of the Grassland Vegetation of the Sekhukhuneland Centre of Plant Endemism .. 5–103
Figure 8b: Relative positions of all the relevés along the second and third axis of the ordination of the Wetland Vegetation of the Sekhukhuneland Centre of Plant Endemism .. 5–104
Figure 9: Extend of occurrence of the Rock Outcrop Vegetation of the Sekhukhuneland Centre of Plant Endemism in the Northern Province and Mpumalanga, South Africa .. 6–139
Figure 10: Relative positions of all the relevés along the first and second axis of the ordination of the Rocky Outcrop Vegetation of the Sekhukhuneland Centre of Plant Endemism .. 6–140
Figure 11: Extend of occurrence of the Open Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism in the Northern Province and Mpumalanga, South Africa .. 7–186
Figure 12: Relative positions of all the relevés along the first and second axis of the ordination of the Open Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism .. 7–187
Figure 13: Location of the Closed Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism in the Northern Province and Mpumalanga, South Africa .. 8–236
Figure 14: Relative positions of all the relevés along the first and second axis of the ordination of the Closed Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism
Figure 15: Location of the Arid Northern Bushveld of the Sekhukhuneland Centre of Plant Endemism in the Northern Province, South Africa
Figure 16: Relative positions of all the relevés along the first and second axis of the ordination of the Arid Northern Bushveld of the Sekhukhuneland Centre of Plant Endemism
Figure 17: Average Biomass Production of the roots and leafs of Zea mays seedlings grown in an ultramafic soil mixture
Figure 18: Photos of interveinal chlorosis and leaf purpleing in Zea mays as a result of Ni and Cr toxicity respectively
Figure 19: Heavy metal concentrations in the leaves and roots of Zea mays seedlings grown at different densities in a chromium outcrop soil mixture for 2, 3 and 4 weeks respectively
Figure 20: Heavy metal concentrations in the leaves and roots of three indigenous grass species growing naturally on chromium outcrops
Figure 21: Nutrient concentrations in the leaves and roots of Zea mays seedlings grown at different densities in a chromium outcrop soil mixture for 2, 3 and 4 weeks respectively
Figure 22: Nutrient concentrations in the leaves and roots of three indigenous grasses growing naturally on chromium outcrops
Figure 23: Analysed rocks were sorted according to their Mg:Ca ratio (as an indication of the serpentine gradient), with Groen Valley serpentine left and Leolo Mountain norite right
Figure 24: Transect of a catena in the Sekhukhuneland Centre of Plant Endemism with associated underlying rock
Figure 25: Topographic based distribution of the nutrient levels, heavy metal concentrations and Mg:Ca ratios along the catena
Figure 26: Scatter diagram of selected chemical attributes of the rocks sampled in the Sekhukhuneland Centre of Plant Endemism
Figure 27: Scatter diagram of selected chemical attributes of the soils sampled along the catena in the study area
Figure 28: Scatter diagram of selected chemical attributes of plant material collected along the catena of the study area
Figure 29: Scatter diagrams of selected chemical attributes of leaf and root material collected along the eroded areas, hill slope and chromium outcrops of the catena. 10-307

Figure 30: Scatter diagrams depicting the trends of selected chemical attributes in plant-soil associations. 10-310

Figure 31: Scatter diagrams depicting the optimum accumulation levels of nickel and chromium by plants along the catena. 10-311

Figure 32: Subcentres of endemism of the Sekhukhuneland Centre of Plant Endemism. 11-337

Figure 33: Dendrogram depicting the TWINSPAN division of the six major vegetation types of the Sekhukhuneland Centre of Plant Endemism. 12-403
Tables

Table 1: Synoptic table of the major vegetation types of the Sekhukhuneland Centre of Plant Endemism ... 4–67
Table 2: Endemic, near-endemic and Red Data List taxa recorded for each of the major vegetation types .. 4–73
Table 3a: A phytosociological table of the Cool Moist Grasslands of the Sekhukhuneland Centre of Plant Endemism ... 5–105
Table 3b: A phytosociological table of the Wetland Vegetation of the Sekhukhuneland Centre of Plant Endemism 5–109
Table 4: Sekhukhuneland Centre endemic/near-endemic and Red Data List plant taxa of the Grassland and Wetland Vegetation .. 5–110
Table 5: Environmental factors and selected attributes associated with the different plant communities of the Grassland and Wetland Vegetation .. 5–113
Table 6: A key to the syntaxa of the Grassland and Wetland Vegetation of the undulating norite hills of the Sekhukhuneland Centre of Plant Endemism .. 5–114
Table 7: The three most dominant and conspicuous plant taxa of each of the major vegetation types of the Grassland and Wetland Vegetation depicted in the DECORANA scatter diagram .. 5–116
Table 8: A phytosociological table of the Rock Outcrop Vegetation of the Sekhukhuneland Centre of Plant Endemism .. 6–141
Table 9: Sekhukhuneland Centre endemic/near-endemic and Red Data List plant taxa of the Rock Outcrop Vegetation .. 6–147
Table 10: Environmental factors and selected attributes associated with the different plant communities of the Rock Outcrop Vegetation .. 6–149
Table 11: A key to the syntaxa of the Rock Outcrop Vegetation of the rocky hills of the Sekhukhuneland Centre of Plant Endemism 6–151
Table 12: The three most dominant and conspicuous plant taxa of each of the major vegetation types of the Rocky Outcrop Vegetation depicted in the DECORANA scatter diagram .. 6–153
Table 13: Preferential species for each of the Open and Closed Mountain Bushveld types .. 7–188
Table 14: A phytosociological table of the Open Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism .. 7–189
Table 15: Sekhukhuneland Centre endemic/near-endemic and Red Data List plant taxa of the Open Mountain Bushveld

Table 16: Environmental factors and selected attributes associated with the different plant communities of the Open Mountain Bushveld

Table 17: A key to the syntaxa of the Open Mountain Bushveld of the hills and valleys of the Sekhukhuneland Centre of Plant Endemism

Table 18: The three most dominant and conspicuous plant taxa of each of the major vegetation types of the Open Mountain Bushveld depicted in the DECORANA scatter diagram

Table 19: A phytosociological table of the Closed Mountain Bushveld of the Sekhukhuneland Centre of Plant Endemism

Table 20: Sekhukhuneland Centre endemic/near-endemic and Red Data List plant taxa of the Closed Mountain Bushveld

Table 21: Environmental factors and selected attributes associated with the different plant communities of the Closed Mountain Bushveld

Table 22: A key to the syntaxa of the Closed Mountain Bushveld of the hills and valleys of the Sekhukhuneland Centre of Plant Endemism

Table 23: The three most dominant and conspicuous plant taxa of each of the major vegetation types of the Closed Mountain Bushveld depicted in the DECORANA scatter diagram

Table 24: A phytosociological table of the Arid Northern Bushveld of the Sekhukhuneland Centre of Plant Endemism

Table 25: Sekhukhuneland Centre endemic/near-endemic and Red Data List plant taxa of the Arid Northern Bushveld

Table 26: Environmental factors and selected attributes associated with the different plant communities of the Arid Northern Bushveld

Table 27: A key to the syntaxa of the Arid Northern Bushveld of the Potlakte Nature Reserve and surrounding areas in the Sekhukhuneland Centre of Plant Endemism

Table 28: The three most dominant and conspicuous plant taxa of each of the major vegetation types of the Arid Northern Bushveld depicted in the DECORANA scatter diagram

Table 29: Concentrations of selected elements in the chromitite outcrop soil mixture

Table 30: Growth comparison of seedlings of Zea mays (cultivar SNK 2340 Vryburg) grown in neutral quartzite soil and natural chromium-rich soil

Table 31: Concentrations of selected minerals and metals in the roots and leaves of Zea mays (cultivar SNK 2340 Vryburg) grown in chromium-rich soil
Table 32: Concentrations of selected minerals and metals in the roots and leafs of selected indigenous grass species that grow naturally in the ultramafic soil which was used for the maize experiment .. 10–315

Table 33: Diagnostic elements for each major position along the catena .. 10–316

Table 34: A comparison of the average concentrations of selected elements in the Mpumalanga serpentine soils and Sekhukhuneland ultramafic soils .. 10–317

Table 35: A comparison of the average elemental concentrations recorded for soil samples in this study and that of other serpentine sites in the world .. 10–318

Table 36: A comparison of the average elemental concentrations recorded for plant material in Sekhukhuneland and the Great Dyke of Zimbabwe .. 10–319

Table 37: A summary of the nutrient levels, metal concentrations and Magnesium:Calcium ratios recorded for the sampled plant material .. 10–320

Table 38: List of the Sekhukhuneland Centre of Plant Endemism angiosperm endemics/near-endemics .. 11–338

Table 39: Statistics of the families that are represented in the Sekhukhuneland Centre of Plant Endemism .. 11–344

Table 40: Recommended IUCN Red Data List status of the Sekhukhuneland Centre of Endemism flora .. 11–340

Table 41: List of species in the Sekhukhuneland Centre assessed as not threatened, as well as those in need of assessment .. 11–355

Table 42: Summary of the conservation value of the Sekhukhuneland Centre plant communities that are a priority for conservation .. 11–358
Appendices

Appendix 1: Average length and weight of leaves and roots of Zea mays grown in pots with quartzite control soils or ultramafic soil samples .. 440

Appendix 2: Heavy metal and mineral concentrations of the rocks of the Sekhukhuneland Centre of Plant Endemism ... 442

Appendix 3: Heavy metal and mineral concentrations of soil samples along a catena in the Sekhukhuneland Centre of Plant Endemism ... 447

Appendix 4: Heavy metal and mineral concentrations of plant material collected along a catena in the Sekhukhuneland Centre of Plant Endemism 452

Appendix 5: Checklist of the plant species/infraspecific taxa occurring in the Sekhukhuneland Centre of Plant Endemism .. 459
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>PRE</td>
<td>National Herbarium, Pretoria</td>
</tr>
<tr>
<td>PRECIS</td>
<td>Pretoria National Herbarium Computerised Information System</td>
</tr>
<tr>
<td>PRU</td>
<td>H.G.W.J. Schweickerdt Herbarium, University of Pretoria</td>
</tr>
<tr>
<td>QDG</td>
<td>Quarter Degree Grid</td>
</tr>
<tr>
<td>RLS</td>
<td>Rustenburg Layered Suite</td>
</tr>
<tr>
<td>SCPE</td>
<td>Sekhukhuneland Centre of Plant Endemism</td>
</tr>
</tbody>
</table>
SUMMARY

Vegetation on the ultramafic soils of the Sekhukhuneland Centre of Endemism

by

Stefan John Siebert

Promoter: Prof. Dr A.E. van Wyk
Co-promoter: Prof. Dr G.J. Bredenkamp

Department of Botany
University of Pretoria
Philosophiae Doctor

The vegetation types of South Africa, and especially those associated with Centres of Endemism, are under increasing human pressure. Habitat loss as a result of open cast mining, mine dumps, population growth, overgrazing, trampling and alien species invasions, is the greatest threat to the Sekhukhuneland Centre of Plant Endemism (SCPE). A floristic-ecological account of the threatened vegetation of the SCPE is given. This is the first comprehensive botanical study undertaken in this floristically poorly known region situated west of the northeastern Drakensberg Escarpment, between 24°15' and 25°30'S latitude, 29°30' and 30°30'E longitude. A brief review of the physical environment, namely topography, geology, soils and climate, as well as the vegetation and flora, are given.

A detailed account is given of the vegetation types of the SCPE. Phytosociological data from 415 sample plots were subjected to phytosociological classification using TWINSPLAN and refined with table-sorting procedures based on the Braun-Blanquet floristic-sociological approach. The vegetation classification revealed six major vegetation types consisting of 82 syntaxa, interpreted as *Fuirena pubescens*-*Schoenoplectus corymbosus* Wetland Vegetation, *Themeda triandra*-*Senecio microglossus* Cool Moist Grasslands, *Hippobromus pauciflorus*-*Rhoicissus tridentata* Rock Outcrop Vegetation, *Combretum hereroense*-*Grewia vernicosa* Open Mountain Bushveld, *Kirkia wilmsii*-*Terminalia prunioides* Closed
Mountain Bushveld and *Acacia tortilis–Dichrostachys cinerea* Arid Northern Bushveld. Plant communities of each major vegetation type are described and the diagnostic species highlighted, with the occurrence of rare and threatened plant species indicated.

Maize seedlings that were grown in ultramafic soils of the SCPE showed typical symptoms of nickel and chromium toxicity. To further investigate heavy metal accumulation, 20 indigenous plant species were sampled along 13 points of an ultramafic catena. Plant material and soil samples were analysed with recognised analytical methods to determine the concentrations of 33 elements. Thirteen rock types of the SCPE were analysed to highlight the chemical relationship between the rocks of the study area and serpentinite. Nine SCPE endemics, three SCPE near-endemics, and eight common species were analysed. None of the plant taxa were hyperaccumulators of chromium or nickel, but seven indigenous species accumulated more than 1000 mg/kg of iron and aluminium. The accumulators of high heavy metal concentrations were mostly common species. Accumulators included one SCPE endemic form and one SCPE near-endemic. Three of the hyperaccumulators belong to the Asteraceae.

Eighty plant species of the SCPE were assessed according to the IUCN categories of threat and 26 met the criteria. A first division of the SCPE into sub-centres is presented to aid future conservation actions. The endemic plant species are listed, as well as the near-endemic and disjunct taxa that are shared with other centres or floristic regions. A checklist is given of the approximately 2000 plant taxa that occur in the 4000 km² of the SCPE and are arranged by family, with the genera and species listed alphabetically within. Major threats to the plant diversity of Sekhukhuneland are considered and a probable conservation solution presented. The available data supports the recognition of the region as an important Centre of Plant Endemism and Diversity requiring conservation attention.
OPSOMMING

Plantegroei op die ultramafiese grond van die Sekhukhuneland Sentrum van Endemisme
deur
Stefan John Siebert

Promotor: Prof. Dr A.E. van Wyk
Co-promotor: Prof. Dr G.J. Bredenkamp
Plantkunde Departement
Universiteit van Pretoria
Philosophiae Doctor

Die plantegroeitipes van Suid-Afrika, en veral die wat geassosieer is met Sentrums van Endemisme, is onder toenemende druk as gevolg van ontwikkeling. Habitat verlies as gevolg van oopgroef mynbou, mynhope, bevolkingsgroei, oorbeweiding, vertrapping en indringerplante, is die grootste bedreiging vir die Sekhukhuneland Sentrum van Plant Endemisme (SSPE). 'n Floristies-ekologiese ondersoek van die bedreigde plantegroei van die SSPE word aangebied. Dit is die eerste indiepte botaniese studie wat onderneem is in hierdie floristies onbekende gebied wat geleë is aan die westekant van die noordoostelike Drakensberg Eskarpement tussen 24°15' en 25°30'S breedtegraad, en 29°30' en 30°30'0 lengtegraad. 'n Kort oorsig van die fisiese omgewing, naamlik die topografie, geologie, grond en klimaat, asook die plantegroei en flora, word aangebied.

'n Gedetailleerde ondersoek handelend oor die plantgemeenskappe van die SSPE word voorgelê. Fitososiologiese data wat in 415 plotte ingesamel was, was onderwerp aan fitososiologiese klassifikasie met behulp van TWINSPLAN. Die resultate was verfyn met tabelsorterings tegnieke wat gebaseer is op die Braun-Blanquet floristies-sosiologiese benadering. Die plantegroei klassifikasie het ses hoof plantegroeitipes onderskei wat bestaan uit 82 syntaksa, geinterpreteer as die *Fuirena pubescens*–*Schoenoplectus corymbosus*

Mielie saailinge is aangeplant in ultramafiese grond van die SSPE en het tipiese symptome van nikkel en kroom vergiftiging getoon. Om swaar metaal akkumulering verder te ondersoek, is 20 inheemse plantspesies versameld langs 13 punte van ‘n ultramafiese katena. Plantmateriaal en grondmonster was geanaliseer met erkende analitiese metodes om die konsentrasies van 33 elemente te bepaal. Dertien rots tipes van die SSPE was ook geanaliseer om die chemiese verband tussen die gesteentes van die studiegebied en serpentyn uit te wys. Plantmateriaal van nege SSPE endemiese, drie SSPE naby endemiese, en agt algemene spesies was geanaliseer. Nie een van die plant taksa was hiperakkumuleerders van kroom of nikkel nie, maar sewe inheemse spesies het meer as 1000 mg/kg van yster en aluminium geakkumuleer. Die akkumuleerders van hoë swaar metaal konsentrasies was meestal algemene spesies. Die akkumuleerders sluit een SSPE endemiese form en een SSPE naby endemiese spesie in. Drie van die hiperakkumuleerders is van die Asteraceae.

Tagtig plantspesies van die SSPE was geevalueer op grond van die IUCN kategorieë van bedreiging en 26 spesies het hieraan voldoen. Vir die eerste keer is die SSPE opgedeel in subsentrum om toekomstige bewaringsaksies te ondersteun. Die endemiese plantspesies word gelys, asook die naby endemiese en disjunk taksa wat gedeel met ander sentrums of floristiese gebiede. ‘n Spesielys is opgestel van die ongeveer 2000 plant taksa wat in die 4000 km² van die SSPE voorkom. Die lys is alfabeties gerangskik volgens familie, met die genusse en spesies alfabeties gerangskik daarbinne. Aspekte wat die plant diversiteit van Sekhukhuneland bedreig is oorweeg en ‘n moontlike oplossing vir bewaring word voorgestel. Die beskikbare data ondersteun die erkenning van die studiegebied as ‘n Sentrum van Endemisme en Diversiteit wat dringend aandag benodig as ‘n belangrike bewaringsgebied.
Thanks are due to the following institutions and persons for their valuable contribution in the preparation of this thesis:

- Prof. Braam van Wyk for his invaluable guidance and mentorship;
- Prof. George Bredenkamp for supervising the phytosociological part of the thesis;
- Prof. Alison Specht (Lismore University, New South Wales), Prof. Ray Specht (Queensland University, Queensland) and Mr George Batianoff (Queensland Herbarium, Queensland) for valuable discussions on the ultramafic vegetation and soils of Sekhukhuneland;
- Ms Elizabeth Retief, National Botanical Institute, for scientific support;
- Dr Jacques van Rooy, National Botanical Institute, for valuable discussions on phytogeography;
- My wife, Ms Frances Siebert, for her encouragement and assistance with the vegetation classification;
- Ms Janine Victor, National Botanical Institute, for her valuable collaboration during the Red Data assessments of rare and threatened species in Sekhukhuneland;
- Mr At de Lange, Goldfields Centre, University of Pretoria, for stimulating discussions on ultramafic soils and endemism;
- Prof. Sybrand de Waal, Department of Geology, University of Pretoria, for his informative help with the geology and minerals of the Bushveld Igneous Complex;
- Ms Maggi Loubser, Department of Geology, University of Pretoria, for the chemical analyses of the rocks and soils;
- Ms Nina van Vliet, Institute of Soil, Climate and Water, for the chemical analyses of the plant material;
- Mr Mervyn Lotter, Ms Sonette Krynauw, Ms Ronell Niemand and Ms Maryna Matthee, Mpumalanga Parks Board, for their interest and much appreciated support of the project;
- Mr Frank Pieterse and Mr Stan Rodgers, Northern Province Nature Conservation, for their interest and much appreciated support of the project;
• All the researchers at the National Botanical Institute for access to the herbarium collections and their assistance with the identification of specimens;
• Ms Lorraine Middleton, Manie van der Schijff Botanical Garden, University of Pretoria, for her interest and assistance with the cultivation of rare and endangered species,
• Ms Ingrid Booysen, Department of Geography, University of Pretoria, for preparing the topographical base maps of Sekhukhuneland;
• Mr Jan Prinsloo (Roossenekal), Mr Jan Smit (Frischgewaagd), Thubatse Ferrochrome (Steelpoort) and the Roossenekal Hotel, for providing affordable accommodation during my stay in Sekhukhuneland;
• Ms Elsa van Wyk, Department of Botany, University of Pretoria, for handling the administration of this project;
• Ms Martie Dednam and Ms Magda Nel, H.G.W.J. Schweickerdt Herbarium, University of Pretoria, for technical assistance in handling the collected specimens;
• The South African Weather Bureau for supplying rainfall and temperature data for the study area;
• Lastly, the Foundation for Research Development, the Edward Mellon Foundation, Department of Environmental Affairs and Tourism and the University of Pretoria for financial support.
CURRICULUM VITAE

Stefan John Siebert was born on 27 September 1974 in Empangeni, KwaZulu-Natal. He attended Mandini Primary School and later King Edward High School in Matatiele, KwaZulu-Natal, where he matriculated in 1992.

In 1993 he joined the South African Defence Force, where he became an officer and obtained the rank of second lieutenant at 4 Artillery Regiment in Potchefstroom.

In 1994 he enrolled at the University of Pretoria, and was awarded his B.Sc. degree in 1996, with Botany and Zoology as majors.

He registered for an Honours degree in Botany at the University of Pretoria in 1997 and specialised in taxonomy and ecology. He obtained this degree *cum laude* and received the H.G.W.J. Schweickerdt Medal for Botany at the Honours level.

In 1998 he registered for a Master of Science degree in Botany at the same university, specialising in the plant diversity of the ultramafic rocks of Sekhukhuneland. He completed his research dissertation that same year and was awarded the degree *cum laude*.

From 1999 to 2001 he pursued and completed a Doctor of Philosophy Degree with the title: *Vegetation on the ultramafic soils of the Sekhukhuneland Centre of Endemism*. His botanical work in the Sekhukhuneland Centre culminated in ten presentations in South Africa, one in the United States of America and one in Australia. Four articles have been submitted and accepted by scientific journals, and six articles are in preparation. Various articles have also been prepared and submitted to popular journals.

He is currently employed as the Regional Coordinator of the Southern African Botanical Diversity Network (SABONET) at the National Botanical Institute of South Africa (2001-2002).