

Physico-chemical modification of kafirin microstructures for application as biomaterials

By

Joseph Ochieng' Anyango

Submitted in the partial fulfilment of the requirements for the

Degree

PhD Food Science

in the

Department of Food Science Faculty of Natural and Agricultural Sciences University of Pretoria South Africa

August 2012

© University of Pretoria

DECLARATION

I hereby declare that this thesis submitted at the University of Pretoria for the award of PhD degree is my work and has not been submitted by me for a degree at any other University or Institution of Higher Education.

Joseph Ochieng' Anyango August 2012

ABSTRACT

Physico-chemical modification of kafirin microstructures for application as biomaterials

Joseph Ochieng' Anyango

Supervisor: Prof John RN Taylor

Co-supervisor: Dr Janet Taylor

Co-supervisor: Prof Vinny Naidoo

Microparticles produced from kafirin, the sorghum grain prolamin protein, by molecular selfassembly using coacervation with acetic acid solvent are vacuolated. They have shown considerable potential for encapsulation of antioxidants and for preparation of high quality free-standing bioplastic films. However, the functional quality of these kafirin microstructures needs to be improved to exploit their potential application, particularly as biomaterials.

Wet heat, transglutaminase and glutaraldehyde treatments were used to modify the physical structure and chemical properties of the kafirin microstructures. Heat treatment (50–96 $^{\circ}$ C) increased microparticle average size by up to four-fold to $\approx 20 \,\mu\text{m}$, probably due to disulphide cross-linking of kafirin proteins. The vacuoles within these microparticles enlarged up to >10-fold, probably due to greater expansion of air within the microparticles with higher temperature, as the vacuoles are probably footprints of air bubbles. As with heat treatment, glutaraldehyde (10-30%) treatment resulted in oval microparticles, up to about four-fold larger than the control, probably due to covalent glutaraldehyde-polypeptide linkage. Transglutaminase (0.1–0.6%) treatment had only slight effect on the size and shape of microparticles, probably because kafirin has very low lysine content, inhibiting transglutaminase-catalysed cross-linking through ε-(-glutamyl)-lysine bonding. Surface morphology using atomic force microscopy indicated that the microparticles apparently comprised coalesced nanostructures. With heat and transglutaminase treatments, the microparticles seemed to be composed of round nanostructures that coalesced into random irregular shapes, indicative of non-linear protein aggregation. In contrast, with glutaraldehyde treatment, the nanostructures were spindle-shaped and had a unidirectional orientation,

probably due to linear alignment of the nanostructures controlled by glutaraldehydepolypeptide linkage.

Thin (<50 μ m) films prepared from kafirin microparticles and conventional cast kafirin films were compared in terms of their water stability and other related properties. Films cast from microparticles were more water-stable compared to conventional kafirin films, probably because the large vacuoles within the kafirin microparticles may have enhanced protein solubility in the casting solution, thereby improving the film matrix cohesion. The films prepared from microparticles treated with glutaraldehyde were more water-stable compared to the control, despite the loss of plasticizer, probably due to formation of the covalent glutaraldehyde-polypeptide linkages.

The potential of modified kafirin microparticles to bind bone morphogenetic protein-2 (BMP-2) was investigated. Compared to a collagen standard, the BMP-2 binding capacity of control, heat-treated, transglutaminase-treated and glutaraldehyde-treated kafirin microparticles were 7%, 18%, 34% and 22% higher, respectively, probably mainly due to the vacuoles within the microparticles creating greater binding surface area. The safety, biodegradability and effectiveness of kafirin microparticle film and kafirin microparticle film-BMP-2 system in inducing bone growth were determined by a subcutaneous bioassay using a rat model. Kafirin microparticle film and kafirin microparticle film and effectiveness of some degradation but a large proportion of these implants was still intact by Day 28 post implantation, probably because of the low susceptibility of kafirin to mammalian proteolytic enzymes. Kafirin microparticle film-BMP-2 system did not induce bone growth, probably mainly due to low BMP-2 dosage and short study duration.

Modification of kafirin microparticles by wet heat or glutaraldehyde treatment both result in increased size of the microparticles with similar gross structure. However, it is apparent that with both treatments the proteins within the pre-formed kafirin microparticles undergo some form of further assisted-assembly through different mechanisms. It seems that heat-induced disulphide cross-linking reinforces a layer around the nanostructures, probably rich in γ -kafirin polypeptides, that stabilizes the structure of the nanostructures. In contrast, glutaraldehyde-treatment appears to destabilize this structure-stabilizing layer through formation of γ -kafirin polypeptide-glutaraldehyde covalent bonding. This probably offsets the balance of attractive and repulsive forces between the different kafirin subclasses within the

nanostructures, thereby resulting in collapsed nanostructures and linear realignment. A deeper understanding of the mechanism of kafirin self-assembly will be important for further development of kafirin microstructures for different applications.

DEDICATION

This thesis is dedicated to:

My lovely wife Carol,

Daughters Natalie and Hope,

And son Brad

For their love, patience and unwavering support

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof John Taylor, first for the opportunity to work with him during my masters and doctoral studies, spanning about five years. Secondly, his constructive guidance and timely comments were most valuable throughout this work.

I am also grateful to my co-supervisor, Dr Janet Taylor. Apart from her supervisory role, she introduced me to the practical preparation of kafirin microstructures. Her innate ability to listen and offer carefully planned guidance is much appreciated.

I thank my co-supervisor, Prof Vinny Naidoo who was valuable especially in the animal study.

I wish to thank Dr Nicolaas Duneas of Altis Biologics, who introduced me to the work on bone morphogenetic proteins (BMPs).

I wish to thank Mr Alan Hall, Mr Chris van der Merwe and Mrs Antoinette Buys for their help with microscopy.

I want to thank Mrs Ilse Janse van Rensburg of University of Pretoria Biomedical Research Centre who helped with the preparation of the research animals for surgical procedures.

I am grateful to Prof Resia Pretorius of the Department of Physiology, University of Pretoria for her comments on histology data.

I thank Dr W.S. Botha of Idexx Laboratories who kindly discussed with me the findings of the independent post-mortem histopathological evaluation of the study animals.

I am grateful for University of Pretoria Postgraduate Research Support Bursary and Ralph Waniska Sorghum and Millet Bursary.

I am grateful to the rest of academic staff, support staff and fellow postgraduate students at the Department of Food Science, University of Pretoria, for the time I spent with them during my study. Their company was a source of encouragement.

Above all, I am greatly indebted to my family, for their love and understanding.

TABLE OF CONTENTS

DECLARATIONi
ABSTRACTii
DEDICATIONv
ACKNOWLEDGEMENTSvi
LIST OF TABLES xiii
LIST OF FIGURESxv
1 INTRODUCTION1
2 LITERATURE REVIEW
2.1 PROTEIN MICROPARTICLES
2.1.1 Definitions
2.1.2 Formation of protein microparticles
2.1.3 The technology for preparation of protein microparticles
2.1.3.1 Spray-drying7
2.1.3.2 Solvent evaporation/removal
2.1.3.3 Phase separation/coacervation
2.1.4 Properties of protein microparticles important for their application
2.1.5 Quality of protein microparticles compared with other biodegradable microparticles
2.2 KAFIRIN
2.2.1 Kafirin structure: physical and chemical properties
2.2.2 Kafirin digestibility14
2.2.3 Kafirin microparticles14
2.3 MODIFICATION OF THE FUNCTIONAL QUALITY OF PROTEIN MICROPARTICLES
2.3.1 Physical treatment of protein microparticles
2.3.1.1 Heat

	2	2.3.1.	2 Application of mechanical stress	16
	2	2.3.1.	.3 Manipulation of acid concentration	17
	2.3.	.2	Cross-linking proteins with enzymes	18
	2.3.	.3	Cross-linking protein microparticles with chemicals	19
	2.3.	.4	Cross-linking with polymeric food components	21
2	.4	PR	OTEIN MICROPARTICLE FILMS	21
2	.5	AP	PLICATION OF PROTEIN MICROPARTICLES	22
2	.6	TE MI	CHNIQUES FOR STUDYING THE STRUCTURE OF CROPARTICLES	PROTEIN
	2.6.	.1	Microscopy	26
	2.6.	.2	Fourier transform infrared (FTIR) spectroscopy	26
	2.6.	.3	Electrophoresis	
2	7	CO	NCLUSIONS	20
	• /	CO		
3	HY	PO.	THESES AND OBJECTIVES	
3 3	., HY .1	т РО НҮ	THESES AND OBJECTIVES	
3 3 3	.1 .1	PO HY OB	THESES AND OBJECTIVES POTHESES	
3 3 3 4	.1 .2 RE	PO PO HY OB	THESES AND OBJECTIVES POTHESES JECTIVES	
3 3 4 4	.1 .2 RES	POT HY OB SEA PH AP	THESES AND OBJECTIVES POTHESES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL	
3 3 4 4	.1 .2 RES .1 4.1.	PO HY OB SEA PH AP	THESES AND OBJECTIVES POTHESES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL	
3 3 4 4	HY .1 .2 RES .1 4.1. 4.1.	PO HY OB SEA PH AP	THESES AND OBJECTIVES POTHESES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL	
3 3 4 4	HY .1 .2 RE .1 4.1. 4.1.	 PO: PO: OB SEA PH[*] AP[*] .1 .2 .3 	FHESES AND OBJECTIVES POTHESES JECTIVES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL Abstract Introduction Materials and methods	
3 3 4 4	HY .1 .2 RE .1 4.1. 4.1. 4.1.	PO: HY OB SEA PH AP .1 .2 .3 4.1.3.	FHESES AND OBJECTIVES POTHESES JECTIVES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL Abstract Introduction Materials and methods 1	
3 3 4 4	HY .1 .2 RES .1 4.1. 4.1. 4.1. 4.1. 4.1.	PO: HY OB SEA PH AP .1 .2 .3 4.1.3. 4.1.3.	FHESES AND OBJECTIVES POTHESES JECTIVES JECTIVES JRCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIC PLICATION AS A BIOMATERIAL Abstract Introduction Materials and methods 1 Materials 2 Extraction of kafirin	
3 3 4 4	HY .1 .2 RES .1 4.1. 4.1. 4.1. 4.1. 4.1. 4.1.	 PO: PO: PO: PO: PO: PO: PO: PO: PO: PO:	FHESES AND OBJECTIVES POTHESES JECTIVES ARCH YSICO-CHEMICAL MODIFICATION OF KAFIRIN MICROPARTIPLICATION AS A BIOMATERIAL Abstract Materials and methods 1 Materials 2 Extraction of kafirin 3 Preparation of kafirin microparticles	

4.1.3.	5 SDS-PAGE
4.1.3.	6 Microscopy
4.1.3.	7 Determination of size of the kafirin microparticles
4.1.3.	8 In vitro protein digestibility (IVPD)
4.1.3.	9 FTIR spectroscopy
4.1.3.	10 Statistical analyses
4.1.4	Results and discussion
4.1.4.	1 Morphology and size distribution of treated kafirin microparticles
4.1.4.	2 Protein structure of treated kafirin microparticles
4.1.4.	3 Protein digestibility of heat, transglutaminase and glutaraldehyde treated kafirin microparticles
4.1.4.	4 Mechanical properties of heat, transglutaminase and glutaraldehyde treated kafirin microparticles
4.1.4.	5 Kafirin microparticle further self-assembly
4.1.5	Conclusions
4.1.6	References
4.2 IMF FUN	PROVEMENT IN WATER STABILITY AND OTHER RELATED NCTIONAL PROPERTIES OF THIN CAST KAFIRIN PROTEIN FILMS72
4.2.1	Abstract72
4.2.2	Introduction
4.2.3	Materials and methods74
4.2.3.	1 Materials74
4.2.3.	2 Preparation of conventional cast kafirin films74
4.2.3.	3 Preparation of kafirin microparticle films74
4.2.3.	4 SEM76
4.2.3.	5 SDS-PAGE

4.2.3	3.6	FTIR spectroscopy	76
4.2.3	3.7	Water vapour transmission (WVT) and water vapour permeability (WV	⁷ P)76
4.2.3	3.8	Water stability	77
4.2.3	3.9	Water uptake and weight loss of films in water	77
4.2.3	3.10	Surface density	78
4.2.3	3.11	Tensile properties	78
4.2.3	3.12	IVPD	78
4.2.3	3.13	Statistical analyses	79
4.2.4	Res	sults and discussion	79
4.2.4	4.1	Water stability of conventional cast kafirin films and cast kafirin m	1icroparticle
4.2.4	4.2	Film physical appearance	
4.2.4	4.3	Film chemical structure	
4.2.4	1.4	Film functional properties	
4.2.5	Cor	nclusions	96
4.2.6	Ref	erences	96
4.3 IN AS SA MI MI	VITE SSES: AFET ICRO ICRO	RO BMP-2 BINDING TO KAFIRIN MICROSTRUCTURES, RA SMENT OF KAFIRIN MICROPARTICLE FILM-BMP-2 Y, EVALUATION OF BIODEGRADABILITY OF PARTICLE FILM IMPLANT AND ASSESSMENT OF PARTICLE FILM-BMP-2 INDUCED ECTOPIC BONE FORMA	T MODEL SYSTEM KAFIRIN KAFIRIN TION . 102
4.3.1	Abs	stract	
4.3.2	Intr	oduction	103
4.3.3	Ma	terials and methods	105
4.3.3	3.1	Materials	
4.3.3	3.2	Binding BMP-2 with kafirin microparticles	
4.3.3	3.3	SDS-PAGE	

4.3.3.4	SEM	
4.3.3.5	Lowry protein assay	
4.3.3.6	Enzyme-linked immunosorbant assay (ELISA)	
4.3.3.7	Subcutaneous bioassay using rat model	
4.3.3.8	Sterilization of implant materials	
4.3.3.9	Implantation	110
4.3.3.10	Examination of appearance of implants	111
4.3.3.11	Histological evaluations	111
4.3.3.12	Safety assessment	111
4.3.3.13	Assessment for ectopic bone growth	112
4.3.3.14	Statistical analyses	113
4.3.4 Re	sults and discussion	
4.3.4.1	Binding BMP-2 with kafirin microparticles	
4.3.4.2	Implant safety assessment	
4.3.4.3	Evidence of implant degradation	
4.3.4.4	Evidence of ectopic bone morphogenesis	
4.3.5 Co	nclusions	
4.3.6 Re	ferences	
GENERAI	DISCUSSION	
5.1 METH	ODOLOGY: CRITICAL REVIEW	
5.2 PROPO MICRO	DSED MECHANISM OF CROSS-LINKING THE DEPARTICLES WITH GLUTARALDEHYDE AND HEAT	KAFIRIN 151
5.3 POTEN BIOMA	NTIAL APPLICATIONS OF KAFIRIN MICROSTR ATERIALS	UCTURE
5 CONCLUS	SIONS AND RECOMMENDATIONS	
REFEREN	ICES	

5

6

7

8	PUBLICATIONS MADE BASED ON THIS RESEARCH	198
9	ANNEX	199
ŀ	ANNEX 1: APPROVAL DOCUMENT	
A	ANNEX 2: IDEXX LABORATORIES REPORT	

LIST OF TABLES

Table 2.1 Relative proportions of the different kafirin sub-classes in total kafirin
Table 2.2 Examples of bioactive compounds or agents delivered by protein microparticles.24
Table 2.3 Characteristics of different microscopy techniques and their application in protein microparticle type research 2 ²
Table 4.1 Effects of heat, transglutaminase and glutaraldehyde treatments on the protein secondary structure of kafirin microparticles determined by FTIR
Table 4.2 Effects of kafirin microparticle treatment with heat, transglutaminase and glutaraldehyde on their <i>in vitro</i> protein digestibility (IVPD)
Table 4.3 Slope of linear portion of force-deformation curves of heat, transglutaminase and glutaraldehyde treated kafirin microparticles determined by AFM
Table 4.4 Effects of treating kafirin microparticles with heat, transglutaminase and glutaraldehyde on the protein secondary structure of films prepared from them, a determined by FTIR 80
Table 4.5 Effects of treating kafirin microparticles with heat, transglutaminase glutaraldehyde on the thickness, water vapour transmission (WVT) and wate vapour permeability (WVP) of films
Table 4.6 Effects of glutaraldehyde treatment on the water uptake and weight loss in water o kafirin microparticle films
Table 4.7 Effects of treating kafirin microparticles with heat, transglutaminase and glutaraldehyde on the surface density, tensile properties and <i>in vitro</i> protein digestibility (IVPD) of films made from them

- **Table 4.13** Alkaline phosphatase (ALP) activity of capsule and kafirin microparticle film orcollagen standard implants loaded with rhBMP-2 after 28 days of implantation.133

LIST OF FIGURES

Figure 2.1 Schematic representation of protein microparticles
Figure 2.2 Reactions catalysed by transglutaminase
Figure 2.3 Cross-linking reaction between glutaraldehyde and protein
Figure 4.1 Electron microscopy of kafirin microparticles treated during preparation (formation)
Figure 4.2 Particle size distribution of kafirin microparticles treated with heat and glutaraldehyde during microparticle formation
Figure 4.3 Microscopy of heat-treated kafirin microparticles
Figure 4.4 Particle size distribution of heat-treated kafirin microparticles
Figure 4.5 Microscopy of transglutaminase (TG)-treated kafirin microparticles
Figure 4.6 Photograph showing the volume of kafirin microparticle sediment after incubation in buffer, maltodextrin and transglutaminase (TG) for 12 h at 30°C45
Figure 4.7 Particle size distribution of transglutaminase-treated kafirin microparticles45
Figure 4.8 Microscopy of glutaraldehyde (GTA)-treated kafirin microparticles
Figure 4.9 Particle size distribution of glutaraldehyde-treated kafirin microparticles47
Figure 4.10 AFM topographs of treated kafirin microparticles at two different levels of magnification
Figure 4.11 SDS-PAGE of treated kafirin microparticles
Figure 4.12 Representative linear portion of the force-deformation curves for heat, transglutaminase and glutaraldehyde treated kafirin microparticles, determined by AFM.

Figure 4.13 Appearance of kafirin films cast in acetic acid, after immersion in water for 48 h at room temperature with gentle shaking (70 rpm)
Figure 4.14 Physical appearance of films prepared from treated kafirin microparticles81
Figure 4.15 SDS-PAGE of films prepared from treated kafirin microparticles
Figure 4.16 Water stability of films prepared from treated kafirin microparticles90
Figure 4.17 SEM of kafirin microparticle films after vigorous agitation in water for 72 h at 22°C90
Figure 4.18 Typical stress-strain curves of films prepared from treated kafirin microparticles determined by a TA-XT2 Texture Analyser
Figure 4.19 Effect of binding of kafirin microparticles (KMP) and collagen standard with BMP on concentration of "BMP complex" in the clear supernatants (free unbound protein), determined by Lowry protein assay
Figure 4.20 SEM of kafirin microparticles (KMP) and collagen standard at the end of binding period with BMP115
Figure 4.21 SDS-PAGE with silver staining of kafirin microparticles (KMP) and collagen standard after binding with BMP116
Figure 4.22 BMP-2 binding capacity of kafirin microparticles (KMP) heat-treated at 75°C (KMP 75) compared to collagen standard during the first 120 min reaction period, determined by BMP-2 ELISA
Figure 4.23 BMP-2 binding capacity of kafirin microparticles (KMP) treated with heat, transglutaminase and glutaraldehyde compared with collagen standard over a 24 h reaction period, determined by BMP-2 ELISA
Figure 4.24 Typical appearance of implant sites by Day 0, 7, and 28 post implantation124
Figure 4.25 Gross appearance of encapsulated implants by Day 28 post implantation125

Figure 4.26 Images of haematoxylin-eosin stained sections of implants showing evidence of
degradation of implants130
Figure 4.27 Representative radiograph of rat by Day 28 post implantation133
Figure 5.1 Schematic representation of proposed mechanism of glutaraldehyde cross-linking
of kafirin microparticles154
Figure 5.2 Schematic representation of proposed mechanism of heat cross-linking of kafirin microparticles
Figure 5.3 Schematic representation of hypothetical packing of kafirin nanostructures with
different morphologies during film formation160