Susceptibility towards selected herbicides of two insect biocontrol agents for water hyacinth

by

Claudia Ueckermann

© University of Pretoria
Susceptibility towards selected herbicides of two insect biocontrol agents for water hyacinth

by

Claudia Ueckermann

Submitted in fulfillment of the requirements for the degree

MAGISTER SCIENTIAE (Botany)

Department of Botany
Faculty of Natural and Agricultural Sciences
University of Pretoria, Pretoria

Supervisor: Prof. C.F. Reinhardt
Co-supervisor: Prof. M.W. van Rooyen

June 2001
ABSTRACT

Susceptibility towards selected herbicides of two insect biocontrol agents for water hyacinth

by

Claudia Ueckermann

Supervisor: Prof. C.F. Reinhardt
Co-supervisor: Prof. M.W. van Rooyen

Integrated control of water hyacinth in South Africa is based on a combination of chemical and biological control. This study investigated the assumption that the two methods are compatible, by testing the direct toxicity as well as indirect effects of a range of herbicide formulations and surfactants, on two insect species, Neochetina eichhorniae and the more susceptible Eccritotarsus catarinensis. The highest mortality was caused by the diquat formulation and the least mortality resulted after treatment with glyphosate-based herbicides. Weevils preferred feeding on untreated plants and moved away from treated toward bordering untreated plants. Important considerations for integrated control of water hyacinth emphasized by this study are choice of herbicide formulation and surfactant, which will depend on insect species, and the size and distance of reserve mats which will shelter fleeing insects.
Acknowledgements

I would like to sincerely thank the following persons and institutions:

1. My project-leader Dr. M.P. Hill for his encouragement, advice, patience and constant motivation.
2. Prof. C.F. Reinhardt and Prof. M.W. van Rooyen for their leadership, guidance and advice.
3. All my colleagues and friends at the Department of Botany for their encouragement.
5. The WRC Steering Committee for their valuable input and interest.
6. The Plant Protection Research Institute for the use of their facilities and for Mr. I.G. Oberholzer for his technical assistance.
7. Herbicide manufacturers Enviro Weed Control, Monsanto, Sanachem and Zeneca for providing herbicide formulations and advice.
8. The University of Pretoria for the use of their facilities and financial support.
9. My mother and sisters for their emotional support and encouragement.
Table of contents

Acknowledgements i
Table of contents ii
List of figures v
List of tables vii

1. Introduction 1

2. Literature review
 2.1 The biology of water hyacinth 3
 2.1.1 Taxonomy 3
 2.1.2 Morphology 3
 2.1.3 Flowering and reproduction 4
 2.1.4 Physiology and tolerance 5
 2.1.5 Ecology 6
 2.2 Negative impact 7
 2.3 Pest status and spread 8
 2.4 Utilisation 10
 2.5 Control 11
 2.5.1 Introduction 11
 2.5.2 Mechanical control 11
 2.5.3 Chemical control 12
 2.5.4 Biological control 13
 (a) Background 13
 (b) Released natural enemies 14
 (c) History of biological control in South Africa 15
 (d) Success of biological control 16
 2.5.5 Integrated control 17
 (a) Introduction 17
 (b) Combining herbicides and natural enemies 18

3. Acute toxicity of selected herbicides towards
 Eccritotarsus catarinensis and *Neochetina eichhorniae*
 3.1 Introduction 20
 3.2 Materials and methods 21
 3.2.1 Background 21
 3.2.2 *Eccritotarsus catarinensis* 22
 3.2.3 *Neochetina eichhorniae* 25
 3.2.4 Statistical procedures 25
3.3 Results and discussion
3.3.1 Determining LC₃₀ values
3.3.2 Eccritotarsus catarinensis
 (a) Non-linear relationships
 (b) Relative toxicity
3.3.3 Neochetina eichhorniae
3.4 Conclusion

4. Feeding behaviour of *Neochetina eichhorniae* weevils treated with selected herbicides
4.1 Introduction
4.2 Materials and methods
4.3 Results and discussion
 4.3.1 Herbicide treatments: 4 and 12 %
 4.3.2 Effect of increased herbicide concentration
4.4 Conclusion

5. Feeding behaviour of *Neochetina eichhorniae* on water hyacinth leaves treated with selected herbicides
5.1 Introduction
5.2 Materials and methods
5.3 Results and discussion
 5.3.1 Evaluation of methodology
 5.3.2 Appearance of leaves
 5.3.3 Mortality
 5.3.4 Feeding
 5.3.5 Literature
5.4 Conclusion

6. Behaviour of adult *Neochetina eichhorniae* populations on water hyacinth mats treated with selected herbicides
6.1 Introduction
6.2 Materials and methods
6.3 Results and discussion
 6.3.1 Appearance of leaves
 6.3.2 Movement of weevils
 6.3.3 Feeding
6.4 Conclusion
List of figures

Figure 2.1 Morphology of *Eichhornia crassipes*. 4

Figure 2.2 Distribution of *Eichhornia crassipes* in South Africa. 9

Figure 3.1 The regression line obtained for *Eccritotarsus catarinensis* after 48 hours exposure to the surfactant Agral. 26

Figure 3.2 Percentage mortality of *Eccritotarsus catarinensis* as a result of direct treatment with selected herbicides. 31

Figure 3.3 LC₅₀ values calculated for *Eccritotarsus catarinensis* after acute toxicity testing with selected herbicides. 39

Figure 3.4 Percentage mortality of *Eccritotarsus catarinensis* after direct treatment with two formulations, with and without surfactants. 43

Figure 3.5 Percentage mortality of *Neochetina eichhorniae* as a result of direct treatment with selected herbicides. 46

Figure 3.6 Percentage mortality of *Neochetina eichhorniae* after direct treatment with two formulations, with and without surfactants. 54

Figure 4.1 The visible and evenly sized feeding scars made by *Neochetina eichhorniae* (weevil) when feeding on water hyacinth leaves. 57

Figure 4.2 Mean number of feeding scars as an indicator of health for *Neochetina eichhorniae*, after direct treatment with selected herbicides. 59

Figure 4.3 Mean number of feeding scars produced by groups of six *Neochetina eichhorniae*, after direct exposure to selected herbicides and surfactants. 62

Figure 5.1 Mortality (%) of adult *Neochetina eichhorniae* feeding on leaves treated with three herbicides over a six day period. 68

Figure 5.2 Mean number of feeding scars produced by a group of five *Neochetina eichhorniae*, during 144 hours of feeding on treated water hyacinth leaves. 71
Figure 5.3 Mean number of feeding scars produced by a group of five *Neochetina eichhorniae* after feeding on treated leaves over a period of 6 days.

Figure 6.1 Water hyacinth plants six days after treatment with diquat (Midstream at 3.75%) and a surfactant (Agral at 0.75%) in the foreground, and untreated plants in the background.

Figure 6.2 Movement of *Neochetina eichhorniae* between herbicide sprayed and unsprayed plants in a pond.

Figure 6.3 Feeding by *Neochetina eichhorniae* on herbicide sprayed and unsprayed water hyacinth plants.
List of tables

Table 2.1 The introduction of water hyacinth in various countries, with date of introduction and references 8

Table 2.2 Some popular uses for water hyacinth 11

Table 3.1 Information on herbicides selected for testing: formulation composition and recommended dosages 23

Table 3.2 Concentrations of herbicide formulations and surfactants used in acute toxicity tests on two insect species 24

Table 3.3 Mortality (% and standard deviation) of Eccritotarsus catarinensis after direct exposure to the following herbicides 37

Table 3.4 Herbicides rated according to the effect they have on Eccritotarsus catarinensis during acute toxicity tests 42

Table 3.5 Mortality (% and standard deviation) of Neochetina eichhorniae after direct exposure to the following herbicides 52

Table 6.1 The position and number of feeding scars left by Neochetina eichhorniae weevils, after release on trays with herbicide treated and untreated plants 79

Table 6.2 Survival rate for Neochetina eichhorniae on water hyacinth plants sprayed with the herbicide glyphosate (Roundup) and diquat (Midstream) as a percentage of the released number of insects 81