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Appendix A 

Derivation of learning rules for 

PUNNs 

The product learning equations for the feed-forward neural network type used in this 

thesis are derived in this appendix. This thesis assumes a network architecture which 

consists of an input layer, a hidden layer consisting of product units and an output 

layer consisting of summation units. Linear activations are assumed for all units. This 

thesis assumes a PUNN architecture with a bias to the output units and no bias to the 

hidden units. Instead, an extra unit referred to as a 'distortion unit', is included to the 

hidden units. For a discussion on the 'distortion unit', refer to section 3.7.3 on page 

72. Section A.l derives the learning equations for a PUNN architecture with biases to 

both the hidden and output units. In section A.2 the equations of section A.l are then 

adapted for a PUNN where a 'distortion unit' replaces the bias in the hidden layer. 

The derivations assume gradient descent as optimization algorithm and on-line learning. 

The mean squared error (MSE) function is assumed as the objective function, with 

linear activation functions in both, the hidden and output layers of the product unit 

neural network ( PUNN). 
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The objective function is expressed as, 

(A.l) 

where P is the total number of patterns in the training set, K is the number of output 

uni ts, and Ep is the error of pattern p, defined as 

(A.2) 

where tk,p and Ok,p are respectively the target and actual output values of the kth 

output unit, Ok, when pattern p is presented to the neural network. 

The derivations in this appendix refer to individual patterns. For the sake of notational 

convenience the superscript p, that refers to a specific pattern, is removed. Throughout 

this appendix I, J and K refer, respectively, to the number of input, hidden and output 

units excluding biases. 

The output of the eh output unit is (under the assumption of linear activated outputs) 

(A.3) 

and 

1 (A.4) 

The net input signal is calculated as 

J+1 

L WkjYj (A.S) 
j=1 

The (J -I- 1)th unit represents the bias to each output unit; Wkj is the weight between 

the lh hidden and kth output units; Yj is the output of the ;th hidden unit, defined as 
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(assuming linear activation) 

Yj (A.6) 

(A.7) 

and 

1 (A.8) 

A.I Learning rules for a PUNN using a bias unit 

This section derives the learning equations for a PUNN where it is assumed that bias 

units occur in both the input and hidden layers, that respectively serve as bias to 

hidden units and bias to output units. 

The net input of the hidden units of a PUNN that contains a bias unit in the hidden 

layer is given by, 

I 

netYj = II z~ji + Vj,I+1 . ZI+1 (A.9) 
',=1 

The (I + l)th unit represents the bias unit to each hidden unit; Vj" is the weight between 

the ith input and lh hidden units; Zi is the value of the ith input unit. 

Weights are updated according to the following equations: 

Wkj(t) 6Wkj(t) + a· Wkj(t - 1) (A.10) 

Vji (t) 6Vji(t) + a . Vji(t - 1) (A.ll) 

where a is the momentum, Wkj is the weight between the lh hidden unit, Yj, and eh 

output unit, Ok and Vji is the weight between the ith input unit, Zi, and lh hidden 

unit, Yj. 
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In the remainder of this appendix the equations for calculating f:....Wkj(t) and f:....Vji(t) are 


derived . For notational convenience, the reference to time, t is omitted. 


The error with respect to weight Vj 'i is calculated, applying the chain rule of differenti­

ation, 


oE oE onetYi 


OVJ' OVji
onet Y j 

(t 0E . onetok ) . onetYj 

k=l anetok anetYj aVji

t oE . onet ok • oYj (A,12) 
k=l onetok oYj onety j 

Now define, 

(A.13) 

Substitution of (A.13) , (A.5) and (A.7) in (A,12) yields, 

oE t -OOk' o('£f~iwkjyj) . o(f(nety j ) ) oYj• 

k= l oYj onet Y j OVji 

]{ oy· 
- ""' 0 . Wk' . f'(net ). _ ,_JL Ok"J Yj OV " 

k=l J2 

K oY 
- LOOk . Wkj . _J (A.14) 

k=l OVji 

The output of hidden unit lj, is calculated next, where Vj,l+l is the bias to lj and Z!+l 

refers to the bias unit with a constant value of -1. 

Substitution of (A.9) in (A.7), results in, 

I 

Yj = II Z? + Z!+ l . Vj,l+ l 
i =l 

In(TI J z Vji)e i=l i + ZI + l . Vj,l+l 

"J v .. ln z ' eL-i=l J' ' + ZI +l . Vj,l+ l (A.15) 

If Zi < 0, then Zi can be written as the complex number Zi = ~2l zi l which, substituted 

in equation (A.15) , yields 

Yj = (A.16) 
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Let c = 0 + 1, = a + b1, be a complex number representing 1,. Then, 

In c = In re"o = In r + 1,e + 27rk'l (A.17) 

where r = Ja2 + b2 = 1. 


Considering only the main arg"ument, arg(c), k = 0, which implies that 27rk'l = o. Also, 


is ln r = 0, if r = 1. Furthermore e = % for 1, = (0,1) . Therefore, 1,e = 1,%, which 


simplifies equation (A.17) to In c = 1, ~ , and consequently, 


(A.1S) 

Substitution of (A.1S) in (A.16) yields 

e2::=l vj dnl zi l . e2::=l Vj;7rt + ZI+l . Vj,I+l 

J I I 

e2:i=l Vj i Inlzi l (COS(7r I:Vji) + 1, • sin(7r I:Vji)) + Z!+1 . Vj'! +1 (A.19) 
i=1 i=1 

Omitting the imaginary part, which is allowed since its inclusion did not result in any 

substantial improvement as reported by Durbin et al [Durbin et al19S9], reduces (A .19) 

to 

Yj e2:i
I 

=l vji lnlzil . cos(7r I:I Vji) + ZI+l . V j,I+1 (A.20) 
i=l 

Let 

I 

P I: vjdn IZil (A.21) 
i=1 

and 

I 

¢ I:vJ' ·L, (A.22) 
i=l 

where 

0 if Zi 2 0 
(A.23)Ii = { 

1 if Zi < 0 
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Then equation (A.20) becomes, 

(A.24) 

Now, applying differentiation w.r.t 	Vji in equation (A.24), 

P op (A.) 0 cos( 7r¢) P OZI+l . Vj,1+1 
= e - . cos 7r'f' + . e + 	 (A.25) 

OVji OVji 	 OVji 

(A.26) 
if i = 1+1 

Substitution of (A.26) in (A.14), results in, 

The changes to input-to-hidden weights are calculated as, 

!::,Vji = 	 (A.28) 

Substitution of (A.27) in (A.28) yields, 

7]' 'Lk{=lOok . Wkj . eP ' (In IZil· cos(7r¢) - 7rIi . sin(7r¢)) if i < 1+1 
!::,Vji = 

{ 
7] . 'L-f"=l OOk . Wkj . Z1+1 	 if i = 1+1 

(A.29) 

The error at the hidden layer, OYj is now defined as , 

(A.30) 

(A.31) 

(A.32) 
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Next, g~, is calculated applying the chain rule for differentiation, 

8E 	 t(8E . 8ok ) 
8y·.] 	 k=l 80k 8yj 

t(8E. 80k . 8netok ) 

k=l 80k 8netok 8yj 

t(8(~'Lr~1(tk-Ok)2). 80k . 8('L;:tfWkjYj)) 
k=l 80k 8netok 8yj 
K

'L( -(tk - Ok) . !,(neto,J . Wkj) 
k=l 

K 

- 2:(tk - Ok) . Wkj 
k=l 

where (A.2) and (A.5) have been substituted in equation (A.33). 

Substitution of (A.34) in (A.32) results in, 

K 

6yj = 2:(tk - Ok) . Wkj 
k=l 

The equation above reduces (A.35) to, 

6
K 


Y j = 2: 60k • Wkj 

k=l 


Substitution of (A.36) in (A.29) results in, 

where Dji is defined as, 

P
Dji = { e ' (In IZil .cos(1f¢) - 1fIi . sin(1f¢)) if i < 1+1 

ZI+l 	 ifi = I+1 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

The error with respect to weight Wkj is calculated in the same way as for summation 

multilayer networks using gradient descent, i.e. 
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(A.39) 

Define the error that needs to be back-propagated as OOk = - B BEt . 
ne Ok 

Then, 

Oak netok 

o 1 K 2 Oak
--(- L(tk - Ok) ).--

Oak 2 k=l onetok 

-(-(tk - Ok)· J'(net ok )) 

(A.40) 

since for linear activation, f'(net ok ) = 1. Substitution of (A.40) in (A.39) yields, 

(A.41) 

A.2 Learning rules for PUNN using a distortion 

unit 

In this section the learning equations for a PUNN using a distortion unit are derived. 

In the case where the bias unit is replaced by a distortion unit in the hidden layer, only 

the equations influencing (A.29) need to be modified. Thus, equation (A.9) becomes , 

1+1 
netYj = II VjiZi (A.42) 

i=1 
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The (I + l)th input now represents the distortion to each hidden unit (refer to section 

3.7.3 on page 72 for a discussion on the distortion unit). The input to the distortion 

unit is -1, i.e. Z1+l = -l. 

Equation (A.15) now becomes, 

(A.43) 

To include the distortion unit in the product, equations (A.20), (A.21) and (A.22) 

become, 

1+1 1+1 
e~i=l Vji1nlzil. cos(7r LVji) (A.44)Yj 

i=l 

which can be written as, 

(A.45) 

where 

1+1 

p L Vji In IZil (A.46) 
i=l 

(A.47) 
i=l 

where 

o if Zi ::::: 0 
(A.48)2 -I-{ 

1 if Zi < 0 

Equations (A.29) and (A.38) become, 

]( 

~Vji = 1]' L 60k • Wkj . eP ' (in IZi\ .cos(7r¢) - 7rIi . sin(7r¢)) (A.49) 
k=l 

(A.50) 

where i ::; 1+1 in equations (A.49) and (A.50). 


The weight adjustment for weights between the hidden and output layer remains the 


same as the adjustment for PUNNs with a bias unit, i.e. 


(A.51) 
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This concludes the discussion on learning rules for PUNNs that contain either a bias or 

a distortion unit. 
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A Ismail, AP Engelbrecht, Global Optimization Algorithms for Training Product Unit 

Neural Networks) IEEE International Joint Conference on Neural Networks, 24-27 July 

2000, Como Italy, paper 032. 

A Ismail , AP Engelbrecht, Pruning Product Unit Neural Networks, submitted to IEEE 

World Congress on Computational Intelligence, 2002. 
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Appendix C 

Symbols and notation 

Symbols I Meaning 

ANN artificial neural network 

BP back-propagation by gradient descent 

FLN functional link network 

FNN feed-forward neural network 

GA genetic algorithm 

LFOP leapfrog optimization algorithm 

NN neural network 

PSN pi-sigma network 

PSO particle swarm optimization 

PSO:PUs product unit using product units 

PSO:SUs product unit using summation units 

PU product uni t 

PUNN product unit neural network 

RNN recurrent neural network 

SU summation unit 

SUNN summation unit neural network 
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Symbols 

Vp 

xp = (Xp,l, Xp,2, .. . , Xp,D) 

BESTp 

BESTxp 

GBEST 

z, 

f( netok ) 

f( netyi ) 

±[2.0,5.0] 

I Meaning 

the currents velocity of particle p 

the current position of particle p 

the current best fitness achieved by particle p 

the position that produced the best fitness value of 

the pth particle 

the index of the best particle among all the 

particles in the population 

the error at the hidden layer 

the error at the output layer 

ith input value 

ith input unit 

activation of ;th hidden unit 

;th hidden unit 

activation of kth output unit 

kth output unit 

weight between ith input unit and ;th hidden unit 

weight between ;th hidden unit and kth output unit 

the activation for the kth output unit 

the activation for the ;th hidden unit 

the net input for the kth output unit 

the net input for the ;th hidden unit 

interval [-5.0, -2.0] and interval [2.0,5.0] 
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