interaction
a built environment staging centre
In accordance with Regulation 4(e) of the General Regulations (G.57) for dissertations and theses, I declare that this dissertation, which I hereby submit for the degree Master of Architecture (Professional) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

I further state that no part of my dissertation has already been, or is currently being, submitted for any such degree, diploma or other qualification.

I further declare that this dissertation is substantially my own work. Where reference is made to the works of others, the extent to which that work has been used is indicated and fully acknowledged in the text and list of references.

The dissertation is 22,087 words long (excluding the scanned items).

signature
Anneke van den Berg
abstract

keywords: staging, interaction, transition process, architectural education, theory, practice, relationships

This dissertation investigates the relationship between architectural education and practice. The nature of the relationship between these two phases in architecture is continuously debated and discussed. The debate generally revolves around the responsibilities of educational institutions to produce architects that can easily adapt in the work environment and the industry’s responsibility to assist graduates in the transition process. The debate is discussed and analysed in depth and a programme is developed to assist in facilitating this capricious relationship. A more collaborative relationship between architectural theory and practice can benefit both the quality of architectural education and the architectural industry.

The architectural building type that will be investigated is an inhabited bridge. The structure will act as a unifying space between architectural education and practice, Main Campus and South Campus, as well as the different departments in the Built Environment at the University of Pretoria. The facility will act as a platform for the students to interact with members of the different departments in the Built Environment, the built environment industry and the public.

The architectural exploration aims to create an environment where the relationship between theory and practice can successfully sustain itself. This is achieved through the development of three types of relationships: social, intellectual and practical. These relationships are developed in order to inform and support one another in the attempt to create a more stable and interdependent relationship between architectural theory and practice. An additional relationship that is addressed is the University’s interface and relationship with its local community and society at large.
Table of Contents

Project Summary
Abstract
List of figures
List of terms and abbreviations
Acknowledgements

Chapter One - Introduction

Background and context
Project location
 - Establishment of the University of Pretoria
 - Current facilities on South Campus
 - New developments
 - The University of Pretoria Strategic Plan
Aims
Programme
Importance of the project
Client
Approach
Research questions
Research methodology
 - Qualitative research
 - Quantitative research
Design brief
Design approach
Assumptions and delimitations
Structure of the study

Chapter Two - Theory

Introduction
Historic relationships between architectural theory and practice
A brief history of architectural education
Debating architectural education
 - Identification of shortcomings (The problems)
 - The University (Theory)
 - The role of research (The relationship)
 - The Industry (Practice)
 - The effect on architecture (Architecture)
 - Restoring the relationship (Possible Solutions)
 - Moving away from the "expert culture"
 - "Spontaneous schooling"
 - The "medium is the message" exhibition
Architectural education conclusion

Architectural education in South Africa
The structure of architectural education in South Africa
Architectural education currently in South Africa
Conclusion
Theory conclusion
Chapter three - Programme

Introduction 42
Existing relationships between theory and practice 43
New sustainable relationships between theory and practice 44
Graduate Staging Centre – Built Environment Staging Centre 46
 Graduate Staging Centres (GSCs) 46
 Social relationships 48
 Intellectual relationships 51
 Practical relationships 53
Relationship between Main Campus and South Campus at UP 54
Relationship between the University and the public 54
The relationship between the relationships 54
Conclusion 55

Chapter four - Urban Framework

Aim of urban framework 58
Framework structure 58
 Hatfield Metropolitan Core Development Framework 60
 Transit Oriented Development (TOD) 60
 Bus Rapid Transport (BRT) systems in CoT 61
 Department Facilities Management at UP 61
Previous frameworks for UP 62
 Rejuvenation of Lynnwood Road 62

Chapter five - Contextual Response

Holm Jordaan UP urban framework 63
Proposed framework 67
 Introduction 67
 Urban problems 67
 Key indicators 67
 Activity Streets 70
 Architectural standards 70
 Build-to lines 71
 Cooperative design approach 71
 Landscaping 71
 Parking design and development standards 71
 Sidewalk design 71
 Storm water management 71
 Street furniture 71
Conclusion 72

Site 74
 Climate 74
 Access 74
 Parking 74
Buildings 76
 Background 78
 Boukunde 79
 The Visual Arts Building 80
Connection between Boukunde and Visual Arts Building
Lynnwood Road
Town and Regional Planning Building
The proposed new Permanent collection Building (PCB)
Tukkielaan
Storm water channel

Concept development in context

Chapter six - Design Development

Introduction
Parti diagram
Free-hand sketches and diagrams
Linear plan development
Models
Computer models
Design clarification

Northern wing
Formal Exhibition Space
Public square
Bridge
Circulation route
Design Studio
Workshop Studios
Incubation Offices
Southern wing
Ground Level
Bridge Level
Top Level
Circulation
Exterior spaces

Design clarification

Chapter seven - Technical Investigation

Introduction
Precedent: Land Formation One
Precedent: Ponte Vecchio
Precedent: The Bauhaus
Precedent: Transportation Hub, New World Trade Centre
Services and Systems
Bridge
Vierendeel truss
Design requirements
Opportunities
Design considerations of the Vierendeel truss
Height of Lynnwood Road bridge
Advantages of Vierendeel truss
Secondary structure
Infill
list of figures

all images by author unless otherwise stated

Chapter one

Figure 1.1 Locality in an international context
Figure 1.2 Locality in the context of Pretoria. Aerial photo of area around University of Pretoria Main Campus and South Campus, Google Earth, accessed 14 April 2011.
Figure 1.3 Relationship between NVABES project and Built Environment Staging Centre
Figure 1.4 Identification of important areas around the site, Google Earth, accessed 14 April 2011.
Figure 1.5 Current facilities on South Campus, Google Earth, accessed 16 April 2011
Figure 1.6 Existing site plan with proposed site indicated, edited by author from Vosloo, 2011.
Figure 1.7 Summary of aims of the dissertation
Figure 1.8 Graphic illustration of aims
Figure 1.9 Conceptual section depicting activity intensity
Figure 1.10 Picture of conceptual model - investigating the linearity of the structure
Figure 1.11 Identification of social areas
Figure 1.12 Identification of intellectual areas
Figure 1.13 Identification of practical areas
Figure 1.14 Conceptual sketch exploring the linearity of the plan in relation to the proposed programmes
Figure 1.15 Research methodology
Figure 1.16 Panorama view of South Campus with position of future parking structure
Figure 1.17 Design approach diagrams

Chapter two

Figure 2.1 Details from Albion’s Triumph by Inigo Jones depicting the maiden’s Theory and Practice. Available from: www.jstor.org/stable/3171073. Accessed on 22 May 2011.
Figure 2.5 The relationship between theory and practice throughout the history of architectural education.
Figure 2.6 Summary of the current debate between architectural theory and practice.
Figure 2.7 Summary of possible solutions for a more sustainable relationship between theory and practice.
Figure 2.8 “Spontaneous Schooling” exhibition - products from workshops. Journal of Architectural Education, Volume 64, Issue 2 p. 161
Figure 2.9 The “Medium is the Message” exhibition - example of controversial issues placed within the public realm. Journal of Architectural Education, Volume 53, Issue 3 p. 132
Chapter three

Figure 3.1 Possible relationships between theory and practice

Figure 3.2 Project by Rural Studios. Available from: http://apps.cadc.auburn.edu/rural-studio/. Accessed 10 May 2011

Figure 3.3 Students of Rural Studios. Available from: http://apps.cadc.auburn.edu/rural-studio/. Accessed 10 May 2011

Figure 3.6 Programme establishment

Figure 3.7 Site Plan

Figure 3.8 The bridge structure used as one space

Figure 3.9 Combining the main circulation space and Production Studios

Figure 3.10 Combination of Workshop Studios and main circulation space

Figure 3.11 All spaces used separately

Figure 3.12 Ground Level - diagram depicting extended thresholds

Figure 3.13 Bridge Level - diagram of spaces defining the main exhibition space

Figure 3.14 3D section explaining the interaction between the studios and the public walkway

Chapter four

Figure 4.1 Summary of existing urban frameworks in the Hatfield area. Aerial photo of area around University of Pretoria Main Campus and South Campus, Google Earth, accessed 14 April 2011.

Figure 4.2 Approved BRT routes in Pretoria. Available from: www.cityofthswane.org/BRT. Accessed 20 April 2011.

Figure 4.3 Proposed position of BRT bus stop at UP in Lynnwood Road

Figure 4.4 Rejuvenation of Lynnwood Road, stitching the University back into the urban fabric. DREYER, R., 2008. Incubation. Pretoria. Master’s dissertation. Pretoria: The University of Pretoria.

Figure 4.5 Identification of open spaces.

Figure 4.6 Identification of potential.

Figure 4.7 Possible links between UP and its context.

Figure 4.8 Evaluation of proposed Holm Jordaan Framework for UP

Figure 4.9 Identification of urban “activity streets”

Figure 4.10 Graphic depiction of the existing context

Figure 4.11 Evaluation of Holm Jordaan Framework at the corners of Lynnwood Road and University Road

Figure 4.12 Proposed positions for GSCs
Figure 4.13 Identification of “activity streets” inside UP

Chapter five
Figure 5.1 Existing site plan and access
Figure 5.2 Parking at UP
Figure 5.3 Contextually influential structures
Figure 5.4 Important contextual design generators on existing site plan
Figure 5.5 Boukunde building view from the north east, 1960. MEIRING, A. L., 1961. Universiteit van Pretoria Argitekskool. S.A. Architectural Record, June 1961 p. 10
Figure 5.6 Western corner of Boukunde building, 2011
Figure 5.7 Floor plan of existing Visual Arts Building. Personally obtained from Prof Piet Vosloo, March 2011
Figure 5.8 Existing entrance to Visual Arts Building
Figure 5.9 Public space connections between Boukunde and Visual Arts Building.
Figure 5.10 Location of Elandspoort Farm in relation to Pretoria CBD
Figure 5.11 Location of Elandspoort Farm in Hatfield, Google Earth, accessed 15 May 2011.
Figure 5.12 Northern facade of Town and Regional Planning Building
Figure 5.13 Spatial relationship between BESC and Town and Regional Planning Building
Figure 5.14 Relationship of PCB to the context
Figure 5.15 Tukkielaan and storm water channel

Figure 5.16 Diagrams explaining the concept: linking
Figure 5.17 First concept drawing: linking
Figure 5.18 Diagrammatic demonstration of unification of segregated entities
Figure 5.19 Initial urban foyer identification
Figure 5.20 Diagram summarising the concept of foyers, within context
Figure 5.21 Diagram illustrating the synergy between the foyers
Figure 5.22 Conceptual diagram exploring the linear logic of the bridge level plan
Figure 5.23 Conceptual diagram exploring the functional logic on Ground Level
Figure 5.24 Conceptual diagram exploring horizontal order versus vertical organic lines
Figure 5.25 Conceptual diagram exploring less rigid movement pattern
Figure 5.26 Conceptual diagram exploring the changing of existing axis
Figure 5.27 Conceptual diagram exploring the hierarchy of the urban foyers
Figure 5.28 Conceptual diagram exploring the hierarchy of the foyers between the foyers

Chapter six
Figure 6.1 Ground level spatial organisation exercise
Figure 6.2 Ground level exploration of threshold extension
Figure 6.3 Parti diagram
Figure 6.4 Bridge level organisational exercise
Figure 6.5 Bridge level exploration of existing axis on site
Figure 6.6 Bridge level possibilities of pedestrian movement patterns
Figure 6.7 Bridge level diagram - order and logic
Figure 6.8 Creating spaces in a linear plan
Figure 6.9 Simplification of the plan
Figure 6.10 Extension into the landscape
Figure 6.11 Programming a linear plan
Figure 6.12 Conceptual model: Multi leveled bridge structure over Lynnwood Road
Figure 6.13 Conceptual model: Parti diagram
Figure 6.14 Conceptual model: Dealing with existing axis (interaction and change)
Figure 6.15 Diagrammatic exploration of interaction between levels
Figure 6.16 The three main structural components of the BESC
Figure 6.17 Interaction between interior and exterior spaces of the Formal Exhibition Space as well as natural light penetration
Figure 6.18 Functions of the Public Square within context
Figure 6.19 The bridge as three separate spaces
Figure 6.20 Circulation and Workshop Studios as one space
Figure 6.21 All spaces as one exhibition space
Figure 6.22 Circulation and Studio as one exhibition space
Figure 6.23 View from outside and billboards
Figure 6.24 Operable walls and double volume
Figure 6.25 Acoustics control
Figure 6.26 Ground Level Plan - Southern Wing
Figure 6.27 Bridge Level Plan - Southern Wing
Figure 6.28 Top Level Plan - Southern Wing
Figure 6.29 Southern wing spatial relationships
Figure 6.30 Circulation diagrams: Key
Figure 6.31 Pedestrian circulation on Ground Level
Figure 6.32 Pedestrian circulation on Bridge Level
Figure 6.33 Pedestrian circulation on Top Level

Figure 6.34 New raised pedestrian crossings
Figure 6.35 Relationship between all design development methodologies

Chapter seven

Figure 7.1 Conceptual idea for the tectonic of the building
Figure 7.2 Elevated walkways
Figure 7.3 Naturally lit interior spaces
Figure 7.4 Exterior edges of the building
Figure 7.5 Linear plan extending into the landscape
Figure 7.6 Pedestrian experience of the building
Figure 7.7 The Ponte Vecchio inhabited bridge, Florence, Italy
Figure 7.8 Southern view of the Ponte Vecchio
Figure 7.9 Inhabited Bridge at Bauhaus
Figure 7.10 Transparent facade
Figure 7.11 Interaction with street
Figure 7.12 Horizontality of facade
Figure 7.13 Natural lighting through roof
Figure 7.14 Interaction with inhabited bridge
Figure 7.15 Events hosted at facility
Figure 7.16 Treatment of direct sunlight
Figure 7.17 Approach from many sides
Figure 7.18 Interaction encouraged
Figure 7.19 An object in the landscape
Figure 7.20 Detailing of services
Figure 7.21 Protruding balcony
Figure 7.22 Experience on ground level
Figure 7.23 Quality of interior spaces
Figure 7.24 Architectural presentation of Transportation Hub, NY
Figure 7.25 Three structural components of the BESC
Figure 7.26 Section through northern retaining wall
Figure 7.27 Vierendeel truss with horizontal chords and vertical, rigid supports
Figure 7.28 Four Vierendeel trusses, laterally braced to form one steel structure
Figure 7.29 Rectangular openings in Vierendeel truss
Figure 7.30 Composite light weight concrete flooring and roofing system
Figure 7.31 Slimdek detail
Figure 7.32 Perspective indicating openable Formica panels on inner facades of Bridge Level structure
Figure 7.33 PG Bison Solid Core Formica Panels
Figure 7.34 Operable wall panels moved into circulation space for public exhibition
Figure 7.35 Diagram indicating the structure’s ability to deal with excessive noise levels
Figure 7.36 Diagrammatic section through Southern Wing viewed from the east
Figure 7.37 Diagrams indicating water drainage from the different levels
Figure 7.38 Diagrammatic presentation of complete water reticulation system
Figure 7.39 Rain water accumulation areas, for downpipe sizing
Figure 7.40 Detail indicating the different flooring systems
Figure 7.41 Diagrammatic presentation of water management from bridge to reticulation tanks

Figure 7.42 Diagrammatic presentation of solar energy collection and distribution
Figure 7.43 Summary of passive systems
Figure 7.44 Position of concrete columns on Ground Level Plan
Figure 7.45 Four Vierendeel Trusses in position on concrete columns
Figure 7.46 I beams bolted to Vierendeel Trusses for lateral support
Figure 7.47 Steel structure detail
Figure 7.48 Western view of structural steel system
Figure 7.49 Edge of the structural steel system, before infill is installed
Figure 7.50 Wet work on northern and southern wings after steel structure is in place
Figure 7.51 Complete structure with masonry wings, steel structure and infill panels
Figure 7.52 New openings on southern facade of existing Boukunde building
Figure 7.53 Connections between BESC and Boukunde

Chapter eight
Figure 8.1 Site Plan
Figure 8.2 Ground Level Plan
Figure 8.3 Bridge Level Plan
Figure 8.4 Top Level Plan
Figure 8.5 Roof Plan
Figure 8.6 Eastern Elevation
Figure 8.7 Southern Elevation
Figure 8.8 Western Elevation
Figure 8.9 Section AA
Figure 8.10 Detail Section AA
Figure 8.11 Section BB
Figure 8.12 Section CC
Figure 8.13 Section DD
Figure 8.14 Detail 1 - Roof Eave Detail
Figure 8.15 Detail 2 - Eastern Facade Detail
Figure 8.16 Detail 3 - Bridge Flooring Detail
Figure 8.17 Detail 4 - Facade Detail
Figure 8.18 Detail 5 - Retaining Wall Detail
Figure 8.19 Detail 6 - Rain Water Reticulation Tank Detail
Figure 8.20 Detail 8 - Steel Staircase Detail
Figure 8.21 Detail 9 - Steel Staircase Detail
Figure 8.22 Detail 10 - Connection to Boukunde

Chapter Nine

Figure 9.1 Top level interaction with lower levels
Figure 9.2 Bridge level interaction with other levels
Figure 9.3 Ground level interaction with other levels
Figure 9.4 Top level - social practical and intellectual foyers
Figure 9.5 Bridge level - social, practical and intellectual foyers
Figure 9.6 Ground level - social, practical and intellectual foyers
Figure 9.7 Top level - all foyers
Figure 9.8 Bridge level - all foyers
Figure 9.9 Ground level - all foyers
list of terms & abbreviations

Architecture (when referring to the students or the study of architecture) – A collective term used to describe architecture, landscape architecture and interior architecture.

BRT - Bus Rapid Transport

Built Environment – The School for the Built Environment at the University of Pretoria. The school covers all the programmes within the Built Environment, divided into three departments, namely: Architecture, Construction Economics and Town and Regional Planning.

CAA – Commonwealth Association of Architects

CBD – Central Business District

CID – City Improvement District

Construction Industry – Includes all entities involved in the construction process, amongst others engineers, suppliers, builders, developers, etc.

CoT – City of Tshwane. This term specifically refers to the greater Tshwane area or the area covered by the City of Tshwane Metropolitan Municipality or the City of Tshwane Metropolitan Municipality itself. Not to be confused with ‘Pretoria’ as this refers to the original city, before the amalgamation of the various local governments, including areas such as Centurion, Hammanskraal, Akasia, Mabopane, Soshanguve, Pretoria, etc (http://www.ananzi.co.za/advertising/tshwane/index.htm).

Graduate Staging Centre – This dissertation introduces a new typology of Staging Centres. These are buildings that are designed with the main aim of showcasing the work that is being produced at an academic institution. The Staging Centres are discipline-specific and should act as a foyer between the academic institution and its local environment.

HEQF - Higher Education Qualification Framework

HoD - Head of Department

HMCDF – Hatfield Metropolitan Core Development Framework.

Incubation Centre – According to Dr Mark Yates an influential figure in global business, a business incubator is a facility set up by a university to assist graduates in establishing and managing their own businesses. Financial and business support is provided for up to three years for graduates who are starting their own business; in turn, they, as members of the business incubator, give a percentage of their earnings back to the centre (Yates, 2009).

However, in this dissertation the term will be used differently, as it does not aim to be an incubation centre in terms of its management, but will provide a forum for the interaction between the students of the Built Environment and the members of the built environment, assisting students in the transition process between education and industry. It will not be managed as an incubation
centre in terms of business, but only act as an incubation facility.

Industry – Refers in a broad sense to all people involved in the industry of the built environment, including people from the architecture, construction, construction management, town and regional planning, and quantity surveying professions.

ITP – Integrated Transport Plan

NVABES – New Visual Arts Building and Exhibition Spaces. This abbreviation refers to a new project at the University of Pretoria (UP) currently underway. It entails the extension and refurbishment of the Visual Arts Building and a new exhibition space for the University of Pretoria’s permanent collection (see Permanent Collection Building). The new exhibition space for the permanent collection should not be mistaken for the exhibition space proposed as part of this dissertation. The two spaces are separate and should only relate to each other, but it is not one space (see Fig 1.3).

NQF - National Qualification Framework

Permanent Collection Building (PCB) (also see NVABES) – This building forms part of the NVABES development. Its footprint and relationship to its environment forms part of this dissertation. The PCB will house the University’s permanent collection with an estimated value of R400 million, currently not on display.

RIBA – Royal Institute of British Architects

SACAP – South African Council for the Architectural Profession

SAIA – The South African Institute of Architects

SPTN – Strategic Public Transport Network

TMSDF – Tshwane Metropolitan Spatial Development Framework

TOD – Transit Oriented Development

Transition Process – The term refers directly to the interface between architectural education and the architectural industry; the phase between the completion of a specific degree and actually working at a firm or as a practicing architect.

UCT – The University of Cape Town

UP – The University of Pretoria
Pretoria in my [h(e)]art!
thank you

Arthur Barker
Jacques Laubscher
My entire family and all my friends
Cornè

In my heart I will always know that this was a good year - thanks to you!