Electrochemical behaviour of boron-doped diamond electrodes

by

Kaveshini Naidoo

Submitted in partial fulfilment of the requirements for the degree

MAGISTER SCIENTIAE

in the Faculty of Natural & Agricultural Science

University of Pretoria

Pretoria

October 2001
Electrochemical behaviour of boron-doped diamond electrodes

by

Kaveshini Naidoo

Supervisor: Dr Raluca I Stefan
Co-Supervisor: Professor Jacobus F. van Staden
Department of Chemistry
University of Pretoria

Degree: Magister Scientiae

SYNOPSIS

Conducting diamond electrodes provide unique advantages for electrochemistry such as a wide potential window, low baseline current, chemical inertness and resistance to fouling. De Beers boron-doped diamond electrodes, manufactured by chemical vapour deposition and containing varying amounts of boron, were therefore investigated in order to determine their suitability for future electrochemical applications. These electrodes were initially characterised using techniques such as SEM, LA-ICP-MS, Raman spectroscopy and XPS. The electrochemical behaviour of these electrodes was investigated in two redox systems (potassium iron (III) cyanide and cerium (III) sulphate) and two biological systems (dopamine and ascorbic acid). These results were compared against that of the conventional glassy carbon electrode. Porous boron-doped diamond, a novel electrode material, was used for the electrochemical detection of thyroid hormones (L-T₃ and L-T₄).
These hormones have never previously been investigated using a boron-doped diamond electrode.

The De Beers boron-doped diamond electrode was found to outperform the conventional glassy carbon electrode, which fouled very easily, in the detection of dopamine. Peak separation between dopamine and the interfering ascorbic acid was attained at a pretreated boron-doped diamond electrode. The feasibility of detecting thyroid hormones using a porous boron-doped diamond electrode was demonstrated, and the electrode material was patented.
Elektrochemiese gedrag van boorbevattende diamantelektrodes
deur
Kaveshini Naidoo

Leier: Dr Raluca I. Stefan
Medeleier: Professor Jacobus F. van Staden
Departement Chemie
Universiteit van Pretoria

Graad: Magister Scientiae

SAMEVATTING

Geleidende diamantelektrodes lewer unieke voordele in elektrochemie, soos 'n wye potensiaalgebied, 'n lae basislyn, onreaktiewe chemiese eienskappe, en 'n weerstand teen die vorming van 'n neerslag op die oppervlakte, wat die elektrodewerking belemmer. De Beers se boorhoudende diamantelektrodes, wat verskeie hoeveelhede boor bevat, is ondersoek met die doel om hul geskiktheid vir toekomstige elektrochemiese toepassings te bepaal. Hierdie elektrodes is berei deur die neerslag van koolstof in die dampfase in die teenwoordigheid van boor. Dit is aanvanklik gekarakteriseer deur gebruik te maak van tegnieke soos SEM, Raman spektroskopie en XPS. Hierdie elektrodes is getoets in twee redoksisteme (kalium yster(III)sianied en serium(III)sulfat) en twee biologiese sisteme (dopamien en askorbiensuur). Die verkree resultate is vergelyk met dié van konvensionele glasagtige koolstofelektrodes. Porieuse boorbevattende diamant, 'n unieke
elektrodemateriaal, is aangewend vir die elektrochemiese bepaling van skildklierhormone (L-T₃ en L-T₄). Hierdie hormone is nog nie voorheen bepaal deur gebruik te maak van hierdie tipe elektrode nie.

De Beers se boorhoudende diamantelektrode het die werking van die gewone glasagtige koolstofelektrode oorskry; by laasgenoemde vorm 'n aanpaksel op die elektrodeoppervlakte baie geredelik in die bepaling van dopamien. Die skeiding van dopamien en belemmerende askorbiensuur, is bewerkstellig deur gebruik te maak van hierdie elektrodes. Die moontlikheid om skildklierhormone te bepaal d.m.v. 'n porieuse boorhoudende diamantelektrode is aangetoon, en hierdie elektrodemateriaal is gepatenteeer.
Acknowledgments

I would like to thank the De Beers Research Laboratory (DRL) for financially supporting my studies, and giving me the opportunity to further my formal qualifications. I would also like to thank my supervisor at the DRL, Anine Ras, for her guidance and support in this endeavour. My thanks also to my supervisor and co-supervisor at the University of Pretoria, Dr R I Stefan and Professor van Staden, for their role in making this thesis possible.

I would like to thank Brett Lancaster (DRL) for his help in the TGA analysis of the CVD diamond samples. I would also like to thank Hester Burks (DRL) for her help in the SEM analysis of the samples, and Amanda Quadling at the De Beers GeoScience Centre for her help in the LA-ICP-MS analysis of the diamond samples. I would like to thank Brett Lancaster and Johan Myburgh (DRL) for their input and support.

And finally, I would like to express my sincere love and gratitude to my family and friends, for their encouragement, love and support in this undertaking.
To Jesus, my closest friend,

In all things, you do so righteously tend,

Unlike, the billowing sand,

Which may lead to a barren land,

I have no fear, 'cause you have my life in the palm of your hand

And so, in you I will forever love and trust.
Table of Contents

Synopsis

Samevatting

Acknowledgments

Table of Contents

1 **Introduction**

1.1 Aim of investigation 4

1.2 References 5

2 **Manufacture of boron-doped CVD diamond**

2.1 Introduction 7

2.2 Hot filament CVD and microwave plasma CVD techniques 8

2.3 Effect of varying deposition conditions on the morphology of CVD diamond 11

2.4 Effect of boron on CVD diamond 15

2.5 References 19
3 Surface structure and chemistry of diamond and boron-doped CVD diamond

3.1 Surface structure and chemistry of diamond 20
3.2 Surface structure and chemistry of boron-doped CVD diamond 24
3.3 References 26

4 Characterisation of boron-doped CVD diamond

4.1 Introduction 28
4.2 Scanning electron microscopy (SEM)
 4.2.1 Theory 29
 4.2.2 Experimental 31
 4.2.3 Results and discussion 32
4.3 Laser ablation inductively coupled plasma (LA-ICP-MS)
 4.3.1 Theory 36
 4.3.2 Experimental 38
 4.3.3 Results and discussion 41
4.4 Raman spectroscopy
 4.4.1 Theory 43
 4.4.2 Experimental 46
 4.4.3 Results and discussion 46
4.5 X-ray photoelectron spectroscopy (XPS)
 4.5.1 Theory 52
5 Hydrogenation and oxygenation techniques

5.1 Introduction
5.1.1 Hydrogen treatment
5.1.2 Oxygen treatment

5.2 Hydrogenation techniques: experimental and discussion
5.2.1 Tube furnace treatment
5.2.2 Thermogravimetric analyser (TGA) treatment
5.2.3 Hydrogen plasma treatment

5.3 Oxygenation techniques: experimental and discussion
5.3.1 Chromic acid treatment
5.3.2 Anodisation treatment
5.3.3 Thermogravimetric analyser treatment

5.4 Conclusion
6 Electroanalysis of inorganic redox systems – potassium iron (III) cyanide and cerium (III) sulphate

6.1 Introduction 87
6.2 Experimental 89
6.3 Results and discussion
 6.3.1 Electrochemical characterisation of diamond electrodes of varying boron concentrations 92
 6.3.2 Surface area effects 95
6.3.3 Potassium iron (III) cyanide 97
6.3.4 Cerium (III) sulphate 103
6.4 Conclusion 113
6.5 References 114

7 Electroanalysis of organic systems – dopamine in the presence of ascorbic acid

7.1 Introduction 116
 7.1.1 Biocompatibility studies of chemically vapour deposited diamond (CVDD) 121
7.1.2 Commercial requirements and benefits of biosensors 123
7.2 Experimental 124
7.3 Results and discussion

7.3.1 Dopamine 125
7.3.2 Ascorbic acid 134
7.3.3 Dopamine in the presence of ascorbic acid 139

7.4 Conclusion 143

7.5 References 144

8 Electroanalysis of organic systems via a bio-recognition element – thyroid hormones (L-T₃ and L-T₄)

8.1 Introduction 147

8.1.1 Bio-recognition system 149
8.1.2 Porous diamond electrode 152

8.2 Experimental

8.2.1 Crushing and sintering 154
8.2.2 Characterisation 155
8.2.3 Detection of thyroid hormones (L-T₃ and L-T₄) 155

8.3 Results and discussion

8.3.1 Characterisation of the porous BDD electrode

8.3.1.1 Surface morphology 157
8.3.1.2 Surface chemistry 159
8.3.1.3 Electrochemical behaviour of porous BDD electrodes 161

8.3.2 Absorption kinetics 166
8.3.3 Detection of thyroid hormones (L-T₃ and L-T₄)

8.3.3.1 Detection of L-T₄ 168

8.3.3.2 Detection of L-T₃ 172

8.4 Conclusion 173

8.5 References 174

9 Conclusions 176