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Abstract 

Product units in the hidden layer of multilayer neural networks provide a powerful mechanism 

for neural networks to efficiently learn higher-order combinations of inputs. Training prod­

uct unit neural networks using local optimization algorithms is difficult due to an increased 

number of local minima and increased chances of network paralysis . This thesis discusses 

the problems with using local optimization, especially gradient descent, to train product unit 

neural networks, and shows that particle swarm optimization, genetiC algorithms and leapfrog 

are efficient alternatives to successfully train product unit neural networks. Architecture se­

lection, i.e. pruning, of product unit neural networks is also studied and applied to determine 

near optimal neural network architectures that are used in the comparative studies. 
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Opsomming 

Produk-eenhede in die versteekte laag van multi-vlak neurale netwerke verskaf 'n kragtige 

meganisme aan neurale netwerke om hoe-orde kombinasies van invoer doeltreffend aan 

te leer. Die leer van neurale netwerke met produk-eenhede word bemoeilik weens die 

verhoogde aantal lokale minima teenwoordig, asook die verhoogde kans om netwerk 

paralise te ondervind. Hierdie tesis spreek die probleme aan wanneer lokale optimer­

ingsmetodes gebruik word, veral in die geval van gradientdaling om produk-eenheid 

neurale netwerke te leer en dui aan dat partikel swerm optimering, genetiese algoritmes 

en (leapfrog' optimering baie doeltreffende alternatiewe is om produk-eenheid neurale 

netwerke te leer. Argitektuurseleksie, of te wei besnoeiing, van produk-eenheid neurale 

netwerke word ook bestudeer en toegepas om optimale neurale netwerk argitekture te 

bepaal, wat gevolglik in die vergelykende studies gebruik word. 
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Chapter 1 

Introduction 

The recent resurgence of interest in neural networks can be ascribed to the recognition 

that the brain does not perform calculations in the same way as conventional (Von Neu­

mann) computers. Despite the fact that computers execute instructions at extremely 

fast speeds, human beings whose brains operate at much slower speeds still outper­

form computers at tasks such as speech recognition, face recognition, etc. The human 

brain consists of an extremely large number of interconnected nerve cells, or neurons, 

which operate in parallel to process information. An artificial neural network (ANN) 

is an information processing system that mimics the structure and operating principles 

found in the information processing systems of human beings. The study of neural 

networks is one of the most rapidly expanding fields attracting researchers from a wide 

variety of disciplines such as biology, engineering, linguistics, mathematics, medicine, 

neuroscience, physics, psychology and statistics. ANNs have been applied successfully in 

many applications such as speech recognition [Cohen et al1993], handwritten character 

recognition [Guyon 1990], steering of an autonomous vehicle [Pomerlau 1989], medical 

diagnosis of heart attacks [Harrison et al1991], radar target detection and classification 

[Haykin et al1992]' and many more. 

1 

 
 
 



2 CHAPTER 1. INTRODUCTION 

1.1 Why Product Unit Neural Networks? 

Standard neural networks use summation units (SUs), where the net input signal to 

a unit is the weighted sum of the inputs connected to that unit. Research has shown 

that these summation unit neural networks (SUNNs) can approximate any continuous 

function to an arbitrary degree of accuracy, provided that the hidden layers contain a 

sufficient number of hidden units [Funahashi 1989, Hornik et al1989a]. However, these 

networks require a large number of summation units (SUs) when approximating com­

plex functions that involve higher order combinations of its inputs [Leerink et al1995]. 

When approximating polynomials, higher-order combinations of inputs, such as X 3 y 7, 

are often required. Networks that utilize higher-order combinations of its inputs will 

greatly reduce the number of processing units required to represent these complex 

functions [Janson et al1993]. 

Several neural network models have been developed to gain an advantage in 

using higher-order terms [Gurney 1992, Leerink et al1995, Redding et al1993]. 

Examples of these higher-order neural networks are: pi-sigma network (PSN) 

[Ghosh et al1992]' sigma-pi networks [Lee Giles 1987], second-order neural networks 

[Milenkovic et al1996] and functional link neural networks [Ghosh et al1992, Hussain 

et al1997, Zurada 1992]. An alternative network that also employs higher-order terms, 

is a product unit neural network (PUNN), where the net input is now a product 

of terms; each term consisting of an input raised to a weight [Durbin et al1989]. 

Advantages of PUNNs are increased information capacity and the ability to form 

higher-order combination of inputs. Durbin and Rumelhart determined empirically 

that the information capacity of product units PUs (as measured by their capacity 

for learning random boolean patterns) is approximately 3N, compared to 2N of a SU 

network for a single threshold logic function, where N denotes the number of inputs to 

 
 
 



3 CHAPTER 1. INTRODUCTION 

the network [Durbin et al1989]. 

The next section briefly describes the problems associated with the training of PUNNs 

using back-propagation by gradient descent. 

1.2 	 Problems with Training Product Unit Neural 

Networks using Gradient Descent 

The back-propagation algorithm, independently developed by Werbos [Werbos 1974] 

and Bryson [Bryson et al1969], provides a computationally efficient method for the 

training of multilayer neural networks. Its greatest strength is in finding non-linear 

solutions to ill-defined problems [Haykin 1994]. Unfortunately, the search space for 

PUNNs can be extremely convoluted, with numerous local minima that trap gradient 

descent [Durbin et al1989, Leerink et aI1995]. While it is possible for local minima 

to occur in SU networks, they are particularly prevalent in networks containing PUs, 

due to the effect of the exponential terms in the learning equations. Thus, while PUs 

increase a neural network's capability, they also add complications in the training pro­

cess. Although gradient descent has shown to be successful in training SUNNs, gradient 

descent fails to train PUNN s in general. The reason for its failure is discussed in more 

detail in section 3.8 on page 74. Gradient descent requires auxiliary information such 

as function derivatives, in order to calculate the minimum. The search space of PUNNs 

have an increased number of local minima, deep ravines and valleys, often surrounded 

by steep gradients that lead to huge adjustments of the weights when gradient descent 

is used, and consequent saturation. 

 
 
 



4 CHAPTER 1. INTRODUCTION 

1.3 	 Global Optimization Algorithms to Train 

PUNNs 

What is needed, is a global optimization method instead of gradient descent, which is 

a local optimizer, to allow searching for larger parts of the search space, and which has 

the ability to get out of local minima. Genetic algorithms (GA) and particle swarm 

optimization (PSO) are global optimization methods that do not require auxiliary 

information, such as function derivatives, about the function being approximated in 

order to calculate the minimum. Leapfrog optimization (LFOP), a derivative based 

global optimizer, will also be used in training PUNNs. Each optimization algorithm 

has its own set of parameters. Optimal parameters are determined for each of these 

optimization algorithms. This thesis is dedicated to the training of PUNNs using PSO, 

GA and LFOP. Architecture selection, i.e. pruning, of PUNNs is also studied and 

applied to determine near optimal neural network architectures. The variance nullity 

pruning algorithm of Engelbrecht is applied to PUNN to determine near optimal 

network architectures [Engelbrecht et al1999c, Engelbrecht 2001]. 

1.4 	 Objectives 

The main objective of this thesis is to illustrate that gradient descent fails to train 

PUNNs and to show that global optimization algorithms, such as particle swarm 

optimization , genetic algorithms and leapfrog optimization, are more successful at 

training PUNNs. 

The second objective is to determine which global optimization algorithm is more effi­

cient and robust in training PUNNs. This thesis assumes a PUNN architecture with a 

 
 
 



5 CHAPTER 1. INTRODUCTION 

bias (for an explanation of a bias, refer to section 2.7 on page 15) to the output units 

and no bias to the hidden units. Instead, an extra unit, referred to as a 'distortion 

unit', is included in the hidden layer (refer to section 3.7.3 on page 72 for an explanation 

of the distortion unit). In this case, product units compute the net input signal as: 

1+1 

net
Yj 

= II Z:ji (1.1 ) 
i=1 

instead of 

1 

netYj = II Z:ji + Z1+1 . Vj,l+1 (1.2) 
i=1 

where netYj is the net input to hidden unit Yj, I is the total number of input units, 

Zi is an input unit, Z'i is an input signal to unit Zi, Vji is the weight between input 

unit Zi and hidden unit }j. In equation (1.2), the threshold (or bias) is denoted by 

Vj,1+1 , Z1+1 is the input to the bias unit and has a value of -1. In equation (1.1), Z1+1 

cannot be viewed as the input to the bias, since it does not perform the function of a 

bias, i.e. it does not act as an oHset to the other hidden units, but rather distorts the 

activation function to more accurately fit the data. In this case, Z1 +1 is now referred to 

as the input to the 'distortion' unit, Z1+1 with value -1, clearly distinguishing it from a 

bias unit. Note, equation (1.1) does not contain a bias to the hidden units. The linear 

activation function is assumed for the hidden and output units of the PUNNs, while the 

sigmoidal activation function is assumed for the hidden and output units of the SUNNs. 

The third objective is to find the smallest architecture in training PUNNs for a 

particular function using the variance nullity pruning algorithm of Engelbrecht 

[Engelbrecht et al1999c, Engelbrecht 2001]. The thesis also compares the pruned 

architectures of PUNNs and SUNNs to determine whether there is any gain in 

architecture complexity and performance using PUs. 
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Chapter 2 

Background 

An important a~;pect of this thesis is to compare the performance of summation feed­

forward neural networks with product unit neural networks using global optimization 

algorithms . The objective is to test the hypothesis that global optimization algorithms 

are more successful in training product unit neural networks (PUNNs) than local op­

timization algorithms. In this chapter an overview of ANNs is given. Issues regarding 

training of neural networks (NNs), learning algorithms and neural network architec­

tures are addressed. Another important aspect of this thesis is the approximation of 

functions using feed-forward neural networks. It is therefore important to investigate 

the approximation capabilities of feed-forward neural networks for continuous functions 

and determine an appropriate architecture for such approximations. 

2.1 A Brief History of ANNs 

Attempts to mimic the human brain date back to work in the 1930's, 1940's and 1950's 

by Alan Turing, Warren McCullough, Walter Pitts, Donald Hebb and James von 

Neumann. Neural network simulations appear to be a recent development. However, 

this field was established before the advent of computers. The first artificial neuron was 
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9 CHAPTER 2. BACKGROUND 

produced in 1943 by the neurophysiologist Warren McCullogh and the logician Walter 

Pitts [Pitts et al1943]. These neurons were presented as conceptual components 

for circuits that could perform computational tasks. In 1957 Rosenblatt at Cornell 

University developed 'Perceptron', a hardware neural network for character recognition. 

Much of Rosenblatt's work is described in his book 'Principles of Neurodynamics' 

[Rosenblatt 1962]. One of the most significant results presented in this book, was 

the proof that a simple training procedure, i.e. the perceptron training rule, would 

converge if a solution to the problem existed. In 1959 Wid row and Hoff at Stanford 

University developed Adaline for adaptive control of noise on telephone lines. The 

1960's and 1970's period was hindered by inflated claims and criticism of early work. 

When Minsky and Papert published their book Perceptrons in 1969 [Minsky et a11969] 

in which they pointed out the deficiencies of perceptron models, most neural network 

funding was redirected and researchers left the field. Minsky and Papert showed that 

there is an interesting class of problems that single layer perceptrons cannot solve, 

and they also held out little hope for the training of multilayer systems that might 

deal successfully with some of these deficiencies. Only a few researchers continued 

their efforts, most notably Teuvo Kohonen, who was investigating nets that used 

topological features [Kohonen 1988b], Stephen Grossberg was laying the foundations 

for his Adaptive Resonance Theory (ART) [Grossberg 1987], and Kunihiko F\lkushima 

was developing the cognitron [Fukushima 1975]. 

In 1982 Hopfield, a Caltech physicist, tied together many of the ideas from previous 

research and showed that a highly interconnected network of threshold logic units 

could be analyzed by considering it to be a physical dynamic system possessing 

an 'energy' [Hopfield 1982]. A similar breakthrough occurred in connection with 

feed-forward networks, when it was shown that the 'credit assignment problem' 

(i.e. the contribution that each unit makes to the error the network has made in 

 
 
 



CHAPTER 2. BACKGROUND 10 

processing the current training vector) had an exact solution. The interest in neural 

networks re-emerged only after some important theoretical results were attained 

in the early eighties (most notably the discovery of the error back-propagation 

[Parker 1985, Rumelhart et al1986b, Werbos 1974]) and new hardware developments 

increased the processing capacities. This renewed interest is reflected in the number of 

scientists, the amounts of funding, the number of large conferences and the number of 

journals associated with neural networks. 

The next section defines the term ANN. 

2.2 What is An Artificial Neural Network? 

There is no universally accepted definition for an artificial neural network. There are 

several definitions of an ANN. Zurada defines ANNs as <physical systems which can 

acquire, store and utilize experiential knowledge' [Zurada 1992]. Aleksander defines 

neural computing as < the study of adaptable nodes which, through a process of learn­

ing from task examples, store experiental knowledge and make it available for use' 

[Aleksander et al1990]. Haykin defines ANN as <a massively parallel distributed pro­

cessor that has a natural propensity for storing experiential knowledge and making 

it available for use' [Haykin et al1992]. Fausett defines an ANN as <an information 

processing system that has certain performance characteristics, such as adaptive learn­

ing, and parallel processing of information, in common with biological neural networks' 

[Fausett 1994]. Nigrin defines an ANN <as a circuit composed of a very large number 

of simple processing elements that are neurally based. Each element operates only on 

local information. Furthermore, each element operates asynchronously, thus there is no 

overall system clock' [Nigrin 1993]. 

From these definitions we can conclude that an ANN 

 
 
 



11 CHAPTER 2. BACKGROUND 

• 	 consists of several simple processing elements called units; 

• 	 is well suited for parallel computations, since each unit operates independently of 

the other units; 

• 	 contains a high degree of interconnections between units; 

• 	 contains links between units, each with a weight (scalar value) associated with it ; 

• has adaptable weights that can be modified during training. 

2.3 Advantages of Neural Networks 

ANNs offer several advantages, including: 

• 	 Adaptive learning: A neural network is a dynamic system which has a built-in 

capability to adapt its weights to changing environments. 

• 	 Self-organization: An artificial neural network can create its own organization 

or representation of the information it receives during learning. There is little 

need for extensive characterization of the problem other than through training. 

• 	 Generalization: Neural networks are able to extrapolate to a certain extent 

from the training to previously unseen data. 

• 	 Graceful degradation: Partial destruction of a network leads to a correspond­

ing degradation of performance. However, network capabilities such as gener­

alization may be retained even with major network damage. Neural networks 

have a gradual rather than sharp drop-off in performance as conditions worsen 

[Kohonen 1988a). 
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2.4 Liluitations of Neural Networks 

Neural networks have some important limitations, namely: 

• 	 ANN s have poor explanation facilities. There are no facilities for justifying answers 

and responding to what or how questions. 

• 	 ANNs are not very good at performing symbolic computations. They cannot be 

used effectively for rule based reasoning and arithmetic operations. 

• 	The accuracy of an ANN's performance is dependent upon the quality of the train­

ing examples. It is difficult to find a complete and accurate set of training examples 

in real world problems. 

The next section justifies the use of ANNs . 

2.5 Why Artificial Neural Networks? 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers use an algorithmic approach, i.e. the computer 

follows a set of instructions to solve a problem. The computer can solve a problem 

only if the specific steps that the computer needs to follow are known. The problem 

solving of conventional computers is therefore restricted to problems that we already 

understand and know how to solve. Neural networks, on the other hand, with their 

remarkable ability to derive meaning from complicated or imprecise data, can be used 

to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. The ability of neural networks to learn by 

example, make them suitable for tasks that cannot be solved algorithmically. One of 

the distinct strengths of neural networks is their ability to generalize. The network is 

said to generalize well when it sensibly interpolates input patterns that are new to the 

 
 
 



13 CHAPTER 2. BACKGROUND 

network. Neural networks provide, in many cases, input-output mappings with good 

generalization capability. It can be said that neural networks behave as trainable, 

adaptive and even self-organizing information systems [Schalkoff 1997]. 

The following section describes the main classes of ANN applications. 

2.6 Classes of ANN Applications 

The following classes of neural network applications can be found. 

1. Pattern Classification 

Pattern classification concerns the classification of patterns into a fixed number 

of categories. The network is first trained on a set of patterns along with the 

categories to which each pattern belongs. Once the network is trained, a new 

pattern is presented to the network to be categorized. An example of a neural 

network classifier is the EEG (electroencephalogram) spike detector developed by 

Eberhart and Dobbins [Eberhart et al1990]. The EEG spike detector successfully 

identifies an EEG spike which indicates an imminent epileptic seizure in patients. 

Despite the few false alarms recorded, the performance of the network has been 

found to be significantly better than that required for practical application in 

hospitals [Eberhart et al1990]. 

2. Association or Pattern Completion 

In association each training pattern is associated with an image stored in the net­

work. Association can be subdivided into autoassociation and heteroassociation. 

In auto association a neural network is repeatedly presented with a set of patterns 

to be stored by the network. After training, a partial description of the original 

pattern is presented to the network, the task is then to retrieve the original pat­

 
 
 



14 CHAPTER 2. BACKGROUND 

tern. In heteroassociation an arbitrary set of patterns are paired with another 

arbitrary set of patterns. After training, when a partial description of the original 

pattern of the first set is presented to the network, the task is to retrieve the 

pattern paired off with the original pattern. Applications include the 'Human 

Face Detection Network' of Rowley et al [Rowley et al1996] and the NETtalk 

neural network of Sejnowski and Rosenberg that produced phonetic strings which 

specified pronunciation for English text [Sejnowski et al1987]. 

3. Approximation 

Approximation requires a neural network to approximate a non-linear function or 

time-series given a set of patterns in the form of input and desired (target) output 

pairs. Once the network is trained, the neural network is then used to calculate 

an output for patterns not used in training (i.e. the neural network interpo­

lates). An application of approximation is weather forecasting [Hsieh et al1998] 

and forecasting the behaviour of multivariate time series [Chakraborty et al1992]. 

4. Clustering 

The objective of clustering networks is to group similar patterns into groups, 

or clusters. Similarity is usually measured as the Euclidean distance between 

patterns [Kohonen 1988a]. Clustering was achieved by the Kohonen network that 

simply inspects the data for regularities , and organizes itself in such a way as to 

form an ordered description of the data [Bilbro et al1989, Kawato 1990]. Feature 

detection aims at detecting a subset of input data or features which is relevant 

for a given problem. Feature detection is usually related to the dimensionality 

red uction of data [Saund 1989]. More sophisticated processing methods can then 

be applied to the smaller dimensional spaces. Applications of feature selection 

clustering has been applied to document classification to enhance information 

retrieval [MacLeod 1990j . 
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5. Control 

There have been a number of successful applications to control systems. Ap­

plication fields range from process control, robotics, industrial manufacturing, 

aerospace applications and vehicle and automobile control [Pomerlau 1989]. The 

basic objective of control is to provide the appropriate input signal to a given 

physical process to yield its desired response. Neural networks for control were 

developed by Werbos [Werbos 1989] and Jordan et al [Jordan et al1990]. The 

term neuro-control has been coined by Werbos to refer to the class of controllers 

that involve the use of neural networks [\iVerbos 1974]. 

6. Optimization 

The objective of neural networks in optimization application is to optimize certain 

cost functions. Neural networks have successfully been applied to optimization 

problems such as job-shop scheduling [Foo et al1988]. Problems that are simpler 

but which belong to the same group of optimization tasks include scheduling 

classrooms to classes, hospital patients to beds, etc. [Zurada 1992]. 

2.7 A Typical Artificial Neural Network 

An artificial neural network (ANN) consists of interconnected artificial neurons, 

organized in a layered structure. Usually, all the neurons of a current layer are 

connected to neurons that occur at the next immediate layer. An artificial neuron 

receives a number of inputs (either from the given input pattern, or from the output 

of other neurons in a previous layer of the neural network). Each input comes via a 

connection which has a strength (or weight) associated with it. Each neuron also has 

a single threshold value (also referred to as a bias). The input to a neuron can be 

excitatory if they cause the firing of a neuron, or inhibitory if they hinder the firing 
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of a response. A more precise condition for firing is that the excitation should exceed 

the inhibition by the threshold. In mathematical terms the net input of neuron j is 

usually netj = 'L{ ZiWj'i - OJ where Zl, Z2, ... Z] are the input signals, Wjl, Wj2, .. .Wj] are 

the synaptic weights leading to neuron j, netj is the neuron's net input and OJ is the 

threshold. 

An activation function is used to determine the output signal based on a net in­

put signal. In summation unit neural networks (SUNNs) the threshold can be treated 

as any other weight, by adding an extra unit, Zl+l, whose input z]+l is -1 and whose 

weight, Wj,I+l is {)j. The net input signal for this augmented network is computed as 

netj = 'L{+l ZiWji. The activation signal, or net input, is passed through an activation 

function (also known as a transfer function) to produce the output signal of the neuron. 

The activation function, also called the squashing function, often squashes or limits 

the permissible amplitude range of the output signal to some finite value; except in 

the case of linear functions where the output is unlimited. A neural network is trained 

by adjusting the weights of the neural network and thresholds so as to minimize the 

error in its output on the training data. If the network is properly trained, it has then 

learned to model the unknown function which relates the input variables to the target 

variables , and can subsequently be used in predictions where the target is not known. 

2.8 Learning 

Neural networks, like human beings learn from examples. This feature distinguishes 

neural networks from conventional programming paradigms. In conventional computer 

programming the relationship between the output and the input must be well defined. 

In the case of neural networks, this requirement is not needed. In fact, the strength 

of neural networks lies in their ability to learn the relationship between the input 
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and the output, given a set of representative examples. One of the most significant 

attributes of a neural network is its abili ty to learn by interacting with its environment 

or with an information source. Learning or training of a neural network is normally 

accomplished through a learning rule or algorithm, whereby the weights of the network 

are incrementally adjusted so as to improve a predefined performance measure over 

time. Essentially, learning of a neural network entails presenting a training pattern 

at the input units, resulting in an actual output to be produced by the network. The 

error between the desired output and actual output is then determined. The synaptic 

weights are then subsequently adjusted so as to reduce the error between the desired 

and actual output. The entire set of training patterns is usually used in adjusting 

the weights during the training process. The training terminates when an acceptable 

training error is reached. On a definition for 'learning', Minsky noted that there are 

too many notions associated with learning to justify the term in a precise manner 

[Minsky 1961]. As stated in section 2.2, Aleksander [Aleksander et al1990] defines 

neural computing as "The study of networks of adaptable nodes which, through a 

process of learning from task examples, store experiential knowledge and make it 

available for use." 

The next section introduces a typical artificial neuron that is the basic building block 

for neural networks. 

2.9 Model of An Artificial Neuron 

A neuron is an information processing element that is fundamental to the operation of 

a neural network. Figure 2.1 represents a model of a neuron [Haykin 1994]. A neuron 

consists of three basic elements: 

1. A set of synapses or connecting links, each with its own strength or weight. 
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Figure 2.1: Model neuron using a Summation Unit 

2. 	 An adder , I:, that computes the weighted sum of the signals in the case of summa­

tion unit networks or a multiplier, TI, in the case of product unit neural networks 

that performs weighted multiplication of the signals. 

3. 	 An activation function that squashes the amplitude of the neuron to a finite range 

if a bounded activation function is used or an infinite range when an unbounded 

activation function, such as the identity function, is used. 

In figure 2.1, the input signals are denoted by Zl, Z2, Z3, ... , Zj and Wjl, Wj2, Wj3, ... , Wjj 

are the synaptic weights of neuron OJ, OJ is the output of neuron OJ, Zl, Z2, Z3, ... , Zj 

are the input units and je) is the activation function. In this model an additional 

input signal, Zl+l , fixed at -1 and synaptic weight, Wj,J+l, is added to the neuron to 

represent the threshold, or bias. This additional unit is referred to as the bias unit. 

A bias is added to the hidden and output units only. Neurons can be combined in 

different ways to construct neural networks such as feed-forward, recurrent neural 

networks, etc . 

The next section discusses the different types of network architectures. 
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2.10 Network Architectures 

There are three basic classes of network structures, namely, single-layer, multilayer and 

recurrent neural networks. 

1. Single-layer feed-forward neural networks 

A single-layer feed-forward neural network as defined by Haykin [Haykin 1994] 

consists of an input layer of units that are connected to an output layer of 

nodes. The input layer of nodes is not counted as a layer since no computation 

is performed in this layer. 

2. Multilayer feed-forward neural networks 

Refer to figure 2.3 on page 23 for an illustration of a multilayer feed-forward neural 

network with one hidden layer. A multilayer feed-forward neural network contains 

at least one or more hidden layers situated between the input and output layers. 

Neurons that occur in the hidden layer network are referred to as hidden units. 

In a feed-forward neural network, links are unidirectional, and there are no cycles. 

In a layered feed-forward neural network, each unit is usually linked to units in 

the next layer, although direct connections between the input and output layers 

are possible. There are no links between units in the same layer, and thus no com­

putational dependencies between units in the same layer. This allows the outputs 

of these units to be computed in parallel. Also, no links point backwards to a 

previous layer. The units in the input layer receive signals from the environment 

and distribute the signals to the next layer in the network. The hidden layer(s) 

enable a network to extract higher-order statistics and thus provides the network 

with a global perspective, because of the extra set of synaptic connections and 

the extra dimension of neural interactions [Churchland et al1992]. The output 
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layer provides results of the network to the environment. Each neuron in the 

network provides an output which is a weighted sum, in the case of summation 

unit networks, or a weighted product of terms in the case of product unit neural 

networks. A feed-forward neural network has no memory and the output is solely 

determined by the inputs and synaptic weights. 

3. 	 Recurrent Neural Networks (RNNs) 

A recurrent neural network contains at least one feedback loop, where the 

activations of the hidden units are fed as the network's inputs. The feedback 

loops in recurrent networks have a profound impact on the learning capability 

of the network and its performance when data exhibit temporal tendencies or 

characteristics. Temporal learning is concerned with capturing a sequence of 

patterns necessary to achieve some final outcome . . In temporal learning, the 

current response of the network is dependent on previous inputs and responses. 

Through the feedback connections, RNNs can learn temporal characteristics of 

data presented for learning, thereby exhibiting properties very similar to short 

term memory in human beings. Recurrent networks are dynamic in t.he sense 

that their state is changing continuously until an equilibrium is reached. There 

are different types of RNNs, namely, Jordan and Elman RNNs, as shown in 

figure 2.2. In the Jordan RNN, the activation values of the output units are fed 

back into the input layer through a set of extra inputs referred to as the state 

units [Jordan 1986]. There are as many state units as there are output units in 

the Jordan network. The connections between the output and state units usually 

have a fixed weight of l. Learning takes only place in the connections between 

input and hidden units as well as hidden and output units. In the Elman RNN 

a set of context units are introduced, which are extra input units representing 

activation values of the hidden units from the previous time step [Elman 1990]. 
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Thus the Elman RNN is very similar to the Jordan network except that the 

hidden units, instead of the output units, are fed back. 

Minsky and Papert also pointed out that every discrete-time recurrent net­

work can be represented by a feed-forward network with identical behaviour 

[Minsky et al1969]. The Elman and Jordan RNNs can also be combined to ex­

ploit the benefits of both RNNs. 

hidden 

hidden 
layer 

unit 

output 
layer 

layer 

output 
layer 

(a) Jordan RNN (b) Elman RNN 

Figure 2.2: Typical Recurrent Neural Networks 

Neurons can be connected to neurons in the adjacent layers in various ways. In a fully 

connected network every node in each layer is connected to every node in the adjacent 

forward layer. A network is partially connected if some of its synaptic connections 
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are missing from the network. The neurons in a feed-forward neural network (FNN) 

can also be combined to form higher-order networks. Examples of such higher-order 

networks are pi-sigma [Ghosh et al1992], sigma-pi [Lee Giles 1987] and functional link 

networks [Hussain et al1997, Pao 1989]. 

In the preceding section, the term architecture referred to classification of neural net­

works, i.e. single-layer FNNs, multilayer FNNs and RNNs. The term topology on the 

other hand, refers to: 

1. the network architecture, 

2. the type of neurons, and 

3. the connections between these neurons. 

This thesis distinguishes between two types of units, i.e. summation and product units. 

A summation unit (SU) computes the net input signal to a unit as a weighted sum, 

i.e. ~{!f ZiVji· A product unit, however, calculates the net input signal as a product 

of 'terms', where each 'term' comprises an input exponentiated to a weight value, i.e. 

n{=l z~ji. In a feed-forward network the flow of signals is in the direction of the outputs, 

with no feedback loops present. The architecture of a two-layer feed-forward network 

is illustrated in figure 2.3 where Z, Y and 0 are respectively the input, hidden and 

output layers. 

The input signals to the network is denoted by Zi (1 :s; i :s; 1) where I denotes the 

total number of input units (excluding the bias unit) to the network. The activation 

or output of a hidden unit is denoted by Yj (1 :s; j :s; J) where J denotes the number 

of hidden units (excluding the bias unit). The activation of an output unit is denoted 

by Ok (1 :s; k :s; K), where K refers to the total number of output units in the network. 

The weight between input unit Zi and hidden unit Yj is denoted by Vji, while Wkj 
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Y1 

ZI 

0 1 
0 

Ok 
0 

ZI+I 

VJ,I+l 
YJ+l 

Figure 2.3: Multilayer feed-forward Neural Network 

denotes the weight between hidden unit }j and output unit Ok. The biases for the 

hidden and output units are respectively denoted by Vj,I+1 and Wk,J+1' The biases 

in the input and hidden layers have a constant input of -1; the inputs to the bias 

units are denoted respectively by ZHI and YJ -H' The biases are trained in exactly 

the same way as the other weights. The activation of hidden unit }j is calculated as 

Yj = f(I:,{!l ZiVji), using summation units, or Yj = f(I1{=l z? + ZI+1 . Vj,HI) using 

product units (if a bias is included for PUs). 

The activation functions for the hidden units of summation unit networks should be 

non-linear, in order to derive any benefit from the multilayer architecture over a single 

layer network. Rumelhart et al have shown that everything that can be computed 

by a multilayer network, using linear activation functions, can also be computed by 

an equivalent single layer network [Rumelhart et al1986a]. The standard logistic 

activation function is assumed for the summation unit neural networks. In this thesis 

the activation functions for product unit neural networks are assumed to be linear. 

The activation of unit Ok is calculated as Ok = f(I:,f~-i YjWkj) for both the summation 

and product units. The network in figure 2.3 has only one hidden layer, but networks 
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can be constructed with any number of hidden layers. 

The next section highlights the activation functions that can be used by neural networks. 

2.11 Activation Functions 

This section introduces the different types of activation functions that can be used with 

neural networks. An activation function maps the net input signal of a neuron to an 

output signal. Usually, activation functions are used to limit the amplitude of the output 

of a neuron. Activation functions are also referred to as squashing functions because of 

the squashing or limiting effect of most activation functions. All the activations listed 

below, except the linear activation function are bounded. In this thesis the activation 

functions will be denoted by f (-). Types of activation functions that are commonly 

used are given below, where z is the net input of the unit. 

• Threshold function 

1 for z 2 0 
J(z) = { (2.1 ) 

0 for z < 0 

• 	 Signum function 


1 for z > 0 


f( z) = 0 for z = 0 (2.2) 

-1 for z < 0 

• Ramp function 

y for z 2 y 

f(z) = z for Izl < y (2.3) 

-y for z :S -y 

• Sigmoid function 

1
f(z) 	 (2.4)

1 + e-Q Z 
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where a is the slope parameter of the sigmoid function. 

• Hyperbolic tangent function 

f (z) = tanh (~) (2.5) 

• Linear activation function (or identity function) 

J(z) z (2.6) 

The threshold and sigmoid functions produce outputs in the range [0, 1]. Engelbrecht 

et al showed that scaling data is not only time-consuming but can also introduce 

inaccuracies in modelling of the data [Engelbrecht et alI995a]. Also, the maximum 

and minimum ranges must be known when scaling is performed. These values are 

difficult to obtain in incremental learning (refer to section 2.14 on page 34) systems, 

since all training pairs are not available before training. When it is desirable to have 

activation functions with output in the range -1 to +I, the activation function assumes 

an antisymmetric form with respect to the origin, i.e. f( -a) = - f(a). Engelbrecht 

et al highlighted the benefits of scaling the output to [-1,1] [Engelbrecht et al1995a]. 

The signum and hyperbolic tangent functions yield values in the range [-1 , 1]. 

Activation functions can further be classified as (a) discrete and (b) continuous acti­

vation functions. Examples of discrete activation functions are the threshold, signum 

and ramp functions. The sigmoid, hyperbolic tangent and the identity function are 

examples of continuous activation functions. Neural networks with no hidden layers 

and linear or discrete activation functions can only solve problems that are linearly 

separable [Aleksander et al1990]. A set of input vectors, Z = {Z'p : p = 1, ... , P} of 

dimension I is linearly separable if there exists a set of non-zero constants Ci, resulting 

in a hyperplane, specified below, that separates the set of input vectors into two disjoint 
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sets, 

I 

LCiZ'i = 0 (2.7) 
i=l 

where Zi is the ith coordinate of the hyperplane. 

Linear separability limits the neural network to classification problems where the sets 

of points, corresponding to input values, can be separated geometrically. Non-linear 

units have a higher representational power than ordinary linear units. Research has 

shown that a network with a single hidden layer consisting of a sufficient number 

of non-linear units can approximate any continuous function [Hornik et al1989a]. 

Neural networks could handle linearly inseparable functions with the discovery of the 

back-propagation algorithm [Werbos 1974]. Back-propagation, however, requires that 

the activation function must be continuous and differentiable to enable weight update 

calculations. 

2.12 Learning Paradigms 

This section presents a short overview of early learning paradigms. The four basic 

training or learning rules, namely error-correction, Hebbian, competitive and stochas­

tic/probabilistic learning rules are discussed in the following sections. 

2.12.1 Error-Correction Learning Rule 

The aim of the error-correction rule is to minimize a cost function based on an error 

signal. When a pattern (a vector), Zp is presented to the network's input layer, 

a corresponding output, Ok,p is produced by the network at the kth output unit, Ok. 

Usually, the actual response Ok ,p of output unit Ok is different from the desired response, 

tk,p' An error signal can now be defined, which is usually the difference between the 
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target and actual output. The error correction learning rule for a single layer network, 

assuming linear activation for the output units, is given by, 

(2.8) 

where 7] is the learning rate and I:!..Wki is the adjustment to weight, Wki, between in­

put unit Zi and output unit Ok [Widrow et al1960j. The synaptic weights are subse­

quently adjusted so that the resulting error signal is minimized. Once a cost function 

is selected, then error-correction learning can be viewed as an optimization problem. 

More precisely, the error-correction learning process can be viewed as a <search' in a 

multidimensional parameter (weight) space, which gradually optimizes a pre-specified 

objective (criterion) function [Hassoun 1995]. A criterion commonly used for the cost 

function is the mean-squared-error criterion, defined as: 

(2.9) 

where P is the total number of training patterns (or observations), K is the number of 

outputs, tk,p is the target output for the kth output unit for a specific pattern p, and Ok,p 

is the actual output generated by the kth output unit for pattern p. The error is a sum 

of P errors computed for single patterns. The fraction, ~, is a matter of convenience 

and simplifies the calculation of the derivative of the error with respect to a weight in 

back-propagation by gradient descent. 

2.12.2 Hebbian Learning 

Hebb's postulate of learning is the oldest and most famous of all learning rules, stated 

as [Rumelhart et al1986a]: 

«When unit A and unit B are simultaneously excited, increase the strength 

of the connection between them." 
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An extension to this rule to cover the positive and negative activation values is, 

"Adjust the strength of the connection between units A and B in proportion 

to the product of their simultaneous activation." 

According to Hebb's postulate, the adjustment applied to the synaptic weight Wki that 

links unit Zi with unit Ok at time t is expressed by the following function: 

(2.10) 

where F is a function of both the input and the output of unit k . The following is a 

special case of the above, 

(2 .11) 

where 1] is a positive constant that determines the rate of learning. Equation (2.11) 

is the simplest rule for a change in the synaptic weight Wki. It is sometimes referred 

to as the activity product rule [Haykin 1994]. The rule states that if the crossproduct 

of output and input is positive, then weight Wki is increased, otherwise the weight is 

decreased. It can also be proved that if the set of input patterns used in training are 

mutually orthogonal, then association can be learned by a two-layer pattern network 

using Hebbian learning. However, if the set of input patterns are not mutually or­

thogonal , interference may occur and the network may not be able to learn associations. 

The basic Hebbian learning rule in equation (2.11) is fundamentally unstable, since the 

weights reveal an unlimited growth during the learning process. Stabilization of the 

Hebbian rule is achieved by Oja's rule, assuming a single output neuron, in (2.12), 

!::::.Wi(t) = 1]. o(t) . (Z'(-t) - o(t) . w(t)) (2.12) 

In Oja's rule the negative term brings in the required stabilization of the learning law 

[Hassoun 1995]. 
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2.12.3 Competitive Learning 

In competitive learning the output units of a neural network compete against each 

other for the 'right' to represent the input data on a winner takes all basis. In a winner 

take all circuit, the output unit receiving the largest input is assigned a full value (e.g. 

1), whereas all other units are suppressed to a zero value. Therefore, in the case of 

competitive learning, using a single layer network, only a single output unit is active 

at anyone time, compared to Hebbian learning, where several output units may be 

active simultaneously. 

There are three basic elements to a competitive learning rule [Rumelhart et at 1985]. 

1. 	 A set of units that are the same except for some randomly distributed synaptic 

weights, which makes each of the units respond differently to a given set of input 

patterns. 

2. 	 A limit is imposed on the strength of each unit. 

3. 	 A mechanism that allows the units to compete for the right to respond to a given 

subset of inputs, such that only one output unit is active at a time. All the units 

that lose the competition are regarded as being inactive. 

In competitive learning, individual units learn to specialize on sets of similar patterns 

and thereby become feature detectors. In order to ensure a fair competition, the sum 

of all the weights linked to all the output nodes should be normalized. If Wki denotes 

the synaptic weight connecting input node Zi to output node Ok, then 

1 

LWki = I, for all k 	 (2.13) 
i=l 

A neuron learns by shifting synaptic weights from its inactive to active input nodes or 

neurons. If a neuron does not respond to a particular input pattern, no learning takes 
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place in that neuron. If a particular neuron wins the competition, then each input 

node of that neuron gives up some proportion of its synaptic weight, and that weight 

is then distributed equally among the active input nodes. According to the standard 

competitive learning rule, the change tJ.Wki applied to synaptic weight Wki is defined by 

_ { T}' (Zi - Wki) if neuron k wins the competition
tJ.Wki - (2.14) 

o if neuron k loses the competition 

where T} is the learning rate parameter [Zurada 1992]. The effect of the rule is to move 

the weight vector Wki of winning neuron k towards the input pattern Zi. The number of 

classes that a competitive network is capable of representing is limited to the number 

of nodes in the output layer. 

2.12.4 Stochastic Learning 

Stochastic learning is characterized by an energy function E. In the case of simulated 

annealing, the energy function is defined as E(t) = ~r:= lEk = ~:=l(tp,k(t) - Op,k(t))2. 

The stochastic learning procedure consists of the following steps [Rojas 1996]: 

1. 	 The output value of a hidden layer neuron is changed randomly. 

2. 	 The change in energy is evaluated, i.e tJ.E(t + 1) = E(t + 1) - E(t). If the en­

ergy is lower than the energy of the previous state, then the change is accepted, 

meaning that the current configuration is accepted, otherwise the change is ac­

cepted according to a predefined probability distribution. In the case of simulated 

annealing the change is accepted with a certain probability, given by P , 

-(Et+ l-Etl)
P 	= e( 

KT (2.15) 

where E t is the energy at time t, T denotes the temperature and K is the Boltz­

mann constant. 
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3. 	 Applying the above will eventually result in the network becoming stable, i.e. the 

network will converge. 

4. 	 Steps 1 to 3 are repeated for each input-target pair in the data set. The output 

is used to statistically adjust the weights. 

5. 	 Steps 1 to 4 are repeated until the network performance is adequate as defined by 

an acceptance criterion. Simulated annealing is terminated when the acceptance 

ratio drops below a certain preset value, or when the temperature reaches zero. 

Also, for simulated annealing a cooling schedule defines the rate at which T is 

reduced , and hence the probability of accepting a new weight vector with a higher 

energy than current. The most common cooling law uses a geometric decrement 

function first proposed by Kirkpatrick et al [Kirkpatrick et al1983]: 

Tk 	= a· Tk- 1 (2.16) 

where a is a constant usually chosen in the range (0.8, l.0). 

The ability of these networks to probabilistically accept higher energy states, despite 

poorer performance as reflected by the increase in energy, allows these networks to 

escape local energy minima in favour of a deeper energy minimum. The Boltzmann 

machine was the first neural network to employ stochastic learning [Ackley et al1985]. 

This technique was also applied in simulated annealing where a temperature param­

eter slowly decreases the number of probabilistically accepted higher energy states 

[Kirkpatrick et al1983j. 

The following section discusses the three classes of learning paradigms. 
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2.13 Learning Paradigms 

There are basically three learning paradigms, namely supervised, unsupervised and 

reinforcement learning. These paradigms are discussed in this section. 

2.13.1 Supervised Learning 

In supervised learning, a supervisor (or teacher) provides the network with an input 

pattern and the associated target, or desired response. The difference between the actual 

output of the network and the target output serves as an error measure and is used in 

correcting synaptic weights. The weights are adjusted gradually, by updating them at 

each step of the learning process so that the error between the network's output and 

corresponding desired output is reduced. This adjustment is carried out iteratively in a 

step-by-step fashion with the aim of eventually making the neural network emulate the 

teacher. Since adjustable weights are assumed, the teacher may implement a reward­

and-punishment scheme to adapt the network's weights [Zurada 1992]. This type of 

learning is also known as reinforcement learning. Supervised learning rewards accurate 

classifications or associations and punishes those that yield inaccurate responses. The 

reward or punishment is based on the teacher's estimate of the negative error gradient 

direction. An example of supervised learning is error-correction learning, of which 

gradient-descent by back-propagation is an example. 

2.13.2 Unsupervised Learning 

Unsupervised learning, also referred to as self-organization, requires no target or desired 

outputs and relies only upon local information during the entire learning process. Error 

information cannot be used to improve network behaviour, since the desired response is 

not known. \Vith no information being available as to the correctness or incorrectness of 

responses , learning must somehow be accomplished based on observations of responses 
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to inputs that the neural network has little or no knowledge about. The task of un­

supervised learning is to learn to group together patterns that are similar of a given 

training set. In this mode of learning, the network must discover for itself any possi­

bly existing patterns, regularities, separating properties, etc. [Kohonen 1988b]. While 

discovering these, the network undergoes change of its parameters, which is referred to 

as self-organization. Examples of unsupervised learning are Kohonen's self-organizing 

feature maps and Hebbian learning [Kohonen 1988b] . 

2.13.3 Reinforcement Learning 

Reinforcement learning is similar to error correction learning in that weights are 

reinforced for properly performed actions and punished for poorly performed actions. 

The difference between the two types of learning is that error correction learning 

utilizes more specific error information by using the error values at each output unit, 

while reinforcement learning uses non specific error information to determine the 

performance of the network. In error correction learning an entire vector of values is 

used for error correction, whereas only one value is used to describe the output layer's 

performance during reinforcement learning. This form of learning is ideal in areas such 

as prediction and control where specific error information is not available, but overall 

performance is [Barto 1992]. 

This thesis concentrates on supervised learning. 

2.14 Modes of Learning 

Mode of learning refers to the type of weight adjustment implemented during training. 

Weights can be updated in two ways, namely batch and on-line modes. 
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• Batch learning 

In batch, or off-line learning, weight changes are done only after the entire training 

set has been presented to the network. Weight changes for each presented pattern 

are therefor accumulated and updated after each epoch. An epoch is one complete 

presentation of the entire training set during the training process. In off-line 

learning, once the network has been trained and enters recall mode (i.e. when 

the network is in operation) the weights are fixed and not modified at all. All the 

patterns must be resident for training in off-line training systems with the result 

that new patterns cannot automatically be incorporated into the system as they 

occur. To include new training patterns, it must be added to the entire training 

set and the network must be re-trained. Off-line training provides a more accurate 

estimate of the gradient vector even though it requires more storage space than 

on-line training [Haykin 1994] . 

• On-line learning 

In on-line, or incremental learning the weights are adjusted after each pattern is 

presented to the network. Once the network has been trained and enters recall 

mode, the weights are fixed and not modified at all. The advantage of on-line 

learning is that it requires less storage space than batch training. 

This thesis assumes on-line learning. 

The next section discusses the different performance measures used in training neural 

networks. 
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2.15 Performance Measures 

This section discusses the various training errors that are used in training neural net­

works. All supervised training algorithms involve the reduction of an error value. When 

weights are adjusted in a single training step, the error to be reduced is usually com­

puted for a single pattern presented at the input layer. However, the prediction error of 

the neural network must be computed using the entire set of training patterns in order 

to assess the quality and success of the training process [Zurada 1992]. 

2.15.1 True Error versus Empirical Error 

During training of a NN a finite set of input-target pairs D = {dp = (~,~) I p = 

I, ... , P}, sampled from a stationary density O(D), is used where Zi,p is the value of 

input unit Zi and tk,p is the target value of output unit Ok for pattern p. The target 

can be expressed as a function of the input vector, i.e. 

(2.17) 

where p,(i) is the unknown function approximated by the network. The objective of 

learning is then to approximate the unknown function using the information contained 

in the finite data set D. Since prior knowledge about O(D) is usually not known, a 

non-parametric regression approach is used by the NN learner to search through its 

hypothesis space 7-{ for a function FNN(D, W) which gives a good estimation of the 

unknown function p,(Z) , where FNN(D, W) E 7-{ . In the case of multilayer NNs, the 

hypothesis space consists of all functions realizable from the given network architecture 

as described by the weight vector W. 

The function FNN : RI RI( is found which minimizes the empirical error, ---t 

(2.18) 
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where PT is the total number of training patterns. Hopefully, a small empirical error 

will also yield a small true error, defined as 

(2.19) 


The empirical error in equation (2.18) is usually referred to as the objective function. 

Prediction errors are mainly defined as: 

• Sum-squared-error (SSE) 

The sum-squared-error is computed over the entire training cycle and is expressed 

as a quadratic error, 

(2.20) 


where P is the total number of training patterns (or observations), K is the 

number of outputs, tk ,p is the target output for the kth output unit for a specific 

pattern p, and Ok,p is the actual output generated by the kth output unit for 

pattern p. The error above reflects the accuracy of the neural network mapping 

after a number of training cycles have been completed. The SSE is not very 

useful when comparing networks with different numbers of training patterns and 

having a different number of output units. If a large training set is used to train 

different networks that contain the same number of output units, a large SSE will 

be produced due to the large number of terms in the summation, while a smaller 

training set will produce a smaller SSE. Similarly, networks with a large number 

of output units trained using the same training set would usually also produce 

large SSE errors . 

• Root-mean-squared error (RMS) 

(2.21) 
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The value has the sense of a root-mean squared normalized error, and is more 

descriptive than, ESSE, when comparing the outcome of the training of different 

neural networks among each other [Zurada 1992] . 

• Mean-squared-error (MSE) 

(2.22) 

A more adequate error measure is given by the root-mean-squared error and the 

mean-squared-error, since they have no bias towards networks with fewer output units, 

or networks trained on fewer patterns. 

The following section discusses the minimum number of hidden layers that are required 

to approximate continuous functions using feed-forward neural networks. 

2.16 	 Approximation Capabilities of Feed-Forward 

Neural Networks 

Cybenko proved that a feed-forward neural network with 1 hidden layer and a sufficient 

number of hidden units, of the sigmoidal activation type, and a single linear output 

unit is capable of approximating any continuous function, {f : Rn ---+ R} to any desired 

accuracy [Cybenko 1969]. Rigorous mathematical proofs for the universality of feed-

forward layered neural networks employing continuous sigmoid activation functions as 

well as other more general activation functions were also given independently by F\.l­

nahashi [Funahashi 1989] and Hornik et al [Hornik et al1989b]. The universality of 

single-hidden-layer nets with units having non-sigmoidal activation functions was for­

mally proved by Stinchcombe and White [Stinchcombe et al 1989]. Baldi showed that a 

large class of continuous multivariate functions can be approximated by a weighted sum 

 
 
 



38 CHAPTER 2. BACKGROUND 

of bell-shaped functions, referred to as multivariate Bernstein polynomials [Baldi 1991]. 

Baldi also proved that a single-hidden-layer network with bell shaped activation func­

tions in the hidden layer and a single linear output unit is a possible approximator of 

functions f : Rn -> R. Similarly, Hornik proved that a sufficient condition for universal 

approximation can be obtained by using continuous) bounded) and non-constant hidden 

unit activation functions [Hornik et al1989b]. Li et at proved that higher-order neural 

networks can approximate any continuous function on a compact set with an arbitrary 

degree of accuracy, provided that the activation function belongs to the complex do­

main [Li et al1996]. A single-hidden-layer neural network would thus be adequate to 

approximate the continuous functions in this thesis, provided that a sufficient number 

of hidden units are included. 

2.16.1 Generalization 

The objective of back-propagation is to train a network, using as many patterns as 

possible, that will subsequently produce correct (or nearly correct) output for input 

patterns that were not presented to the network during training. For a given input­

target pair, (,;" t~), the output o~, produced by the trained network when presented 

with z~ as input, is correct if lit;, - opll = 0, or nearly correct if lit;, - opll ::; E, where 

E > 0 is an arbitrary small number. A network that does achieve the preceding ob­

jective, is said to generalize well. Although enough information is crucial to efFective 

learning, too large training set sizes may also be of disadvantage to generalization per­

formance and training time [Engelbrecht et al1999d, Lange et al1996, Zhang 1994]. 

The learning process may be visualized as a "curvefitting" problem, where the network 

itself may be considered as a nonlinear input-desired-output mapping [Haykin 1994]. 

This viewpoint allows generalization of neural networks to be looked at as the efFect 

of a good nonlinear interpolation of the input data [Wieland et al1987]. The network 
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performs useful interpolation simply because multilayer perceptrons with continuous 

activation functions lead to output functions that are also continuous [Haykin 1994]. A 

neural network that generalizes well will produce a correct input-output mapping even 

in cases where the input is slightly different from the patterns of the training set. A 

network is said to be overtrained if too many weights were used in training the network, 

resulting in the network to accurately memorize the training data, but not generalizing 

well on similar input-output patterns. Generalization is influenced by three factors: 

1. 	 The size and relevance of the training set. 

2. 	 The architecture of the network. 

3. 	 The complexity of the problem to be solved. 

Hush and Horne viewed the problem of generalization from two different perspectives 

regarding the first two factors [Hush et at 1993], 

• 	 by fixing the architecture of the network and then to determine the size of the 

training set needed for good generalization, or 

• 	 by fixing the size of the training set and then determine the best architecture that 

results in good generalization. 

2.17 Architecture Selection 

One of the most important problems encountered in the practical application of 

neural networks is to find a suitable, or ideally minimal, neural network topology 

that accurately maps the true function described by the training data. An unsuitable 

topology increases the training time or even causes non-convergence, and is likely to 

decrease the generalization capability of a network [Ghosh et at 1994]. An oversized 

network (too many training units) can lead to overfitting, while a network with too few 
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training units can lead to underfitting [Baum et al1989, Le Cun 1989]. Overfitting 

occurs when the network (memorizes' the training patterns, including all of their 

peculiarities resulting in a network that does not generalize well. In both over and 

underfitting the network fails to approximate the true mapping between the inputs 

and desired outputs. Architecture selection has to reduce network complexity while 

maintaining good generalization. The objective of training is that the network should 

only learn the general properties of the examples. 

Architecture selection approaches are grouped into the following four classes. 

1. 	 Brute Force Pruning 

Successively smaller networks are trained until the smallest network with the 

best generalization is found. This approach is time-consuming and prohibitive 

for large networks, since the search space explodes as the weights are increased 

[Moody et al1996]. 

2. 	 Network Growing 

With network growing, a small network configuration is used initially, and new 

neurons are added only when the performance is unsatisfactory. Network grow­

ing algorithms start training with a small network and incrementally add hid­

den units during training when the network is trapped in a local minimum 

[Hirose et al1991, Kwok et al1995, Zhang et al1997]. This process of adding 

units is stopped when a satisfactory performance of the network is attained. Ex­

amples of the network growing approach are the cascade-correlation learning ar­

chitecture developed by Fahlman and Lebiere [Fahlman et al 1990], the upstart 

algorithm of Frean [Frean 1990] and the pocket algorithm developed by Gallant 

[Gallant 1986]. 
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3. Network Pruning 

With network pruning, training commences with an oversized network that yields 

an adequate performance for the problem under consideration, but possibly 

overfits the training data. The network is pruned by removing redundant or 

excess parameters, i.e. weights, hidden and input units, in a selective and orderly 

process to produce smaller networks [Le Cun et al1990, Sietsma et al1988] . 

Small networks are usually faster and generalize better than large networks 

[Reed 1994]. The aim of pruning is therefor to solve the problem of overfit­

ting and to reduce the computational cost of training and using the network 

[Le Cun et al1990j. The various pruning algorithms use differen t criteria to 

identify irrelevant parameters that must be removed. The decision to prune 

a network parameter is based on some measure of parameter relevance or 

significance. A relevance is computed for each parameter and a pruning heuristic 

is used to decide when a parameter is pruned or not. 

Optimal Brain Damage (OBD), developed by Le Cun et al [Le Cun et al1990], 

uses the criterion of minimal increase in training error for weight elimination. 

OBD can only prune network weights. The goal of OBD is to find a set of 

weights that, when deleted, would cause the least increase in the training error. 

Le Cun et al defined the saliency of a parameter as the change in the error caused 

by deleting that set of weights. A strategy was employed to delete weights with 

low saliency [Le Cun et al1990j. The saliency when the weight vector, W, is 

perturbed is computed as follows, 

8E = 2:g 8w + ~2:.h8w2 + ~2:h. ·8w8w· + O(118WI1 2 
) (2.23)

'-'2 2 2 2 2 22 2 2 2,J 2 J 

where the 8Wi's are the components of 8vll, gi are the components of the gradient 

of E with respect to vll, i.e. g., = g.! and the hij are the elements of the Hessian 
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matrix (H). Second order derivatives of the error with respect to the weights, which 

are computationally complex due to t he size of the Hessian matrix (H), where each 

hij = a!:!j' are required for the computation of the saliency. In OBD, pruning 

is done on a well trained network, hence the first term in equation (2.23) will be 

approximately zero, since E is at a minimum. Also, for small perturbations of 

the weights the last term will be negligible. For computational simplicity, OBD 

assumes that the off-diagonal elements of the large Hessian matrix are zero; thus 

the third term evaluates to zero. Equation (2.23) then simplifies to, 

-E-h-·tSw (2.24)tSE ~ 2 
1 

,n , 
2 

An efficient way of evaluating the diagonal second order derivatives hi" was derived 

using a fast back-propagation method. The saliency of weight Wi is then, 

(2.25 ) 

A drawback of OBD is that it does only prune network weights and not units. 

However, if all the weights leading to, or emanating from a unit are pruned, that 

unit can be pruned also. 

Optimal Cell Damage (OCD) was developed to extend OBD to allow pruning of 

input and hidden units [Cibas et al1996]. 

Hassibi and Stork have discovered that Hessian matrices, for the problems that 

they considered, were all strongly non-diagonal, resulting in OBD to eliminate 

the wrong weights [Hassibi et al1994]. Optical Brain Surgeon (OBS) was 

developed by Hassibi and Stork as an extension of OBD to remove the restrictive 

assumption about the (diagonal) form of the Hessian. The typical slow retraining 
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by back-propagation of the network after pruning required by OBD was also not 

required in OBS, since OBS not only removed the irrelevant weights, but also 

adjusted the remaining weights automatically to minimize the error. OBS, like 

OBD prune network weights, but the same technique can be applied to prune 

network units. Disadvantages of OBS are, (a) OBS is computational intensive 

due to the calculation of the large Hessian matrix and (b) it also requires large 

storage space for intermediate results. 

Skeletonization, developed by Mozer and Smolensky, defined a measure of the 

relevance of a unit as the error when the unit is removed from the network 

minus the error when the unit is left in the network [Mozer et al1989]. The 

least relevant units can then be removed to construct a skeleton version of the 

network. The usual sum of squared errors was used for training, however, since 

the quadratic error provided a poor estimate of relevance if the output pattern is 

close to the target, a linear error function, i.e. E = ~Itk,p - ok,pl, was used to 

measure relevance. Skeletonization pruned network units only, but it can also be 

applied to prune network synaptic weights [Mozer et al1989]. 

Zurada et al developed a sensitivity analysis tool which can be applied to a trained 

neural network in order to automatically identify all input parameters which have 

a significant influence on anyone of the possible outcomes [Zurada et al1997]. 

Sensitivity analysis thus provides a tool to automatically identify all relevant 

input parameters from a set of potential parameters. The irrelevant parameters 

can then be pruned using the significance measures obtained from the sensitivity 

analysis tool. 
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Engelbrecht et al developed a pruning algorithm where the sensitivity of 

the output of the network to small changes to the parameters is used to 

identify irrelevant parameters [Engelbrecht et al1999b, Engelbrecht 2001], 

compared to OBD where the sensitivity of the objective function is used. 

Engelbrecht's algorithm prunes both input and hidden units, and can be 

adapted to prune weights also. Engelbrecht also developed a computationally 

efficient pruning heuristic based on variance analysis of sensitivity information 

[Engelbrecht et al1999c, Engelbrecht 2001j. This algorithm utilizes first-order 

derivatives, which are already calculated during training. Thus Engelbrecht's 

algorithm is not as computational intensive as OBD and OBS. The only assump­

tions are that the network must be well trained and that the activation function 

must at least be once differentiable. 

4. 	 Complexity Regularization 

In regularization a penalty term is added to the objective function to penalize all 

the weights. This augmented function then serves as the objective function to 

be minimized [Poggio et al1990, VVeigend et al1991j. The objective function is 

expressed as 

(2.26) 

where ~T is the standard performance measure and ~c is the complexity term 

[Cirosi et al1995, Shittenkopf et al1997, Weigend et al1991]. The regulariza­

tion parameter ,\ controls the influence of the penalty term. If,\ is zero, then 

the penalty term will have no effect. A too large ,\ will drive all weights to zero. 

Regularization requires a delicate balance between the normal error term and the 

complexity term. In complexity regularization the redundant synaptic weights 

are forced to take on values close to zero, while permitting other weights to retain 
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their relatively large values. This improves generalization of the resulting net­

work. Examples of regularization are weight-decay [Hinton 1987] and the weight­

elimination procedures [Weigend et al1991]. A disadvantage of regularization is 

that the complexity terms tend to create additional local minima, thus increasing 

the possibility of converging to bad local minima [Hanson et al1989]. Training 

time is also increased due to the extra calculations required during updating of 

the weights. 

2.18 Back-propagation 

Back-propagation, also referred to as backprop, is probably the most widely applied 

neural network learning algorithm. Backprop's popularity is related to its ability to 

deal with complex multi-dimensional mappings. The feed-forward, back-propagation 

architecture was discovered independently in the early 1970's by Werbos and Bryson 

[Bryson et al1969, Werbos 1974]. It was re-discovered and popularized by Rumelhart 

in the 1980's [Rumelhart et al1986b]. A generalization of the back-propagation 

algorithm was derived by Parker in 1985 [Parker 1985]. Its greatest strength is in 

finding non-linear solutions to ill-defined problems [Haykin 1994] . Although the 

back-propagation algorithm did not provide a solution for all solvable problems it has 

put to rest the pessimism about learning in multilayer networks that may have been 

inferred from the book by Minsky and Papert [Minsky et al1969]. Back-propagation 

provides a computationally efficient method for changing the weights in a feed-forward 

network, with differentiable activation function units, to learn a training set of input 

and desired-output examples. Back-propagation multilayer neural nets have been 

applied successfully to solve some difficult and diverse problems such as speech 

recognition [Cohen et al1993], handwritten character recognition [Guyon 1990], 

steering of an autonomous vehicle [Pomerlau 1989], medical diagnosis of heart attacks 
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[Harrison et al1991]' radar target detection and classification [Haykin et al1992]' and 

many more. 

The next section discusses the back-propagation algorithm. 

2.18.1 Overview of Back-propagation 

The discussion of back-propagation assumes that the multilayer network in figure 2.3 on 

page 23, consisting of an input, a hidden and an output layer, is fully connected, which 

means that a neuron in the second or third layer of the network is connected to all 

neurons in the previous layer. Back-propagation uses gradient descent as optimization 

algorithm. The process of back-propagation consists of two distinct phases, namely, (a) 

the forward phase and (b) the backward propagation phase . 

• 	 Phase 1: Forward Phase 

During the forward phase, a pattern, p, presented at the input layer of the network 

results in signals to be propagated through to the hidden units . An activation 

signal is computed for each hidden unit and then propagated through to the 

next layer, which is either another hidden layer or the output layer. Eventually, 

the activation of the output units are calculated. The output layer provides the 

response of the network for a given input pattern, p. The actual output for pattern 

p at output unit Ok is denoted by Ok,p and the desired output of Ok is denoted by 

tk,p' The error signal for each output unit, Ok, for a given pattern, p, is computed 

as the difference between the desired and the actual output, i.e. tk,p - Ol." p' 

• 	 Phase 2: Backward Propagation Phase 

In the backward pass, which starts at the output layer, the error computed in the 

forward pass is propagated backwards through the network, layer by layer, and 

the (j, i.e. the local error or gradient, for each neuron is computed recursively. For 
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a neuron in the output layer, the local error is simply equal to the error signal 

of this neuron, tk,p - Ok,p, multiplied by the first derivative of the output of this 

neuron with respect to the neuron's net input. For a neuron in the hidden layer, 

the local error equals the product of the associated derivative f' (netyJ and the 

weighted sum of the error signals (i.e. 8's) computed for the neurons in the output 

layer that are connected to neuron Yj. The objective of the learning process is to 

adjust the weights of the network so as to minimize the error, E = ~:~l Ep and 

Ep = ~ ~{~l (tk,p - Ok,p)2, where p refers to a specific pattern, and k refers to the 

kth component of the output vector. For notational convenience, the subscript p 

is dropped from subsequent equations. The adjustment of weights are computed 

as follows, 

8E 
~V " -'1]- (2.27)Jt 8vJt 

8E 
~Wkj = -'1]-- (2.28)

8W kj 

where 'I] is a constant that determines the rate of learning, Vji is the weight 

between input unit Zi and hidden unit Yj and Wkj is the weight between hidden 

unit Yj and output unit Ok. 

The learning rate has a profound impact on the convergence of the back-

propagation algorithm, as is discussed in the following section. 

The weights can be updated using on-line or off-line modes of learning. In the 

on-line or incremental update mode the weights are updated after the presentat ion 

of a single pattern to the network. In the off-line or batch mode, weight updating 

is performed after all the training examples that constitute an epoch have been 
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presented to the network. Finnofi' showed that for "very small" learning rates, on-line 

back-propagation approaches batch back-propagation, producing essentially the same 

results [Finnofi' 1993aj. 

The on-line mode is preferred over the batch mode for the following two reasons: 

1. 	 On-line training requires less storage, and 

2. 	 With on-line training, the patterns are presented in a random manner, thus mak­

ing the search in weight space stochastic in nature, which in turn makes it less 

likely for back-propagation to be trapped in a local minimum. 

2.18.2 The Effect of the Learning Rate 

The efi'ectiveness and convergence of back-propagation training depend significantly 

on the learning rate. A good initial learning rate can speed up the training of a neural 

network. A small learning rate will result in slow convergence due to the large number 

of update steps required to reach a local minimum. Thus, the smaller the learning rate, 

the smaller will the changes to the synaptic weights in the network be from one iteration 

to the next. If the learning rate parameter is too large, the resulting large changes in 

the weights cause the network to produce oscillations between relatively poor solutions, 

or it may jump over the global minimum and end in a weaker local minimum. It is 

desirable to have large steps when the search point is far from a minimum, which are 

decreased as the search approaches a minimum. For small constant learning rates there 

is a nonneglible stochastic element in the training process that allows the search to 

escape local minima with shallow basins of attraction [Hassoun 1995]. The danger of 

a learning rate that is too small may still cause the search to be trapped in local minima. 
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Many heuristics have been proposed so as to adapt the learning rate automatically. 

Sutton presented a method that increases or decreases the learning rate for each weight 

Wi according to the number of sign changes observed in the associated partial deri vati ve 

~! [Sutton 1986]. Franzini investigated a technique that heuristically adjusts the 

learning rate, increasing it whenever \1E(t) is close to \1 E(t - 1) and decreasing it 

otherwise [Franzini 1987]. Chan and Fallside proposed an adaptation rule for the 

learning rate that is based on the cosine of the angle between the gradient vectors 

\1E(t) - \1E(t - 1) [Chan et al1987]. Silva and Almeida used a method where the 

learning rate parameter for a given weight Wi is multiplied by factor a, where a > 1, 

if a:~:) and aE~:~l) have the same sign; if the partial derivatives have different signs, 

then the learning rate parameter is multiplied by b, where 0 < b < 1 [Silva et al1990]. 

The disadvantage of Silva and Almeida's method is that it introduced two extra 

parameters. Moreira also employed adaptive learning rates and showed that the 

adaptive learning rates can compensate for a bad initial value [Moreira et al1995]. 

Haffner et al propose a learning rate 77 = e-4.Zog (s)+c for a sigmoid activation function 

of the form f(neti) = l+e 
s 

neti. Unfortunately, they do not compare their approach 

to others, neither give details (the constant c is not precisely given) [Haffner et al 1988]. 

The local minima problem can be eased by adding noise to the weights 

[Von Lehman et al1988] or by adding noise to the input patterns [Sietsma et al1988]. 

Convergence in back-propagation can also be increased by using a momentum term, 

which is discussed in the following section. 

2.18.3 The Effect of Momentum on Back-propagation 

A momentum term is used to stabilize the weight change by making nonradical re­

visions using a combination of the gradient decreasing term with a fraction of the 
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previous weight change. A momentum term was first introduced by Rumelhart et at 

[Rumelhart et at 1986b] , where weight changes are calculated as 

where the momentum constant, a, is restricted to the range 0 :S a < 1. The effect of 

a on 6Vj 'i (t) in equation (2.29) is described below: 

• 	 When ex is zero, the back-propagation algorithm operates without momentum. 

• 	When tV~i has the same algebraic sign on consecutive iterations, then the ad­

justment 6Vji grows in magnitude, and the weight is adjusted by a large amount. 

Thus, the inclusion of the momentum term tends to accelerate descent in steady 

downhill directions, instead of fluctuating with every change in the sign of the 

associated partial derivative, tV~i' 

• 	 When tv~i has opposite algebraic signs on consecutive iterations, then the ad­

justment 6Vji shrinks in magnitude, resulting in the weight being adjusted by a 

small amount. Thus, the effect of the momentum term has a stabilizing effect in 

directions that oscillate in sign. 

Adaptive momentum rates may also be employed. Fahlman proposed, and extensively 

simulated, a heuristic variation of backprop, called quickprop, that employs a dynamic 

momentum rate given by [Fahlman 1989] : 

BE 

a(t) = Bw;(t) 
BE BE 

BWi(t-l) + OWi(t) 

(2.30) 

With this adaptive a(t) substituted in equation (2.29), if the current slope is per­

sistently smaller than the previous one but has the same sign, then a(t) is positive, 

and the weight change will accelerate. Thus the acceleration rate is determined by 

magnitude of successive differences between slope values. If the current slope is in the 
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opposi te direction from the previous one, it signals that the weights are crossing over 

a minimum. In this case a(t) has a negative sign, and the weight change starts to 

decelerate. 

The momentum term may also have the benefit of preventing the learning process 

from terminating in a shallow local minimum on the error surface [Haykin 1994]. The 

net effect of momentum is that of traversing flat error surfaces quickly, while moving 

slower when the surface becomes irregular. 

The next section discusses the on-line implementation of back-propagation applied to 

SUNN. 

2.18.4 On-line Implementation of Back-propagation 

1. 	 Initialization 

Choose a reasonable network configuration and set all weights including biases to 


small random numbers. 


For each pattern in the set, perform processes listed in 2 and 3 below. 


2. 	Forward Phase 

The input vector Z, is presented to the input layer of the network, and the target 

vector, ~ to the output layer of the network. The activation values are then 

computed for the hidden and output units, respectively. The activation value for 

a summation hidden neuron is calculated as, 

1+1 

fC'£Vji Z',) 	 (2.31) 
i=l 
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while the activation value for the kth neuron of the output layer is computed as, 

J+1 

Ok = fCLJ WkjYj) (2.32) 
j=l 

The error signal, i.e. the difference between the desired response tk and the 

networks output Ok, is subsequently computed: 

(2.33) 

3. Backward propagation phase 

The local gradients (or errors) of the network, i.e. o's, are computed by proceeding 

backward layer-by-layer. For a neuron in the outer layer, OOk is computed using, 

(2.34) 

For a neuron in the hidden layer, Oyj is computed using, 

K 

0Yi = f'(net yj )' LOOk' Wkj 	 (2.35) 
k=l 

Subsequently, the weights in the output layer are adjusted with, 

(2.36) 

and the weights in the hidden layer are adjusted with, 

(2.37) 

4. 	 Iteration 

Repeat the process listed in 2 to 4 by presenting all the patterns in the training 

set repetitively until the weights of the network stabilize their values and the 

average error computed over the entire training set is acceptable. 

The next section discusses the stopping criteria for the back-propagation algorithm. 
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2.18.5 Terminating criteria 

In general, it cannot be shown that the back-propagation algorithm converges, nor are 


there well defined criteria for stopping its operation. However, reasonable criteria do 


exist, each with its own practical merit, which may be used to teminate the back­


propagation algorithm [Haykin 1994]. 


The back-propagation algorithm is considered to have converged, when any of the fol­


lowing becomes true: 


1. 	 When the Euclidean norm of the gradient vector reaches a sufficiently small gra­

dient threshold [Kramer et al1989]. 

2. 	 When the absolute rate of change in the average squared error per epoch is suffi­

ciently small. 

3. 	 If the maximum value of the average squared error on the test set is equal to or 

less than a sufficiently small threshold. 

4. 	 When the generalization performance, tested after each learning iteration, is ad­

equate, or when it is clear that the generalization performance has peaked. 

5. 	 When the network starts to overfit, i.e. when 

~v 	> ~v + 6~v (2.38) 

where ~v is the current error on the validation set and ~v is the average error on 

the validation set over the previous iterations and 6~v is the standard deviation 

in validation error. 

2.18.6 Initialization 

The first step in the back-propagation algorithm is the initialization of the synaptic 

weights. Owing to its gradient-descent nature, back-propagation is very sensitive 
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to initial conditions. If the choice of the initial weight vector is located within the 

attraction basin of a strong local minima attractor, convergence of back-propagation 

will be fast. On the other hand, back-propagation converges very slowly if the initial 

weights start the search in a relati vely fiat region of the error surface. 

A good choice for the initial weights can be of a tremendous help in a successful 

network design. The random weight initialization method is often preferred for its 

simplicity and ability to produce multiple solutions, as the weights may, due to their 

initial randomness, converge to various attractors [Kolen et al1990]. In practice 

all the weights are set to random numbers that are uniformly distributed inside 

a small range of values [Rumelhart et al1986b]. Rumelhart, Hinton and Williams 

discovered that if all weights start out with equal values, where the solution requires 

that unequal weights be developed, the network does not learn [Rumelhart et al1986b]. 

Premature saturation occurs when the error value remains almost constant for some 

period of time during the learning process. This point in the error surface cannot 

be considered as a local minimum, because the squared error continues to decrease 

on subsequent iterations. Premature saturation corresponds to a saddle point in 

the error surface. Large weights tend to prematurely saturate units in a network 

and render them insensitive to the learning process [I-lush et al1991, Lee et al1991]. 

Wessels and Barnard describe two initialization methods [Wessels et al1992] . The 

first method sets the initial weight range to a value which assumes that the output 

of the network and the target patterns have the same variance. The second method 

puts equally distributed decision boundaries in the input space which produces initial 

weights for the first layer of connections. The weights of the second layer are set to 

1.0. A comparison of generalization on both methods was done, on three sets of data. 

\i\Tessels and Barnard found that the second method outperformed the first in terms 
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of generalization. However, convergence speeds were not compared [Wessels et al1992]. 

2.19 Conclusion 

This chapter provided an overview of summation unit neural networks and gradient de­

scent applied to SUNNs (the so-called back-propagation networks). Various network 

architectures , learning paradigms, learning rules and modes of learning were discussed. 

The back-propagation neural network which uses gradient descent was introduced and 

explained. The effect of weight initialization, momentum and the learning rate on 

convergence of back-propagation was addressed in this chapter. The next chapter dis­

cusses higher-order neural networks, where the training of product unit neural networks 

is discussed in detail. 

 
 
 



Chapter 3 

Higher-Order Neural Networks 

Higher-order neural networks are networks that utilize higher combinations of its inputs. 

A goal of this thesis is to train PUNNs, which are examples of higher-order neural 

networks. In this context, this section provides an overview of higher-order neural 

networks. This chapter discusses four types of higher-order neural networks and the 

problems associated with the training of product unit neural networks specifically. 

3.1 Sigma-Pi Networks 

Hidden units of a sigma-pi neural network calculate a product (or conjunct) of the inputs 

[Lee Giles 1987, Maxwell et al1986]. In sigma-pi neural networks a weight is applied, 

not only to each input, but also to the second and possibly higher-order products or 

conjuncts of the inputs. The connections in sigma-pi neural networks allow one unit to 

gate another: Thus, if one unit of a multiplicative pair of units is zero, then the other 

member can have no effect on the output. On the other hand, if one unit of a pair has a 

value 1, the output of the other unit is passed unchanged to the receiving unit. In this 

way a polynomial function of the inputs is presented as input to the transfer function 

of the output layer, i.e. the value of the output unit Ok is 

56 

 
 
 



57 CHAPTER 3. HIGHER-ORDER NEURAL NETWORKS 

Figure 3.1: Sigma-pi network 

Ok = f ( L Wqk IT zqk) 
qEconjunct k= l 

where f is the activation function, Wqk a synaptic weight, Zql, Zq2, .. . , ZqN are the N 

input signals combined to form the product or conjunct, and q indexes the conjuncts 

or products that are used in unit k; conjunct is the set of all conjuncts of subscripts 

for the inputs. The architecture derived from the above function presents a method of 

constructing higher-order networks. 

Figure 3.1 illustrates a sigma-pi network with two inputs, where multiplication instead 

of summation is performed in the hidden layer, followed by a summation unit in the 

output layer. That is, for example, Y2 = Z l Z 2 and Yl = Zl, where Yj is the output of 

hidden unit }j. The weight between hidden unit }j and output unit Ok is denoted 

by Wkj' In sigma-pi networks a polynomial function of the inputs is presented to the 

activation function of the output layer. For the example in figure 3.1, 

(3.1) 
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Although the terms contain products of inputs there are no powers of each input greater 

than one, this gives rise to the name multi-linear for the terms in this kind of expression. 

Nodes with multi-linear terms are also called higher-order nodes, since their activation 

depends on terms whose multiplicative order is greater than one. The problem with 

sigma-pi units is that the number of terms, and therefore the weights, increase very 

rapidly with the number of inputs, thus becoming unacceptably large for use in many 

situations [Durbin et at 1989, Lee Giles 1987]. Thus a disadvantage of this type of ar­

chitecture (refer to figure 3.1) is that a combinatorial explosion in the number of weights 

may result if conjuncts are not hand coded [Lee Giles 1987]. Researchers combat this 

problem by restricting the number of units, i.e. the number of terms, to a configuration 

sufficient to achieve the desired degree of accuracy using a priori knowledge about the 

given task. Normally, only one or a few of these terms are relevant in neural networks 

[Lee Giles 1987]. The most common approach to determine the best architecture is to 

let the network grow incrementally. In this approach an initial network consisting of 

a few terms is chosen and new terms are added to the network as soon as the error 

cannot be reduced using the existing architecture. This incremental growth process is 

repeated until the desired error level or accuracy is reached. 

3.2 Pi-Sigma Networks 

Ghosh and Shin introduced another higher-order network, the 'pi-sigma' network, 

which avoided the exponential increase in the number of weights and processing 

units normally associated with higher-order networks [Ghosh et al1992]. A pi-sigma 

network (PSN) consists of an input layer, a single hidden layer of linear summation 

units and product units in the output layer. The term pi-sigma comes from the fact 

that these networks use products of sums of input components. PSNs have only one 

layer of adjustable weights, the weights of the output layer is normally fixed at I, 
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resulting in PSNs to exhibit fast learning [Ghosh et al1992]. 

The output of a pi-sigma network is computed as follows, 

(3.2) 

where 

HI 

Ykj = L WkjiZi (3.3) 
i = l 

where f is the activation function, Zi, ... , ZI are the input signals, ZI+l an input to the 

bias unit, Wkji is the weight between input unit Zi and hidden unit Ykj for the kth 

output unit Ok, Wkj,!+l is the threshold (or bias), Ykj is the output of hidden unit 

Ykj and Ok is the output of output unit Ok. Each hidden unit is connected to only 

one output unit, as indicated to by the subscript k in Ykj. Thus equation (3.2) also 

shows that for multiple output PSNs an independent summing unit is required for 

each output unit. PSNs show a combinatorial explosion of higher-order terms as the 

number of inputs to the network increases. 

Figure 3.2 illustrates a typical pi-sigma network, where Wkji is the weight between 

input unit Zi and hidden unit Ykj , fe) is the standard logistic function applied to 

the output units and all the weights leading to the output unit are fixed to 1. The 

hidden layer consists of summation units and the output layer of product units. 

Let Ykj be the output of the lh summation unit of the kth output unit, Ok. A 

linear activation is assumed for the hidden units. A PSN provides only constrained 

approximation of a power series, resulting in the PSN not to uniformly approximate 

all continuous multivariate functions that can be defined on a compact set. However, 

universal approximation can be attained by summing the outputs of several PSNs of 

different order. The resulting network of PSNs is called a Ridge Polynomial Network 
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1 

product 
unit 

1 

summation 
unit 

Figure 3.2: Pi-Sigma Network 

(RPN) [Shin et al1995]. A PSN can accept both analog and binary input/output by 

using suitable non-linear activation functions. The logistic function can be used as a 

non-linear activation funct ion and the signum or thresholding function can be used for 

binary outputs. 

The learning rule used by Ghosh et al for PSN is a randomized version of the gradient 

descent procedure [Ghosh et al1992]. During each training cycle of a PSN, a summing 

unit is randomly selected and all the weights associated with this summing unit are 

updated using gradient descent. This modification of updating only a subset of weights, 

instead of all the weights, in each training cycle resulted in reduced training time 

of a PSN. Ghosh and Shin reported that pi-sigma networks using only three or four 

summing units could tackle fairly complex approximation and classification problems 

[Ghosh et al1992]. 
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3.3 Functional Link Networks 

Functional link networks (FLNs) also generate higher-order functions of the input 

components [Pao 1989, Pao et al1992]. FLNs are usually single-layer networks 

that are able to handle linearly non-separable classes by increasing the dimen­

sion of the input space by using non-linear combinations of the inputs. In 

FLNs, the input vector is augmented with a suitably enhanced representation of 

the input data, thereby artificially increasing the dimension of the input space 

[Ghosh et al1992, Hussain et al1997, Pao 1989, Pao et al1992]. The extended input 

data are then used for training, as for standard feed-forward neural networks. Basically, 

the inputs are transformed in a well understood mathematical way so that the network 

does not have to learn basic math functions. Figure 3.3 depicts a typical functional 

network. In figure 3.3 the I inputs are denoted by ZI, Z2, ... , ZI) the bias to the hidden 

layer is denoted by Zl+1 and the JV! extended inputs for functional links by hI , h 2, ... , hM . 

ZI 

z·t 

hI 

01 
0 

02 
0 

: Ok 
0 

0 

h2 OK 
0 

Figure 3.3: Functional Link Network 

The dimensionality of the input space for FLNs can be increased in two ways [Pao 1989]: 

• The tensor or output product model, where the cross-products of the input terms 
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are added to the model. For example, for a network with three inputs Zl, Z2, and 

Z3, the cross products are: ZlZ2, ZlZ3, Z2Z3 , therefor adding second order terms to 

the network. Third order terms such as ZlZ2Z3 can also be added . 

• 	 Functional expansion of base inputs, where mathematical functions, such as 

sin , cos, log) etc. are used to transform the input data. 

The number of terms generated using these methods grow rapidly with the increase 

of the dimension of the input vector. In FLNs no new information is added, but 

the representation of the input is merely enhanced. An advantage of FLNs is reduced 

training time due to the higher-order representation of the inputs, since the network does 

not have to learn these higher-order terms. Klassen et al found that functional links not 

only increases learning rates, but also has an effect of simplifying the learning algorithms 

[Klassen et al1988]. Another advantage of FLNs is that it can outperform multilayer 

networks in certain cases due to its intrinsic mapping properties [Ghosh et al1992]. 

3.4 Second-Order Neural Networks 

Another type of higher-order neural network, the second order neural network, was de­

veloped by Milenkovic et al [Milenkovic et al1996]. The research of Milenkovic et al was 

inspired by a greedy constructive neural network algorithm called the Hyperplane De­

termination from Examples (HDE) that suggested a discrete approach to neural network 

optimization suitable for parallel and distributed implementation [Fletcher et al1995]. 

The objective of the neural network architecture developed by Milenkovic et al was to 

overcome the HDE local minima problem by allowing hidden units with higher repre­

sentational power. The higher representational power was achieved by allowing neurons 

with input interactions of the following forms : 

I 

f(z) = LW~l)Zi 	 (3.4) 
i=l 
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1 1 

f(i) L wP) Zi + L W~2) Z'iZi (3.5) 
·i=1 i=1 

1 1 1-1 1 

f(z; = L W~1) Zi + L W~2) ZiZi + L L W~J) ZiZj (3.6) 
i = l i=l i = lj=i+l 

where f is the activation function, Z' is the input vector to the network, W~l), W;2) 

are weight parameters associated with the ith input value Zi, while w~;) is a weight 

associated with the product of the ith and lh input values Zi and Zj' First-order neural 

networks contain neurons only constructed with interaction functions described by 

equation (3.4). Feed-forward neural networks that are constructed using neurons as 

described by all three interaction functions above, i.e. as described by equations (3.4), 

(3.5) and (3.6) , are referred to as second-order neural networks. 

3.5 Product Unit Neural Networks 

Product unit neural networks were introduced by Durbin and Rumelhart 

[Durbin et al1989], and further explored by Janson and Frenzel [Janson et al1993] 

and Leerink et al [Leerink et al1995]. Durbin and Rumelhart suggested two types of 

networks incorporating PUs [Durbin et al1989]. In the one network type (refer to 

figure 3.4(a)) each SU is directly connected to the input units, and also connected to a 

group of dedicated PUs. The other network (refer to figure 3.4(b)) consists of alternat­

ing layers of product and summation units, terminating the network with a SU, 

Product units compute the net input signal as: 

1 

netYj = II Z?i + ZI+1 . Vj,l+l 
i = 1 

instead of 

1+1 

netYj = L ZiVji 
i= l 
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(a) SuIllIlling units fed by inputs and dedicated product units 

(b) Alternating layers of product and summing units 

Figure 3.4: Two types of PUNNs 
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A product unit can automatically learn the higher-order term that is required by the 

network, unlike pi-sigma and sigma-pi units where the higher-order terms are hard­

coded in the network. Product uni ts can learn polynomials such as, 

(3.7) 

and any other function that can be represented by a polynomial. It can be shown 

that any function can be represented by a polynomial of degree n, which is a Fourier 

series expansion of z. The problem however, is to determine what the value of n should 

be when approximating a specific function using a Fourier series. Product units are 

much more general than sigma-pi units: While a sigma-pi unit is constrained to using 

just polynomial products, product units can use fractional and even negative products 

[Durbin et al1989]. The net input to a product unit is computed as follows, 

1 

net = II z~ji - ()jYj 
i=l 

where netYj is the net input to hidden unitYj, Zi is an input unit, Vji is the weight 

between input unit Zi and hidden unit Yj, the threshold is denoted by ()j and I is the 

total number of input units. Durbin and Rumelhart suggested two types of networks 

incorporating PUs [Durbin et al1989]. This thesis assumes a network architecture 

which consists of an input layer, a hidden layer consisting of product units and an 

output layer consisting of summation units. Linear activations are assumed for all 

units. It is assumed that bias units occur in both the input and hidden layers, that 

respectively serve as bias to hidden units and bias to output units. However, it is 

shown in section 3.7.2 that the bias unit in the input layer is redundant and thus 

omitted from the input layer of PUNNs and replaced by a 'distortion unit' in this 

thesis, while retaining the bias in the hidden layer. 

Neural networks are trained using learning or training rules. The next section derives 
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the product unit training rule for the PUNN architecture used in this thesis, assuming 

gradient descent as optimization algorithm. 

3.6 Product Unit '!raining Rule 

Using the architecture outlined above, the activation of a product unit for a specific 

pattern p is expressed in terms of logarithms and exponentials: 

Yj,p netyj ,p 


J 


II Vji 
zi,p + ZHl,p' Vj,HI (3.8) 

i=l 


In (TI 1 +1 z~ji)

= e .=1 ',p + ZJ+I ,p' Vj,J+I 

"I Vi Inlzi Ie D ,=l J ,p + ZJ+I ,p ' Vj,J+l 

1 [ 

e ~:=l Vji lnlzi,p l (COS(7r L VjiIi) + z · sin(7r L VjiIi)) + z l+l,p . Vj,J+I (3.9) 
i = l i = l 

Yj ,p 

where 
if Zi,p 2: 0 

(3.10) 
if Zi,p < 0 

and Zi,p Ie O. The complex part of equation (3.9) is omitted for training the PUNN, since 

Durbin and Rumelhart have discovered in their experiments that apart from the added 

complexity of working in the complex domain, i.e. doubling of equations and weight 

variables, no substantial improvements in results were gained [Durbin et al 1989]. 

Equation (3.9) then simplifies to (refer to appendix A), 

Yj eP,cos(7r¢) + Z1+1' V j,1+1 (3.11) 

where 

1 

p L Vjdn IZi l (3.12) 
i=l 

and 

1 

"v·.y. (3.13)~ J' ' 
·i= l 
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The objective of supervised training of NNs is to minimize the error between the ap­

proximation by the NN and the target function. The error in approximation is usually 

expressed as the mean squared error (MSE) 

1 P K 

[MSE = 2P K L L (tk,p - Ok,p)2 (3.14) 
p=lk=l 

where P is the total number of training patterns (or observations), K is the number 

of outputs, tk,p is the desired (target) output for the kth output unit, Ok, for a specific 

pattern p, and Ok,p is the actual output of the NN. If gradient descent is used, the change 

in hidden-to-output weights are 

(3.15) 

and for input-to-hidden weights, 

BE
6.v" = -'11.- (3.16)l' . f » 

UVji 

where 77 is the learning rate, Wkj is the weight between hidden unit 1j and output unit 

Ok, and Vji is the weight between input Zi and hidden unit 1j. For more detail on the 

derivations of these equations refer to appendix A. In the case of the hidden-to-output 

weights, the equations are as for standard feed-forward networks, i.e. 

(3.17) 

- (tk.,p - Ok",P ). Y'1,P (3 .18) 

where f'(netok ,p ) is the derivative of the activation function used for output unit Ok 

(which is equal to one in the case oflinear activation functions), 60k ,p is the output error, 

6yj ,p is the hidden layer error, netok,p and netyj,p are the net input to the kth output 

unit and yth hidden unit respectively and Yj,p is the activation of the ;th hidden unit. 

For the input-to-hidden weights, 

BE 
-6yj ,p . Dji,p (3 .19) 
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where 

0Yj,p = L 
]{ 

OOk,P . Wkj . !'(netyj,p) 
k=l 

with f'(nety j,p) the derivative of the activation function used for hidden unit }j (which 

equals one in this case). In equation (3.19), Dji,p is computed as (refer to appendix A 

for the derivations) 

with 
I 

P = L 'Uji lne IZ'il 
i=l 

and 
I 

¢ = LVjJi 
i=l 

3.7 The Bias Unit 

For the equations derived up to now, it was assumed that both the hidden units and 

output units receive a bias. This section shows that it is sufficient to use a bias only 

for the output units. This section refers to networks with biases for both hidden and 

output units as case I, and networks with biases for only the output layer as case 2. 

The aim is to show that the learning rules for these two cases for PUNNs are equivalent, 

which justifies the removal of the hidden unit biases for the remainder of this thesis. 

For both cases 1 and 2, consider a PUNN consisting of 1 input unit, 2 hidden units 

and a single output unit. Figure 3.5 illustrates a network of case 1, while a network 

of case 2 is illustrated in figure 3.6. In figure 3.6 a bias occurs only in the output 

layer. An extension of PUNNs of case 2 is considered in section 3.7.3, where a 'distor­

tion unit ' is included in the product term ofthe product units as illustrated in figure 3.7. 
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3.7.1 Case 1 PUNNs 

bias unit 

Figure 3.5: Case 1 PUNN 

The output of the PUNN in figure 3.5 is, 

(3.20) 
i=l 

(3.21) 

where W3 is the bias and Y3 is the net input of the bias unit (always -1). Equation (3.21) 

simplifies to, 

(3.22) 

where Co = -W3' We now proceed to compute the activation values Yl and Y2 for the 

hidden units Yj and Y2 respectively: 
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(3.23) 

(3.24) 

Substitutition of (3.23) and (3.24) in (3.22) yields, 

(3 .25) 

where C3 = Co + Cl . WI + C2 . W2· All the Ci'S (i.e. Co, Cl and C2) are basically weights 

obtained through training and can thus be replaced and trained as a single weight, C3. 

3.7.2 Case 2 PUNNs 

Now consider the second case where the bias is removed from the hidden layer. The 

PUNN in figure 3.6 represents a 1:2:1 network configuration. 

The output for the PUNN in figure 3.6 is, 

1+1 

LYi· Wi (3.26) 
i =1 

(3.27) 

Once again, the net input of the bias unit, }3, is assumed as -l. Equation (3.27) then 

simplifies to, 

(3.28) 

where C4 = -W3· The values for Yl and Y2 are computed as, 

(3.29) 

(3.30) 
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bias unit 

Figure 3.6: Case 2 PUNN 

Substitution of (3.29) and (3.30) in (3.28) yields, 

(3.31) 

A comparison of equations (3.25) and (3.31) indicates that these two equations are 

equivalent if and only if C3 is equal to C4 . In equation (3.25) , C3 is a function of biases 

and weights that are not dependent on inputs, clearly indicating that C3 is basically 

a constant. Thus, instead of learning three different constants (i.e. Co, Cl and C2), 

only one constant, namely C4, can be learnt, which will result in equations (3.25) and 

(3.31) to be equivalent. Note, however, that 'case l' has more weights and thus more 

degrees of freedom than 'case 2'. The higher the degrees of freedom, the higher the 

probability of getting poor results, since an increase in the number of weights causes 

a corresponding increase in dimensionality of the search space, that will inevitably 

contain more local minima and plateaus. Generally, case 2 should therefor produce 
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better results than <case 1'. 

3.7.3 The Distortion Unit 

In addition to having biases only for the output units, the PUNNs studied in this 

thesis were further extended by including a <distortion' factor in the product term of 

the product units. The PUNN in figure 3.7 represents a 1:2:1 network configuration 

with a distortion unit replacing the bias unit in the input layer. 

bias unit 

Figure 3.7: PUNNs with a distortion unit 

For the product units, the net input signal is therefor calculated as 

(3 .32) 
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where ZI+! = -1 and Vj,I+ l is the distortion factor. The distortion unit has a constant 

input of -1. Thus, Z~~~+l simplifies to (_J.)Vj,T+l. This expression, (_1)Vi,T+1 , is not 

defined for all values of Vj,1+1 in the real domain. However, in the derivation of the 

learning equations for PUNNs the calculation of ( -l)VU +1 is performed in the complex 

domain (refer to equations A.20 to A.22 on page 196). Since, Z1+1 = -1, lnlzI-1-l1 

reduces to lnl - 11 which equals O. Thus, the distortion unit does not make any 

contribution to term {J, however the value of the weight Vj,1+1 is added in calculating 

term ¢ on page 196 when ZI+l = -1. This shows that (_1)Vj,l+1 is defined for all 

negative values of Vj,I+!' The distortion unit acts to assist in shaping the activa­

tion function to more accurately fit the true function as represented by the training data. 
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Figure 3.8: Effect of the distortion unit in approximating J(z) = Z 2 
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This unit cannot be seen as a bias, since it is not added to the learning rule and plays no 

role in offsetting the origin of the function, but is rather included in the product. Upon 

inspection of netYj = eP·cos(n·cjJ) (from equation (A.45) on page 200), it is observed that 

the distortion factor's contribution to term p is 0 since in eweighLoj_distortiOTLunitxln(l-ll), , , 

lnl - 11 = 0 thus reducing eweighLoj -Liistortion_unitxln(l-ll) to 1. The distortion unit thus 

only contributes to term ¢. The net effect of the distortion factor on netYj is thus 

limited to the contribution of cos(n· ¢) to the net input signal. Thus, 

(3.33) 

where 

1 

p 2:: Vj'i ln IZi I (3.34) 
i=l 

and 

1+1 

<y '" = ~vLl (3.35)~ Jl 

i=l 

To explain the purpose of the distortion unit, consider approximation of function 

f(z) = Z2 as illustrated in figure 3.9. Further inspection of the distortion term, in 

the case of function f(z) = Z2, for - 1 < z < I, revealed that the unit mapped a 

function of the form cos(3z) over the data, re-affirming the fact that this distortion 

unit effectively assists in shaping the function to better fit the set of training data. 

The remainder of this thesis assumes PUNNs with a distortion unit. 

3.8 Problems with Training of PUNN using Gradi­

ent Descent 

Gradient descent (GD) is one ofthe most popular optimization algorithms used to train 

multilayer neural networks that employ summation units, resulting in the so-called 
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back-propagation neural network [Werbos 1974]. Gradient descent works best when 

the search space is relatively smooth, with few local minima or plateaus. In such cases 

the minima are not too deep and any randomness added to the training process will 

prevent the network from getting stuck in local minima [Zurada 1992]. This section 

shows that GD has difficulties in training networks that use product units. These 

difficulties arise from the increased number of local minima and more convoluted search 

space due to PUs [Durbin et al1989, Leerink et al1995]. 

Durbin and Rumelhart have constructed a neural network consisting of 1 hidden prod­

uct unit and a standard summing output unit to solve the 6-parity problem where 

the weights were calculated from first principles [Durbin et al 1989]. The parity func­

tion, when implemented using summation unit neural networks, require as many hidden 

units as inputs. Leerink et al [Leerink et al1995], however, have found that the back­

propagation algorithm could not train a product unit neural network on the 6-parity 

problem, due to the following reasons: 

• 	 Incorrect weight initialization: 

The initial weights of a network is usually computed as small random values in 

order to use the dynamic range of the sigmoid function and its derivative. Leerink 

et al argued that this is the worst possible choice of initial weights for PUNNs, 

and suggested that larger initial weights be used instead [Leerink et al 1995]. 

From own experience, back-propagation only manages to train product unit 

neural networks when the weights are initialized in close proximity of the optimal 

weight values. The optimal weight values are, however, usually not available. 

Gradient descent procedures are usually not able to compensate for bad initial 

values of weights and biases, getting stuck in local minima. To combat the 

problem of bad initial weights, global optimization algorithms can be used to find 
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initial weights and CD subsequently applied to train the network, as suggested 

in [Ismail et at 2000j. 

• 	 Increased number of local minima: 

A major drawback of product units is an increased number of local minima, deep 

ravines and valleys on its error surface. The search space for product units is 

usually extremely convoluted [Janson et al1993J. This is because the exponent 

component, Vji, in equation (3.8) can cause large changes in the computation of 

the total error. Back-propagation by gradient descent therefore frequently gets 

trapped in local minima that it cannot escape from, or becomes paralyzed if a local 

minimum is reached, thus resulting in no adjustment of the weights due to the 

fact that the error with respect to the current weight is close to zero; the weight 

vector thus remains the same for the remainder of the training session. 

As an example to illustrate the complexity of the search space for product units, and 

the problems mentioned above, consider the approximation of the function f(z) = Z3, 

with Z E [-1,1]. To approximate this function using PUNNs, one PU is sufficient, 

resulting in a minimal 1-1-1 architecture. In this case the optimal weight values are 

v C_CC 3 (the input-to-hidden weight) and w = 1 (the hidden-to-output weight), where 

the bias and the distortion are both equal to zero. Figure 3.9 visualizes the search space 

for v E [-1,4] and W E [-1,1.5]. The error is computed as the mean squared error over 

500 randomly generated patterns. Figure 3.9 clearly illustrates 2 local minima, one 

located at v = -0.55 and the other at v = 1.25. The global minimum is at v = 3. Initial 

small random weights will cause the network to be trapped in one of the local minima 

(having very large MSE). Large initial weights may also be a bad choice. Assume an 

initial weight v ~ 4 (or v ::; -1). The derivative of the error with respect to v is 

extremely large due to the steep gradient of the error surface. Consequently, a large 
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weight update will be made which may cause jumping over the global minimum. The 

neural network either becomes trapped in a local minimum, or oscillates between the 

extreme points of the error surface. 
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Figure 3.9: MSE values with weight w fixed at 1 for J( z ) = Z2 

Another example to illustrate the numerous local and global minima that occur in the 

search space of PUNNs is illustrated in figure 3.10, for approximation of the function 

J( Zl' Z2) = zi + z~. 

The function J(Zl, Z2) = zi+z~, with Zl, Z2 E [-1 , 1], can be approximated with a PUNN 

that contains a minimum of 2 hidden PUs which amounts to 6 weights. A PUNN to 

approximate J( Zl, Z2) = zi+ z~ , comprising a 2:2:1 configuration, is represented in figure 

3.11. The search space for this PUNN is thus 6-dimensional, making visualization of 

the error surface very difficult. However, slices of the error surface can be viewed by 
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Figure 3.10: Error surface for the straight line between 3 minima, f( Zl' Z2) = zi + zi 

fixing most of the weights and varying only one or two of the weights. Figure 3.10 

visualizes the search space for all weights fixed, except V21 E [-1,4]. Three minima are 

illustrated with the global minimum at V21 = O. Initial small random weights will cause 

the network to converge to the global minimum. Large initial weights, however, will 

cause the network to be trapped in one of the local minima resulting in a large MSE. 

Initial weights V21 > 3 or V21 < -1 will also be a bad choice, since the derivative of 

the error with respect to V21 is extremely large due to the steep gradient of the error 

surface. A large weight update will be made which may result in overshooting the global 

minimum. Thus, the neural network becomes trapped in a local minimum, or oscillates 

between extreme points of the error surface. 
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Wll = 1 

W12 = 1 

Figure 3.11: PUNN to approximate f(Zl' Z2) = zi +- zi 

3.9 Conclusion 

This chapter discussed the problems encountered when GD is used to train PUNNs. 

Gradient descent is frequently trapped by local minima that occur in the search space 

for PUNNs. Local minima are particularly prevalent in networks containing PUs, due 

to the effect of the exponential terms in the learning equations. These exponential 

terms cause large weight adjustments that result in the network to be trapped or 

oscillate between the extreme points. To alleviate these problems, global optimization 

algorithms should be used to train PUNNs. 

The next chapter discusses various global optimization algorithms to train PUNNs. 

 
 
 



Chapter 4 

Global Optimization Algorithms 

Gradient descent (GD) is the most popular local optimization algorithm to train 

multilayer NNs. While GD has shown to be successful in training SUNNs, GD 

fails to train PUNNs under general assumptions of weight initialization, as shown 

in the previous chapter. This chapter presents an overview of the following global 

optimization algorithms: Particle Swarm Optimization (PSO), Genetic Algorithms 

(GAs) and Leapfrog Optimization (LFOP) . These algorithms are subsequently applied 

to approximate a set of functions, using PUNNs. The results are compared with that 

of SUNNs, using gradient descent optimization. 

4.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a global optimization approach, modeled 

after the social behaviour of flocks of birds [Eberhart et al1996, Heppner et al1990, 

Reynolds 1987] and schools of fish [Wilson 1975] . Heppner was interested in discov­

ering the underlying rules that enabled large numbers of birds to flock synchronously, 

often changing direction suddenly, scattering and regrouping [Kennedy et al1995b]. 
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These scientists had the insight that local processes, such as those modelled by cellular 

automata, might underlie the unpredictable group dynamics of bird social behaviour 

[Kennedy et al1995bJ. The models proposed by these scientists relied heavily on 

manipulation of inter-individual distances; that is, the synchrony of flocking behaviour 

was thought to be a function of birds' efforts to maintain an optimum distance between 

themselves and their neighbours. 

Particle swarm optimization was originally developed by Eberhart and Kennedy 

[Eberhart et al1995, Eberhart et al1996, Kennedy 1995a, Kennedy et al1995bJ. PSO 

is a population based search procedure where the individuals, referred to as parti ­

cles, are grouped into a swarm. Each particle in the swarm represents a possible 

solution to the optimization problem under consideration. In a PSO system, each 

particle is cflown' through the multidimensional search space, adjusting its position in 

search space according to own experience and that of neighbouring particles. Each 

particle is treated as a point in a D-dimensional space. The pth particle is repre­

sented as xp = (Xp,1,Xp,2, ... ,.-X;p,D). The best previous position (i.e. the position that 

produces the best fitness value) of the pth particle is recorded and represented as 

BESTx
) 

p = (BESTxp,l, BESTxp,2, ... , BESTxp,D) , and the index of the best parti ­

cle among all the particles in the population is represented by, GBEST. Let the rate of 

change in position (i.e. velocity) for particle p be represented as -Up = (Vp,l, Vp,2, ... , Vp,D). 

The pth particle is adjusted according to the following equation, 

C2 x r-and20 x (BEST~GBEST - xp(t)) ( 4.1) 

(4.2) 


where Cl and C2 are positive constants, referred to as the acceleration constants, and 

Cl + C2 < 4 to ensure convergence [Van den Bergh 2001a], r-and10 and r-and20 are two 
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random functions with output in the range [0,1], w is the inertia weight and vp the 

velocity of particle p before the adjustment [Shi et al1998]. 

Equation (4.1) is used to calculate the particle's new velocity using its previous velocity 

and the distances of its current position from its own best experience (position) and 

the group's best experience, which is defined in terms of the type of social interaction 

that is being modeled [Shi et al1998]. Two approaches of PSO have been developed 

by Eberhart and Kennedy, one globally oriented, referred to as GBEST, and one locally 

oriented referred to as LBEST [Eberhart et al1995]. In both approaches, each particle 

of the swarm keeps track of its coordinates in search space which are associated with the 

best solution the particle has achieved so far. This position is referred to as BESTx. In 

the local version of PSO, each particle keeps track of the best solution called 'LBEST', 

attained within a local topological neighbourhood of particles. In the GBEST model 

the group's best experience is indicated to by index 'GBEST'. The particle therefore 

makes use of the best position encountered by itself and the overall best position of 

either, 

• all particles, as indicated to by 'GBEST' (GBEST model) or 

• a neighbourhood of particles, as indicated to by 'LBEST' (LBEST model) 

to position itself towards the global minimum. The effect is that particles 'fly' towards 

the global minimum, while still searching a wide area around the best solution. 

The performance of each particle (i.e. the 'closeness' of a particle to the global 

minimum) is measured according to a predefined fitness function which is related to the 

problem being solved. Research has shown that the GBEST version of PSO performs 

best in terms of a median number of iterations to converge compared to the LBEST 

model [Eberhart et al1996]. 
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The PSO algorithm is summarized below to illustrate its simplicity: 

4.1.1 PSG Algorithm 

1. 	 Initialize a swarm of S D-dimensional particles, with positions and velocities, 

where D is the number of weights and biases. 

2. 	 Evaluate the fitness fp of each particle p as the MSE over a given data set. 

3. 	 If fp < BESTp then BESTp = fp and BESTlp = xp , where BESTp is the 

current best fitness achieved by particle p , xp is the current position of particle 

p in D-dimensional weight space, and BESTxp is the position corresponding to 

particle p's best fitness so far. 

4. 	 If j~ < BESTGBEST then GBEST = p, where GBEST is the particle having the 

overall best fitness over all particles in the swarm. 

5. 	 Change the velocity vp of each particle p using equation (4.1). 

6. 	 Fly each particle p to xp + vp 

7. 	Loop to step 2 until convergence 

~~~) )

In step 5, the coordinates BESTxp and BESTxGBEST are used to pull the particles 

towards the global minimum, and the acceleration constants, Cl and C2, control how 

far particles fly from one another. 

Initially, all particles are assigned random positions, selected from a range that covers 

the entire search space, and random velocities that do not exceed a maximum velocity 

as specified for the problem. 
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The next section discusses the parameters; inertia weight, maxImum velocity and 

acceleration constant of PSO. 

4.1.2 Inertia Weight 

The purpose of the inertia weight is to control the impact of the previous history of 

velocities on the current velocity. A larger inertia weight favours global exploration, 

while a smaller inertia weight tends to facilitate local exploration of the search area 

[Kennedy et al1995b]. Suitable selection of the inertia weight w can provide a balance 

between local and global exploration abilities of PSO, and thereby reducing the number 

of iterations required in reaching an optimum. The value for the inertia weight is 

problem dependent, but usually values between 0 and 1.0 are used. PSO with decreasing 

inertia weight has also been implemented, where the PSO usually starts off with a large 

inertia weight, say 1.0, and gradually reduces it with time. 

4.1.3 Maximum Velocity 

The maximum velocity is used to prevent large velocity updates, thereby preventing 

particles from leaving the search space. Thus, in PSO, the value of the maximum 

velocity is limited to prevent particles from flying out of the search space. Shi and 

Eberhart pointed out that the maximum velocity acts as a constraint that controls 

the maximum global exploration ability of PSO [Shi et at 1998]. The maximum global 

exploration ability of PSO is limited if the maximum velocity is too small. If the 

maximum velocity is too small, then particles may not explore sufficiently beyond 

good regions. Further, they may become trapped in local minima, unable to jump far 

enough to reach a better position in the search space [Eberhart et al1996]. A larger 

maximum velocity, increases PSO's maximum global exploration ability. A too high 
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maximum velocity, however, will result in particles fiying past good solutions. The 

maximum velocity determines also the fineness with which regions between the present 

position and the target position will be searched. The value of the maximum velocity 

should thus be selected carefully. The maximum velocity is limited by the maximum 

value of the parameters for the problem at hand, i.e. the maximum value of the inputs. 

Usually values in the range 0 to 5 are chosen for the maximum velocity. 

4.1.4 Acceleration Constants 

The acceleration constants, Cl and C2, represent the weighting of the stochastic accel­
=-~~) )

eration terms that pull each particle toward positions BESTxp and BESTxCBEST' 

Thus, adjustment of this factor changes the amount of 'tension' in the system. Low 

values allow particles from far target regions to explore the search space before 

being tugged back, while high values result in abrupt movement toward the target 

regions [Eberhart et al1995]. The selection of values for the acceleration constant 

is problem dependent, however values normally range between 0 and 5. Also, if 

the constraint, Cl + C2 < 4, is not satisfied then PSO does not usually converge 

[Eberhart et al2000, Van den Bergh 200la]. 

4.1.5 Applications of PSO 

Particle swarm has been used successfully to train SUNNs [Kennedy et al 1995b, 

Van den Bergh 1999, Van den Bergh et al2000] and PUNNs [Engelbrecht et al1999a, 

Ismail et al1999, Ismail et al2000, Van den Bergh et al 2001b], for function opti­

mization [Eberhart et al1995, Shi et al1999, Van den Bergh et al 2001d] and for 

human tremor analysis [Eberhart et al1999j. Van den Bergh found that training of 
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multilayer feed-forward networks using various gradient descent based algorithms can 

be improved significantly by using particle swarm optimization in selecting initial 

weights. Van den Bergh showed that the initial weights produced by PSO increased 

the speed and accuracy with which gradient descent algorithms find the minimum 

[Van den Bergh et al2000j. Another researcher, Salerno, also applied particle swarm 

optimization successfully to train a recurrent neural network in parsing natural 

language phrases [Salerno 1997]. 

PSO has also been demonstrated to perform well in optimizing genetic algorithm test 

functions, such as the extremely nonlinear Schaffer f6 function. The f6 function 

is very difficult to optimize, as the highly discontinuous data surface features many 

local minima. PSO found the global optimum each run and appears to approximate 

the results reported by Davis for basic genetic algorithms in terms of the number 

of evaluations to reach certain performance levels [Kennedy et al1995b]. PSO can 

be used to solve many of the same kind of problems as solved by genetic algorithms 

[Kennedy et al1995b]. Eberhart et at used PSO successfully to extract rules from fuzzy 

neural networks [Eberhart et al1998]. BK Birge, a former student of Eberhart, one of 

the developers of PSO, and Y Shi is currently applying PSO to 'intelligent control' for 

NASA's next generation 'Robotic Mars Landers'. Current research in PSO use constric­

tion coefficients which have lead to improved performance of PSO [Eberhart et al2000]. 

4.1.6 Advantages of PSG 

The PSO offers several advantages, which makes it an excellent choice to solve 

optimization problems with a continuous search space. These advantages include: 
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• 	 PSO is conceptually simple and can be implemented in a few lines of code, re­

quiring only basic mathematical operations. 

• 	 In PSO, neural network weights and structures are evolved in such a way as to 

make preprocessing of neural network data unnecessary. 

• 	 PSO is computationally inexpensive in terms of both memory requirements and 

speed [Kennedy et al1995b]. 

• 	 PSO is a stochastic global optimization algorithm. 

Another advantage is that PSO does not suffer from some of the difficulties encoun­

tered with genetic algorithms (e.g. running the risk of finding suboptimal solutions); 

interaction in the group enhances rather than detracts from progress toward a solution 

[Eberhart et al1996]. PSO also has memory, which a genetic algorithm generally does 

not have. Change in genetic populations results in destruction of previous knowledge 

of the problem except when elitism (i.e. when individuals with highest fitness 

of the current generation is copied into the next generation) is employed, in which 

case a small number of individuals retain their identities. This serves as limited memory. 

PSO is a global optimization algorithm and training of a NN is an optimization 

problem. Hence, PSO can be used for training a NN, in which case each particle 

will represent a weight of the NN (including biases). The dimension of the search 

space is therefore the total number of weights and biases. The fitness function is 

the mean squared error (MSE) over the training set, or the test set (as measure of 

generalization). This thesis implements the GBEST version of PSO. 

This concludes the presentation of PSO. The next section presents genetic algorithms 

(GAs) as an optimization algorithm. 
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4.2 Genetic Algorithms 

Evolutionary computing has been used successfully to solve optimization problems. 

Of these, genetic algorithms (GAs) are the most popular. GAs are based on the 

principle of natural evolution where principles such as survival of the fittest, natural 

selection, reproduction and mutation are used to produce a 'best' individual. The 

idea of a genetic algorithm as a global optimization tool was first introduced by 

John Holland in the 1970's [Goldberg 1989]. A genetic algorithm is a global search 

technique compared to gradient descent that is a local search method. A GA repre­

sents an intelligent exploitation of a random search used to solve optimization problems. 

Genetic algorithm paradigms work on populations of individuals, rather than on single 

data points or vectors. In a GA, a population of individuals compete to survive. Each 

individual represents a point in search space, which represents one possible solution 

to the optimization problem. In this thesis, an individual represents a weight vector 

(including biases and distortion units) of a NN. Each individual is represented as a 

character string that is analogous to the chromosome that occurs in DNA. The survival 

strength, or fitness, of an individual is measured using a fitness function, the MSE 

when a GA is used to train a NN. The fitness value represents the abilities of an 

individual to survive. 

Most optimization paradigms move around in the search space using some heuristic. 

One of the drawbacks of this approach is the likelihood of getting stuck at a local 

mmlmum. GAs on the other hand start off with a diverse set of points called a 

population. From one population to the next the same number of individuals is 

maintained, thus allowing many maxima to be explored efficiently and thereby lowering 

the probability of getting stuck in a local minimum. GAs use 'selective breeding' of 
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the solutions to produce 'ofFspring' that exhibit better fitness than the parents by 

combining 'genes' of the parents. GAs do not require any auxiliary information, such 

as derivatives in determining the maximum (or minimum). GAs are generally more 

robust than conventional artificial intelligence systems, in that they will still produce 

reasonable results in the presence of noise or if the inputs change. A GA may ofFer 

significant benefits over more typical search optimization techniques, such as linear 

programming, heuristics, depth-first and breadth-first [Mitchel 1996]. 

Optimization in a GA proceeds through the generation of new individuals by probabilis­

tically applying crossover and mutation operators. Parents are selected for reproduction 

based on their fitness. Individuals with high fitness are given more opportunities to re­

produce, than individuals with low fitness. Thus the larger the fitness of an individual, 

the more likely it is that it will be used during crossover to exchange (genetic material' 

with another individual to produce better individuals. Thus (genes' from good indi­

viduals produce ofFspring that are often 'better' than the parents. Mutation occurs by 

randomly changing a (gene' of an individual. New ofFspring replace other individuals 

with lower fitness. It is hoped that after successive generations better solutions will 

replace weaker ones. 

4.2.1 Applications of GAs 

GAs have been used successfully for many applications, which include the training of 

N Ts. SchifFman et al used GAs to train SUNNs [Schiffman et al1992], while Frenzel 

has applied GAs to train PUNNs [Janson et al1993]. In a study conducted by Dagli 

and James to search for optimal parameters ( such as the number of nodes in each layer 

and the number of layers) for a neural network, the parameters rather than the weights 

were encoded in the GA chromosome where the neural network's performance with 
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these parameters was used as the fitness function [Dagli et al1995]. Other applications 

of GAs include, 

• 	 pattern classification [Chang et al1991]' 

• feature selection for neural networks [Guo et al1992]' 

• 	 the initialization of Radial Basis Networks [Billings et al1995, Burdsall et al1997], 

• 	 the training of cellular neural networks [Zamparelli 1997], 

• 	 to explain the behaviour of neural networks by defining a function linking the 

network inputs and outputs [Opitz et al1994]' and 

• 	 to configure radial basis function (RBF) neural networks [Billings et al1995 , 

Kuo et al1994, Whitehead et al1996]. Specifically, they have been applied to 

find the optimal (Gaussian) parameters used (centres, widths), as well as the 

structure (number of hidden nodes) of the RBF network. 

A general genetic algorithm for training NNs is presented below. 

4.2.2 Genetic Algorithm 

1. 	 Initialize a population, G(t), of individuals (weight vectors). 

2. 	 Calculate the fitness of each individual of the population as the MSE over the 

training set. 

3. 	 Select parents for reproduction from the current population, G(t) . Two individu­

als are selected from the population using ranking as the selection operator (refer 

to section 4.2.8). 

4. 	 Perform crossover to produce new individuals for population, G(t + 1). A two­

point crossover operator is used (refer to section 4.2.8). 
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5. Perform mutation of population, G(t + 1). 

6. Loop to step 2 until best individual is acceptable. 

4.2.3 Initialization and Size of Population 

Initialization of the population is usually done stochastically. It is sometimes appro­

priate to start with one or more individuals that are selected heuristically, to aim 

the GA in a promising direction. Generally the population should represent a wide 

assortment of individuals. Researchers have shown that the urge to skew the population 

significantly should generally be avoided. Choosing the size of the population is more 

an art than science. Following De Jong's guidelines, a moderately sized population 

should be used initially [De J ong 1975]. 

4.2.4 Representation 

The objective of applying GAs to neural network training is to find a suitable set of 

weights that results in the smallest MSE on the training set and that generalizes well on 

the test set . To achieve this objective the GA has to be populated with sets of weights 

where each set of weights is a possible solution in training the network. Thus, for NN 

training, each individual of the GA contains the same number of genes as the number 

of weights (including biases) that occur in the neural network. Each weight value has to 

be converted to a binary representation, since this thesis assumes that the G A paradigm 

uses a binary alphabet. The accuracy of the final weight values are determined by the 

number of bits used in the binary representation and the range of values that is mapped 

onto this binary representation, e.g. to map real numbers in the range [-3.0,3.0] onto a 30 

bit binary representation, implies a mapping onto 23°,( i.e. 1073741824), distinct values. 

Thus -3.0 is mapped onto say 000000000000000000000000000000 and 3.0 mapped onto 
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111111111111111111111111111111 (30 ones); a finite number ofreal values between -3.0 

and 3.0 are then mapped onto the remaining binary representations that exist between 

these two binary numbers. In this representation two successive real numbers will 

therefor differ by magnitude (3.0 - (-3.0))/(230 
- 1) = 6/1073741823 = 5.5879E - 09. 

In this representation any two weights that differ by less than this magnitude are thus 

indistinguishable or regarded as representing the same number. For the implementation 

in this thesis, each weight is mapped onto a 30 bit binary number. Weight values are 

restricted to the range [Wmin, wmax ], in other word the evolutionary process cannot 

evolve weights beyond these boundaries. The following mapping function is used to 

convert floating-point weight values to binary representation: 

(230 _ 1) W - Wmin (4.3) 
W max - Wmin 

4.2.5 Fitness 

One method of fitness calculation is to 'equally space' the fitness values in some manner, 

say from 0 to 1. The most fit individual has a maximum fitness of 1. Another method 

of fitness calculation is 'scaling' that takes into account the recent history of the pop­

ulation. If the objective of a GA is to maximize some function , then scaling involves 

keeping a record of the minimum fitness value obtained in the last s generations, where 

s is the size of the scaling window. If, for example, s = 10, then the minimum fitness 

value in the last 10 generations is kept and used instead of 0 as the 'floor' of fitness 

values. Fitness values are then assigned a value based on their actual distance from 

the floor value. The fitness function used in this thesis is defined as f(w) = l+M1E(w)" 

Hence, the smaller the MSE, the larger the fitness value. 
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4.2.6 Crossover 

Crossover is inspired by natural evolution processes. Crossover is a reproduction op­

erator which forms a new individual (chromosome) by combining parts of each of two 

'parent' chromosomes with an objective of increasing the fitness value of the new indi­

vidual. The most 'basic' crossover type is one-point crossover, as describe by Holland 

[Holland 1992] and others, e.g. Goldberg [Goldberg 1989] and Davis [Davis 1991]. One­

point crossover involves selecting a single crossover point at random and exchanging the 

portions of the individual strings of the parents to the right of the crossover point. In 

two-point crossover, on the other hand, two parents are randomly selected from the 

population and a stochastic decision is made whether or not to perform crossover. 

Subsequently, if crossover has to be performed, a two-point crossover site along the 

character string is randomly chosen. The corresponding values occurring between these 

two points in each parent are then exchanged. An alternative is uniform crossover, 

where two parents are chosen at random and a stochastic decision is made whether 

or not to perform crossover [Syswerda 1991]. If crossover has to be performed then 

a random decision is made at each bit position in the string as to whether or not to 

exchange corresponding bits between the two parent strings. De Jong suggested a high 

crossover rate of between 0.5 and 0.9 [De Jong 1975]. The values for crossover is, how­

ever, problem dependent. In this thesis two-point crossover is used with crossover rates 

varying between 0.5 and 0.9. 

4.2.7 Mutation 

Mutation is a way of varying the 'gene pool' that provides some protection against 'in 

breeding' in a population. Mutation is achieved by stochastically flipping the bits of 

the individuals during each generation at a certain probability. Mutation is usually 

performed with a low probability, but higher probabilities are not unusual. A good 
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strategy is to start off with a fairly high probability for mutation that is decreased with 

time. This allows the GA, initially, greater exploration abilities. In this thesis fixed 

mutation rates between 0.001 and 0.5 are used. 

4.2.8 Reproduction or Selection 

Reproduction is a process in which individual strings are selected for mating according 

to their fitness values. Thus strings with high fitness values have a high probability 

of contributing to one or more offspring in the next generation [Goldberg 1989]. 

Operators for implementing reproduction are random selection, biased roulette wheel 

or tournament selection. In random selection individuals for the next generation are 

randomly selected from the current population. In the biased roulette wheel approach 

each individual is assigned a roulette wheel slot sized in proportion to its fitness. 

Individuals with high fitness will thus have a bigger size slot than individuals with 

low fitness values. The roulette wheel is then spun n times to generate a population 

of size n. The individual that corresponds to the slot that the dice ends up in after 

each spin is added to the next generation. Thus the bigger the slot size, the greater 

the probability that the dice will land in it and thus the greater the probability of that 

individual being added to the next generation. One variation on the roulette wheel 

was developed by Baker in which the portion of the roulette wheel is assigned, based 

on each unique string's relative fitness [Baker 1987] . One spin of the roulette wheel 

then determines the number of times each string will appear in the next generation. 

In the most common variation of tournament selection two individuals are selected at 

random and the member with a higher fitness value is selected for the next generation. 

This process is repeated n times for a population of size n. Other variations include 

using more than two members selected at a time, and selecting the highest fitness 
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valued member with a certain probability. In the reproduction operators discussed so 

far all individuals are replaced each generation. 

Another approach for selection is referred to as ranking where the individuals are 

sorted or ranked in ascending fitness values. The pool of individuals to take part 

in the reproduction is constructed as follows: The top 20% individuals are placed 

ill the mating pool and duplicated. The bottom 20% are culled and do not take 

part in reproduction. The remainder of the mating pool comprises all the individuals 

that appear between the top 20% and the bottom 20% on the sorted list of fitness values. 

The fitness function defined in section 4.2.5 reveals that the higher the fitness, the lower 

the corresponding MSE for an individual. In this thesis the (Simple Genetic Algorithm' 

(SGA) of Goldberg is implemented [Goldberg 1989]. In the SGA the bottom 20% of 

each population with respect to fitness is culled. A two-point crossover is used with 

ranking as the selection operator, where the top 20% individuals with respect to fitness 

were added twice to the mating pool. The other 60% comprise all individuals between 

the top 20% and the bottom 20% of the sorted list. For crossover two individuals were 

randomly selected from the mating pool. R,andom mutation is used on the offspring. 

In this thesis, De Jong's guidelines were followed by using a relatively high crossover 

rate, a relatively low mutation rate and a moderately sized population [De Jong 1975]. 

On subsequent simulations the crossover rate is decreased, while the mutation and size 

of population are increased in order to find optimal values for these parameters. 

4.2.9 Advantages of GAs 

Genetic algorithms have several advantages, for example, 
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• 	 they require no knowledge or gradient information about the error surface, 

• 	 they are generally not trapped by local optima, 

• discontinuities on the error surface have little effect on overall optimization per­

formance, 

• 	 GAs perform very well for large-scale optimization problems, and 

• 	 GAs can be used in a wide variety of optimization problems, 

4.2.10 Disadvantages of GAs 

While GAs do offer several advantages as mentioned above, they do have drawbacks, 

such as: 

• 	 they generally require more fitness evaluations compared to hill-climbing tech­

niques, 

• 	 have trouble finding the exact minimum. GAs are best at reaching the global 

region but sometimes have difficulty reaching the exact optimum location. This 

problem can be overcome by a hybrid approach that uses a genetic algorithm to 

find the general area of a minimum followed by using gradient descent to find the 

corresponding minimum. 

• finding a 	suitable configuration for a GA, using the various parameters and oper­

ators for GAs, is not straightforward. 

The next section presents an overview of the Leapfrog Optimization Algorithm (LFOP) 

developed by Snyman [Snyman 1982b]. 
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4.3 Leapfrog 

Leapfrog is a gradient-based optimization approach based on the physical problem 

of the motion of a particle of unit mass in an n-dimensional conservative force field 

[Snyman 1982a, Snyman 1982b]. The potential energy of the particle in the force field 

is represented by the function to be minimized - in the case of NNs, the potential energy 

is the MSE. The objective is to conserve the total energy of the particle within the 

force field, where the total energy consists of the particle's potential and kinetic energy. 

The optimization method simulates the motion of the particle, and by monitoring the 

kinetic energy, an interfering strategy is adopted to appropriately reduce the potential 

energy. This algorithm employs an improved time step selection routine in which the 

time step is automatically reduced or increased to ensure an efficient utilization of the 

basic dynamic algorithm developed by Snyman [Snyman 1982b]. Snyman recorded 

results for leapfrog optimization that performed well compared to the conjugate 

gradient algorithm on the three test functions; Rosenbrock, the homogeneous quadratic 

and Oren's extended functions [Snyman 1982bJ . Other researchers, Holm and Botha 

have shown that the leapfrog optimization algorithm is a robust algorithm for training 

summation unit neural networks [Holm et al1999]. 

The algorithm is summarized below: 

4.3.1 Leapfrog Algorithm 

l. 	Compute an initial weight vector wo, with random components. Let 6t = 0.5 , 

5 = 1, m = 3, 51 = 0.001 and t = 10-5 . Initialize i = 0, j = 2, s = 0, p = 1 and 

k = -1, where 5 denotes the maximum allowable stepsize. 

2. 	 Compute the initial acceleration 0,0 = -VE(wo) and velocity Va = ~ao 6t, where 

E(wo) is the MSE for weight vector woo 
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4. 	 If II~wk II < 0 goto step 5, otherwise set Vk = 6~I~kll and goto step 6. 

5. 	 Set p = p + 01 and ~t = p~t . 

. t t 7 th . t At 6t d -. WIc+Wk-l - . ih +Vk- l 6. If S < m, go 0 s ep ,0 erwlse se u = 2 an Wk = 2 ,Vk = 4 

s = 0 and goto 7. 

9. 	 If aI+1 .ak > 0, then s = 0 and goto 10, otherwise s = s + 1, p = 1 and goto 10. 

10. 	 If Ilak+111 :::; t then stop, otherwise goto 11. 

11. 	 If Ilvk+lll > Ilvkll then i = 0 and goto 3, otherwise Wk+2 = WIc+~+WIc, i = i + 1 and 

goto 12. 

12. 	 Perform a restart: If i :::; j, then Vk+l = VIc+~+Vk and k = k + 1, goto 8, otherwise 

Vk+1 = 0, j = 1, k = k + 1 and goto 8. 

Whereas PSO and GA perform stochastic parallel searches, leapfrog uses gradient in­

formation to guide the search from one search point to the next. 

4.4 Experimental Results 

This section applies the optimization algorithms discussed in the previous section 

to the training of product unit neural networks. Results are also compared to that 

obtained from applying these optimization algorithms to SUNNs. The comparison also 

includes training PUNNs and SUNNs using gradient descent. The objective of these 

experiments is to determine if any gain in performance with respect to generalization 

 
 
 



99 CHAPTER 4. GLOBAL OPTIMIZATION ALGORITHMS 

can be achieved by usmg PUs. First, the functions used in the experiments are 

summarized, followed by a description of the experimental procedure. 

4.4.1 Test Functions 

Eight functions, varying in complexity, were used . These functions are summarized 

below. 

r-.J1. 	 The quadratic function f(z) = Z 2, with z U(-l,l). The training, test and 

validation sets consisted of 50 distinct randomly selected patterns. 

2. 	 The cubic function f( z) = Z 3 - 0.04z, with z r-.J U(-l, 1). The training, test and 

validation sets consisted of 50 distinct randomly selected patterns. 

3. 	 The henon time series Zt = 1 + 0.3zt - 2 - 1.4Zi-1' with Z l, Z2 U( -1,1). Ther-.J 

training, test and validation sets consisted of 200 distinct randomly selected pat­

terns. 

4. 	 The surface f(x,y) = y7x3 - 0.51;6 , with x,y r-.J U(-l, 1). The training, test and 

validation sets consisted of 300 distinct randomly selected patterns. 

5. 	 The paraboloid f(.r,y) = 1;2 + y2, with x,y r-.J U(-2,2). The training, test and 

validation sets consisted of 300 distinct randomly selected patterns. 

6. 	 The function f(x, y) = sin(x2)+ sin(y2), with x, y r-.J U( -2,2). The training, test 

and validation sets consisted of 300 distinct randomly selected patterns. 

7. 	 The camel function f(x, y) = 4-2.1x2+ X; x2+x·y+(4y2-4)y2, with x r-.J U(O, 10) 

and y r-.J U(O, 10). The training, test and validation sets consisted of 500 distinct 

randomly selected patterns. 
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8. 	 The function f(x, y) = sin(x) . sin(y)·~, with x, y f'V U(O, 10). This function 

is also referred to as the 'graph' in this thesis. The training, test and validation 

sets consisted of 500 dis tinct randomly selected patterns. 

The graphs for the 8 test functions above are displayed in figures 4.1 and 4.2 on pages 

100 and 101, respectively. 
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(c) F3: Zt = 1 + 03zt _ 2 - L4zZ-1 

Figure 4.1: Functions to be approximated 

The next section discusses the performance criteria used for optimization of the algo­

rithms. 
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Figure 4.2: F\mctions to be approximated 

4.4.2 Performance Criteria 

Each optimization algorithm contains a set of parameters that must be fine-tuned 

to improve convergence. Thus, the optimal parameters for each global optimization 

algorithm have to be determined before comparing the performance of the various 

optimization algorithms. 

Three performance criteria were considered to determine the optimal PSG, GA, LFOP 

and BP for each function, namely, 
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1. 	 the average of 30 simulations of the mean squared error (MSE) on the training 

and test sets after 500 training epochs for each of the eight functions; 

2. 	 the number of epochs required within a maximum of 1000 epochs to reach various 

generalization levels, i.e. 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001 and 0.00001; 

3. 	 the number of simulations that converged for each of the generalization levels 

mentioned above. 

The next section describes the experimental procedure applied to determine the optimal 

parameters for each optimization algorithm. 

4.5 Experimental procedure 

In determining the optimal parameters for each of the optimization algorithms, the 

following procedure was adhered to. All but one parameter were fixed, while the 

parameter that was not fixed (i.e. the one for which the optimal value has to be 

determined) assumed values from a range of possible values for that parameter. For 

each training session one value was selected from the range of values for the parameter 

under consideration. Training proceeded until all the values from the range were 

exhausted. A training session consisted of 30 simulations, where each simulation was 

trained for 500 epochs (for CD and LFOP), iterations (for PSO) or generations (for 

CA). In each simulation a different training set was used. The average MSE on the 

test set over the 30 simulations and the number of simulations that converged to a 

predefined generalization level were recorded. The parameter value that resulted in 

the lowest average MSE on the training and test sets and that had a high number 

of simulations that converged to a predefined generalization level was then selected 

as the best value for the parameter under consideration. This optimal value is then 

subsequently used in training to determine the optimal parameter values for the re­
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maining parameters. The other remaining parameters are optimized in a similar fashion. 

The next sections determines the optimal values of parameters for each of PSO, GA, 

LFOP and BP for each function. 

4.5.1 Parameters for the Optimization Methods 

Performance of each of the optimization algorithms used in this thesis is influenced by 

a number of parameters which should be optimized for each new problem. This section 

lists for each algorithm the set of parameters for which optimal values were found. 

1. 	 PSO 


Parameters that influence the performance of PSO include, 


(a) the inertia weight, which controls the balance between the global and local 

exploration abilities. 

(b) 	 the maximum velocity, which limits the maximum jump that a particle can 

make in one step. 

(c) 	 the acceleration constants, which control how far particles fly from one an­

other. 

(d) 	 the size of the population (i.e. number of particles in the swarm) affects the 

run-time of PSO; the larger the swarm, the longer the PSO will take to find 

a solution. 

2. 	 Back-propagation (BP) 

A number of factors influence the performance of back-propagation by gradient 

descent. These include, 

(a) 	 the interval for initial weights, which influences the speed and accuracy with 

which BP will find the minimum. 
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(b) 	 the learning rate, which controls the step sizes in the direction of the negative 

gradient of the error surface. 

(c) 	 the momentum, which smoothes out the oscillatory behaviour caused by 

the stochastic selection of training patterns for on-line learning. 

3. 	 GA 

Convergence of genetic algorithms is influenced by the following three factors, 

(a) probability for crossover, 	 which determines how much genetic material will 

be exchanged between individuals. The higher the crossover rate, the greater 

the chance of convergence. 

(b) probability for mutation, 	 which determines the rate at which bits are mu­

tated or flipped in a bit string. Convergence of a GA, generally requires a 

small rate for mutation. 

(c) 	 the size of the population; the larger the population, the greater the chance 

of convergence, but the longer it takes to find the solution. 

4. 	LFOP 

Parameters that influence the convergence of LFOP are, 

(a) 	0 (the maximum allowable stepsize) 

(b) 	01 

(c) 	 ~t (the time step) (refer to section 4.3.1 on page 97). 

(d) 	m specifies the number of steps before re-start. A value of 3 for m, worked 

well in practice. 
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4.6 Optimizing the Parameters 

This section determines the optimal values for parameters for BP and each of the global 

optimization algorithms. Experimental results are presented to support decisions on 

which values to use. 

4.6.1 Optimal Parameters for PSO 

A range of values for the inertia weight, maximum velocity, acceleration constant and 

number of particles have been tested to find the best combination of parameter values 

for each experiment (these values are listed in tables 4.1 to 4.3). The acceleration 

constant in this thesis was implemented using one value to represent both acceleration 

constants Cl and C2 as suggested by Eberhart [Eberhart et al1996]. The PUNNs were 

trained for each of the functions for a fixed number of epochs (500) , where an epoch 

is one training pass through the training set. Training started with a swarm of 50 

particles and parameters maximum velocity and acceleration constant, both initialized 

to 1.0. In all 8 functions, the weights (or particles) were initialized to random values in 

the range [-1, 1], also ensuring that approximately 50% of the particles had negative 

values. 

The values for the parameters inertia weight, maximum velocity and acceleration con­

stant appear below in tables 4.1, 4.2 and 4.3 , respectively. 

I Parameter I Values 

Inertia 

weight om 0.25 0.5 0.75 0.875 0.9 0.925 0.95 1.0 

Table 4.1: Range of values for inertia weight for PSO 
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I Parameter I Values 

Maximum 

velocity 0.0 0.5 1.0 1.5 2.0 2.5 5.0 10.0 

Table 4.2: Range of values for maximum velocity for PSO 

I Parameter I Values 

Acceleration 

constant 0.0 0.25 0.5 0.75 1.0 1.5 1.75 2.0 

Table 4.3: Range of values for acceleration constant for PSO 

The optimal values for each of the parameters for the eight functions using PUs and 

SUs appear in tables 4.4 and 4.5, respectively. 

Function 

PSO Parameters (PU) 

Inertia 

weight 

Maximum 

velocity 

Acceleration 

Constant 

No of 

particles 

f(x) = x 2 1.0 1.0 2.0 30 

f(x) = x3 - 0.04x 0.95 1.5 0.75 30 

Henon 0.8 5.0 0.75 50 

f(x,y) = y7x 3 -0.5x6 0,75 10.0 1.5 50 

f(x, y) = x 2 + y2 0.9 2,0 1.0 50 

f(x, y) = sin(x2) + sin(y2) 0,75 2.0 1.5 50 

Camel 0.75 10.0 1.0 100 

f(x, y) = sin(x) , sin(y) . ~ 0,5 1.0 1.5 100 

Table 4.4: Best parameters for PSO using PUs 


The following section determines the optimal parameters for BP for PUNNs and SUNNs. 
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Function 

pso Parameters (SU) 

Inertia 

weight 

Maximum 

velocity 

Acceleration 

Constant 

No of 

particles 

f(x) = x 2 0.875 5.0 1.0 30 

f(x) = x3 - 0.04x 0.875 1.75 0.75 30 

f(x, y) = y7x 3 - 0.5x6 0.75 10.0 1.0 50 

Henon 1.0 1.5 0.75 50 

f(x,Y) =x2 +y2 0.875 1.5 1.0 50 

f( x, y) = sin(x2 ) + sin(y2) 0.75 2.5 1.0 50 

Camel 0.75 1.0 1.0 100 

f(x, y) = sin(x) . sin(y) . vx-:Y 0.75 1.5 1.75 100 

Table 4.5: Best parameters for PSG using SUs 

4.6.2 Optimal Parameters for BP 

The same procedure for determining the optimal parameters in PSG, was also applied 

to BP, using various initial weight initialization, learning rate and momentum values. 

The range of values tested for weight initialization appear in table 4.6 on page 108. 

Various intervals were considered ranging from values close to zero to intervals that 

contain larger initial values such as [2.0, 4.0]' since research by Leerink et al suggested 

larger values for weight initialization [Leerink et al1995j . During weight selection 

for SUNN and PUNN, it was ensured that approximately 50% of the weights were 

negative. Tables 4.7 and 4.8 contain the range of values tested for the learning rate 

and momentum, respectively. The number of simulations of BP applied to PUNNs 

were increased to 70 to compensate for the high number of simulations that resulted 

in overflows, due to exponentiation in the learning rule of gradient descent , while the 

number of simulations for SUNNs remained at 30. In the case of PUNN using gradient 

descent , optimal parameter values for functions F3, F4, F5, F6, F7 and F8 could not 

be established, since none of the simulations returned a result, other than overflows. 
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I Parameter I Intervals 

Weight 

interval 

[-1.0,1.0] [-1.5,1.5] [-2.0,2.0] [-3.0,3.0] [-4.0,4.0] 

[-1.0, -0.5] 

& 

[0.5,1.0] 

[-1.5, -0.5] 

& 

[0 .5,1,5] 

[-2.0, -0.5] 

& 

[0.5,2.0] 

[-2.0 , -1.0] 

& 

[1.0,2.0] 

[-2.5, -1.0] 

& 

[1.0, 2.5] 

[-3.0, -1.0] 

& 

[1.0,3.0] 

[-2 .0, -1.5] 

& 

[1.5,2.0] 

[-3.0, -1.5] 

& 

[1.5,3.0] 

[-3.5, -1.5] 

& 

[1.5,3.51 

[-3.0, -2.0J 

& 

[2.0,3.0] 

[-4.0, -2.0] 

& 

[2.0,4.0] 

[-4.0, -3.0] 

& 

[3.0,4.0] 

[-5.0, -30] 

& 

[3.0,5.0] 

Table 4.6: Intervals for initial weights for BP 

I Parameter I Values 

Learning 

rate 0.001 om 0.025 0.0275 0.05 0.075 0.1 0 .15 0.2 0.25 0.5 0.75 

Table 4.7: Range of values for learning rate for BP 

A possible explanation for this behaviour is that the weights selected from the initial 

interval are too far from the optimal weights, causing too large jumps in weight space. 

This already illustrates the failure of G D to train PUs. Tables 4.9 and 4.10 on pages 

109 and 109 contain the optimal values for the parameters for BP applied to product 

and summation unit networks, respectively. In tables 4.9 and 4.10, the notation 

± [1.5,3 .5] is an abbreviation for the intervals [-3.5, -1.5] and [1.5,3.5]. 

The next section determines the optimal parameters for GAs applied to SUNNs and 

PUNNs. 

I Parameter I Values 

Momentum 

Table 4.8: Range of values for momentum for BP 
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Backpropagation (SU) 

Function weight learning momentum 

interval rate 

f(x) = x 2 ±[1.5,3.5) 0.01 0.7 

f( x) = x3 - 0.04x ±[1.5 ,3.0] 0.0275 0.5 

Table 4.9: Best parameters for BP using PUs 

Backpropagation (SU) 

Function weight 

interval 

learning 

rate 

momentum 

f(x) = x 2 ±[0.5, 1.5] 0.25 2.0 

f( x ) = x 3 - 0.04x ±[0, 3.0] 0.5 2.0 

Henon ±[0,1.5] 0.5 1.25 

f(x, y) = y7x 3 - 0.5x6 ±[1.5 , 35] 0.5 2.0 

f( x , y) = x 2 + y2 ±[0.5 , 1.0J 0.25 0.7 

f(x, y) = sin(x2) -I- sin(y2) ±[0.5, 20] 0.15 1.0 

Camel ±[0.5,2.0] 0.25 1.5 

f( x, y) = sin(x) . sin(y) . ,jXy ±[0.5,1.0] 0.5 0.9 

Table 4.10: Best parameters for BP using SUs 
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Probability 

of crossover 0.5 0.6 0.7 0.8 0.9 

Table 4.11: Range of values for crossover 

Probability 

mutation 0.001 0.005 0.01 0.05 0.1 0.25 0.5 

Table 4.12: Range of values for mutation 

4.6.3 Optimal parameters for GA 

In determining the optimal parameter values for the GA, 30 simulations were used. 

Various initial values were used for the probability of crossover and mutation in the GA 

algorithm. The number of individuals was also increased to determine the optimal size 

of the population. The range of values for mutation and crossover appear in tables 4.11 

and 4.12 follow the guidelines suggested by De Jong [De Jong 1975]. In determining 

the optimal population size, the number of individuals were gradually increased from 

50 to 200 during training. 

The optimal values for GAs using SUNNs and PUNNs appear in tables 4.13 and 4.14 

on page 111. 

The optimal parameters for leapfrog optimization are determined in the next section. 

4.6.4 Optimal parameters for LFOP 

In determining the best parameters, the average MSE of 30 runs was used during 

training. During each training session the parameters were fixed to values that appear 

 
 
 



III CHAPTER 4. GLOBAL OPTIMIZATION ALGORITHMS 

Genetic Algorithm - PU 

Function Probability of 

crossover 

Probability of 

mutation 

Size of 

population 

f(x) = x 2 0.6 0.01 50 

f(x) = x 3 - 0.04x 0.6 0.01 50 

Henon 0.7 0.005 100 

f(x, y) = y7 x 3 - 0.5x 6 0.6 0.01 100 

f(x, y) = x 2 + y2 0.7 0.005 120 

f(x, y) = sin(x2) + sin(y2) 0.6 0.005 120 

camel 0.8 0.005 200 

f(x, y) = sin(x) . sin(y) . ,;x:y 0.7 0.005 200 

Table 4.13: Best parameters for GA using PUs 

Genetic Algorithm - SU 

Function Probability of Probability of Size of 

crossover mutation population 

2f(x) = x 0.5 0.005 50 

j)(x) = x3 - 0.04x 0.8 0.005 50 

Henon 0.7 0.005 100 

f(x, y) = y7 x 3 - 0.5x6 0.8 0.005 100 

f(x, y) = x 2 + y2 0.5 0005 120 

f(x, y) = sin(x2 
) + sin(y2) 0.8 0.001 120 

camel 0.8 0.001 200 

f(x, y) = sin(x) . sin(y) .,;x:y 0.5 0.001 200 

Table 4.14: Best parameters for GA using SUs 
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Parameter Values 

o 10 1 100 \ 1000 

Table 4.15: Range of values for 0 

Parameter Values 

01 0.001 \ 0.01 \ 0.1 

Table 4.16: Range of values for 01 

in tables 4.15 to 4.17. 


The optimal values for LFOP applied to PUNNs and SUNNs appear in tables 4.18 and 


4.19 respectively. An entry of (-' in table 4.18 indicates that all simulations produced 

overflows and optimal values could not be determined in these cases. The overflows 

can again be ascribed to the fact that gradient methods suffer from an explosion in the 

growth of weight values due to large derivatives. 

The next section summarizes the initial NN architectures used in training each function 

using SUNNs and PUNNs. 

4.7 Initial Neural Network Architectures 

Tables 4.20 and 4.21 contain the initial neural network architectures that were used 

in optimizing the parameters for each of PSO, GA, LFOP and BP using PUNNs and 

SUNNs. The oversized networks of tables 4.20 and 4.21 are used to determine the 

Parameter Values 

6t 0.01 \ 0.05 \ 0.075 \ 0.1 

Table 4.17: Range of values for 6t 
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Leapfrog Algorithm - PU 

Function 0 01 /j.t 

f(x) = x2 10.0 0.01 0.05 

f(x) = x 3 - 0.04x 100.0 0.01 0.01 

Henon 10.0 0.01 0.05 

f(x, y) = y7x 3 ­ 0.5x6 10.0 0.001 0.01 

f( x , y) = x2 + y2 10.0 0.01 0.01 

f(x, y) = sin(x2) + sin(y2) - - -

camel - - -

f(x, y) = sin(x) . sin(y) . ~ - - -

Table 4.18: Best parameters for LFOP using PUs 

Leapfrog Algorithm - SU 

Function £5 61 /j.t 

j(x) = x 2 100.0 0.001 0.075 

f(x) = x 3 - 0.04x 10.0 0.001 om 
Henon 100.0 0.001 0.05 

f(x , y) = y7x 3 ­ 0.5x6 10.0 0.001 0.01 

f(x,y) = x 2 +y2 10.0 0.001 0.075 

j(x, y) = sin(x2) + sin(y2) 100.0 0.001 om 

camel 100.0 0.001 0.1 

f(x, y) = sin(x) . sin{y) . ~ 100.0 0.001 0.075 

Table 4.19: Best parameters for LFOP using SUs 
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Configuration for PUNNs 

Function Initial Configuration 

f(x) = x 2 1:4:1 

f(x) = x3 - 0.04x 1 : 5 : 1 

Henon 2:6:1 

f(x, y) = y7x 3 - 0.5x6 2:5:1 

f(x, y) = x 2 + y2 2:4:1 

f(x, y) = sin(x2) + sin(y2) 2: 10: 1 

Camel 2: 10 : 1 

f(x , y) = sin(x) . sin(y) . ~ 2: 12 : 1 

Table 4.20: Initial configuration for PUNNs 

optimal parameters for the different global optimization algorithms. 


The next section discusses the procedure to determine the optimal number of hidden 


units for SUNNs and PUNNs. 


4.8 Best Configuration for SUNNs and PUNNs 

Once the optimal parameters for each of the global optimization algorithms and BP 

have been determined, pruning by 'brute force' is then applied to the optimization 

algorithms using the optimal parameters of section 4.6 to find near optimal configu­

rations for P U INs and SUNNs. The optimal configurations for PUNNs and SUNNs 

were determined by comparing results of experiments where the number of hidden 

units varied for each training session. The architecture that produced the smallest 

average MSE on the test set over 30 simulations and the highest number of simulations 

that cClllvergeu Lv a tivecifleu generalization level of 0.001 was accepted as t.he best 

configuration. Table 4.22 contains t.he results for PUNNs, and table 4.23 for SUNNs, 

where training started with the initial configuration tabulated. After each training 
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Configuration for SUNNs 

Function Initial Configuration 

f(x) = x2 1:4:1 

f(x) = x3 - 0.04x 1 : 5 : 1 

Henon 2:8:1 

f(x, y) = y7 x3 - 0.5x6 2: 10: 1 

f(x, y) = x 2 + y2 2:6:1 

f(x, y) = sin(x2) + sin(y2) 2: 10 : 1 

Camel 2: 12: 1 

f(x, y) = sin(;z;) . sin(y) . ~ 2: 15: 1 

Table 4.21: Initial configuration for SUNNs 

session, consisting of 30 simulations, the number of hidden units was decreased by 

1 and training was re-started on this smaller network until the performance on the 

test set deteriorated by 20% or more compared to the initial oversized network. The 

number of hidden units that occurred in optimal PUNNs expressed as a percentage of 

the number of hidden units that occurred in the equivalent optimal SUNNs, are for 

functions F1 50%, F2 33.3%, F3 80%, F4 33.3%, F5 50%, F6 66.7%, F7 75% and F8 

77.8%. 

The optimal configurations or architectures for each function obtained in this section 

is subsequently used in the remainder of this thesis in experiments that compare the 

various global optimization algorithms and BP. In chapter 5 the variance nullity pruning 

algorithm is applied to the oversized PUNNs to determine optimal architectures. The 

results obtained in chapter 5 will then be compared to the results obtained by brute 

force pruning. 
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Configuration for PUNNs 

Function Initial Configuration Best Configuration 

f(x) = x 2 1:4:1 1 : 1 : 1 

f(x) = ::r; 3 - O.04x 1 : 5 : 1 1: 1 :1 

Henon 2 :6:1 1:4:1 

f( x , y) = y7 x 3 - O.5x 6 2: 5:1 1: 2 : 1 

f(x,y)= x 2 +y2 2: 4 :1 2:2:1 

f(x, y) = sin(x 2) + sin(y2) 2: 10 : 1 2:4 :1 

Camel 2: 10 : 1 2:6:1 

f( x, y) = sin(x) . sin(y) . vx:Y 2: 12 : 1 2: 7:1 

Table 4.22: Configuration for PUNNs 

Configuration for SUNNs 

Function Initial Configuration Best Configuration 

f(x) = x 2 1 : 4 : 1 1 : 2 : 1 

f( x ) ­ x 3 - 0.04x 1: 5 : 1 1:3:1 

Henon 2:8: 1 1 : 5 : 1 

f(x,y) = y7 x3 - 0.5x6 2: 10 : 1 1 : 6 : 1 

f( x , y) = x2 +y2 2: 6 : 1 2 :4: 1 

f(x, y) = sin(x 2) + sin(y2) 2: 10 : 1 2:6:1 

Camel 2: 12 : 1 2:8:1 

f( x, y) = sin(x) . sin(y) . vx:Y 2: 15 : 1 2:9: 1 

Table 4.23: Configuration for SUNNs 
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4.9 	 Comparison Between PUNNs Containing Bias 

and Distortion Units 

The MSEs of two PUNN s, one containing a bias and the other a distortion unit in the 

hidden layer, are compared in this section. Both architectures contained a bias in the 

output layer. The objective is to determine whether there is any gain in performance 

when using a distortion unit compared to a bias unit in the hidden layer of a PUNN. 

PSO was used to compare the resulting MSEs of these two architectures of PUNNs. 

First, optimal parameters were determined for both type of architectures (similarly 

3to section 4.6 .1 on page 105) for the following three functions: f(x) = x - 0.04x, 

f(x,y) = y7x3 - 0.5x6 and f(x,y) = sin(x) . sin(y)·~. Subsequently, PSO with 

optimal parameter values for each type of PUNN architecture (i.e. bias or distortion 

unit PUNN) was trained to approximate each of the three functions for a maximum of 

500 epochs. The average MSEs on the training and test sets over 30 simulations to­

gether with a 95% confidence interval for the three functions are displayed in Table 4.24. 

The results of the tests show that PUNNs with a distortion unit produced smaller 

MSEs on the training set and generalized much better than PUNNs that contain a bias 

in the hidden layer. The PUNN with distortion unit is therefor chosen as the PUNN 

architecture for implementation in the remainder of this thesis. 

 
 
 



118 CHAPTER 4. GLOBAL OPTIMIZATION ALGORITHMS' 

Function 

PUNN using a 

bias unit 

PUNN using a 

distortion unit 

MSE on 

Training 

set 

MSE on 

Test 

set 

MSE on 

Training 

set 

MSE on 

Test 

set 

f(x) = x3 - 0.04x 0.002970 

±0001l28 

0.002785 

±0.000967 

0.000018 

±0.0000043 

0.000016 

±0.0000042 

f(x, y) = y7x3 ­ 0.5x6 0.002574 

±0.000777 

0.002840 

±0.00079 

0.000919 

±0.000476 

0.001213 

±0.000625 

f(x, y) = sin(x) . sin(y) . ~ 0.002383 

±0 .001665 

0 .002614 

±0.001841 

0.0005684 

±0.0004004 

0.0007953 

±0.0005696 

Table 4.24: Comparison of MSEs on PUNN containing a bias and a PUNN containing 

a distortion unit 
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4.10 	 Comparison of Global Optimization Algo­

rithms 

This section uses the optimized parameters from section 4.6.1 to compare t he perfor­

mance of PSG, GA, LFOP and BP on both PUNNs and SUNNs. 

Tables 4.25 and 4.26 summarize the average mean squared error (MSE) for the 

training and test sets for PUNNs and SUNNs, respectively, after 500 training passes 

for each of the algorithms, PSO, LFOP, GA and BP, together with 95% confidence 

intervals. A '*' in tables 4.25 and 4.26 indicates the algorithm that performed 

the best in each case of PUNNs and SUNNs, respectively. A 't' in tables 4.25 and 

4.26 indicates the algorithm that performed the best in both, PUNNs and SUNNs, cases. 

Figures 4.3, 4.4 and 4.5 illustrate the learning profiles for each optimization method 

for the training and test sets (as a measure of generalization). Tables 4.27 to 4.29 

list the average number of epochs to reach specified MSE levels on the training set. 

The entries in the first column for the tables 4.27 to 4.29 refer to (a) the type of 

algorithm and (b) the type of network used, i.e. BP:SU refers to back-propagation by 

gradient descent applied to a summation unit neural network. Similarly, LFOP:PU 

refers to leapfrog optimization applied to a product unit neural network. Tables 4.30 

to 4.33 summarize, for different generalization levels (i.e. the MSE on the test set), 

the percentage of simulations that did converge to these generalization levels. A '-' 

entry in table 4.25 implies that not a single simulation out of the 30 simulations 

produced any result other than overflows. In tables 4.27 to 4.29, a ' -' entry means 

that not a single simulation reached convergence within the maximum of 1000 epochs 

allowed. In tables 4.32 and 4.33, a '-' indicates that all simulations produced overflows. 
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The fact that only the quadratic and cubic functions produced results for BP using 

product units, is an indication of the difficulty that is associated with backpropagation 

by gradient descent when applied to PUs. LFOP for training PUs, a derivative based 

algorithm, also produced overflows for the functions f(x, y) = sin(x2) + sin(y2), 

f(x, y) = sin(x) . sin(y) . ~ and the camel function as reflected in table 4.32. 

4.11 Analysis of Results 

The results in this section were produced by experiments that used optimal architec­

tures as determined in section 4.8 for both PUNNs and SUNNs. Table 4.25 indicates 

that PSO produced better MSEs on both the training and test sets in training PUNN s 

compared to the other global optimization algorithms. GAs also performed fairly well, 

but not as good as PSO. In table 4.26 LFOP using SUs produced the smallest MSEs 

on both the training and test sets, except for f(x) = x2 and f(x, y) = x2 + y2, where 

BP using SUs produced much better results. Thus, in training SUNNs, LFOP would 

be the recommended optimization algorithm. 

Next, the results for each function are discussed separately. 

2f(x) = x

The graphs in figure 4.3 show that PSO using PUs and GA using PUs started off 

with fairly low MSEs on both training and test sets. All the global optimization 

algorithms, (i.e. PSO, LFOP and GA) produced substantially better training errors 

and generalization than the equivalent SUs for the quadratic function as shown in tables 

4.25 and 4.26. BP:SUs (read as back-propagation using summation units) performed 

slightly better than BP:PUs (read as back-propagation using PUs). However, the 
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Function Algorithm Average Mean Squared Error 

'I\'aining set Test set 

J(x) = x 2 

BP 0.006823 ± 0.004255 0.005949 ± 0.003679 

PSO 0.000344 ± 0.000112 0.000334 ± 0.000112 * t 
GA 0.000518 ± 0.000518 0.001340 ± 0.002131 

LFOP 0.001583 ± 0.000725 0.001930 ± 0.000893 

j(x) = x 3 - 0.04x 

BP 0.001210 ± 0.000696 0.000977 ± 0.000510 

PSO 0.000018 ± 0.0000043 0.000016 ± 0.0000042 * t 
GA 0.000072 ± 0 .0000528 0.000082 ± 0.0000585 

LFOP 0.000122 ± 0.000141 0.000156 ± 0.0001863 

J-Jenon 

BP - -
PSO 0.003173 ± 0.001754 0.007881 ± 0.004455 

GA 0.004365 ± 0.002613 0.006101 ± 0.004645 

LFOP 0.000651 ± 0.000698 0.000608 ± 0.000651 * 

J( x ,y) = y 7x 3 ­ 0.5x6 

BP - -

PSO 0.000919 ± 0.000476 0.001213 ± 0.000625 * 
GA 0,0021079 ± 0.0007105 0.0022844 ± 0.0007620 

LFOP 0.0043720 ± 0.0005151 0,0049928 ± 0.0004130 

j(x,y) = x 2 +y2 

BP - -

PSO 0.0088368 ± 0.0028955 0,0083125 ± 0.0027094 * 
GA 0,0094581 ± 0,0025222 0,0089599 ± 0.0023852 

LFOP 0.0200444 ± 0.0054125 0.0195222 ± 0.0050495 

J(x, y) = sin(x 2) + sin(y2 ) 

BP - -

PSO 0,0021190 ± 0.0009562 0.0041067 ± 0,0031883 * t 
GA 0,005998 ± 0.002610 0.005807 ± 0.002668 

LFOP - -

camel 

BP - -

PSO 0.0316965 ± 0.0026735 0.0398755 ± 0.0032916 * 
GA 0.0509293 ± 0.0037854 0.0632008 ± 0,0059496 

LFOP - -

j( x , y ) = sin (x) , sin(y) , ..;x-:y 

BP - -

PSO 0,0005684 ± 0.0004004 0,0007953 ± 0.0005696 * t 
GA 0.0007359 ± 0.0002295 0.0009474 ± 0,0002870 

LFOP - -

Table 4.25: Mean squared error results for PUs 
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Function Algorithm Average Mean Squared Error 

Training set Test set 

BP 0.001477 ± 0.001323 0.001434 ± 0.001023 * 
PSO 0.001945 ± 0.00172 0.001873 ± 0.001355f(x) = x 2 

0.005696 ± 0.002512 0.006965 ± 0.003288GA 

LFOP 0.006117 ± 0.003559 0.009518 ± 0.005372 

0.001695 ± 0.000498BP 0.001957 ± 0.000501 

3f(x) = x - O.04x PSO 0.000095 ± 0.0000254 0.000165 ± 0.0000496 

0.000410 ± 0.0002135 0.000525 ± 0.0002425GA 

0.000053 ± 0.0000177LFOP 0.000065 ± 0.0000197 * 
0.000800 ± 0.000773 0.000926 ± 0.000810BP 

Henan PSO 0.0004200 ± 0.0000490 0.0004050 ± 0.0000450 

0.0016431 ± 0.0003998 0.0017022 ± 0.0003907GA 

LFOP 0.0002004 ± 0.0000232 0.0001943 ± 0.0000231 * t 
0.000493 ± 0.000061 0 .002172 ± 0.000637BP 

f(x, y) = y7x 3 - 0.5x6 0.001086 ± 0.000089 0.003604 ± 0.000953PSO 

0.0014528 ± 0.0001069 0.0030766 ± 0.0005732GA 

LFOP 0.0003959 ± 0.0000482 0.0007645 ± 0.0000765 * t 
0.000413 ± 0.000013 0.000529 ± 0.000019BP * t 

f(x,y) = x 2 +y2 PSO 0.001860 ± 0.000776 0.002164 ± 0.000753 

GA 0.0096575 ± 0.0020188 0.0143728 ± 0.0029755 

LFOP 0.0010507 ± 0.0010435 0.0012780 ± 0.0012015 

0.006722 ± 0.001068BP 0.005595 ± 0.000883 

0.008542 ± 0.000572f(x, y) = sin(x 2) + sin(y2) PSO 0.011924 ± 0.000804 

0.012365 ± 0.00lO19 0.014279 ± 0.001087GA 

LFOP 0.004477 ± 0.001194 0.005483 ± 0.001184 * 
BP 0.000560 ± 0.000090 0.002256 ± 0.000702 

0.001228 ± 0.000217camel PSO 0.002044 ± 0.000344 

0.005017 ± 0.000917GA 0.006842 ± 0.000809 

LFOP 0.0000535 ± 0.0000022 0.0000963 ± 0.0000058 * t 
BP 0.008764 ± 0.000144942 0.010274 ± 0.000189 

0.010991 ± 0.000368 0 .012457 ± 0.000309f(x,y) = sin(x)· sin(y). ~ PSO 

0.0111821 ± 0.0003309 0.0125407 ± 0.0002641GA 

0.004335 ± 0.000975 0.005601 ± 0.001115LFOP * 

Table 4.26: Mean squared error results for SUs 
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PUNN used a smaller architecture; the SUNN consisted of 2 hidden units, whereas the 

PUNN contained only 1 hidden unit. Table 4.27 shows that PSO:PUs, GA:PUs and 

LFOP:PUs required substantially fewer epochs than its SU equivalents to reach each 

of the generalization levels, 0.01 and 0.001, with LFOP:PUs having the least number 

of epochs for each of the generalization levels. Not one of the global optimization 

algorithms using SUs could generalize up to a level of 0.0001; these algorithms could 

only manage to generalize up to a level of 0.001, with convergence observed in 46.7% 

of the simulations of PSO:SUs. All algorithms using PUs were able to reach an MSE 

of 0.0001 on the training sets as shown in tables 4.30 to 4.33. For the quadratic 

function, GA:PUs and LFOP:PUs managed to generalize up to a low level of 0.00001 

with LFOP:PUs having the highest percentage of simulations (47.1%) that converged 

to this low level followed by GA where 40% of the simulations converged. The average 

number of simulations required by LFOP:PUs and GA:PUs to reach this level of 

generalization are 90.1 and 301.5, respectively. Tables 4.25 and 4.26 show that GA 

using PUs and LFOP using SUs, overfitted the data, as indicated by the MSE on the 

test set compared to the MSE on the training set. In both cases the MSE on the test 

set exceeded the MSE on the training set, indicating overfitting of the data. Thus, 

PSO:PUs is the recommended algorithm for training the quadratic function. 

f(x) = x 3 - 0.04x 

The graphs in figure 4.3 show that GA:PUs started off with very small MSEs on both 

training and test sets. Once, again all the global optimization algorithms produced a 

smaller MSE on the training set than its SU equivalent, except for LFOP. The optimal 

architecture of PUNNs for this function contained 1 hidden unit compared to the 3 

hidden units in the case of SUNNs. LFOP using SUs with the larger network than its 

PUs equivalent had a much lower MSE on the training and test sets than LFOP:PUs 

as shown in tables 4.25 and 4.26. Table 4.26 indicates that all the algorithms that used 
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SUs overfitted the data. Tables 4.25 and 4.26, further show that BP:PUs produced 

results similar to BP:SUs, with BP:PUs being slightly better than BP:SUs. BP:SUs 

exhibits a generalization that is much lower than the MSE on the training set. It 

should however also be borne in mind that the PUNN contained 1 hidden unit and is 

much smaller than the SUNN with 3 hidden units . Table 4.27 shows that PSO:PUs, 

GA:PUs and LFOP:PUs required fewer epochs than its SU equivalents to reach the 

generalization level of 0.001, 0.0001 and 0.00001, with LFOP:PUs having the least 

number of epochs (314.7 ± 64.03) to reach 0.00001. Not one of the global optimization 

algorithms using SUs could generalize up to a level of 0.00001. Global optimization 

algorithms using SUNNs could only manage to generalize up to 0.0001, with 33.3% 

of the simulations of PSO converging to this low generalization level. The results of 

the cubic function using GA with PUs are significantly better than GA using SUs as 

reflected in Tables 4.25 and 4.26. PSO:PUs produced the best training and test error 

compared to all the other algorithms including SUNNs. It is interesting to note that 

although LFOP:PUs has a larger number of simulations that converged to a level of 

0.00001 as indicated in table 4.32, it has an average MSE much greater than PSO:PUs. 

PSO:PUs is thus recommended for training the function J(x) = x3 - 0.04x. 

J(z) = 1 + 0.3zt - 2 - 1.4Z;_1 (henon) 

The graphs in 4.3 reflect fairly low MSEs for LFOP using PUs and BP using SUs 

on both training and test sets early in training. The global optimization algorithms 

applied to the SUs outperformed the PUs as indicated in tables 4.25 and 4.26, with the 

results of the optimization algorithms of SUs having a much smaller variance than its 

PU equivalents. LFOP:SUs had the lowest training error and generalization than the 

optimization algorithms applied to PUs. Note that LFOP:SUs had a larger network 

(2:5:1) with a training error of 0.0002004 ± 0.0000232, compared to LFOP:PUs, 2:4:1 

network that produced a training error of 0.000651 ±0.000698. Interestingly, In the case 
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of the SUs the global optimization algorithms PSO:SUs and LFOP:SUs gave better 

training and generalization than BP:SUs (which is a local optimizer). BP:PUs did not 

produce a single result, except for overflows (as indicated to by '-' in table 4.31), in all 

the training sessions. LFOP using PUs required the least number of epochs of all the 

optimization algorithms to reach the various generalization levels for the henon time 

series. The LFOP:PUs as shown in table 4.27 used much less epochs than LFOP:SUs 

to reach generalization levels 0.01, 0.001, and 0.0001. Only LFOP:PUs and PSO:PUs 

managed to reach low generalization levels of 0.00001, with convergence reached in only 

1.4% of the simulations in LFOP:PUs. In PSO:PUs slightly more simulations (3.3%) 

converged than LFOP:PUs at this low level of generalization. However, LFOP:PUs 

only needed 63.3 epochs compared to 465.3 epochs required by PSO:PUs to reach 

this low level. For a generalization of 0.0001, 35.7% of simulations for LFOP:PUs 

converged compared to only 10% convergence in the case of PSO:PUs. In the case of 

SUNNs only the LFOP managed to reach a level of 0.0001, with convergence in 13.3% 

of the simulations. PSO and GA using PUs overfitted the data as reflected in table 

4.25. LFOP:SUs, with a low training and test error (see table 4.25) is recommended as 

training algorithm for the henon time series. 

f(x, y) = y7x3 - 0.5x6 

PSO using PUs produced small MSEs on the training set but overfitted the data 

as shown by MSEs on the test set in table 4.25. Similarly, BP:SUs produced low 

training errors but did not generalize equally well. GAs:SUs performance was similar 

to GA:PUs. LFOP:SUs produced the best MSEs on the training and test sets of all the 

algorithms. LFOP:SUs, however, could not reach a generalization level of 0.0001 (all 

30 simulations ended in MSEs on the test sets between 0.0002 and 0.0007), whereas 

13.3% simulations of PSO:PUs achieved 0.00001 (refer to table 4.30). PSO using 

PUs is the only algorithm that managed to reach a generalization level of 0.00001 as 
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shown in table 4.30. The lowest generalization level achieved by SUNNs is 0.001; with 

convergence of 63.3% and 6.7% of simulations for LFOP and BP, respectively. Also, 

did PSO:PUs and GA:PUs require fewer epochs than its SU equivalent to reach a 

generalization level of 0.001. BP:PUs did not produce any results, other than overflows 

in all training sessions. LFOP:SUs with its much lower MSEs on training and test sets, 

as tabulated in 4.26 is recommended as the optimization algorithm for the function 

f(x, y) = y7x3 - 0.5x6. 

f(X,Y) = X2+y2 

PSO:PUs reached lower generalization levels than PSO:SUs as indicated in table 4.28. 

Table 4.26 shows that BP:SUs produced the smallest MSEs on the training and test 

sets, but could only generalize up to a level of 0.001, despite the fact that the general­

ization in table 4.26 is 0.000529 ± 0.000019; the average of all simulations is 0.000529 

with not a single simulation reaching an MSE on the test set lower than 0.0001 (all 

simulations ended with values greater than 0.0001 but smaller than 0.0009). However, 

both PSO:PUs and LFOP:PUs managed to reach lower generalization levels than 

BP:SUs as shown in table 4.28. The lowest generalization level achieved by SUNNs 

is 0.001 , with 16.7% of the simulations of BP:SUs and 13.3% of the simulations of 

PSO:SUs converging at this low level. However, all the global optimization algorithms 

using PUs managed to reach generalization levels of 0.001 and 0.0001, with 33.3% of 

PSO:PUs and 15.7% of LFOP:PUs generalizing up to a level of 0.00001. PSO:PUs had 

twice as many simulations than LFOP:PUs that converged to this low level of gener­

alization as shown in tables 4.30 and 4.32. Of all the global optimization algorithms, 

LFOP:SUs, not forgetting the bigger network (i.e. 2:4:1) than the equivalent PUNN 

(2:2:1), produced the lowest MSE on the training and test sets within the allowed 

500 epochs as reflected in table 4.25. LFOP:SUs, however, could not manage to 

reach a generalization level lower than 0.001 within the 1000 epochs allowed. Neither 
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BP:PUs nor LFOP:PUs produced any results. BP:PUs, with the smallest MSE aver­

age as reflected in table 4.26, is recommended for training the function f(x, y) = x2+y2. 

f(x, y) = sin(x2) + sin(y2) 

The graphs in figure 4.4 show that PSO using PUs produced large MSEs early in 

training, but eventually had the lowest MSEs of all the algorithms when training 

terminated. In this case PSO:PUs produced the lowest training error as indicated in 

table 4.25. GA:PUs and LFOP:SUs produced similar training errors. Table 4.28 shows 

that only PSO:PUs and LFOP:SUs managed to reach generalization levels of 0.0001, 

with PSO:PUs taking fewer epochs to achieve this generalization level. In both cases 

only 3.3% simulations converged. BP:PUs and LFOP:PUs did not produce any results . 

PSO:PUs with its good generalization ability is recommended as global optimization 

algorithm for the function f(.T, y) = sin(x2) + sin(y2). 

f(x, y) = 4 - 2.1x2 + (~)X2 + xy + (4y2 - 4)y2(camel) 

The graphs in figure 4.5 show that all algorithms using SUs had small MSEs early in 

training and that not one of the algorithms using PUs managed to reach MSE levels 

lower than 0.03. The SUs performed much better than the PUs in this case. The 

LFOP:SUs produced the smallest MSEs on the training and test sets. LFOP:SUs 

was able to achieve a generalization level of 0.0001 (refer to table 4.29). BP:SUs also 

produced very good MSEs but indicated overfitting of the data in table 4.25. BP:PUs 

and LFOP:PUs did not produce any results, other than overflows in all the training 

sessions. LFOP:SUs is recommended for training of the camel function. 

f(x , y) = sin(x)sin(y)yIX-Y 

The graphs in figure 4.5 clearly show that PSO using PUs had the lowest MSEs early 

in training and ended the training session with the lowest MSEs on both the training 
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and test sets. PSO:PUs and GA:PUs outperformed all the other algorithms. PSO:PUs 

is the only algorithm that managed to generalize up to a level of 0.00001, GA:PUs 

could only generalize up to 0.001 (with MSEs on the test set ranging between 0.0002 

and 0.0006) simulations. The lowest generalization level achieved by SUNNs is 0.01, 

with 15.7% of simulations converging at this level. In the case of SUNNs, LFOP:SUs 

BP:PUs and LFOP:PUs did not produce any results, other than overflows. Only 

PSO:PUs managed to generalize up to level 0.00001 (refer to table 4.29), with only 

3.3% simulations converging as reflected in table 4.30. 

Table 4.27 shows that LFOP:PUs had the most simulations that converged to the 

different generalization levels, especially for the low generalization level of 0.00001. 

BP:SUs did manage to have simulations that converged to a generalization level 

up to 0.001 but not a single simulation converged to a MSE on the test set lower 

than 0.0001. Figures 4.3 to 4.5 illustrate that PSO:PUs and GA:PUs have larger 

reductions in error early in training reaching low errors using substantially less training 

epochs. LFOP:PUs has shown to use much less epochs than do PSO and GA for low 

generalization levels of 0.001, 0.0001 and 0.00001. 

4.12 Conclusion 

PUNNs compared favourably with SUNNS with respect to functions F1, F2, F6 and F8. 

However, SUNNs performed much better on functions F3, F4, F5 and F7. Generally, 

LFOP using SUs, produced a much smaller training error than BP:SUs. LFOP:SUs 

also generalized far better than BP:SUs. LFOP:SUs produced much smaller MSEs 

than BP:SUs in training the test functions, except for functions f(x) = x2 and 

f(x,y) = x2 -I- y2, where BP:SUs outperformed PSO:SUs and LFOP:SUs. Although 
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the global optimization algorithms did not perform better than BP:SUs in all cases, 

it did however manage to achieve lower generalization levels using much fewer epochs 

than BP:SUs with a corresponding higher convergence than BP:SUs. Thus, global op­

timization algorithms tend to find the best minimum on the error surface faster than 

BP:SUs. PSO:PUs is the only algorithm that managed to reach a low generalization 

level of 0.0001 in all functions except for the camel function. Although, BP:SUs ap­

plied to function F5 had a smaller training error than PSO:PUs, it did not ma.na.ge 

to reach the low generalization level of 0.0001, that was achieved by PSO:PUs. The 

results also show that global optimization algorithms can reach lower generalization 

levels than BP when applied to SUNNs. The tests have also indicated that PUNNs 

are not always an improvement over SUNNs, even though PUs may produce smaller 

networks. These smaller networks do not always produce good training errors and gen­

eralization compared to the slightly bigger SUNNs. However, global optimization using 

SUs showed an improvement in performance compared to back-propagation. In certain 

cases the PUNNs (f(x,y) = x2, f(x,y) = :r3 
- 0.04x , f(x,y) = sin(x2) + sin(y2) and 

f(x, y) = sin(x) . sin(y) . J(x· y)) outperformed the SUNNs. PSO appears to be more 

robust with respect to functions F1, F2 and F5 since they have a larger percentage 

of simulations that converged to a generalization level of 0.00001 than LFOP:PUs. In 

general, PUNNs did not show a remarkable gain in performance, other than reaching 

lower generalization levels faster than back-propagation. 
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j(x) = X 2 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.07 6.8 ± 4.00 108.5 ± 32.61 227.6 ± 53.72 - -

BP:PU 2.2 ± 0.10 3.9 ± 0.48 17.8 ± 23.06 101.7 ± 52.95 216.2 ± 76.33 216.2 ± 76.33 395.4 ± 58.01 

PSO:SU 1.0 ±O 1.0 ± 0 1.4 ± 0.36 101.7 ± 58.73 228.5 ± 62.69 - -

PSO:PU 1.0 ±O 1.0 ± 0 1.3 ± 0.25 38 ± 19.84 154.5 ± 44.09 485.6 ± 28.16 -

GA:SU 1.0 ± 0 1.0± 0 1.2 ± 0.27 40.0 ± 31.85 494.9 ± 9.93 - -

GA:PU 1.1 ± 0.09 1.2 ± 0.17 2 ± 0.57 8.8 ± 2.15 95.4 ± 58.81 211.3 ± 77.02 301.5 ± 74.58 

LFOP:SU 2.4 ± 0.41 7.4 ± 1.64 9.6 ± 5.60 192.6 ± 99.35 273 ± 53.80 - -

LFOP:PU 5.0 ± 0.69 10.3 ± 1.45 13.7 ± 1.69 78.4 ± 46.30 143.3 ± 62.80 173.9 ± 59.92 90 .J. ± 40.11 

j(x) = x 3 - 0.04x 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 6.3 ± 0.52 44.8.6 ± 22.51 - -

BP:PU 1.9 ± 0.09 2.8 ± 0.31 48.8 ± 49. 4.5 36.8 ± 29.00 224.5 ± 56.78 377.5 ± 50.54 408.5 ± 50.46 

PSO:SU 1.0 ±O 1.0 ±O 1.1 ± 0.13 7.0 ± 0.55 144.7 ± 38.43 330.4 ± 50.85 -

PSO:PU 1.0 ± 0 1.0 ± 0 1.7 ± 0.43 16 ± 3.32 63.1 ± 12.01 138.4 ± 30.03 422.5 ± 40.42 

GA:SU 1.0 ± 0 1.0± 0 1.0 ± 0 5.1 ± 1.50 91.1 ± 49.06 397.0 ± 64.84 -

GA:PU 1±0 1.4 ± 0.26 2.8 ± 0.48 11.1 ± 2.81 105.8 ± 92.27 91.3 ± 50.08 485.5 ± 28.48 

LFOP:SU 5.4 ± 1.12 16.7 ± 7.31 18.0 ± 3.94 43.3 ± 7.94 185 ± 11.17 310.7 ± 25.15 -

LFOP:PU J.5.3 ± 2.19 22.4 ± 1.81 24.1 ± 2.15 30.8 ± 2.36 166.6 ± 68.53 159.6 ± 58.87 314.7 ± 64.03 

Zt = 1 + 0.3Zt_2 - 1.4zt-l (henon) 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 30.5 ± 3.26 53.2 ± 10.46 63.0 ± 6.68 85.0 ± 12.56 123.2 ± 58.01 152.5 ± 68.35 -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ±O 1.0 ± 0 26.6 ± 4.84 147.9 ± 37.05 - -

PSO:PU 2.4 ± 1.26 31.9 ± 4.27 83.9 ± 64.31 116 ± 49.06 233.6 ± 58.26 371.3 ± 53.32 465.3 ± 31.72 

GA:SU 1.0 ± 0 1.0 ± 0 1.2 ± 0.18 31.8 ± 3.76 436.2 ± 47.46 - -

GA:PU 5.1 ± 0.77 21.9 ± 3.66 45.4 ± 13.22 109.2 ± 32.05 357.1 ± 64.38 - -

LFOP:SU 2.9 ± 0.51 15.3 ± 3.74 21.6 ± 5.28 730 ± 3.64 112 ± 8.70 480.4 ± 23.54 -

LFOP:PU 3.8 ± 0.53 15.2 ± 4.43 15.3 ± 2.35 38.4 ± 29.29 32.2 ± 2.38 69 .8 ± 41.89 63.3 ± 28.65 

Table 4.27: Epochs needed to reach MSE levels 
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f(x, y) = y7 X 3 ­ 0.5x6 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ±O 1.1 ± 0.13 1.1 ± 0.11 7.6 ± 10.92 - - -

BP:PU 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.2 ± 0.33 - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.2 ± 0.33 580.1 ± 102.99 - -

PSO:PU 1.0 ± 0 1.5 ± 0 .58 3.7 ± 1.59 25.2 ± 3.64 394 ± 121.32 783.3 ± 90.39 904.5 ± 81.34 

GA:SU 1.1 ± 0.2 2.2 ± 0.6 63. ± 1.8 54.8 ± 13.9 924.5 ± 78.60 - -

GA:PU 3.5 ± 0.86 6.8 ± 1.01 7.8 ± 1.27 20.3 ± 2.11 279.1 ± 100.29 994.8 ± 8.88 -

LFOP:SU 1.8 ± 0.33 4.0 ± 0.43 4.9 ± 0.33 10.1 ± 1.27 473.2 ± 32.71 - -

LFOP:PU 9.2 ± 1.84 18.7 ± 1.62 21.8 ± 0.95 37.5 ± 4.02 - - -

f(x,y) = x 2 +y2 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 16.23 ± 2, 68 98.9 ± 40.68 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 56.1 ± 20.72 766.0 ± 154.22 - -

PSO:PU 1.2 ± 0.24 3.0 ± 0.51 14.3 ± 2.28 543 ± 153.78 786.2 ± 110.16 821.0 ± 95.12 864.4 ± 86.07 

GA:SU 1.0 ± 0 1.0 ± 0 1.1 ± 0.20 182.3 ± 67.47 - - -

GA:PU 4.1 ± 0.75 12.4±1.19 19.2 ± 2.02 277.6 ± 77.15 480.8 ± 26.14 896.3 ± 59.61 -

LFOP:SU 30.9 ± 7.23 0.5 ± 0.35 1.6 ± 0.53 153.7 ± 55.90 - - -

LFOP:PU 1.7 ± 0.14 2.7 ± 0.53 95.3 ± 98.01 511.9 ± 124.63 850.6 ± 90.63 822.6 ± 95.57 818.1 ± 97.62 

f(x, y) = sin(x2 ) + sin(y2) 

MSE 0.5 0.1 0.05 0.01 0.001 0.0001 0 .00001 

BP:SU 1.0 ± 0 1.0 ± 0.00 1.0 ± 0.00 195.8 ± 49.32 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ± 0 1.0 ± 0 638.3 ± 177.60 - - -

PSO:PU 2.7 ± 1.18 17.4±2.38 33.9 ± 6.61 171 ± 28.58 720.5 ± 118.47 927.2 ± 56 .35 -

GA:SU 1.0 ± 0 1.0 ± 0 12.6 ± 3.52 870.6 ± 107.36 - - -

GA:PU 14.1 ± 1.03 28.2 ± 1.98 39 ± 5.01 180 ± 48.28 452 ± 33.52 - -

LFOP:SU 1.0 ±O 11.9 ± 6.09 24.8 ± 6.72 121.5 ± 4.90 981 ± 19.97 970.8 ± 55.30 -

LFOP:PU - - - - - - -

Table 4.28: Epochs needed to reach MSE levels 
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f( x, y) = (4 ­ 2.1 x 2 + ('"3 
3 

))X2 + xy + (4 y2 - 4)y2 

MSE 0.5 0.1 0.05 

1.1 ± 0 .09 

0.01 0.001 0.0001 0.00001 

BP:SU 1.0 ± 0 1.0 ± 0. 07 6.5 ± 1.52 75.5 ± 7.27 - -

BP:PU - - - - - - -

PSO:SU 1.0 ± 0 1.0 ±O 1.0 ± 0 31.5 ± 5.37 - - -

PSO:PU 26.2 ± 1.68 66.9 ± 10.15 154.6 ± 61.23 - - - -

GA:SU 1.0 ±O 1.0 ± 0 1.0 ± 0.07 214.1 ± 97.56 - - -

GA:PU 19.6 ± 1.92 77 .7 ± 12.82 302.6 ± 96.03 - - - -

LF OP:SU 1.0 ± 0 0.7 ± 0.47 0.7 ±0.31 30.7 ± 3.18 89 ± 5.86 247.8 ± 28.7 -

LFOP:PU - - - - - - -

f( x,y) = sin(x)· sin(y)~ 

MSE 0.5 0.1 0.05 0 .01 0.001 0.0001 0.00001 

BP:SU 1.0 ± a 1.0 ± 0.00 1.0 ± 0.00 161.4 ± 27.37 - - -

BP :PU - - - - - - -

PSO:SU 1.0 ± a 1.0 ± a 1.0 ± a - - - -

PSO:PU 1.4 ± 0.26 4.0 ±0.82 5.9 ± 0.79 16 ± 1.63 199.8 ± 88.82 761. 3 ± 123 .76 991.2 ± 17.18 

G A:SU 1.0 ±O 1.0 ± 0.07 1.0 ± 0 - - - -

GA :PU 10 ± 1.15 16.7 ± 1.64 19 ± 1.56 35.1 ± 2. 07 277.3 ± 103.85 - -

LFOP:SU 1.0 ±O 0.6 ± 0.38 3.2 ± 1.68 - - - -

LFOP:PU - - - - - - -

Table 4.29: Epochs needed to reach MSE levels 
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PSO 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0 .00001 

x 2 SU 

PU 

100.0% 

100.0% 

100.0% 

100.0% 

100.0% 

100.0% 

63.3% 

96.7% 

46.7% 

86.7% 

0.0% 

13.3% 

0.0% 

0.0% 

x 3 - 0.04x SU 

PU 

100.0% 

100.0% 

100.0% 

96.7% 

100.0% 

93.3% 

76.7% 

90.0% 

53.3% 

90.0% 

33.3% 

90.0% 

0.0% 

53.3% 

Henon SU 

PU 

100.0% 

83.3% 

100.0% 

80.0% 

100.0% 

60.0% 

93.3% 

53.3% 

86.7% 

30.0 % 

0.0 % 

10.0% 

0.0% 

3.3% 

y 7 x 3 _ 0.5x6 SU 

PU 

100.0% 

100.0% 

100.0% 

93.3% 

100.0% 

93.3% 

66.7 % 

56.7% 

0.0% 

20.0% 

0 .0% 

20.0 % 

0.0% 

13.3% 

x2 +y2 SU 

PU 

100.0% 

100.0% 

100.0% 

76.7% 

100.0 % 

70.0% 

33.3% 

40.0% 

13.3% 

30.0% 

0.0% 

20.0% 

0.0% 

33.3% 

sin(x2 ) + sin(y2) SU 

PU 

100.0% 

96.7% 

100.0% 

83.3% 

100.0% 

66.7% 

16.7% 

53.3% 

0.0% 

16.7% 

0.0% 

3.3% 

0.0 % 

0.0% 

camel SU 

PU 

100.0% 

70.0% 

100.0% 

46.7% 

100.0% 

10.0% 

16.7% 

0.0% 

0.0% 

0.0 % 

0.0 % 

0.0% 

0.0% 

0.0% 

graph SU 

PU 

100.0% 

96.7% 

100.0 % 

96.7% 

100.0% 

90.0% 

0.0% 

50.0% 

0.0% 

6.7% 

0.0% 

3.3% 

0.0% 

3.3 % 

Table 4.30: Percentage simulations that converged to MSE levels 
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GA 

Function Unit 

Type 

G e neralization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

100.0% 

100.00% 

100.0% 

96 .7% 

86.7% 

93.3% 

63.3% 

90.0% 

0.0% 

66.7% 

0.0% 

50.0% 

0.0% 

40.0% 

x 3 - 0.04x SU 

PU 

100.00% 

100.0% 

100.0% 

96. 7% 

100.0% 

93.3% 

80.0% 

83.3% 

66.7% 

76 .7% 

13.3% 

70.0% 

0.0 

6.7% 

Henon SU 

PU 

100.0% 

93.3% 

100.0% 

90.0% 

100.0% 

83.3% 

93.3% 

70 .0 % 

13.3% 

30.0% 

0.0% 

0.0% 

0.0% 

0.0% 

y7 x 3_0.5x6 SU 

PU 

100.0% 

96.7% 

100.0% 

80.0% 

100.0% 

76.7% 

100.0% 

50 .0 % 

0.0 % 

43.3% 

0.0% 

3.3% 

0.0% 

0.0% 

x 2 +y2 SU 

PU 

100.0% 

90.0% 

100.0% 

83.3% 

86 .7% 

80.0% 

20.0% 

60.0% 

0.0% 

13.3% 

0.0 % 

6.7% 

0.0% 

0.0 % 

.sin(x 2 ) + .sin(y2) SU 

PU 

100.0% 

90.0% 

96.7% 

83.3% 

60.0% 

80.0% 

3.3% 

76.7% 

0.0% 

23.3% 

0.0% 

0.0 % 

0.0% 

0.0% 

camel SU 

PU 

100.0% 

70.0% 

100.0% 

36.7% 

100.0% 

10.0% 

33% 

3.3% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

0.0% 

graph SU 

PU 

100.0% 

63.3% 

100.0% 

60.0% 

100.0% 

56.7% 

0.0% 

50.0% 

0.0% 

500% 

0.0 % 

0.0% 

0.0 % 

0.0% 

Table 4.31: Percentage simulations that converged to MSE levels 
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LFOP 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

100 .0% 

62.9% 

100.0% 

58.6% 

90.0% 

48.6% 

56 .7% 

42.9% 

33.3 % 

41.4% 

0.0% 

42.9% 

0.0% 

47 .1% 

x 3 - 0.04x SU 

PU 

100.0% 

94.3% 

100.0% 

94.3% 

96.7% 

93.3% 

93.3% 

90 .0% 

46.7% 

84.3% 

26.7% 

72 .9 % 

0.0% 

72. 9% 

I-Ienon SU 

PU 

100.0% 

75. 7% 

100.0% 

48 6% 

100.0 % 

44.3% 

76.7% 

44. 3% 

53.3% 

37.1% 

13.3% 

35.7% 

0.0 % 

1.4% 

y7 x 3 _ 0. 5x6 SU 

PU 

100 .0% 

91.4% 

100 .0% 

90 .0% 

100.0% 

78.6% 

93 .3% 

57 .1% 

63 .3% 

0.0% 

0.0 % 

0.0% 

0.0% 

0 .0% 

x 2 + y 2 SU 

PU 

100.0% 

98.6% 

90 .0% 

98.6% 

86. 7% 

87.1 % 

6. 7% 

35.7% 

0.0% 

12.9% 

0.0% 

15.7 % 

0.0% 

15 .7% 

sin(x 2 ) + sin(y2 ) SU 

PU 

100.0% 

-

90.0% 

-

80.0% 

-

13 .3% 

-

3.3%% 

-

3.3% 

-

0.0% 

-

camel SU 

PU 

100.0% 

-

96.7% 

-

86.7% 

-

16.7 % 

-

10.0% 

-

6.7% 

-

0.0% 

-

graph SU 

PU 

100.0% 

-

90.0% 

-

86.7% 

-

15.7% 

-

0 .0% 

-

0.0% 

-

0.0% 

-

Table 4. 32: Percentage simulations that converged to MSE levels 
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BP 

Function Unit 

Type 

Generalization levels 

(MSE) 

0.5 0.1 0.05 0.01 0.001 0.0001 0.00001 

x 2 SU 

PU 

93.3% 

100.0% 

86.7% 

97.6% 

33.3% 

97.6% 

10.0% 

78.7 % 

6.7% 

27.8% 

0.0% 

13.8% 

0.0% 

0.0% 

x 3 - 0.04x SU 

PU 

90.0% 

100.0% 

93.3% 

100.0% 

83.3% 

87.9% 

13.3% 

67.2% 

10.0% 

41.3% 

0.0% 

17.0% 

0.0% 

11.4% 

Henon SU 

PU 

96.7% 

-

96.7 % 

-

93.3% 

-

93.3% 

-

63.3% 

-

0.0% 

-

0.0% 

-

y7 x 3_0.5x6 SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

96.7% 

-

6.7% 

-

0.0% 

-

0.0% 

-

x2 +y2 SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

83.3% 

-

16.7% 

-

0.0% 

-

0.0% 

-

.5in(x2 ) -I- .5in(y2) SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

0.0% 

-

0.0% 

-

0.0% 

-
0.0% 

-

camel SU 

PU 

100.0% 

-

100.0% 

-

100.0% 

-

33.3% 

-

10.0% 

-

0.0% 

-

0.0% 

-
graph SU 

PU 

100.0% 

-

100.0% 

-

100.0 % 

-

0.0% 

-

0.0% 

-

0.0% 

-

0.0% 

-

Table 4.33: Percentage simulations that converged to MSE levels 

 
 
 



Chapter 5 

Architecture selection 

Architecture selection is critical to NN modeling where the objective is to find the 

smallest network that accurately maps the true function described by the training 

data. Architecture selection has to reduce network complexity while maintaining good 

generalization. A network that is too large may lead to overfitting of the training data 

resulting in poor generalization when presented with similar but slightly different data. 

If the network is too smail, underfitting may occur that results in poor approximation 

of the function [Baum et al1989, Le Cun 1989]. 

The objectives of pruning are usually motivated by two aims: to obtain networks of 

a small size and with a good generalization performance. The objective is to find a 

minimal network topology. It is usually not obvious what the smallest network with 

the best generalization is for a particular task. Different approaches have been devised 

to solve this problem. 

Architecture selection approaches can be grouped in four categories, i.e. brute-force ap­

proaches, regularization, network growing (network construction) and pruning. While 

these topics have been introduced in section 2.17, this chapter focuses on pruning. 
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Pruning starts training with a neural network which is expected to be big enough to 

ensure successful training. At convergence of the oversized network, weights and/or 

units that are irrelevant or redundant are removed, upon which the pruned network is 

retrained [Thimm et al1995]. If the retraining converges then the removal-retraining 

cycle is resumed. If the retraining fails, the smallest network that satisfied the conver­

gence criterion is assumed to have the most suitable topology for the given data set. 

The decision to prune a network is based on some measure of parameter (i.e. a unit or 

weight) relevance. A relevance is computed for each parameter and a pruning heuristic 

is applied to determine whether a parameter is irrelevant or not. Numerous pruning 

algorithms have been proposed, including the following, 

• 	 The Smallest Variance, (min(O')), method of Sietsma and Dow that removed 

connections with smallest contribution variance on the training set, where the 

contribution of a connection is the value available to the connection from the 

lower layer, multiplied by its weight. The mean output of the removed connection 

is then added to the corresponding bias [Sietsma et al1991] . 

• 	 Skeletonization, which is a weight removal method, defines a measure of the rel­

evance of a unit as the error when the unit is removed from the network, minus 

the error when the unit is left in the network [Mozer et al1989]. This is accom­

plished by multiplying the output of a unit j by a coefficient, O:j, that represents 

the attentional strength of the unit [Mozer et al1989]. In the case of hidden units, 

.1+1 

Ok = fCL WkjO:jYj) 	 (5.1 ) 
j 

where f(-) is the activation function, Ok is the activation of output unit Ok, Wkj 

is the weight between hidden unit Yi and output unit Ok and Yj is the activation 

of hidden unit Yj. If O:j = 0, unit Yj has no influence on the rest of the network. 

If O:j = 1, unit 1j is a conventional unit. The units are then removed for which 
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the derivative of the error function to these attentional strengths, 0:j ' S, are small 

[Thimm et al1995J. Skeletonization can also be applied to prune input units. 

• 	 Karnin's method that estimates the sensitivity s of a weight by : 

N 2 w(n) 
(5.2)s = ];(6w(n) . rJ' (w(n) - w(O))) 

where w(n) is the weight in the current training epoch n, w(O) the initial weight, 

and 6w(n) the weight change in the nth epoch [Karnin 1990J. The denominator in 

this formula can become zero, and experiments have indeed shown this to happen. 

This problem is not dealt with in Karnin's publication. It can, however, easily be 

solved by setting the whole fraction to zero. The calculation for s then becomes, 

s = { =;;=1 (6w(n)2 . '7.(w(:~~)w(O))) if w(n) i= w(O) 
(5.3) 

o 	 if w(n) = w(O)) 

• 	 Autoprune developed by Finnof et al, where a test statistic is defined based on the 

probability that a weight becomes zero [Finnoff 1993bJ. A weight is then removed 

if the probability that it will become zero is high. Prechelt extended Autoprune 

to A - prune to calculate the number of units to be pruned at each pruning step 

[Prechelt 1994]. 

• 	 Genetic algorithms (GAs) also provide a biological plausible approach to pruning 

of NNs [Whitley et al1990J. The GA is populated with several pruned versions 

of the original network Each of these networks must be trained separately. In 

this type of pruning genetic operators such as mutation, reproduction and cross­

over are applied to create differently pruned networks. These pruned networks 

'compete' for survival, being awarded for using fewer parameters and for improving 

generalization. A drawback of the GA approach to pruning of neural networks is 

that it is time consuming. 
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• 	 The Variance Nullity method developed by Engelbrecht is a computationally 

efficient pruning heuristic based on variance analysis of sensitivity information 

[Engelbrecht et al1999c, Engelbrecht 2001]. This algorithm utilizes first-order 

derivatives of the NN output with respect to parameter perturbations, which are 

already calculated when gradient descent is used for neural network training . 

• 	 Optimal Brain Damage (OBD), Optimal Brain Surgeon (OBS) and Optimal Cell 

Damage (OeD) are all based on second-order derivatives of the 'objective func­

tion' with respect to parameter perturbations. In OBD and OCD complexity is 

reduced by assuming that (a) the function is well approximated by a second-order 

expansion around its minimum, (b) the off-diagonal elements of the Hessian ma­

trix are zero and (c) all errors between the target and output values are zero. 

In OBS assumption (b) mentioned above is removed and also is retraining after 

pruning avoided by automatically adjusting the remaining weights. OBD, OBS 

and OCD all require differentiable activation functions. Criticism concerning as­

sumption (c) is that outliers in the data nullify the assumption. The calculation 

of the Hessian in OBD, OBS and OCD increases the complexity of these pruning 

methods. In OBS the complexity is further increased since the inverse of the 

Hessian must also be calculated. 

The only assumptions for variance nullity pruning method are, 

1. 	that the network must be well trained and 

2. 	 that the activation functions must at least be once differentiable. 

Also, this algorithm is not as computational intensive as other pruning algorithms. 

For this reason the 'Variance Nullity pruning Method' is the algorithm of choice to be 

implemented in this thesis. The next section provides an overview of sensitivity analysis. 
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5.1 Overview of Sensitivity Analysis 

Research has shown that any continuous function can be approximated by a 

multilayer NN using a monotonically increasing differentiable activation function 

[Funahashi 1989, Hornik et al1989aj. Gallant et al further showed that when a NN 

converges towards the underlying (target) function, then all the NN derivatives also 

converge towards the derivatives of the underlying function [Gallant 1992]. This 

property of NNs derivatives allows efficient use of the NN derivatives to compute 

sensitivity information. Sensitivity analysis of a system is the study of how the deriva­

tives of a performance function can be used to quantify the response of the system 

to parameter perturbations [Holtzman 1992j. Thus, sensitivity analysis techniques 

quantify the relevance of a network parameter (Le. an input unit, hidden unit or 

weight) as the influence that small parameter perturbations have on a performance 

function [Engelbrecht 2001j. Sensitivity analysis also provides a neural network tool to 

automatically identify all relevant parameters using the significance measures obtained 

from a sensitivity analysis tool. 

There are two main approaches to sensitivity analysis for feed-forward neural networks 

(FFNNs). These approaches differ in the performance function used. In the one 

approach the objective function to be minimized serves as the performance func­

tion, in the second approach it is the neural network output function. Objective 

function sensitivity analysis has been used widely in pruning of NN parameters 

[Hassibi et al1994, Le Cun et al1990j, to develop more sophisticated optimiza­

tion techniques [Battiti 1992]' and to study the robustness and stability of NNs 

[Oh et al1995]. NN output sensitivity analysis on the other hand has been used to 

study the generalization abilities of FFNNs [Fu et al1993], to assess the significance 

of input parameters [Engelbrecht et al1995b], for selective learning and incremental 
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learning [Engelbrecht et al1999d] and for prunmg irrelevant network parameters 

[Engelbrecht 2001, Zurada et al1997]. In OBD, OBS and OeD sensitivity analysis is 

performed with regards to the training error. Assuming gradient descent optimization 

and the sum-squared objective function, Engelbrecht has shown that output sensi­

tivity analysis and OBD are conceptually the same under the assumptions of OBD 

[Engelbrecht 2001]. Output sensitivity analysis has the advantages that it is not based 

on assumptions to simplify complexity, as is the case with OBD, OBS and OeD. Also, 

output sensitivity analysis is less complex than objective function sensitivity analysis. 

Furthermore, objective function sersitivity analysis is dependent on the objective 

function and the optimization algo[;ithm used to update the weights. while output 

sensitivity does not depend on the o · jective function or the optimization algorithm. 

The next section describes the variance nullity pruning algorithm of Engelbrecht. The 

pruning algorithm is subsequently apblied to prune oversized PUNNs used to learn the 

test functions of section 4.4.1 on pagk99. 

5.2 The Variance Nu~lity Pruning Approach 

The variance nullity pruning algoritlum of Engelbrecht is based on NN output sensi­

tivity where the relevance of paramerrs is based on parameter sensitivity information 

[Engelbrecht 2001]. In this algorit 1m a variance nullity measure is computed for 

each parameter. The statistical nullity in parameter sensitivity variance is defined 

in equation (5.4). Thus, the varian e nullity measure provides a statistically sound 

mechanism to decide whether or not la unit or weight is pruned. The objective of the 

variance nullity measure is to test Jhether the variance in parameter sensitivity for 

the different patterns is significant1)different from zero [Engelbrecht et al1999c]. If 

the latter is not the case, then it indipates that the corresponding parameter has little 

I 
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or no effect on the output of the NN over the entire set of patterns presented to the 

network. A hypothesis testing step developed by Engelbrecht et al uses these variance 

nullity measures to statistically test if a parameter should be pruned, using the X2 

distribution [Engelbrecht et at 1999c, Engelbrecht 2001]. 

Engelbrecht et al defines statistical nullity in parameter sensitivity variance, Yo" of a 

NN parameter Bi over patterns p = 1, ... , P as follows: 

(5.4) 

e

where O"~i is the variance of the sensitivity of the network to perturbations in parameter 

i , 0"5 is a value close to zero and P the number of patterns in the pruning set. 

The variance in parameter sensitivity, d
i

, is computed as 

(5.5) 

where 

",K S(p) 
~~(p) _ ~k= l OO.ki (5.6)

Oi K 

and ~o, is the average parameter sensitivity over all patterns p = I, ... , P, i.e. 

(5.7) 

Sao refers to the sensitivity matrix of the output vector (} with respect to the param­

eter vector {f, and individual elements SOO,ki refers to the sensitivity of output Ok to 

perturbations in parameter Bi over all patterns; S~~,ki refers to the sensitivity of output 

Ok to changes in parameter ei for a single pattern p, defined as (assuming differentiable 

activation functions) 

(5.8) 
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where e}p) is the activation value of unit ei for pattern p. Section 5.3 derives the 

sensitivity equations with respect to input and hidden units. In equation (5.6), ~~) is , 

the average sensitivity of the NN output to perturbations in parameter e for patterni 

p over the K output units. 

In 'autoprune', developed by Finnoff et al, the final weight test variables are based on 

significance tests for deviations from zero in the weight update process [Finnoff 1993bj. 

Weights are updated using, 

(5.9) 

where the above denotes the local gradient of the error with respect to pattern p and 

weight Who The results of further training were estimated using an average over the 

variables ~~, where 

(5.10) 

for (zp, tp) E V t . For the null hypothesis that the expected value of variable ~~ is equal 

to zero; the significance of the deviation from zero was tested using the test variable, 

Th = lL:p,( Zp, tp)E(Dh ~~I (5.11) 
jL:p,(Zp,tp)EDt (~~ - ~h)2 

where ~h denotes the average over the set ~~ and (zp , tp) E V t . A large value for Th 

indicates high importance of the connection with weight hp . Connections with small 

weights can be pruned. In the analysis of means, as is done by Finnoff et al a problem 

may arise where large negative and positive values may cancel each other or produce 

a sum close to zero, thus incorrectly indicating that the parameter is insignificant. In 

variance analysis pruning, Engelbrecht et al adopted an analysis of variance instead of 

an analysis of means, as is done by Finnof et al, to address this problem. 

Basically the statistical pruning heuristic of Engelbrecht is based on proving or disprov­

ing the null hypothesis that the variance in parameter sensitivity is approximately zero. 
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The null hypothesis is then defined as 

'lJ 2 2 
I LO : IJOi = IJO (5.12) 

This hypothesis can however not be used, since equation (5.4) does not allow IJ5 = 0, 

and therefore it cannot be hypothesized that the variance in parameter sensitivity over 

all patterns is exactly zero. To alleviate this problem a small value close to zero is 

chosen for IJ5, and the alternative hypothesis, 

(5.13) 

is tested. The variance nullity measure defined in equation (5.14) has a X2 (P - 1) 

distribution in the case of P patterns. The critical value, Y e , can therefor be obtained 

from X2 distribution tables, i.e. 

(5.14) 

where v = P - 1 is the number of degrees of freedom and ex is the level of significance. 

A significance level ex = 0.01, for example, means that we are satisfied with incorrectly 

rejecting the hypothesis once out of 100 times. Using the critical value defined in 

equation (5.14), if Y Oi ::; Y e , the alternative hypothesis H is accepted and parameter 

ei is pruned. Engelbrecht et al pointed out that the success of this pruning heuristic 

depended on the value of IJ5. A too small value for IJ5 will result in no parameters 

to be pruned. If IJ6 is too large, then important parameters may be pruned. It was 

recommended that the algorithm should start off with a small value for IJ6 that is 

gradually increased if no parameter is pruned. The performance of the network is first 

tested after each step of pruning. If the performance of the network has not degraded 

too much, the pruned network is accepted, otherwise the original network is restored 

and pruning is stopped. Engelbrecht pointed out that the testing of the performance 

of the pruned network makes the validity of the algorithm insensitive to the value with 
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which (7'6 is increased: if relevant parameters are pruned due to the repetitive increase 

in (7'6 , the performance of the network will degrade unacceptably, and the previous 

architecture will thus be restored. 

Computational time during the hypothesis testing phase can be reduced by arranging 

the variance nullity measures 1 ()i in increasing order. Hypothesis tests start on the 

smallest 1 ()i and continue until no more parameters can be identified for pruning. 

The statistical pruning heuristic based on variance nullity is summarized below: 

l. Initialize the NN architecture and learning parameters 

2. Repeat 

(a) train the NN until overfitting is observed 

(b) let (7'6 = 0.0001 

(c) for each ei 

1. for each p = 1, ... , P, calculate 'K~p) using equation (5.6) , 

ii. calculate the average ~()i using equation (5.7) 

lll. calculate the variance in parameter sensitivity using (7'~i from equation 

(5.5) 

IV. calculate test variable l()i using equation (5.4) 

(cl) apply the pruning heuristic 

1. arrange 1 ()i in increasing order 

11. find lc using equation (5.14) 

until no ei is pruned, or the reduced network is not accepted due to an unaccept­

able deterioration in generalization performance 

 
 
 



CHAPTER 5. ARCHITECTURE SELECTION 150 

3. Train the final pruned NN architecture 

The variance nullity algorithm starts pruning the hidden layer first, followed by the 

input layer. Weights can also be pruned once the irrelevant units have been removed. 

The calculation of the nullity measures can be done on anyone of the training, test 

or validation sets. In this thesis a separate set consisting of 100 randomly generated 

values was used to calculate variance nullity measures. Pruning is initiated when 

overfitting is detected on the validation set, i.e. when ~v > ~v + OEv where ~v is the 

current error on the validation set, ~v is the average error on the validation set over 

the previous iterations and OEv is the standard deviation in test error. After each 

pruning step, retraining starts on the reduced network on new initial random weights. 

The pruning process stops when no more parameters can be identified for pruning, or 

if the reduced network's performance has degraded too much. 

The next section derives the sensitivity equations that are used to calculate the 

variance nullity measures. 

5.3 Sensitivity equations 

This section defines equations for the sensitivity analysis of output units with re­

spect to hidden units and input units. It is assumed that the network consists of 

an input layer, a single hidden layer of product units and an output layer of sum­

mation units. Linear activation functions are assumed in both hidden and output layers. 
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5.3.1 Output-Hidden Layer Analysis 

For the sake of notational convenience the superscript p, that refers to a specific pattern, 

is removed. Let SOY,kj = t be the sensitivity of output unit Ok to small perturbations 

in hidden hidden unit Yj for a single pattern (The first part of the subscript indicates the 

layer involved and the second part indicates the respective unit of each layer). Then, 

OOk 
SOY,kj = 

8Yj 
OOk onetok 

onetok oYj 

f' (netok ) . Wkj 

(5.15) 

where f' (netok ) = 1 for linear activation. 

5.3.2 Output-Input Layer Analysis 

The sensitivity of output unit Ok with respect to input unit Zi is calculated as, 

OOk 
SOZ,ki 

OZi 
OOk onetok (5.16) 

onetok 0Zi 

where, for linear activation, 

(5.17) 

Then 
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onetOk1 . ---::-----'.:. 
OZi t anetok . aYj 

j=1 oYj aZi 

J ay
LWkj. _ J (5.18)
j=1 OZi 

For a PUNN with a distortion unit, using equation (A.45) on page 200, we have 

Yj = eP . cos(Jr¢) (5.19) 

where 

1+1 

P L Vji In IZil 
i=1 

1+1 

¢ L VjiTi 
i = 1 

Thus, 

ay·.J 

aZi 

(5.20) 

Substitution of (5.20) in (5.18) gives 

OOk t Wkj Vji . (eP • cos(7r<p)) (5.21)
aZi j=1 IZi l 

This concludes the derivation of the sensitivity equations for a PUNN with a distortion 

unit. 

The next section applies the variance nullity pruning algorithm to PUNNs for selected 

function approximation problems. 
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5.4 	 Application of the Variance Nullity Pruning Al­

gorithm to PUNNs 

The variance nullity pruning algorithm was applied to the eight test functions described 

on page 99. The training and test sets of section 4.4.1 were used in training the 

network. The PUNNs were trained using particle swarm optimization. The optimal 

parameters for each of the eight test functions, as determined in chapter 4, were used 

for oversized initial networks. In these oversized networks, the number of hidden units 

were deliberately increased from the optimal architectures as determined in chapter 4. 

After each pruning step the weights were randomly re-initialized, as stipulated by the 

variance nullity pruning algorithm. In the case of PSO this implies re-initializing the 

positions and velocities for the particles before the next pruning step commenced. This 

random re-initialization of weights sometimes resulted in poorer performance of the 

re-initialized network by often producing larger MSEs on the training set and poorer 

generalization on the test set. 

In this section a network's performance was measured by its MSE on the test set, in 

other words, its generalization. Tables 5.1 to 5.8 contain for both the oversized and 

pruned network the number of hidden units, MSE on training and test sets for 30 

simulations, the average MSE on training and tests sets and the average number of 

hidden units. Unacceptable performance was defined as a reduction of 20% or more in 

the MSE on the test set on the subsequent pruning step, in which case the pruning 

process was stopped. This explains the entries in tables 5.1 to 5.8 where pruning 

ended with the same number of hidden weights as the initial oversized network. In 

these instances no parameters were identified for pruning and the pruning process was 

repeated with a smaller value for e5, with re-initialized particles that often resulted 

in larger MSE values. For each function, 30 pruning simulations were conducted as 
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reflected in tables 5.1 to 5.11. Tables 5.1 to 5.8 contain the results for the pruning of 

the hidden layer for all eight functions. Further, to show that the variance nullity can 

also be applied to prune the input units of PUNNs, pruning was applied to three of the 

eight test functions. In these cases extra input units were added to the architecture, 

with inputs for these units randomly generated. Tables 5.9 to 5.11 contain the results 

for pruning of the input layer for PUNNs. The tables also contain the averages for 

the number of hidden and input units calculated over the 30 simulations and the 

average MSEs calculated on the training and test sets together with a 95% confidence 

interval. Tables 5.1 to 5.8 show that the average number of hidden units for the various 

functions are close to the optimal number of hidden units as determined in chapter 4, 

bearing in mind that the average also includes the number of simulations where the 

initial oversized networks showed a degradation in performance due to re-initialization 

of weights. 

Each training session started with random weights. Due to the stochastic search 

employed by PSO, the particle swarm optimizer is not always guaranteed to converge 

to a global optimum. PSO did therefor not always succeed in pruning all the irrelevant 

hidden units [Van den Bergh et al2001c]. This explains why the average number of 

hidden units is slightly higher than the values obtained in chapter 4. Table 5.2 on page 

157 shows that an initial network comprising 8 hidden units, for the cubic function, were 

pruned to 1 unit in 27 out of 30 simulations. The average number of hidden units for the 

pruned network as reflected in table 5.2 over 30 simulations is 2 (i.e. l.5 rounded). This 

x3shows that the function f(x) = - 0.04x can be represented by a PUNN containing 

two hidden units compared to an optimal SUNN that requires 3 hidden units. The ta­

bles also reflect a performance similar to the results contained in table 4.25 on page 12l. 

The variance nullity method can only remove irrelevant units; it cannot remove red un­
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dant units from a network. This may explain why certain simulations ended in a higher 

number of units than the optimal number of units for the specific function. Similarly, 

the average number of input units are comparable to the optimal number of input units 

as determined in chapter 4. The performance of the oversized network, in all cases, 

is much poorer than the performance of the pruned network. Thus, a larger PUNN 

architecture does not necessarily translate to an increase in network performance, since 

the larger NNs overfitted the data. 

5.5 Conclusion 

In this chapter the variance nullity pruning algorithm developed by Engelbrecht was 

discussed and applied to oversized PUNN architectures of the eight test functions (as 

defined in chapter 4). The variance nullity pruning approach successfully pruned ir­

relevant hidden and input units of PUNNs. The variance nullity pruning algorithm 

produced averages for the number of hidden and input units that were comparable to 

the optimal number of units as determined by brute force in chapter 4. The results 

also indicate that the initial oversized PUNNs did not produce smaller MSEs than the 

pruned networks. This implies that in the case of PUNNs, a larger network does not nec­

essarily translate into better performance. Re-initialization of oversized networks when 

no parameters were identified for pruning often resulted in a poorer performance that 

may lead to early termination of the pruning process. This could have been avoided, if 

all the unpruned weights were retained for the next pruning step, where a smaller value 

for e6 will subsequently be used by the pruning algorithm. Thus, an improvement for 

the variance nullity algorithm applied to PUNNs is to avoid re-initialization of weights 

in cases where no parameters were pruned by retaining the unpruned weights and to 

continue the pruning process by re-training only the bias. 
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fix) = x 2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Training set Test set units Tr'ai ning set Test set 

1 8 0.0031 0.0039 1 0.000377 0.000619 

2 8 0 .0134 0.0240 1 0.001376 0.001675 

3 8 0.0062 0.Ql08 1 0.000059 0.000065 

4 8 0.0292 0.0210 1 0.000219 0.000324 

5 8 0.0290 0.0844 1 0 .000448 0.000290 

6 8 0.0041 0 .0045 8 0.004073 0.004544 

7 8 0.0102 0.Ql78 2 0.000643 0.003382 

8 8 0.0157 0.0130 1 0.000205 0.000156 

9 8 0.0077 0.0088 1 0 .000172 0.000186 

10 8 0.0018 0.0014 1 0.000051 0.000054 

11 8 0.0244 0.0271 1 0.000100 0.000082 

12 8 0 .0193 0.0392 2 0 .000563 0.000652 

13 8 0.Ql71 0.0131 1 0.000238 0.000269 

14 8 0.0032 0.0034 1 0.000061 0.000048 

15 8 0.0265 0.0187 2 0.000777 0.000297 

16 8 0.0042 0.0895 2 0.000434 0.000530 

17 8 0.0246 0.0206 2 0.000195 0.000098 

18 8 0.0252 0.5363 2 0.000906 0.000553 

19 8 0.0203 0.0342 1 0 .000270 0.000180 

20 8 0.0083 0.0090 3 0.001427 0.001020 

21 8 0.0056 0.0052 1 0.000126 0.000153 

22 8 0.0369 0.0259 1 0.000101 0.000087 

23 8 0.0177 0.0245 2 0.001014 0.000892 

24 8 0.Ql72 0.0127 2 0.000189 0.000230 

25 8 0.0121 0.0610 1 0.000140 0.000383 

26 8 0.0124 0.0171 2 0.000359 0.000793 

27 8 0.0051 0.0063 1 0.000131 0.000111 

28 8 0 .0046 0.0032 1 0 .000648 0.000635 

29 8 0.0224 0.0896 1 0.000632 0.000501 

30 8 0.0075 0.0185 1 0.000253 0.000475 

Average no of Average no of 

hidden units 8 hidden units 1.6 

Average 0.01450 0.04149 Average 0 .00054 0.00064 

Confidence 0.00340 0.03512 Confidence 0.00028 0 .00036 

Table 5.1: Pruning of hidden units - function F1 
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j(x) = X 3 - 0.04x 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Training set Test set units n'aining set T est set 

1 8 0.0025 0.0075 1 0.000009 0.000009 

2 8 0.0044 0.0106 1 0.000042 0.000035 

3 8 0.0016 0 .0008 8 0.001625 0.000844 

4 8 0.0050 0.0043 1 0.000008 0.000006 

5 8 0.0055 0.0037 2 0.000229 0.000132 

6 8 0.0074 0.0142 1 0.000024 0.000026 

7 8 0.0061 0.0072 1 0 .000009 0.000008 

8 8 0.0033 0.0034 1 0.000008 0.000007 

9 8 0.0060 0.0065 1 0.000008 0.000009 

lD 8 0.0121 0.0165 1 0.000012 0.000007 

11 8 0.0048 0.0042 1 0.000013 0.000013 

12 8 0.0024 0.0039 1 0.000007 0.000008 

13 8 0.0009 0.0013 1 0.000013 0.000010 

14 8 0.0024 0.0027 1 0 .000035 0.000035 

15 8 0 .0035 0.0022 1 0.000014 0.000010 

16 8 0.0017 0.0016 1 O.OOOOlD 0.000008 

17 8 0.0063 0 .0052 1 O.OOOOll 0.000009 

18 8 0.0098 0.0063 1 0.000019 0 .000016 

19 8 0 .0003 0.0003 1 0.000009 0.000007 

20 8 0.0037 0.0051 1 O.OOOOlD 0.000009 

21 8 0.0033 0.0038 1 0 .000034 0.000035 

22 8 0.0058 0.0076 1 0.000009 0.000010 

23 8 0.0030 0.0034 1 0.000009 0.000008 

24 8 0.0009 0.0008 1 0.000007 0.000006 

25 8 0.0075 0.Oll4 1 0.000007 0.000016 

26 8 0.0023 0.0040 8 0.002251 0 .004021 

27 8 0.0028 0.0039 1 0.000013 0.000008 

28 8 0.0059 0.0049 1 0.000011 0.000008 

29 8 0.0053 0.0061 1 0.000015 0.000011 

30 8 0.0081 0.0092 1 0.000008 0 .000008 

Average no of Average no of 

hidden units 8 hidden units 1.5 

Average 0.00449 0.00542 Average 0.00015 0.00018 

Confidence 0.00099 0.00140 Confidence 0.00018 0.00027 

Table 5.2: Pruning of hidden units - function F2 
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Zt = 1 +0.3Zt _2 - 1.4zt-l 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on 

No units Training set Test set units Training set Test set 

1 10 0.0004 0.0010 4 0.000102 0.006468 

2 10 0.0022 0.0409 5 0.000039 0.000083 

3 10 0.0003 0.0038 7 0.000220 0.0003 15 

4 10 0.0010 0.0061 9 0.000036 0.000050 

5 10 0.0002 0.0003 10 0 .000175 0,000293 

6 10 0.0007 0,0009 10 0.000658 0.000871 

7 10 0,0117 0.0450 9 0.000069 0.000249 

8 10 0.0008 0.Gl71 6 0.000017 0.000022 

9 10 0,0003 0.0031 9 0.000015 0.000034 

10 10 0,0006 0.0010 8 0.000109 0 .000286 

11 10 0.0025 0,0078 4 0,000011 0.000018 

12 10 0.0092 0.0684 7 0.000189 0,000220 

13 10 0.0002 0.0009 10 0.000233 0.000908 

14 10 0.0003 0.0002 7 0 .000062 0,000065 

15 10 0.0011 0.1009 4 0.000041 0 .000055 

16 10 0.0001 0.0010 4 0.000088 0,000112 

17 10 0.0623 0.0637 6 0.000007 0,000009 

18 10 0.0009 0.0035 6 0.000082 0.000098 

19 10 0.0001 0.0007 10 0.000092 0.000660 

20 10 0,0002 0.0002 5 0,000011 0,000014 

21 10 0.0032 0,0495 6 0,000081 0.000446 

22 10 0.0094 0.0395 4 0.000129 0,001090 

23 10 0.0010 0 .0273 5 0.000027 0.000028 

24 10 0.0004 0 .0012 10 0.000432 0.001203 

25 10 0.0010 0.0016 5 0.000064 0.000070 

26 10 0,0002 0 .0041 4 0.000001 0.000001 

27 10 0.0032 0,0067 6 0.000005 0.000009 

28 10 0.0010 0.0037 10 0.000196 0,000431 

29 10 0.0008 0.0027 10 0.000829 0.002712 

30 10 0,0020 0,0462 5 0,000090 0.000126 

Average no of Average no of 

hidden units 10 hidden units 6.8 

Average 0.00391 0.03882 Average 0.00014 0,00056 

Confidence 0,00415 0.04519 Confidence 0.00007 0.00020 

Table 5.3: Pruning of hidden units - function F3 
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f(x,y) = y7x 3 - 0.5x6 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSEon MSE on 

No units Training set Test set units Training set Test set 

1 10 0.0015 0.0045 2 2.15E ­ 06 1.20E ­ 03 

2 10 0.0037 0.0027 2 1.02E ­ 04 4.09E ­ 05 

3 10 0 .0007 0.0009 3 1.22E ­ 04 1.03E ­ 04 

4 10 0.0009 0 .0020 2 1.52E ­ 06 2.15E ­ 03 

5 10 0.0013 0 .0024 4 7 .04E ­ 05 2.27E ­ 04 

6 10 0.0017 0.0035 2 4.50E ­ 08 6.77E ­ 03 

7 10 0.0002 0.0012 6 1.17E ­ 04 6.84E ­ 04 

8 10 0.0008 0.0027 3 4 .57E ­ 05 9. 08E ­ 05 

9 10 0.0023 0 .0028 2 1.32E ­ 04 1.98E ­ 03 

10 10 0 .0011 0 .0018 2 1.76E ­ 06 2.10E ­ 04 

11 10 0.0028 0.0035 2 3.43E ­ 05 4.85E ­ 04 

12 10 0.0009 0 .0012 3 3.49E ­ 04 5.79E ­ 04 

13 10 0.0007 0.0009 2 7. 24E ­ 04 1.30E ­ 04 

14 10 0.0002 0.0003 10 2.22E ­ 04 1.20E ­ 04 

15 10 0.0025 0 .0032 2 7.34E ­ 05 5.48E ­ 05 

16 10 0.0011 0.0019 2 4 .00E ­ 04 3 .36E ­ 03 

17 10 0 .0002 0.0003 8 1.85E - 04 2.28E ­ 03 

18 10 0 .0003 0.0003 10 2.80E ­ 04 7.76E ­ 04 

19 10 0.001 3 0.0014 2 1.94E - 03 1.21E ­ 03 

20 10 0.0064 0.0068 3 1.24E ­ 04 2.58E ­ 04 

21 10 0.0028 0.0042 2 2.07E ­ 04 3.11E ­ 05 

22 10 0 .0027 0 .0030 3 1.77E ­ 04 6.22E ­ 05 

23 10 0.001 4 0.0021 2 6. 76E - 04 2.76E ­ 03 

24 10 0.0001 0.0001 10 8.91E ­ 05 1.54E ­ 04 

25 10 0.0003 0.0004 3 3 .21E ­ 04 9.21E ­ 04 

26 10 0.0005 0 .0005 10 5. 17E-04 1.85E ­ 04 

27 10 0.0045 0 .0059 4 4.13E - 05 5.70E ­ 03 

28 10 0.0045 0.0057 3 7.12E ­ 04 2.46E ­ 04 

29 10 0 .0012 0 .0014 2 4 .32E ­ 04 6.67E ­ 03 

30 10 0.001 2 0 .0020 2 1.57E - 04 2.40E ­ 04 

Average no of Average no of 

hidden units 10 hidden un its 3.8 

Average 0.001 66 0 .00232 Average 0.00028 0.001 32 

Confidence 0.00055 0.00062 Confidence 0.00014 0 .00071 

Table 5.4: Pruning of hidden units - function F4 
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f(x,y) = X2 + y2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units TI:aining set Test set units Ttaining set Test set 

1 10 0.0470 0.0491 2 0.00727 0.00777 

2 10 0.0301 0.0357 2 0.01654 0.018 64 

3 10 0.0228 0.0262 2 0.00781 0.00875 

4 10 0.Gl71 0.0174 2 0.01693 0.01674 

5 10 0.0407 0.0774 4 0.02883 0.03137 

6 10 0.Gl75 0.0186 10 0.01750 0.01859 

7 10 0.0490 0.0433 2 0.00598 0.00596 

8 10 0.1183 0.1338 2 0.00214 0.00212 

9 10 0.0158 0.0152 10 0.01 576 0.01517 

10 10 0.0354 0.0512 3 0.00688 0.00699 

11 10 0.0309 0.0341 3 0.00714 0.00785 

12 10 0.0215 0.0248 2 0.00402 0.00393 

13 10 0 .0304 0.0345 2 0.01887 0.02020 

14 10 0.0679 0.0774 2 0.00567 0.00508 

15 10 0.0325 0 .0434 4 0.00037 0 .00043 

16 10 0.0096 0.0113 10 0.00959 0.01129 

17 10 0.0320 0.0328 3 0.02237 0.02253 

18 10 0.0300 0.0297 3 0.00002 0.00002 

19 10 0.0260 0.0359 2 0.01418 0.01467 

20 10 0.0358 0.0368 2 0.01639 0.01590 

21 10 0.0303 0.0457 6 0.01378 0.01374 

22 10 0.0273 0.0328 3 0.00067 0.00069 

23 10 0.0110 0.0162 3 0.00605 0.00633 

24 10 0.0185 0.0233 2 0.00588 0.00591 

25 10 0.0220 0.0291 3 0.01463 0.01780 

26 10 0.0346 0.0309 2 0.01591 0.01385 

27 10 0.0129 0.0169 2 0.00112 0 .00133 

28 10 0.0512 0.0586 2 0.02316 0.02118 

29 10 0 .0265 0.0359 2 0.01582 0.01483 

30 10 0.0362 0.0537 3 0.00693 0.00687 

Average no of Average no of 

hidden units 10 hidden units 3.3 

Average 0.03269 0 .03501 Average 0.01024 0.01122 

Confidence 0.00744 0.00653 Confidence 0.00299 0.00281 

Table 5.5: Pruning of hidden units - function F5 
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lex, y) = sin(x2) + sin(y2) 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No o f hidden MSE on MSE on 

No units Ttaining set Test set units TI:aining set Test set 

1 10 0 .0068 0.0210 6 0.00019 0.00021 

2 10 0.0015 0.0020 8 0.00020 0.00048 

3 10 0.0016 0.0025 4 0 .00020 0.00021 

4 10 0.0163 0.0440 2 0.00224 0.00343 

5 10 0.0017 0.0142 2 0.00007 0.00007 

6 10 0.0071 0.0112 2 0.00007 0.00008 

7 10 0.0013 0.0035 7 0 .00029 0.00043 

8 10 0.0014 0.0038 10 0.00136 0.00377 

9 10 0.0002 0.0017 6 0.00020 0.00038 

10 10 0.0018 0 .0021 7 0.00042 0.00069 

11 10 0.0063 0.0091 4 0.00012 0.00021 

12 10 0.0084 0.0141 6 0.00073 0.00134 

13 10 0 .0009 0.0010 10 0.00092 0.00105 

14 10 0.0039 0.0043 3 0.00019 0.00023 

15 10 0.0046 0.0069 4 0.00017 0.00025 

16 10 0.0061 0.0111 7 0.00013 0.00017 

17 10 0 .0039 0.0047 5 0 .00064 0.00119 

18 10 0.0006 0.0007 10 0.00061 0 .00071 

19 10 0.0007 0.0026 4 0.00018 0.00020 

20 10 0.0036 0.0046 5 0.00030 0 .00045 

21 10 0.0082 0.0437 2 0.00010 0.00013 

22 10 0 .0025 0.0102 3 0.00008 0.00011 

23 10 0.0037 0.0079 5 0 .00009 0.00013 

24 10 0.0011 0.0014 4 0.00027 0.00035 

25 10 0.0023 0.0037 2 0.00006 0.00008 

26 10 0.0008 0.0015 6 0.00041 0.00106 

27 10 0.0053 0.1544 5 0.00020 0.00028 

28 10 0.0019 0.0121 6 0.00007 0.00036 

29 10 0 .0097 0.01 63 7 0.00108 0.00182 

30 10 0.0046 0.0130 2 0.00250 0.00280 

Average no of Average no of 

hidden units 10 hidden units 5.1 

Average 0.00396 0.01431 Average 0.00047 0.00076 

Confidence 0.00127 0.01039 Confidence 0.00022 0 .00036 

Table 5.6: Pruning of hidden units - function F6 
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f(x,y) = (4 - 2.1x 2 + (X; ))X 2 + xy + (4y2 _ 4)y2 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSEon No of hidden MSE on MSE on 

No units Training set Test set units 1\'aining set Test set 

1 15 0.0381 0.0459 12 0.03840 0.04219 

2 15 0.0311 0.0471 5 0.02066 0.02591 

3 15 0.0244 0.0317 10 0.03526 0.04204 

4 15 0.0329 0.0421 2 0.06240 0.06875 

5 15 0.0343 0.0436 15 0.03427 0.04364 

6 15 0.0328 0.0362 6 0.03735 0 .03649 

7 15 0.0240 0.0322 4 0.02728 0.03045 

8 15 0.0356 0.0570 4 0.03397 0.04387 

9 15 0.0327 0.0407 3 0.02985 0.03440 

10 15 0.0253 0.0411 5 0.02566 0.03724 

11 15 0.0290 0.0512 3 0.04249 0.05062 

12 15 0.0273 0.0399 5 0.01284 0.01518 

13 15 0.0293 0.0351 4 0.02905 0 .03501 

14 15 0.0462 0.0145 7 0.02749 0.03669 

15 15 0 .0268 0.0772 4 0.02502 0.03588 

16 15 0.0245 0.0394 4 0.02544 0.03403 

17 15 0.0250 0.0302 15 0.02503 0.03022 

18 15 0.0333 0.0383 5 0.02383 0.02318 

19 15 0.0292 0.0351 3 0.03048 0.03614 

20 15 0.0308 0.0394 14 0.02389 0.02961 

21 15 0.0210 0.0276 4 0.02909 0.02626 

22 15 0 .0324 0.0783 4 0.02561 0.02977 

23 15 0.0284 0.0403 4 0.03356 0.03624 

24 15 0.0292 0.0388 4 0.03355 0.03580 

25 15 0.0226 0.0384 3 0.07735 0.08508 

26 15 0.0298 0 .0546 3 0.04043 0.04510 

27 15 0.0271 0.0301 14 0.02730 0.02504 

28 15 0.0372 0.0611 3 0.02646 0.05175 

29 15 0 .0451 o.ono 5 0.05121 0.06213 

30 15 0.0319 0.0459 3 0,02680 0.03542 

Average no of Average no of 

hidden units 15 hidden units 5.9 

Average 0,03058 0,04252 Average 0.03273 0.03880 

Confidence 0 ,00208 0.00498 Confidence 0,00457 0.00512 

Table 5.7: Pruning of hidden units - function F7 
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f(x ,y) = .sin(x)· sin(y). v'XY 
Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No units Ttaining set Test set units 'I\'aining set Test set 

1 12 0.0001 0.0001 8 0.000048 0.000056 

2 12 0.0006 0 .0010 7 0.000010 0.000011 

3 12 0 .0021 0.0038 8 0.000116 0 .001136 

4 12 0.0001 0.0002 6 0.000107 0.000102 

5 12 0.0001 0 .0001 12 0.000129 0.000131 

6 12 0.0013 0 .0064 4 0 .00000 5 0.00000 5 

7 12 0.0001 0.0001 7 0 .000060 0.000065 

8 12 0 .0003 0 .0005 5 0 .000016 0. 000013 

9 12 0.0002 0.0006 6 0 .000084 0.0001 37 

10 12 0.0001 0.0017 12 0 .000096 0 .001705 

11 12 0.0007 0 .0159 8 0 .000168 0.000421 

12 12 0 .001l 0.0021 6 0.000041 0.000055 

13 12 0.0038 0.0198 8 0 .000089 0.000071 

14 12 0.0005 0.0009 6 0.000025 0.000069 

15 12 0.0001 0 .0003 12 0.000108 0.000348 

16 12 0 .0002 0 .0331 4 0 .000060 0 .000065 

17 12 0 .0003 0.01 68 4 0 .000043 0.000167 

18 12 0.0002 0 .0002 5 0.0000 14 0.000019 

19 12 0.0003 0 .000 6 5 0.000010 0.000012 

20 12 0.0007 0 .0009 6 0.000016 0.000017 

21 12 0.0001 0 .0001 7 0.000050 0.000061 

22 12 0.0002 0 .0003 12 0 .000178 0 .000298 

23 12 0.0001 0.0002 12 0 .000102 0 .000192 

24 12 0.0004 0 .0005 4 0 .000010 0 .000008 

25 12 0.0004 0 .0008 5 0 .000039 0. 000039 

26 12 0.0003 0 .0007 4 0.000076 0 .000220 

27 12 0 .0001 0.0014 8 0.000333 0 .001303 

28 12 0.0002 0.0286 12 0 .000608 0.003324 

29 12 0.0006 0 .0138 4 0.000047 0000062 

30 12 0.0003 0.0003 5 0.000042 0.000035 

A verage no of Average no of 

hidden units 12 hidden units 7. 1 

Average 0.00052 0 .00506 Average 0.00009 0 .00068 

Confidence 0 .00027 0.00325 Confidence 0 .00004 0.00077 

Table 5.S: Pruning of hidden units - function FS 
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J(x) = x 2 

Oversized network Pruned Network 

Simulation No of input MSE on MSEon No of input MSE on MSE on 

No units Training set Test set units Training set Test set 

1 4 0.0239 0.0365 1 0.00063 0.00054 

2 4 0.0231 0.0224 1 0.00019 0.00016 

3 4 0 .0354 0 .0313 4 0.04229 0.03902 

4 4 0.0118 0.0229 1 0.00020 0.00028 

5 4 0.0431 0 .0711 1 0.00060 0.00087 

6 4 0.0103 0.0100 1 0.00019 0.00020 

7 4 0.0167 0 .0166 2 0.00157 0.00246 

8 4 0 .0177 0 .0318 2 0.00135 0.00129 

9 4 0.0225 0.0284 1 0 .00046 0.00055 

10 4 0.0093 0.0359 1 0.00029 0.00031 

11 4 0.0227 0.0242 1 0.00028 0 .00017 

12 4 0.0151 0.0122 1 0.00026 0.00021 

13 4 0.Gl76 0.Gl76 2 0.00021 0.00019 

14 4 0.0219 0 .0142 1 0 .00054 0.00023 

15 4 0.0161 0.Gl70 2 0.00135 0.00139 

16 4 0.0187 0.0214 1 0.00021 0.00016 

17 4 0.0191 0 .0078 1 0.00053 0.00050 

18 4 0.0333 0.0275 1 0.00045 0.00061 

19 4 0.0185 0.0160 1 0.00030 0.00033 

20 4 0.0132 0.0113 2 0.00107 0.00095 

21 4 0.0164 0.0179 1 0.00025 0.00022 

22 4 0.0404 0.0363 1 0.00053 0.00039 

23 4 0.0219 0.0257 1 0.00009 0.00009 

24 4 0.0243 0 .0385 1 0.00049 0.00045 

25 4 0.0082 0.0101 1 0.00007 0.00009 

26 4 0.0275 0.0248 1 0 .00011 0.00009 

27 4 0 .0209 0.0096 2 0.00034 0.00025 

28 4 0.0139 0.0091 1 0 .00051 0.00032 

29 4 0.0036 0.0026 1 0.00002 0.00007 

30 4 0.0189 0.0161 1 0.00048 0.00031 

Average no of Average no of 

hidden units 4 hidden units l.3 

Average 0.01970 0.02223 Average 0.00186 0.00171 

Confidence 0.00327 0.00477 Confidence 0.00278 0.00257 

Table 5.9 : Pruning of input units - function F1 
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f(x) = x3 - 0.04x 

Oversized network Pruned Network 

Simulation No of input MSE on MSEon No of input MSEon MSE on 

No units Training set Test set units Training set Test set 

1 4 0.00201 0.00370 1 0.000011 0.000038 

2 4 0.00624 0.00605 1 0.000012 0.000010 

3 4 0.00011 0.00009 1 0.000040 0.000036 

4 4 0.00038 0.00065 1 0.000008 0.000007 

5 4 0.00033 0.00054 1 0.000011 0.000009 

6 4 0.00002 0.00001 4 0.000015 0.000014 

7 4 0.00228 0.00522 1 0 .000008 0.000007 

8 4 0.00024 0.00085 1 0.000009 0.000007 

9 4 0.00003 0.00003 4 0.000026 0.000026 

10 4 0.00004 0.00003 1 0.000007 0.000007 

11 4 0.01621 0.02198 1 0.000007 0.000006 

12 4 0.00015 0.00008 1 0.000041 0.000048 

13 4 0.00007 0.00004 4 0.000072 0.000044 

14 4 0.00010 0.00015 4 0 .000059 0.000047 

15 4 0.00622 0.00465 1 0.000008 0.000006 

16 4 0.00041 0.00020 1 0.000016 0.000025 

17 4 0.00034 0.00047 1 0.000036 0.000068 

18 4 0.00007 0.00005 4 0.000155 0.000152 

19 4 0.00238 0.00376 1 0.000007 0 .000006 

20 4 0.00572 0.00484 1 0.000009 0.000008 

21 4 0.01302 0.01765 1 0.000011 0.000015 

22 4 0.00243 0.00337 1 0.000007 0.000006 

23 4 0.00022 0.00045 4 0.000216 0 .000450 

24 4 0.00001 0.00001 1 0.000013 0.000009 

25 4 0.00025 0.00021 1 0.000038 0.000040 

26 4 0.00011 0.00006 1 0.000007 0.000007 

27 4 0.00041 0.00052 1 0.000008 0.000006 

28 4 0.00005 0.00003 1 0.000008 0.000006 

29 4 0.00013 0.00013 4 0.000130 0.000132 

30 4 0.00074 O.OOlOS 1 0.000009 0.000007 

Average no of Average no of 

hidden units 4 hidden units 1.7 

Average 0.00199 0.00256 Average 0.00003 0.00004 

Confidence 0 .00142 0.00185 Confidence 0.00002 0.00003 

Table 5.10: Pruning of input units - function F2 
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f( x,y) = y7 x 3 ­ x6 

Oversized network Pruned Network 

Simulation No of hidden MSE on MSE on No of hidden MSE on MSE on 

No uni ts Ttaining set Test set units n'aining set Test set 

1 4 0 .0046 0.0067 2 0.00038 0.00063 

2 4 0.0087 0.0109 2 0.00003 0.00006 

3 4 0.0031 0 .0066 2 0.00033 0 .00058 

4 4 0 .0059 0.0072 2 0.00056 0.00071 

5 4 0.0040 0.0077 2 0.00041 0. 00073 

6 4 0.0089 0.0160 4 0 .00887 0.01596 

7 4 0.0077 0.0094 2 0.00038 0.00063 

8 4 0 .0100 0.0125 2 0.00055 0.00095 

9 4 0.0071 0.0083 2 0.00005 0.00006 

10 4 0.0057 0.0096 2 0.00032 0.00062 

11 4 0 .0045 0.0074 2 0.00046 0.00067 

12 4 0.0030 0 .0060 2 0.00030 0 .0005 9 

13 4 0.0092 0.0119 2 0.00036 0.00060 

14 4 0.0046 0.0062 2 0.00042 0.00060 

15 4 0 .0092 0.0187 4 0.00921 0.01865 

16 4 0.0100 0.011 8 2 0.00041 0 .00065 

17 4 0.0093 0.0109 3 0.00108 0.00158 

18 4 0 .0033 0.0060 2 0.00036 0.00062 

19 4 0.0083 0.0113 2 0.00036 0.00062 

20 4 0.0077 0.0086 2 0.00049 0.00064 

21 4 0.0078 0.0116 2 0.00370 0.00600 

22 4 0.0067 0.0093 4 0.00665 0.00932 

23 4 0.0059 0.00 62 2 0.00064 0.00071 

24 4 0.0087 0.Ql05 2 0.00053 0.00059 

25 4 0.0096 0.0119 3 0.00044 0.00058 

26 4 0.0067 0.0079 2 0.00477 0.0062 2 

27 4 0.0050 0.0074 2 0.00042 0 .00062 

28 4 0.0100 0.0107 2 0.00005 0.00006 

29 4 0.0029 0 .0061 2 0.00030 0.00060 

30 4 0.0060 0.0097 4 0.00599 0.00973 

Average no of Average no of 

h idden units 4 hidden units 2.3 

Average 0.00680 0.00950 Average 0.00163 0.00269 

Confidence 0.00084 0.00108 Confidence 0.00097 0.00172 

Table 5.ll: Pruning of input units - function F 4 

 
 
 



Chapter 6 

Conclusions 

One of the objectives of this thesis was to show that the back-propagation algorithm, 

that provides a computationally efficient method for the training of multilayer 

summation neural networks, fails to train PUNNs. The reason for its failure can 

be ascribed to the search space for PUNNs that is usually extremely convoluted 

[Durbin et al1989, Leerink et al1995] . The main reasons for the failure of gradient 

descent in the convoluted search space of PUNNs are (a) incorrect weight initialization 

and (b) the presence of an increased number of local minima. Generally, gradient 

descent only manages to train PUNNs when the weights are initialized in close 

proximity of the optimal weight values. Usually, the optimal weight values are often 

not available resulting in bad choices for weight initialization, which in turn causes 

gradient descent to get stuck in one of the numerous local minima that occur on the 

error surface or become paralyzed (which occurs when the gradient of the error with 

respect to the current weight is close to zero). In chapter 3 an inspection of the error 

surfaces of J( z ) = z3, with z E [-1,1]' and J(Zl, Z2) = zi + zi, with Zl, Z2 E [-1,1]' 

indicated that weight initialization greatly influenced the convergence of gradient 

descent when applied to PUNNs. It illustrated that initial weights chosen such that the 

direction of the negative of its gradient points to a local rather than a global minimum, 

167 


 
 
 



168 CHAPTER 6. CONCLUSIONS 

often resulted in gradient descent to converge to and become trapped by this bad local 

minimum. Also, it was shown that if initial weights are chosen along a steep incline of 

the error surface, where the derivative of the error surface with respect to the weight 

is extremely large, then weight updates will be large which may cause jumping over 

the global minimum. The neural network then oscillates between extreme points of 

the error surface overshooting the global minimum each time. The results in chapter 

4 with respect to functions Fl and F2 indicate that gradient descent using PUNNs 

were trapped in local minima resulting in much larger MSEs than achieved by particle 

swarm optimization and genetic algorithms. 

Another objective was to show that global optimization algorithms such as genetic 

algorithms, particle swarm optimization and leapfrog optimization could be used 

to avoid the numerous local minima that occur on the error surface of PUNNs in 

training PUNNs successfully. The results in chapter 4 in table 4.25 on page 121 show 

that the various optimization algorithms applied to PUNNs produced much lower 

MSEs on the training and test sets for each function than gradient descent applied 

to PUNNs, indicating that the PSO, GA and LFOP are more successful in training 

PUNNs than gradient descent. In functions F3, F4, F5, F6, F7 and F8 gradient 

descent was unsuccessful in training the corresponding PUNNs. In a comparison of 

the global optimization algorithms applied to SUNNs, it is evident that LFOP:SUs 

managed to produce smaller training errors and generalized much better than BP:SUs, 

except for functions f(x) = x2 and f(x, y) = x2 + y2, where BP:SUs outperformed 

PSO:SUs and LFOP:SUs. The global optimization algorithms applied to SUNNs in 

all eight functions did not perform better than BP:SUs, however, they did manage 

to reach lower generalization levels using much fewer iterations than BP:SUs and a 

corresponding higher percentage of convergence for the various generalization levels. 

In the case of function F5, although BP:SUs achieved a smaller training error than 
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PSO:PUs, it did not manage to reach the low generalization level of 0.0001, that was 

achieved by PSO:PUs. It can be concluded that the global optimization algorithms 

appeared to find the global minimum on the error surface faster than BP:SUs. 

Another objective was to determine the global optimization algorithm which is more 

efficient and robust in training PUNNs. Results in chapter 4 indicated that PUNNs 

performed the best with respect to functions Fl, F2, F6 and F8, while SUNNs 

outperformed the PUNNs in functions F3, F4, F5 and F7 achieving lower MSEs on the 

training sets and improved generalization. In the case of the global algorithms applied 

to PUNNs, PSO was the only algorithm that managed to reach a low generalization 

level of 0.0001 for all functions, except for function F7. LFOP applied to PUNNs 

also managed to reach low generalization levels of 0.00001 in functions Fl, F2, F3 

and F5. GAs only managed to achieve a low generalization level in functions Fl and 

F2. In choosing a global algorithm applied to PUNNs that is the most robust, it 

appears that PSO is more robust than LFOP with respect to functions Fl and F2 

from tables 4.30 and 4.32, also taking fewer iterations than PSO to reach convergence, 

whereas PSO appears to be more robust with respect to functions F4 and F5 since 

they have a larger percentage of simulations that converged to a generalization level 

of 0.00001. PSO tends to be more robust than LFOP if one takes into account the 

instances of functions F6, F7 and F8 where not a single simulation of LFOP could 

train the PUNNs successfully as reflected in tables 4.25 and 4.32; only overflows were 

produced in these cases due to the large weight adjustments caused by gradient descent. 

The optimal architectures for PUNNs were initially determined using brute force 

pruning in chapter 4 which resulted in much smaller architectures. The number 

of hidden units that occurred in optimal PUNNs expressed as a percentage of the 

number of hidden units that occurred in the equivalent optimal SUNNs, are for 
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functions F1 50%) F2 33.3%) F3 80%) F4 33.3%) F5 50%) F6 66.7%) F7 75% and 

F8 77.8%. This shows that the optimal PUNNs were smaller than the equivalent 

SUNNs for the eight test functions. The variance nullity pruning algorithm applied in 

chapter 5 produced similar PUNN architectures as the brute force pruning approach of 

section 4.8 on page 114. The results of chapter 4 show that PUNNs) with their much 

smaller optimal architectures compared to the corresponding larger optimal SUNNs) 

did not always result in an improvement with respect to performance of the neural 

networks. These smaller PUNNs networks did not always produce good training errors 

and generalization compared to the larger architectures of SUNNs. However) global 

optimization using SUs showed an improvement in performance compared to gradient 

descent using SUs. In certain instances the PUNNs outperformed the SUNNs. 

In general) PUNNs did not show a remarkable gain in performance) other than reaching 

lower generalization levels faster than gradient descent applied to SUNNs. One has 

to consider the trade-off between (a) added complexity when using PUNNs due to 

exponentiation and (b) the larger architecture required by SUNNs) before deciding on 

implementing a neural network using either PUs or SUs. 

6.1 Possible Improvements and Future Research 

The following aspects are suggested for future research: 

1. 	 The learning profiles in chapter 4 reflected that PSO and GA applied to PUNNs 

had larger reductions in error early in training) reaching low errors using substan­

tially less training epochs than gradient descent applied to SUNNs. This suggests 

using the global optimization algorithms for initial training to produce weights 

close to the global minima on the error surface. Once the area where the global 
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minimum occurs is reached, gradient descent can then be applied to further train 

the PUNN to completion, an approach which has been used successfully in the 

past using different optimization algorithms. 

2. 	 PSO can be enhanced by incorporating constriction coefficients in the algo­

rithm, which have lead to improved performance as reported by Eberhart et at 

[Eberhart et at 2000]. 

3. 	 The variance nullity algorithm applied to PUNNs can be improved by avoiding 

re-initialization of weights in cases where no parameters were pruned by retaining 

the unpruned weights and to continue the pruning process by re-training only the 

bias. 

4. 	 An investigation into the overfitting tendencies of PSO, GA and LFOP to identify 

the algorithm that exhibits the smallest degree of overfitting and consequently the 

best generalization. These results can then be compared to results obtained by 

Lawrence and Giles that showed that the Scaled Conjugate Gradient algorithm 

tended to overfit more than gradient descent [Lawrence et at2000j. 
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Appendix A 

Derivation of learning rules for 

PUNNs 

The product learning equations for the feed-forward neural network type used in this 

thesis are derived in this appendix. This thesis assumes a network architecture which 

consists of an input layer, a hidden layer consisting of product units and an output 

layer consisting of summation units. Linear activations are assumed for all units. This 

thesis assumes a PUNN architecture with a bias to the output units and no bias to the 

hidden units. Instead, an extra unit referred to as a 'distortion unit', is included to the 

hidden units. For a discussion on the 'distortion unit', refer to section 3.7.3 on page 

72. Section A.l derives the learning equations for a PUNN architecture with biases to 

both the hidden and output units. In section A.2 the equations of section A.l are then 

adapted for a PUNN where a 'distortion unit' replaces the bias in the hidden layer. 

The derivations assume gradient descent as optimization algorithm and on-line learning. 

The mean squared error (MSE) function is assumed as the objective function, with 

linear activation functions in both, the hidden and output layers of the product unit 

neural network ( PUNN). 
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193 APPENDIX A. DERIVATION OF LEARNING RULES FOR PUNNS 

The objective function is expressed as, 

(A.l) 

where P is the total number of patterns in the training set, K is the number of output 

uni ts, and Ep is the error of pattern p, defined as 

(A.2) 

where tk,p and Ok,p are respectively the target and actual output values of the kth 

output unit, Ok, when pattern p is presented to the neural network. 

The derivations in this appendix refer to individual patterns. For the sake of notational 

convenience the superscript p, that refers to a specific pattern, is removed. Throughout 

this appendix I, J and K refer, respectively, to the number of input, hidden and output 

units excluding biases. 

The output of the eh output unit is (under the assumption of linear activated outputs) 

(A.3) 

and 

1 (A.4) 

The net input signal is calculated as 

J+1 

L WkjYj (A.S) 
j=1 

The (J -I- 1)th unit represents the bias to each output unit; Wkj is the weight between 

the lh hidden and kth output units; Yj is the output of the ;th hidden unit, defined as 
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(assuming linear activation) 

Yj (A.6) 

(A.7) 

and 

1 (A.8) 

A.I Learning rules for a PUNN using a bias unit 

This section derives the learning equations for a PUNN where it is assumed that bias 

units occur in both the input and hidden layers, that respectively serve as bias to 

hidden units and bias to output units. 

The net input of the hidden units of a PUNN that contains a bias unit in the hidden 

layer is given by, 

I 

netYj = II z~ji + Vj,I+1 . ZI+1 (A.9) 
',=1 

The (I + l)th unit represents the bias unit to each hidden unit; Vj" is the weight between 

the ith input and lh hidden units; Zi is the value of the ith input unit. 

Weights are updated according to the following equations: 

Wkj(t) 6Wkj(t) + a· Wkj(t - 1) (A.10) 

Vji (t) 6Vji(t) + a . Vji(t - 1) (A.ll) 

where a is the momentum, Wkj is the weight between the lh hidden unit, Yj, and eh 

output unit, Ok and Vji is the weight between the ith input unit, Zi, and lh hidden 

unit, Yj. 
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In the remainder of this appendix the equations for calculating f:....Wkj(t) and f:....Vji(t) are 


derived . For notational convenience, the reference to time, t is omitted. 


The error with respect to weight Vj 'i is calculated, applying the chain rule of differenti­

ation, 


oE oE onetYi 


OVJ' OVji
onet Y j 

(t 0E . onetok ) . onetYj 

k=l anetok anetYj aVji

t oE . onet ok • oYj (A,12) 
k=l onetok oYj onety j 

Now define, 

(A.13) 

Substitution of (A.13) , (A.5) and (A.7) in (A,12) yields, 

oE t -OOk' o('£f~iwkjyj) . o(f(nety j ) ) oYj• 

k= l oYj onet Y j OVji 

]{ oy· 
- ""' 0 . Wk' . f'(net ). _ ,_JL Ok"J Yj OV " 

k=l J2 

K oY 
- LOOk . Wkj . _J (A.14) 

k=l OVji 

The output of hidden unit lj, is calculated next, where Vj,l+l is the bias to lj and Z!+l 

refers to the bias unit with a constant value of -1. 

Substitution of (A.9) in (A.7), results in, 

I 

Yj = II Z? + Z!+ l . Vj,l+ l 
i =l 

In(TI J z Vji)e i=l i + ZI + l . Vj,l+l 

"J v .. ln z ' eL-i=l J' ' + ZI +l . Vj,l+ l (A.15) 

If Zi < 0, then Zi can be written as the complex number Zi = ~2l zi l which, substituted 

in equation (A.15) , yields 

Yj = (A.16) 
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Let c = 0 + 1, = a + b1, be a complex number representing 1,. Then, 

In c = In re"o = In r + 1,e + 27rk'l (A.17) 

where r = Ja2 + b2 = 1. 


Considering only the main arg"ument, arg(c), k = 0, which implies that 27rk'l = o. Also, 


is ln r = 0, if r = 1. Furthermore e = % for 1, = (0,1) . Therefore, 1,e = 1,%, which 


simplifies equation (A.17) to In c = 1, ~ , and consequently, 


(A.1S) 

Substitution of (A.1S) in (A.16) yields 

e2::=l vj dnl zi l . e2::=l Vj;7rt + ZI+l . Vj,I+l 

J I I 

e2:i=l Vj i Inlzi l (COS(7r I:Vji) + 1, • sin(7r I:Vji)) + Z!+1 . Vj'! +1 (A.19) 
i=1 i=1 

Omitting the imaginary part, which is allowed since its inclusion did not result in any 

substantial improvement as reported by Durbin et al [Durbin et al19S9], reduces (A .19) 

to 

Yj e2:i
I 

=l vji lnlzil . cos(7r I:I Vji) + ZI+l . V j,I+1 (A.20) 
i=l 

Let 

I 

P I: vjdn IZil (A.21) 
i=1 

and 

I 

¢ I:vJ' ·L, (A.22) 
i=l 

where 

0 if Zi 2 0 
(A.23)Ii = { 

1 if Zi < 0 
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Then equation (A.20) becomes, 

(A.24) 

Now, applying differentiation w.r.t 	Vji in equation (A.24), 

P op (A.) 0 cos( 7r¢) P OZI+l . Vj,1+1 
= e - . cos 7r'f' + . e + 	 (A.25) 

OVji OVji 	 OVji 

(A.26) 
if i = 1+1 

Substitution of (A.26) in (A.14), results in, 

The changes to input-to-hidden weights are calculated as, 

!::,Vji = 	 (A.28) 

Substitution of (A.27) in (A.28) yields, 

7]' 'Lk{=lOok . Wkj . eP ' (In IZil· cos(7r¢) - 7rIi . sin(7r¢)) if i < 1+1 
!::,Vji = 

{ 
7] . 'L-f"=l OOk . Wkj . Z1+1 	 if i = 1+1 

(A.29) 

The error at the hidden layer, OYj is now defined as , 

(A.30) 

(A.31) 

(A.32) 
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Next, g~, is calculated applying the chain rule for differentiation, 

8E 	 t(8E . 8ok ) 
8y·.] 	 k=l 80k 8yj 

t(8E. 80k . 8netok ) 

k=l 80k 8netok 8yj 

t(8(~'Lr~1(tk-Ok)2). 80k . 8('L;:tfWkjYj)) 
k=l 80k 8netok 8yj 
K

'L( -(tk - Ok) . !,(neto,J . Wkj) 
k=l 

K 

- 2:(tk - Ok) . Wkj 
k=l 

where (A.2) and (A.5) have been substituted in equation (A.33). 

Substitution of (A.34) in (A.32) results in, 

K 

6yj = 2:(tk - Ok) . Wkj 
k=l 

The equation above reduces (A.35) to, 

6
K 


Y j = 2: 60k • Wkj 

k=l 


Substitution of (A.36) in (A.29) results in, 

where Dji is defined as, 

P
Dji = { e ' (In IZil .cos(1f¢) - 1fIi . sin(1f¢)) if i < 1+1 

ZI+l 	 ifi = I+1 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

The error with respect to weight Wkj is calculated in the same way as for summation 

multilayer networks using gradient descent, i.e. 
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(A.39) 

Define the error that needs to be back-propagated as OOk = - B BEt . 
ne Ok 

Then, 

Oak netok 

o 1 K 2 Oak
--(- L(tk - Ok) ).--

Oak 2 k=l onetok 

-(-(tk - Ok)· J'(net ok )) 

(A.40) 

since for linear activation, f'(net ok ) = 1. Substitution of (A.40) in (A.39) yields, 

(A.41) 

A.2 Learning rules for PUNN using a distortion 

unit 

In this section the learning equations for a PUNN using a distortion unit are derived. 

In the case where the bias unit is replaced by a distortion unit in the hidden layer, only 

the equations influencing (A.29) need to be modified. Thus, equation (A.9) becomes , 

1+1 
netYj = II VjiZi (A.42) 

i=1 
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The (I + l)th input now represents the distortion to each hidden unit (refer to section 

3.7.3 on page 72 for a discussion on the distortion unit). The input to the distortion 

unit is -1, i.e. Z1+l = -l. 

Equation (A.15) now becomes, 

(A.43) 

To include the distortion unit in the product, equations (A.20), (A.21) and (A.22) 

become, 

1+1 1+1 
e~i=l Vji1nlzil. cos(7r LVji) (A.44)Yj 

i=l 

which can be written as, 

(A.45) 

where 

1+1 

p L Vji In IZil (A.46) 
i=l 

(A.47) 
i=l 

where 

o if Zi ::::: 0 
(A.48)2 -I-{ 

1 if Zi < 0 

Equations (A.29) and (A.38) become, 

]( 

~Vji = 1]' L 60k • Wkj . eP ' (in IZi\ .cos(7r¢) - 7rIi . sin(7r¢)) (A.49) 
k=l 

(A.50) 

where i ::; 1+1 in equations (A.49) and (A.50). 


The weight adjustment for weights between the hidden and output layer remains the 


same as the adjustment for PUNNs with a bias unit, i.e. 


(A.51) 
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This concludes the discussion on learning rules for PUNNs that contain either a bias or 

a distortion unit. 
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Appendix C 

Symbols and notation 

Symbols I Meaning 

ANN artificial neural network 

BP back-propagation by gradient descent 

FLN functional link network 

FNN feed-forward neural network 

GA genetic algorithm 

LFOP leapfrog optimization algorithm 

NN neural network 

PSN pi-sigma network 

PSO particle swarm optimization 

PSO:PUs product unit using product units 

PSO:SUs product unit using summation units 

PU product uni t 

PUNN product unit neural network 

RNN recurrent neural network 

SU summation unit 

SUNN summation unit neural network 
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Symbols 

Vp 

xp = (Xp,l, Xp,2, .. . , Xp,D) 

BESTp 

BESTxp 

GBEST 

z, 

f( netok ) 

f( netyi ) 

±[2.0,5.0] 

I Meaning 

the currents velocity of particle p 

the current position of particle p 

the current best fitness achieved by particle p 

the position that produced the best fitness value of 

the pth particle 

the index of the best particle among all the 

particles in the population 

the error at the hidden layer 

the error at the output layer 

ith input value 

ith input unit 

activation of ;th hidden unit 

;th hidden unit 

activation of kth output unit 

kth output unit 

weight between ith input unit and ;th hidden unit 

weight between ;th hidden unit and kth output unit 

the activation for the kth output unit 

the activation for the ;th hidden unit 

the net input for the kth output unit 

the net input for the ;th hidden unit 

interval [-5.0, -2.0] and interval [2.0,5.0] 

 
 
 


